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Abstract

In recent years, the emergence of mini flash crashes has become a distinctive concern

within contemporary electronic trading markets, garnering attention from scholars,

market participants, and regulators alike. These rapid, unforeseen market disruptions

have been attributed to the breakneck pace of trading activity. This study employs

data from the NYSE Trade and Quote database (TAQ) to examine the efficacy of

implementing a “speed bump” mechanism in mitigating the risks associated with mini

flash crashes. Utilizing machine learning techniques to estimate the likelihood of mini

flash crashes occurring within the NYSE American market, this analysis offers empirical

insights. The findings of this research demonstrate that the introduction of a speed

bump mechanism can indeed reduce the probability of mini flash crashes. However, it

is noteworthy that this mitigation strategy also leads to an influx of noise traders and

an increase in short-term market volatility.

JEL Codes: G10, G14, G18

Keywords: speed bump, price discovery, market liquidity, market efficiency, cointe-

gration.
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1 Introduction

The literature extensively explores the influence of high-frequency trading (HFT) on flash

crashes, notably the historic “flash crash” that took place on May 6, 2010, marking the

largest intraday decline in the Dow Jones Industrial Average’s history. Investigated by

both the Securities and Exchange Commission (SEC) and the Commodity Futures Trading

Commission (CFTC), the precise cause of this event remains elusive. Nevertheless, many

market participants suspect that the cancellation of existing buy orders by high-speed trading

algorithms upon detecting market imbalances is a primary contributor (Nolte (Nolte)). These

cancellations set off a chain reaction of rapid sell-offs as trading algorithms interact, resulting

in a steep price plummet. Consequently, this incident has garnered significant attention,

sparking concerns among regulators, academics, and investors regarding the practice of high-

frequency trading, which relies on computer-based algorithms.

“Liquidity is a coward; it is never there when it is needed.” (Christopher (2008)). Bouchaud

(2021) believes there is a destabilizing feedback loop in HFT market-making activity:

Volatility =⇒ Higher spreads and lower liquidity =⇒ More volatility

Fosset et al. (2020) suggests that excessive reactions by market makers, whether human or

machine-based, to unexpected events can set off a detrimental decline in market liquidity. In

such a scenario, High-Frequency Traders (HFTs), serving as ultra-fast market intermediaries,

may find themselves vulnerable to significant short or long positions, necessitating swift

maneuvers to exit these high-risk positions. While HFT is not the primary instigator, there

is a notable potential for this algorithmic trading approach to exacerbate market conditions,

potentially culminating in a flash crash. The findings from a study by Bellia (2020) support

this notion, revealing that HFTs often consume liquidity precisely when it is most crucial,

even when offered incentives by exchanges to provide immediate liquidity.

Figure 1

In the aftermath of the May 6, 2010 flash crash, regulators responded with heightened
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scrutiny and proactive measures to avert any future reoccurrence. The Securities and Ex-

change Commission (SEC) introduced a proposal mandating exchanges to establish an audit

system, providing regulators with access to data regarding received and executed orders. As

a follow-up, the SEC ratified new regulations designed to mitigate stock volatility by insti-

tuting temporary trading halts in the event of substantial price fluctuations (Nolte (Nolte)).

Academic literature also underscores the importance of cautious regulation regarding

high-frequency trading (HFT) Keller (2012). It suggests that regulators should strive to

restore market confidence without undermining the efficiencies that HFT brings. This can

be achieved through enhanced transparency and reporting requirements. Additionally, it

recommends that regulators mandate internal risk management practices within HFT firms

themselves Keller (2012).

In summary, the flash crash compelled regulators to respond proactively by suggesting

audit systems, putting trading halts into effect, and exploring strategies to both reinstate

market trust and preserve the advantages of HFT. Moreover, academia underscores the

significance of transparency, reporting prerequisites, and the enforcement of internal risk

management practices within HFT firms.

Beyond the United States, the Investment Industry Regulatory Organization of Canada

(IIROC) also expressed its concerns on May 6th, 2010, a day when Toronto’s primary index

experienced a relatively milder decline of approximately 3.8 percent, as reported by Reuters

Staff (2010). IIROC highlights that Canadian markets responded swiftly to the decline in

the United States, with no specific event such as erroneous orders driving this downturn.

Furthermore, IIROC’s review recommends that regulators should assess the trigger levels of

their existing market-wide circuit breaker mechanisms Langton (2010).

Given that events akin to the flash crash of May 6th, 2010, are exceedingly rare and

nearly impossible to predict, researchers have turned their attention to gleaning insights

from miniaturized versions of such crashes Nanex (2010). Supporting this perspective, Golub

et al. (2012) provide evidence indicating that mini flash crashes have adverse effects on
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market liquidity. In addition to their findings, my research suggests that market liquidity

indicators, including trade volume and limit order book information, serve as potent signals

for predicting mini flash crashes. This is supported by the empirical investigation conducted

by Kirilenko et al. (2017a), who delved into the trading patterns of high-frequency traders

during the Flash Crash.

Various studies have examined the flash crash through the lens of the probability of in-

formed trading Easley et al. (2012); Andersen and Bondarenko (2014). Contrarily, Jonathan

et al. (2018) ascertain that HFT is not the primary cause of flash crashes, based on empirical

analysis of HFT data from NASDAQ Brogaard et al. (2018). In contrast, Leal et al. (2014),

utilizing an agent-based model, illustrate that HFTs can indeed have a substantial positive

impact on flash crashes due to their specific trading strategies Leal et al. (2014).

The flash crash has significantly heightened systemic market risk Min and Borch (2022).

In moments of panic, investors may incur losses if they hastily sell their positions. As high-

lighted in the International Organization of Securities Commissions (IOSCO) report from

July 2011, more than 20,000 trades in 300 securities occurred at prices deviating by as much

as 60% from their recent values, ranging from mere pennies to a staggering $100,000 ?. Ad-

dressing the issue of mini flash crashes has become a prominent subject in financial research.

This paper focuses on evaluating the effectiveness of the speed bump policy, a market mech-

anism specifically designed to target High-Frequency Trading (HFT) and mitigate mini-flash

crashes.

Certain studies have employed a widely recognized rule-of-thumb definition for assessing

flash crashes, as initially proposed by Nanex, a trading technology company and data service

provider Nanex (2010). This approach often grants access to extensive datasets, facilitating

precise statistical inference. Furthermore, advancements in data analysis techniques have

ushered in a new era. Beyond finance, the application of machine learning techniques has

proven highly effective in analyzing large datasets across various domains, shedding light on

the possibility of predicting real-world mini flash crashes using market data.
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Figure 2

Liu (2023b) introduced both the evidence and methodology for utilizing machine learning

to demonstrate the real-time predictability of mini flash crashes, achieved by analyzing

market microstructure features extracted from the limit order book. Building upon this

methodology, it becomes straightforward to compute the probability of potential mini flash

crashes in real-time, a task that can be effectively detected using machine learning techniques.

Michael Lewis’s book, “Flash Boys” Lewis (2014), shone a spotlight on the issue of un-

fairness within the financial market, particularly by showcasing the story of Katsuyama and

IEX. Katsuyama vividly portrayed a landscape where high-frequency traders could exploit

their speed advantage to front-run orders before they even reached the exchanges. This

was made possible due to stocks being traded across multiple exchanges, each with its own

order arrival times. If the claims presented by Lewis and Katsuyama held true, speed had

transformed into a potent advantage, endowing fast traders with inherent informational su-

periority. The subsequent ascent of IEX as a competitive exchange further underscored

the urgency for investors and regulators to critically scrutinize these assertions concerning

market fairness.

In conversations about the unique nature of High-Frequency Trading (HFT), various

voices from investors and academics have emerged, and one of the most prevalent topics in

recent years has been the concept of the “Speed Bump.” This practice, often highlighted

in Michael Lewis’s popular book “Flash Boys” Lewis (2014), illustrates the phenomenon of

frontrunning order anticipation. Lewis narrates a story that underscores how high-frequency

traders leverage speed as a competitive advantage to unfairly profit from slower traders.

The Investor Exchange (IEX), founded by Katsuyama, the central figure in “Flash Boys,”

made history as the first stock exchange to implement a speed bump in June 2016. The U.S.

Securities and Exchange Commission (SEC) officially sanctioned this pioneering approach.

Katsuyama, a former trader at the Royal Bank of Canada, shared his personal journey of

sending orders to other exchanges, where his orders often received limited attention and
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encountered low execution rates. He attributed the liquidity issues to the delayed arrival

of substantial orders, stemming from the intricate layout of the fiber-optic network. This

complexity created opportunities for high-frequency traders to intercept slower orders, giving

rise to what Katsuyama identified as a new form of informed trading.

In response to the problem of unfair competition in the stock market, Katsuyama estab-

lished IEX and secured regulatory approval from the SEC in October 2016. IEX implemented

a speed bump ahead of its matching engine, accomplished through a 38-mile optical fiber

coil. This deliberate delay, averaging around 350 microseconds for all quotes, aimed to offer

slower traders a brief opportunity to route orders to other exchanges before faster traders

could potentially identify and capitalize on them (Aoyagi (2019)).

A recent study has reported a significant surge in short-selling volume on the Chicago

Board Options Exchange (CBOE) subsequent to the introduction of IEX’s speed bump

Chakrabarty et al. (2020). These findings pose an intriguing question: if a speed bump

effectively curtails the capacity of high-frequency traders to exploit speed for adverse market

consequences, could it also decrease the likelihood of mini flash crashes?

In summary, the implementation of a speed bump by IEX has sparked substantial interest

and debate concerning market fairness. The repercussions on market dynamics and the

potential influence on mini flash crashes merit deeper examination and thorough analysis.

In a study conducted by Liu (2023b), the NYSE American, the second exchange to

implement a speed bump following IEX, was examined. The design of NYSE’s speed bump

closely mirrors that of their competitor IEX, with the exception of a 350-microsecond delay.

Utilizing high-frequency data with nanosecond timestamps, Liu (2023b) assessed the impact

of the speed bump on market qualities and evaluated traded stocks on both NYSE American

(with a speed bump) and Nasdaq (without a speed bump). Through their analysis of price

discovery and market liquidity, Liu (2023a) discovered that the speed bump policy is a

double-edged sword, as it enhances liquidity but diminishes the informativeness of prices.

In this research, I adopt the methodological framework established by Aı̈t-Sahalia et al.
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(2022), Easley et al. (2021), and Liu (2023b). I leverage machine learning models that utilize

microstructure measures, encompassing both short- and long-term data extracted from the

limit order book, to estimate the probability of mini flash crashes. The rationale behind

choosing machine learning as the methodology stems from its capability to identify intricate

non-linear patterns effectively.

Mini flash crashes, being relatively infrequent events driven by a variety of factors that

can occur randomly at any moment, pose a significant challenge. When considering policies

aimed at preventing such events, the objective is to target patterns within the market in-

formation found in the limit order book. Machine learning’s ability to detect these events

through their patterns transforms them from random occurrences into identifiable events

characterized by market information.

To gain a comprehensive understanding, I categorize mini flash crashes into four distinct

time intervals, drawing from existing literature: long-term (180 seconds), medium-term (90

seconds), short-term (15 seconds), and extremely short mini flash crashes (1.5 seconds). By

examining these varying time frames, I can discern diverse patterns within these infrequent

events, uncovering various market insights. I will employ machine learning techniques to

calculate the probabilities of detecting these distinct patterns associated with mini flash

crashes across the four different time intervals.

Having successfully estimated the probability of mini flash crashes, I proceed to conduct

a difference-in-difference analysis to examine how the introduction of the speed bump influ-

ences mini flash crashes using panel data linear regression. Across the four different time

intervals, I have observed varying outcomes. Notably, I found that following the establish-

ment of market equilibrium, shaped by both slow traders and fast traders, the speed bump

tends to increase the probability of long-term mini flash crashes. This outcome aligns with

my expectations, as Liu (2023a) indicates that NYSE American’s speed bump can reduce

price discovery and diminish adverse selection, leading to the belief that more noise traders

migrate to the exchange with the speed bump, thereby introducing greater volatility, in line
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with the findings of Liu (2023a).

Similarly, this trend is reflected in the medium-term version, which encompasses an

adaptable time frame allowing both slow and fast traders to take actions. However, my

empirical results for the short and strictly short versions show a significant reduction in the

probability of detectable mini flash crashes associated with the presence of the speed bump.

This result provides compelling evidence that the speed bump indeed represents an ideal

policy to safeguard the market against mini flash crashes stemming from exceptionally fast

trading algorithms.

This work contributes to the existing literature on the topic discussed in O’Hara (2015),

providing fresh insights into market data. It also serves as a valuable addition to the ongoing

discussion surrounding speed bump-related research on market quality. To delve deeper

into the aforementioned findings, I have structured the paper into six distinct sections. In

addition to the introductory section presented above, the remainder of the paper is organized

as follows: Section 2 provides an overview of the relevant literature. Section 3 outlines the

dataset employed and the data pre-processing techniques employed. Section 4 details the

methodology employed, encompassing the problem setup, machine learning models utilized,

accuracy evaluation methods, and data imbalance processing strategies. Section 5 presents

the empirical results and their implications. Section 6 concludes the findings and summarizes

the key takeaways from the study.

2 Literature

This paper draws upon three distinct bodies of literature. The initial segment of litera-

ture delves into the phenomenon of Flash crashes, a subject that has garnered substantial

attention from various perspectives within academic discourse. Notably, the literature has

extensively explored its connection with high-frequency trading (HFT). A study conducted

by Kirilenko et al. (2017b) reveals that the trading behavior of high-frequency traders re-

mained consistent even as prices plummeted during flash crashes. Furthermore, they offer a
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comprehensive framework for analyzing intraday market dynamics both prior to and during

these systemic events.

While I cannot precisely discern the trading patterns of high-frequency traders, my anal-

ysis reveals a noteworthy alteration in the behavior patterns of market participants just prior

to mini flash crashes. This suggests that market patterns may serve as indicators of impend-

ing mini flash crashes, dispelling the notion that market crashes occur abruptly without any

precursor, as demonstrated by Liu (2023b). Building upon these findings, this paper lever-

ages machine learning techniques to identify mini flash crashes based on detectable market

patterns. Given the intricacies of market conditions and the potentially stochastic nature of

mini flash crashes, the ability of machine learning to detect such events suggests that they

may be managed effectively.

The examination of High-Frequency Trading (HFT) characteristics during flash crashes

has been a focal point in the literature. According to Brogaard et al. (2018), HFTs play

a crucial role in enhancing market liquidity by offsetting imbalances arising from non-HFT

activity, particularly in individual stocks. However, when multiple stocks are affected by a

flash crash, HFT liquidity demand surpasses their supply, as noted by Brogaard et al. (2018),

who argue that HFT is not the root cause of flash crashes. Additionally, Leal et al. (2014)

posit that a higher rate of order cancellations by HFT participants increases the likelihood

of flash crashes but diminishes their duration. Notably, this paper contributes by uncovering

a positive impact on the likelihood of mini flash crashes through the implementation of a

speed bump.

The second strand of literature revolves around the domain of machine learning, which

has seen a significant proliferation of research in recent years. In Kearns and Nevmyvaka

(2013), three case studies illustrate the application of machine learning within high-frequency

trading. These studies encompass the optimization of trade execution, the prediction of price

movements based on order book dynamics, and the enhancement of execution strategies

within dark pools through censored exploration techniques.
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Predicting stock returns remains an enduringly popular subject of keen interest within

both the financial industry and the machine learning academic community. Numerous works

in the literature have demonstrated the superiority of machine learning as a tool for uncover-

ing nonlinear data patterns. In addition to the algorithms developed by the machine learning

research community, financial research places a distinct emphasis on identifying informative

features and refining feature engineering methods to enhance stock prediction performance.

In a study conducted by Easley et al. (2021), a random forest algorithm was employed to

assess the predictability of classical microstructure variables, including Roll measure, Roll

impact, Kyle lambda, Amihud, VPIN, and UX (VIX). In alignment with this approach, our

predictive models also incorporate these essential microstructure measures.

The third strand of literature centers around the concept of a speed bump. In the

work by Aoyagi (2019), a random speed bump is examined through the establishment of a

theoretical market model comprising competitive but slow uninformed market makers, risk-

neutral high-frequency traders, and liquidity traders who encounter a liquidity shock in a

perfectly transparent market. The study forecasts the optimal behavior of market makers

and how high-frequency traders will fine-tune their trading speeds. The key conclusion drawn

is that when high-frequency traders strategically choose their speed levels by factoring in

the impact of their speed decisions on market dynamics, the presence of a speed bump

exacerbates issues related to adverse selection and widens the bid-ask spread.

In a related study, Brolley and Cimon (2018) develop a model to forecast the impact of a

speed bump on competition among exchanges in a multi-exchange setting. Their framework

assumes the initial identity of two markets, each trading the same risky security with a

random payoff. Following the implementation of a speed bump on one of the exchanges,

Brolley and Cimon (2018) anticipate that informed traders will shift their activities to the

conventional exchange without a speed bump. As far as my knowledge extends, this paper

represents a pioneering empirical investigation into the effects of speed bumps on mini flash

crashes.
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3 Data description and pre-processing

In this study, I analyze the NYSE TAQ dataset, spanning from March 15th to September

1st, 2017. This comprehensive dataset encompasses 120 trading days, covering a period

of 90 days leading up to the implementation of the NYSE American speed bump on July

24th, followed by 30 trading days thereafter. Given that the stock order flow and trade

data represent multivariate time series, traditional cross-validation methods are unsuitable

for hyperparameter tuning due to their potential to create a “future-to-past” predictive bias.

To mitigate this issue and effectively train and fine-tune the model, I partition the entire

dataset into four distinct segments:

Period 1: First 30 trading days, training data, 2017/03/15-2017/04/26

Period 2: Second 30 trading days, tuning data, 2017/04/27-2017/06/8

Period 3: Third 30 trading days, testing data 1, which are 30 trading days before speed

bump, 2017/06/09-2017/07/23

Period 4: Last 30 trading days, testing data 2, which are 30 trading days after speed

bump, 2017/07/23-2017/09/05

To estimate the probability of detecting pattern-observable mini flash crashes prior to

the implementation of the speed bump, I employ data from three distinct periods. Over

these periods, I utilize the data from period 1 as the initial training dataset. Then, I employ

the data from period 2 to fine-tune the model’s parameters. Subsequently, I retrain the

model using the data from period 2 to achieve the best prediction performance. Once I

have identified the optimal model and parameter settings, I apply the retrained model to

calculate the probability of mini flash crashes within each time interval in period 3. Period

3 encompasses precisely 30 days preceding the introduction of the speed bump on NYSE

American. For estimating the probability of detecting pattern-observable mini flash crashes

subsequent to the speed bump’s implementation, I replicate the same procedure using data

from periods 2, 3, and 4.

Dealing with the issue of class imbalance is crucial in addressing the rare occurrence
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of mini flash crashes and ensuring the accuracy of my machine learning analysis. Initially,

there were 217 actively traded stocks on NYSE American before March 15th. To address

this imbalance, I systematically filtered out stocks that ceased trading activity between

March 15th and September 5th, retaining only those stocks that exhibited mini flash crashes

consistently throughout the entire training, tuning, and evaluation periods. Consequently,

my dataset comprises a total of 193 stocks.

Through this meticulous approach and effective handling of imbalanced data, my objec-

tive is to offer valuable insights into how the speed bump impacts the probability of mini

flash crashes, utilizing machine learning techniques to achieve meaningful results.

Following Hendershott and Moulton (2011), I use the same standard to clean the quote

and transaction data.1 I also follow the same way to one-to-one matching without replace-

ment, I use all stocks out of NYSE American based on CRSP market capitalization and

closing price. I measure the matching criteria at the 2017/03/14 which is the last date be-

fore my research period. I also randomize the order of matching by sorting NYSE American

stocks alphabetically by the symbol. Then I calculate the following matching error for each

NYSE American stock i and each remaining stock out of NYSE American stock j:

matchingerror =

∣∣∣∣(MCAPi
MCAPj

)
−1

∣∣∣∣+∣∣∣∣( PRCi
PRCj

)
−1

∣∣∣∣
2

In the selection process, MCAP represents the stock market capitalization, and PRC

signifies the stock’s closing price immediately preceding period 1. I identify the stock with the

lowest matching error as the most suitable match for NYSE American stock and subsequently

1As we want to escape from any other events that may hit the market, we restrict our time range to 3
months. More than that, because we use nanosecond timestamp data, 3 months has covered a big bunch of
data. We expect they are enough. When we do the data filtering, we restricted the trading data in regular
trading hours from 9:30 am to 4 pm. We use only trades for which TAQ’s CORR filed is zero, one, or two
and for COND field is either blank or equal to @, E, F, I, J, or K. Obviously, we eliminate trades with
nonpositive prices or quantities. We also remove trades with prices more than(less than) 150%(50%) of the
previous trade price. After that, we restrict quotes for which TAQ’s MODE field is equal to 1, 2, 6, 10, 12,
21, 22, 23, 24, 25, or 26. Then we eliminate quotes with nonpositive prices or sizes or with bid prices greater
than the asking price. We also exclude quotes when the quoted is greater than 25% of the quote midpoint or
when the asking price is more than 150% of the bid price. There are 51 stocks commonly traded on NYSE
American and Nasdaq, one of them has a significant missing data problem, we use the left 50 stocks.
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exclude it from the pool of potential matching stocks. The average matching error observed

in this context is 0.0767.

4 Methodology

This section outlines the machine learning methodology and empirical strategy employed in

this paper.

4.1 Response Variables

Differing from many other financial machine learning studies, such as Easley et al. (2021),

which employ event windows or information bars for data aggregation, this paper adheres

to a time-based approach.

In practice, when a portfolio manager is actively monitoring their investment portfolio in

the lead-up to a potential mini flash crash, they cannot afford to wait for additional events

to accumulate before the model predicts the probability of such an event. Consequently, to

ensure the model’s real-time predictive capability for mini flash crashes, I exclusively rely on

a time-based clock for variable detection.

Mini flash crashes have been widely studied in the literature, the most commonly used

definition of it is from Nanex (2010). Nanex (2010) defines Mini Flash Crashes as the

following:

• The time window does not exceed 1.5 seconds;

• Price change exceeds 0.8%;

• At least 10 ticks in the same direction;

In this paper, I adopt Nanex (2010)’s definition of mini flash crashes, classifying them as

extremely short-term events lasting 1.5 seconds. To gain deeper insights into these market

events, I introduce three additional time windows, each with a more relaxed duration: 180

seconds, defined as long-term; 90 seconds, designated as medium-term; and 15 seconds,

categorized as short-term.
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The long-term mini flash crashes allow us to reasonably assume that both slow and fast

traders have had sufficient time to react to market dynamics within 180 seconds. The

medium-term window serves as a robust check on the long-term perspective and offers

an alternative view, highlighting the involvement of “fast-reactive” slow traders in these

events. The 15-second time frame predominantly reflects the influence of fast traders but

also provides valuable information about the overall market conditions. Lastly, the extremely

short-term category, aligned with Nanex (2010)’s definition, represents the most stringent

classification of mini flash crashes.

To comprehensively capture all mini flash crashes and build a prediction model capable

of real-time forecasting, I assess all time intervals within each trading day. I employ a

forward-looking window to identify mini flash crashes:

Intforward (T, T +∆) = {t ∈ R : T < t ≤ T +∆}, a span ∆ equals 180s/90s/15s/1.5s.

In addition to Nanex (2010)’s characterization, Dugast and Foucault (2018) delineate

mini flash crashes as instances involving substantial, abrupt price drops or spikes followed by

rapid price reversals, often resembling “V-shaped” or “inverted V-shaped” price movements.

Drawing inspiration from this concept, I adopt and implement a complementary version of

mini flash crashes that focuses on these reversal patterns:

• The time window does not exceed 180 seconds/90 seconds/15 seconds/1.5 seconds;

• Price change exceeds 0.8%;

• At least 10 ticks in the same direction and at least 10 ticks in the reversed direction;

Considering the various time interval definitions, I include all stocks that experienced

mini flash crashes, both with and without reversals, across all periods for both NYSE Amer-

ican stocks and their corresponding control group. The summary statistics for mini flash

crashes without reversals, those with reversals, as well as the control groups without and

with reversals, are presented in Table 1, Table 2, Table 3, and Table 4 respectively.

Table 1
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4.2 Predictor Variables

To forecast the aforementioned response variables, I consider a diverse set of predictor vari-

ables, with most of them constructed in accordance with the approach outlined in Aı̈t-Sahalia

et al. (2022). These predictors encompass numerous derived variables, representing nonlinear

transformations of historical data at short time intervals. Drawing from existing literature,

including Cont et al. (2013) and Kercheval and Zhang (2015), I anticipate that the primary

drivers for predicting future short-term events, such as mini flash crashes, will revolve around

characteristics of the current Limit Order Book (LOB), including any imbalances and past

trade returns at the time of prediction. In addition to the methodology introduced in Aı̈t-

Sahalia et al. (2022), I also incorporate microstructure measures, following the approach

detailed in Easley et al. (2021). To capture market microstructure noise information, which

often carries signals of unexpected events, I introduce three additional predictors related to

microstructure noise. A comprehensive description of all our features will be presented in

the subsequent sections.

In a manner analogous to the forward-looking intervals used for predicting the response

variable of mini flash crashes, I establish lookback intervals in terms of calendar time, em-

ploying the current timestamp T and defining lookback spans as (∆1,∆2). For constructing

my predictor variables, I utilize lookback windows denoted as I = Int(T − ∆2, T − ∆1).

More precisely, the pairs of (∆1,∆2) assume values such as (0s, .1s), (.1s, .2s), and so forth,

up to (102.4s, 204.8s). The longest span, which is 204.8s, is designed to cover a slightly over

a 3-minute horizon following each timestamp T , preventing the model from relying exces-

sively on transient information to predict long-term outcomes.In total, there are 11 available

lookback windows, and features can be directly computed after each interval is specified.

Let Dtxn represent the set of all timestamps, t ∈ Dtxn, corresponding to trade transac-

tions, andDqt represent its quote counterpart. We define the combined set asD = Dtxn∪Dqt.

The National Best Bid and Offer (NBBO) prices, indexed by t ∈ D, are denoted as
(
P b
t , P

a
t

)
,

where P b
t represents the best bid price and P a

t represents the best ask price. The mid-price

16



is calculated as the simple average, given by Pt =
P b
t +Pa

t

2
. I denote P txn

t as the transacted

price if t ∈ Dtxn. The best bid and ask sizes are represented as Sb
t and Sa

t , respectively, for

the record indexed by t.

Volume and duration: Predictors are associated with a stock’s trading intensity within

a specified look-back window. For instance, the presence of block trades or a high frequency

of transactions may suggest a recent surge in trading activity. Although this heightened

trading activity may not inherently reveal the direction of the trend, it can interact with other

predictors in a nonlinear manner, providing additional support for the trend’s formation. The

specific definition is provided below.

Breadth measures the number of transactions in the interval:

Breath(T,∆1,∆2) = |Dtxn ∩ Intback(T,∆1,∆2)| (1)

Immediacy measures the average time between successive transactions in the interval:

Immediacy(T,∆1,∆2) =
∆1 −∆2

Breath(T,∆1,∆2)
(2)

VolumeAll measures the total number of shares transacted in the interval:

Immediacy measures the average time between successive transactions in the interval:

V olumeAll(T,∆1,∆2) =
∑

t∈Intback(T,∆1,∆2)

Vt (3)

VolumeAvg measures the average number of shares transacted for each transaction in the

interval:

V olumeAvg(T,∆1,∆2) =
V olumeAll(T,∆1

Breath(T,∆1,∆2

(4)

VolumeMax measures the maximum number of shares transacted in one transaction in

the interval:
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V olumeMax(T,∆1,∆2) = max{Vt : t ∈ Intback(T,∆1,∆2)} (5)

Return and imbalances: Predictors are linked to the recent trading asymmetry of the

stock. These predictors may provide insights into the short-term trend. I possess information

from both trades and quotes that can shed light on this trend. For instance, if a significant

majority of trades are categorized as buying trades that match with limit sell orders, or if

the bid substantially outweighs the ask in the Level I quotes, it suggests upward pressure on

the price. I define the following variables to capture these aspects.

Lambda measures the price change in the interval proportional to total volume.

Let I = Dtxn ∩ Intback(T,∆1,∆2), then:

Lambda(T,∆1,∆2) =
Pmax(I) − Pmin(I)

V olumeAll(T,∆1,∆2)
(6)

LobImbalance is the average imbalance in the depth of the limit order book over the

lookback interval:

LobImbalance(T,∆1,∆2) = Average[
Sa
t − Sb

t

Sa
t + Sb

t

] : t ∈ Intback(T,∆1,∆2) (7)

TxnImbalance measures the asymmetry of buy and sells volumes in recent transactions.

Denote by DirLRt the binary transaction direction at time t signed using the algorithm of

Chakrabarty et al. (2007). Then transaction imbalance is calculated as

TxnImbalance(T,∆1,∆2) = Average[

∑
t∈Dtxn∩Intback(T,∆1,∆2)

(VtDirLRt )

V olumeAll(T,∆1,∆2)
] (8)

PastReturn is the past return in the lookback window. Let I = Dtxn∩Intback(T,∆1,∆2):

PastReturn(T,∆1,∆2) = 1− Average
[P txn

t : t ∈ I]

Pmax(I)

(9)

Speed and cost This set of predictors I employ measure the speed and cost inherent in
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the stock’s trading.

Turnover is the speed of transactions to the stock’s total number of shares outstanding.

Turnover(T,∆1,∆2) =
V olumeAll(T,∆1,∆2)

S
(10)

AutoCov is the autocovariance of transaction returns in the interval. For any t ∈ Dtxn,

denote by Lt = argmaxs {s : s < t, s ∈ Dtxn} the timestamp of the transaction right before

time t. Then the autocovariance is:

AutoCov (T,∆1,∆2) = Average

[
log

(
P txn
t

P txn
Lt

)
log

(
P txn
t

P txn
L(Lt)

)
: t ∈ Dtxn ∩ Int tback (T,∆1,∆2)

]
(11)

QuotedSpread is the average proportional nominal spread in the quotes over the lookback

interval:

QuotedSpread (T,∆1,∆2) = Average

[
P a
t − P b

t

Pt

: t ∈ Intback (T,∆1,∆2)

]
(12)

EffectiveSpread is the dollar-weighted percent effective spread over the interval:

EffectiveSpread (T,∆1,∆2) =

∑
t∈DtxnnIntback (T,∆1,∆2)

[
log
(

P txn
t

Pt

)
DirLRt VtP

txn
t

)
∑

t∈Dtxn∩ln tback (T,∆1,∆2)
(VtP txn

t )
(13)

Microstructure Measures This set of measures aligns with the approach in Easley

et al. (2021), encompassing several established market microstructure variables. As previ-

ously mentioned, the forecasting of mini flash crashes is valuable when the model can deliver

real-time predictions. To ensure this, I compute all of these microstructure measures utilizing

lookback windows. More specifically, I include the following:

Roll measure:
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Rt = 2
√

|cov (∆P t,∆P t−1)|

∆P t = [∆Pt−w,∆Pt−w−1, . . .∆Pt] ,

∆P t−1 = [∆Pt−w−1,∆Pt−w, . . .∆Pt−1] ,

(14)

Where ∆Pt is the change in close price between bars t− 1 and t and W is the lookback

window size.

Roll impact, which is the Roll measure divided by the value traded over the lookback

window, is:

R̃t =
2
√
|cov (∆P t,∆P t−1)|

PtVt

Roll impact: (15)

Kyle’s lambda is given by:

λt =
Pt − Pt−w∑t

i=t biVt

(16)

Where bi is the trade indicator inferred by Chakrabarty et al. (2007), which is computed

through one lookback window.

Amihud’s measure:

λA
t =

1

W

t∑
i=t−W+1

|ri|
piVi

(17)

Where ri, pi, Vi are the return, price, and volume at look back window i and W is the

lookback window size in terms of the number of trades.

Volume-synchronized probability of informed trading is estimated as:

VPINt =
1

W

τ∑
i=τ−W+1

∣∣P a
t − P b

t

∣∣
Vi

(18)

P a
t and P b

t are bid and ask quotes.

Microstructure Realized Volatility and Noise The final set of measures draws

inspiration from a body of literature on microstructure noise, in line with the theoretical
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framework proposed by Zhang et al. (2005). This set comprises three distinct measures:

Realized Volatility in each lookback window:

[P, P ]w =
∑
t∈W

(
Pti+1

− Pti

)2
(19)

Two-Scales Realized Volatility (TSRV) in each lookback window:

⟨̂P, P ⟩T = [Y, Y ]avgT − n̄

n
[Y, Y ]allT (20)

The combination is of two time scales, “all” and “average” sampling. More details could

be found in Zhang et al. (2005). The third one isRealizedmoMentsofDisjointIncrements(ReMeDI)

which is a new-developed measure to estimate microstructure noise, see Li and Linton (2022).

VIX: The last one is the daily Volatility Index (VIX) of the previous trading day.

4.3 Machine Learning Methods

4.3.1 Models

In this paper, we evaluate the performance of four primary machine learning models for mini

flash crash prediction. These models include regularized logistic regression (LASSO) as a rep-

resentative of linear parametric methods, penalized support vector machine (penalized-SVM)

representing nonparametric techniques, as well as two ensemble models, random forest, and

extreme gradient boosting (XGBoost). Further theoretical details regarding these models

can be found in Hastie et al. (2009) and Murphy (2013).

Consider the imbalanced classification problem where we aim to predict a response vari-

able Y , which takes on the value 1 to signify the presence of an impending mini flash crash

within the look-forward window, or 0 to indicate its absence. This prediction relies on a

predictor vector X derived from a random sample (Xi, Yi). Let Y = (y1, ..., yn)
T . Each

feature vector Xi has a dimension of 232, comprising 11 time spans for each of the 21 pre-

dictor variables and the final dimension accounting for the volatility index (VIX) from the

preceding trading day. Machine learning algorithms can then endogenously generate further
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combinations of these predictors or opt for the most informative subsets of predictors.

4.3.2 Penalized Logistic Regression

Among the well-established machine learning models, linear models have always held a promi-

nent position due to their simplicity and interpretability. Logistic regression, a classification

model, employs the sigmoid function to map the linear regression’s value range into the

interval [0, 1]. Specifically, the response variable is defined as follows:

y =
1

1 + e−z
(21)

Through linear regression model:

Z = βTX+ ϵ (22)

Here, X represents the predictor vector. In the absence of regularization, standard Ordi-

nary Least Squares (OLS) in a high-dimensional setting often leads to poor out-of-sample pre-

dictive performance due to in-sample overfitting. To address this issue, a common approach

is to introduce regularization through a penalty function applied to normalized variables. Pe-

nalized least squares with an L1 penalty is commonly known as the Least Absolute Shrinkage

and Selection Operator (LASSO). Specifically, let X̄ = 1
n

∑
i Xi and si =

√
1
n

∑
i (xi − x̄ı)

2

be the mean vector and standard deviations of the predictor variables. Let Z̄ = 1
n

∑
i Zi

be the mean of the linear regression response variable. Define the centered regression re-

sponse Z̃i = Zi − Z̄ and standardized predictors X̃ l = diag
(
s−1
1 , s−1

2 . . . s−1
p

) (
X i −X

)
(i =

1, . . . , n). LASSO then fits the centered response on standardized predictors by solving the

following optimization problem:

β̂ = argminβ∈Rp

{
1

n

∑
i

(
Z̃l − βTX̃ l

)2
+ λ∥β∥

}
(23)

This optimization problem can be effectively solved using convex optimization techniques.

In this paper, I employ the coordinate descent algorithm, implemented within the Scikit-learn
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software in Python, for this purpose.

After I solve the coefficient β̂, I can predict each new data Xnew as:

Ŷnew =
1

1 + e
−
(
Z+β̂

T
Xnew

) , with X̃new = diag
(
s−1
1 , s−1

2 , . . . , s−1
p

) (
Xnew −X

)
(24)

LASSO is a straightforward and highly interpretable model that effectively shrinks the

coefficients of less informative predictors toward zero. This enables us to assess the rele-

vance of various predictors for the prediction problem. Consequently, I can identify which

features exhibit significant predictive power and can serve as key signals for mini flash crash

prediction.

4.3.3 Support Vector Machine

The Support Vector Machine (SVM) stands out as one of the most popular non-parametric

algorithms due to its exceptional performance and well-defined mathematical underpinnings.

It serves as a representative non-parametric forecasting model in this study. In this section,

I provide a brief introduction to SVM, with more comprehensive details available in Hastie

et al. (2009)) and Murphy (2013).

A Support Vector Machine constructs a hyperplane or a set of hyperplanes within a high-

dimensional or even infinite-dimensional space, making it versatile for both classification and

regression tasks (as implemented in scikit-learn).

Given training vectors xi ∈ Rp, i = 1, . . . , n in two classes and the response variable

y ∈ {1,−1}n, the objective is to find a ω ∈ Rp and b ∈ R such that ωTϕ(x) + b can predict

the sign of most new input vectors xnew.

For having this ω, SVM solves the following primal optimization problem:

min
ω,b,ζ2

1

2
ωTω + C

n∑
i=1

ζi (25)

Subject to yi
(
ωTϕ(x) + b

)
≥ 1− ζi, ζi ≥ 0, i = 1, . . . , n
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Through the SVM, the goal is to maximize the margin between the two classes by mini-

mizing the norm of the weight vector, |ω|2 = ωTω. In an ideal scenario, the hyperplane would

perfectly separate all samples, meaning yi
(
ωTϕ (xi) + b

)
≥ 1 for all samples. However, in

the real world, samples are often not perfectly separable by a hyperplane, necessitating the

allowance of some samples to deviate by a distance ζi from their correct margin boundary.

The penalty term C regulates the strength of this penalty. The dual problem corresponding

to the primal problem is as follows:

min
α

1

2
αTQα− eTα

Subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , n, where e is the vector of all ones, Q is a matrix:

Qij ≡ yiyjK (xixj), where K (xixj) = ϕ (xi)
T ϕ (xj) is the kernel.

The kernel function plays a crucial role in mapping the samples into higher-dimensional

or even infinite-dimensional spaces. For a more comprehensive understanding, please refer

to Hastie et al. (2009). In the context of mini flash crash forecasting presented in this

paper, I conducted numerous experiments to fine-tune hyperparameters and found that

employing the linear kernel (simple inner product, < x, x >) in conjunction with hinge loss

for constructing the optimization problem consistently outperformed all other kernel choices.

In the subsequent empirical results section, I will exclusively present the results obtained

using the linear kernel support vector machine.

When the optimization problem is solved, I can use a support vector to predict a new

sample xnew by:

n∑
i∈SV

yiαiK(xi, xnew) + b (26)

Then the predicted class corresponds to its sign.
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4.3.4 Random forests

While ensemble learning tree-style models may lack the ideal interpretability of linear models,

they often demonstrate impressive forecasting capabilities in various practical problems. In

this paper, I employ two ensemble models, with the first being a random forest. Random

forest is a scalable nonparametric learning method that builds upon the foundation of a single

decision tree. Given that a single-tree method can be prone to instability and may not exhibit

strong predictive power, constructing a forest by ensembling multiple individual decision trees

becomes a natural approach. By successfully training these independent decision trees and

averaging the outcomes of numerous sampled decision trees, we reduce prediction variance,

resulting in more stable and reliable predictions.

According to Hastie et al. (2009), random forests are constructed by iteratively growing

regression trees through the bootstrap sampling process from the provided dataset. The

algorithm is outlined as follows in Hastie et al. (2009):

• For b = 1 to B

– Draw a bootstrap sample Z∗ of size N from the training data.

– Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating

the following steps for each terminal node of the tree, until the minimum node

size nmin is reached.

∗ Select m variables at random from the p variables.

∗ Pick the best variable/split-point among the m.

∗ Split the node into two daughter nodes.

– Output the ensemble of trees {Tb}B1 .

For new data, I want to predict x : Let Ĉb(x) be the class prediction of the b th random-

forest tree. Then ĈB
rf (x) = majority vote

{
Ĉb(x)

}B

1
. (Hastie et al. (2009)).
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Predictions derived from bagging methods often exhibit high correlation due to their

reliance on samples from the same dataset. However, by employing random forests, which

involve bagging of independently trained decision trees from bootstrapped samples, along

with variable selection at each decision tree node, we can enhance performance. This process

increases the independence among the resulting trees, thereby reducing prediction depen-

dence. Random forests effectively reduce variance compared to a single decision tree, leading

to improved predictions.

4.3.5 Extreme Gradient Boosting

The second ensemble model employed in this study is Extreme Gradient Boosting (XG-

Boost), originally introduced by Friedman (2001). Outside of the realm of deep learning,

XGBoost has garnered significant popularity within the machine learning community in re-

cent years. XGBoost, as an ensemble model, leverages a multitude of weak base tree learners.

These weak learners typically exhibit high bias, with predictive performance only marginally

better than random guessing.

In contrast to bagging techniques like Random Forest, which grow trees to their maximum

depth, boosting aims to create small, shallow trees that are more interpretable. XGBoost

initiates with an initial model, denoted as F0, to predict the target variable y. Then, the

residual, represented as y − F0, is computed. A new model, h1, is subsequently fitted to

this residual. By combining h1 with F0, the mean squared error is reduced. This process

continues iteratively, updating F1(x) < −F0(x) + h1(x), until the residuals are minimized

as much as possible. The algorithm follows these steps: Given training set {(xi, yi)}Ni=1, and

a well-defined differentiable loss function L(y, F (x)), several weak tree learners M and a

learning rate ∝.

• Initialize model with a constant:

f0(x) = ârgmin
N∑
l=1

L (yl, θ) . (27)
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• For m = 1 to M :

– Compute the gradients and hessians:

ĝm (xi) =

[
∂L (yi, f (xi))

∂f (xi)

]
f(x)=f(m−1)(x)

ĥm (xi) =

[
∂L (yi, f (xi))

∂f (xi)
2

]
f(x)=f(m−1)(x)

(28)

– Fit a weak tree leaner using the training set
{
xi,− ĝm(xi)

ĥm(xi)

}N

i=1
by solvi the opti-

mization problem:

◦∅̂m = argmin∅

N∑
i=1

ĥm (xi)

[
− ĝm (xi)

ĥm (xi)
− ∅ (xi)

]2
f̂(m)(x) =∝ ∅̂m(x)

(29)

– Update the model:

f̂(m)(x) = f̂(m−1)(x) + f̂(m)(x)

• Output f̂(x) =
∑M

m=0 f̂(m)(x)

XGBoostContributors (2023)

More details could be found in Friedman (2001) and XGBoost documents (XGBoostCon-

tributors (2023)).

4.3.6 Measuring Prediction Accuracy

I employ Receiver Operating Characteristic (ROC) and Area under the ROC Curve (AUC)

as metrics to assess the prediction accuracy of our model. It is evident that predicting mini

flash crashes amounts to a supervised anomaly detection problem. In virtually any scenario,

the probability of a mini flash crash occurrence is exceedingly low. As I mentioned earlier,

our dataset is significantly imbalanced, rendering the commonly used accuracy score as an

inappropriate performance measure.
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To illustrate this point, let’s consider a hypothetical situation where only 0.1% of the

look-forward window (data) is labeled as a mini flash crash occurrence. In such a case, a

simple yet misguided prediction approach would be to classify all look-forward windows as

having no mini flash crashes, resulting in an accuracy score of 99.9%. However, this high

accuracy score would be misleading.

ROC is a much more suitable choice for evaluating prediction accuracy in the context of

imbalanced data problems. This concept originated from signal analysis technology devel-

opment during World War II and has since found extensive use in fields like medical issue

detection and others. An ROC curve effectively illustrates the performance of a classification

model across all classification thresholds. This curve plots two key parameters:

• True Positive Rate (TPR): TPR = TP
TP+FN

• False Positive Rate (FPR): FPR = FP
TP+TN

TP, TN, FN, and TN are all from the confusion matrix, see Mohajon (2020):

Figure 3

An ROC curve illustrates the trade-off between True Positive Rate (TPR) and False

Positive Rate (FPR) at various classification thresholds. When the classification threshold

is lowered, more items are classified as positive, leading to an increase in both False Positives

and True Positives. The ROC curve arranges all test samples in descending order based on

the predicted probability of being True, with the model predicting each sample as True one

by one to compute TPR and FPR. This process results in samples with a high probability

of being True, such as those indicating the potential arrival of a mini flash crash, being

predicted as True first. Consequently, in a well-performing model, the curve exhibits a steep

initial increase from 0, followed by a gradually slowing growth towards 1. Two plots from

my tuned models are displayed below, with the red line representing a “random guess.”

AUC, or “Area under the ROC Curve,” quantifies the entire two-dimensional area be-

neath the ROC curve, extending from (0, 0) to (1, 1), similar to calculating the integral

28



of a function. AUC offers a comprehensive measure of performance across all possible clas-

sification thresholds. One straightforward interpretation of AUC is that it represents the

probability of the model ranking a randomly selected positive example higher than a ran-

domly selected negative example.

4.3.7 Imbalanced Data Processing Strategies

As mentioned earlier, our problem involves imbalanced data. In addition to utilizing the raw

data directly, I will employ five additional strategies to address the data imbalance issue.

Undersampling: One approach to address the data imbalance issue is to remove surplus

samples from the majority class (those corresponding to instances where no mini flash crash

occurs) until a balanced sample set is achieved in comparison to the minority class. This is

the simplest strategy for dealing with imbalanced data. However, it comes with a drawback

as it results in the removal of a substantial portion of our data. This approach may lead to

the loss of valuable information present in the majority class. It has the potential to diminish

the impact of certain majority cases, particularly those that fall between the two classes and

carry informative value. For example, in support vector machine algorithms, the deleted

samples may consist of support vectors that are situated close to the margin hyperplane on

the side of the majority class, potentially causing the model to exhibit higher bias.

Oversampling: Another strategy involves randomly duplicating synthetic samples in

the minority class (corresponding to instances where a mini flash crash occurs). This ap-

proach generates numerous synthetic samples to balance the class sizes. However, it carries

a certain level of risk, as introducing noise samples into the minority class can result in an

increase in noise, potentially leading the model to overfit. According to Liu (2023b), this

strategy does not yield optimal performance and can be extremely resource-intensive. As a

result, I have opted not to employ this strategy in my empirical analysis.

Synthetic Minority Oversampling Technique (SMOTE): SMOTE represents a

more nuanced approach to oversampling, employing the K-Nearest Neighbors (KNN) algo-

rithm to generate new samples within the minority class. These newly created samples are
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designed to be similar to, yet distinct from, the original samples. In comparison to simple

oversampling, SMOTE can be seen as a form of ensemble learning, which serves to mitigate

variance and the risk of overfitting. However, it’s worth noting that SMOTE, while effective

in addressing class imbalance, has its own set of limitations. As SMOTE relies on the mi-

nority class to generate synthetic samples, it can magnify the impact of noise due to changes

in the data distribution. Additionally, SMOTE’s computational complexity is significantly

higher than both oversampling and undersampling methods.

Threshold Moving: This strategy involves threshold adjustment to increase the model’s

sensitivity to the minority class. In a balanced data problem, the threshold is typically set

at 0.5. Models learn to calculate the probability of each sample belonging to class 1 or 0

and then compare it with the 0.5 threshold. However, in imbalanced data scenarios, it is

a straightforward approach to shift the threshold to reflect the ratio of some minority class

samples to some majority class samples in the training dataset.

Ensemble Undersampling: As mentioned earlier, the undersampling strategy involves

deleting a substantial number of majority samples to achieve a balanced dataset, which can

result in the wastage of valuable data. An alternative approach is to perform multiple rounds

of undersampling. For instance, if there are 10,000 samples in the majority class and only

50 samples in the minority class, one can create 200 sets of new samples. Each set would

consist of all 50 minority class samples and an additional randomly selected 50 majority

samples. These 200 models are then trained independently, and their results are combined

in an ensemble. It’s important to note that while this strategy offers advantages, such as

potentially more reliable performance, it also comes with drawbacks. It significantly increases

computational complexity, and the risk of overfitting remains, as minority class samples are

used repeatedly. However, in many anomaly detection scenarios, such as ours, successful

detection of mini flash crashes is of paramount importance. Therefore, when assuming that

the minority class data is of good quality, this strategy may yield dependable performance.
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5 Empirical Analysis

In addition to using the original imbalanced data, I apply all the strategies mentioned earlier,

excluding oversampling, in combination with four models: logistic regression with an l1

penalty (LASSO), random forest, support vector machine, and XGBoost. As defined in the

problem setup section, I consider eight scenarios of mini flash crashes based on the looking

forward window, aiming to detect crashes within 180s/90s/15s/1.5s, without taking into

account reversal and with strict reversal as defined in Section 4.1.

One key motivation behind Nanex (2010)’s definition of mini flash crashes is the require-

ment for a short time interval. Nanex (2010) uses a 1.5-second time window, in which even

slow traders like humans cannot react quickly enough to cause stock prices to rise or fall

significantly. In my empirical analysis, I not only cover short time intervals like 1.5 seconds

and 15 seconds, where slow traders have limited impact on mini flash crash events, but I also

consider longer time intervals such as 180 seconds and 90 seconds. For the 180-second and

90-second mini flash crashes, slow traders, including individuals, can have a more substantial

effect on market dynamics.

As previously outlined in Section 4, this paper utilizes ROC and AUC as the evaluation

metrics to gauge the performance of machine learning predictions, particularly due to the

challenge posed by imbalanced data.

As suggested by Liu (2023a), a speed bump can indeed exert a substantial impact on

market quality. It is reasonable to speculate that the probability of long-term mini flash

crashes may also be influenced by such policies, particularly when the market reaches a state

of equilibrium between slow and fast traders, resulting in their respective feedback effects on

the market.

5.1 Long Term Mini flash crashes Prediction

In this subsection, I investigate the probability of long-term (180s) mini flash crashes, con-

sidering both those without reversal and those with reversal.
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To train the models for calculating the probability of mini flash crashes before the speed

bump, I utilize data spanning from March 15, 2017, to April 26, 2017 (Period 1, comprising

30 trading days). The performance of these models is then assessed from April 27, 2017, to

June 8, 2017 (Period 2, spanning 30 trading days). This evaluation period serves as a basis

for strategy and model selection, including hyperparameter tuning. For models forecasting

the probability of mini flash crashes immediately following the speed bump, I employ data

from April 27, 2017, to June 8, 2017 (Period 2, comprising 30 trading days) for training,

while the subsequent 30 trading days from June 9, 2017, to July 23, 2017 (Period 3, spanning

30 trading days) are reserved for hyperparameter tuning.

After selecting the best model and the most suitable imbalanced data processing strategy

during the tuning process described above, I train the chosen model on Period 2 and Period

3 data. This approach enables the model to capture the most up-to-date market information

immediately before the test period before the speed bump (Period 3) and the test period

following the speed bump (Period 4).

For mini flash crashes without reversal, the tuning results of NYSE American are dis-

played in Panel A of Table 5, and the control group’s tuning results can be found in Panel

A of Table 6. In both tuning processes, conducted both before and after the speed bump,

the ensemble undersampling combined with XGBoost demonstrates the most outstanding

performance. The corresponding ROC curves are presented in Figure 4a and Figure 4b.

Consequently, I employ this strategy to calculate the probability as follows:

Pi,j,t,NY SE American ,180s =
∑{f̂b(xi,t,j,NY SE American ,180s)}B

1

NB

The probability, denoted as f̂b(xi,t,j,NY SE American ,180s), is estimated through XGBoost for

each balanced undersampling dataset constructed by pairing the minority class with an equal

number of randomly selected majority samples. Here, B represents the number of XGBoost

models I have trained. The final probability is calculated as the aggregate voting ratio across

all models for a specific stock i, within time interval j, on date t, throughout the entire Period

3, which comprises the days leading up to the implementation of the speed bump on NYSE
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American. As shown in Panel A of Table 6, the control group exhibits similar tuning results,

with ensemble undersampling combined with XGBoost delivering the best performance. The

ROC curve for the control group can be found in Figure 4c and Figure 4d. Using the same

methodology, I calculate the probabilities for all stocks Pi, j, t, control within the control

group as follows:

Pi,j,t,Control,180s =
∑{f̂b(xi,t,j,Control,180s)}B

1

NB

Then, I calculate the daily average probability of NYSE American as:

Pi,t,NY SE American ,180s = Average(Pi,j,t,NY SE American ,180s) for all j in date t.

and its control group as:

Pi,t,Control,180s = Average(Pi,j,Control,180s) for all j in date t.

for each trading day t. Finally, I calculate relative probability

Pi,t,180s = ln
(

Pi,t,NY SE American ,180s

Pi,t, control,180s

)
.

for each stock and each day.

Panel A of 9 shows the daily average of mini flash crashes without reversal of all traded

stocks in NYSE American and the control group.

Table 9

For mini flash crashes with reversal, the tuning results for NYSE American are presented

in Panel A of Table 7, while the control group tuning results are displayed in Panel A of Ta-

ble 8. Similar to the no-reversal version, in both tuning processes, before and after the speed

bump, the ensemble undersampling combined with XGBoost achieves the best performance.

The ROC curve for this strategy can be found in Figure 8a and Figure 8b. Consequently,

I utilize the same ensemble undersampling combined with XGBoost to calculate the proba-

bility, as follows:

Pi,j,t,NY SE American ,180s,Rev =
∑{f̂b(xi,t,j,NY SE American ,180s,Rev)}B

1

NB
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The f̂ b(xi, t, j,NYSE American, 180s,Rev) is estimated using XGBoost for each balanced

undersampling dataset, created by pairing the minority class with an equal number of ran-

domly selected majority samples. In this context, B represents the number of XGBoost

models that have been trained. The final probability is computed as the aggregated voting

ratio across all models for a specific stock i, in time interval j, on date t throughout period 3,

which encompasses the days leading up to the implementation of the speed bump on NYSE

American. As the Panel A of Table 6 shows, my control group shows similar tuning results,

ensemble under-sampling combined XGBoost shows best performance. I can use same to

way to calculate control group probability. The control group ROC curve is shown in Figure

8c and Figure 8d.Through the same way, I calculate all Pi,j,t,control,Rev stocks in the control

group in the same way as:

Pi,j,t,Control,180s,Rev =
∑{f̂b(xi,t,j,Control,180s,Rev)}B

1

NB

Then, I calculate the daily average probability of NYSE American stock’s mini flash crashes

as:

Pi,t,NY SE American ,180s,Rev = Average(Pi,j,t,NY SE American ,180s,Rev) for all j in date t.

and its control group as:

Pi,t,Control,180s,Rev = Average(Pi,j,t,Control,180s,Rev) for all j in date t.

for each trading day t. Finally, I calculate relative probability of mini flash crashes with

quick reversal as:

Pi,t,180s,Rev = ln
(

Pi,t,NY SE American ,180s,Rev

Pi,t, control ,Rev

)
.

for each stock and each day.

Panel A of 10 shows the daily average of mini flash crashes with reversal of all traded

stocks in NYSE American and the control group.

Table 10

34



5.2 Probability of long term mini flash crashes regression

Having successfully predicted the probability of mini flash crashes without and with strict

reversal, I proceed with the following two regressions, employing a panel data approach with

fixed effects by date and stock:

Pi,t,180s = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (30)

Pi,t,180s,Rev = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (31)

where Pi,t,180s is the daily average probability of mini flash crashes without strictly reversal

and Pi,t,180s,Rev is the daily average probability of mini flash crashes with strictly reversal

for stock i on day t, αi is the stock and date fixed effect, and SpeedBumpt is an indicator

variable taking the value of 1 after speed bump implementation, 0 otherwise. Volatility is the

opening value of CBOE’s VIX index on day t. The other independent variables are control

variables. The ControlV ariablei,t,q represents two stock-level control variables: the daily

turnover difference and the daily stock volatility difference (calculated as Alizadeh et al.

(2002)). For the linear regression without fixed effect, we also add market capitalization of

the stock.

Table 11

Table 11 presents the results of our regression analysis, conducted both with and without

fixed effects, considering mini flash crashes with and without the reversal requirement. In our

linear regression models, we estimated the coefficients of the speed bump dummy variable to

assess its causal impact on the probability of mini flash crashes. Surprisingly, our findings

suggest that the speed bump policy had a positive effect on Pi,t,180s, indicating an increase in

the long-term probability of mini flash crashes. This outcome holds consistently for both mini

flash crashes without the strict reversal criterion and those with reversals in the regressions
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that incorporate stock fixed effects.

Interestingly, these results align with empirical evidence from Liu (2023a), which indicates

that the speed bump implementation on NYSE American significantly reduces relative price

discovery while simultaneously increasing both the cost of immediacy and market volatility.

As NYSE American becomes a slower market with all incoming orders delayed by 350 mi-

croseconds, it is reasonable to assume that more uninformed noise traders have migrated to

this exchange since the policy’s adoption. This influx of noise traders may have contributed

to the reduced informativeness of NYSE American’s prices and the increased prevalence of

microstructure noise. Consequently, the heightened presence of noise in NYSE American

may explain our findings, indicating an elevated probability of long-term mini flash crashes

in the 180-second interval following the speed bump’s implementation.

5.3 Medium Term Mini flash crashes Prediction

In this subsection, I replicate the same procedure to investigate the probability of mini

flash crashes in the medium term (90 seconds). Just like the 180-second analysis, this 90-

second examination offers a robust check of our findings, as it provides another timeframe

in which slow traders, including individual investors, have ample time to react to market

developments. I conduct empirical assessments for both mini flash crashes without the

reversal requirement and those with reversals, mirroring the approach used in the previous

subsection.

To train the models and calculate the probability of mini flash crashes before the speed

bump, I utilize data from Period 1 and evaluate the models’ performance during Period

2. This evaluation phase facilitates the selection of strategies, model selection, and hyper-

parameter tuning. For models aimed at estimating the probability of mini flash crashes

immediately following the speed bump, I employ data from Period 2 as the training set and

data from the subsequent 30 trading days in Period 3 for hyperparameter tuning.

Following the same methodology used in the previous section, I utilize the best-performing

model and optimal imbalanced data processing strategy selected through the tuning process.
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This approach allows us to leverage the most up-to-date market information in Period 3 to

train the model, which is then applied to both the test period preceding the speed bump

(Period 3) and the post-speed bump period (Period 4).

For mini flash crashes without the reversal requirement in the medium term (90 seconds),

I present the tuning results for NYSE American in Panel B of Table 5 and the control

group tuning results in Panel B of Table 6. As observed in my analysis for the 180-second

timeframe, the ensemble undersampling combined with XGBoost consistently outperforms

other methods in both the period before and after the speed bump. The ROC curve for this

model is illustrated in Figure 5a for the pre-speed bump period and Figure 5b for the post-

speed bump period. Consequently, I still employ this strategy to calculate the probability

for mini flash crashes without reversal in the medium term.

Pi,j,t,NY SE American ,90s =
∑{f̂b(xi,j,t,NY SE American ,90s)}B

1

NB

The probability, denoted as f̂b(xi,t,j,NY SE American ,90s), is estimated through XGBoost for

each balanced undersampling dataset constructed by pairing the minority class with an equal

number of randomly selected majority samples. Here, B represents the number of XGBoost

models I have trained. The probability is calculated for stock i, in time interval j, date t in

the whole period 3 , which are days before the implementation of the speed bump in NYSE

American. As the Panel B of Table 6 shows, my control group shows similar tuning results,

ensemble under-sampling combined XGBoost shows best performance. The control group

ROC curve is shown in Figure 5c and Figure 5d.I can use same to way to calculate control

group probability. Through the same way, I calculate all Pi,j,t,control,90s stocks in the control

group in the same way as:

Pi,j,t,Control,90s ==
∑{f̂b(xi,j,t,Control,90s)}B

1

NB

Then, I calculate the daily average probability of NYSE American as:

Pi,t,NY SE American ,90s = Average(Pi,j,t,NY SE American ,90s) for all j in date t.
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and its control group as:

Pi,t,Control,90s = Average(Pi,j,Control,90s) for all j in date t.

for each trading day t. Finally, I calculate relative probability

Pi,t,90s = ln
(

Pi,t,NY SE American ,90s

Pi,t, control,180s

)
.

for each stock and each day.

Panel B of 9 shows the daily average of mini flash crashes in 90s without reversal of all

traded stocks in NYSE American and the control group.

Table 9

For mini flash crashes with reversal, the tuning results for NYSE American are displayed

in Panel B of 7, while the control group tuning results are presented in Panel B of 8. Similar

to the no-reversal version, for NYSE American, the ensemble undersampling combined with

XGBoost performs best in both tuning processes before and after the speed bump. However,

for the control group, direct undersampling combined with Random Forest exhibits the best

performance. Therefore, I will use undersampling combined with Random Forest to calculate

the probability of mini flash crashes in 90s. The ROC curves for these models are depicted

in Figure 9a and Figure 9b. Consequently, I employ the ensemble undersampling combined

with XGBoost for NYSE American and the undersampling combined with Random Forest

for the control group to calculate the probabilities.:

Pi,j,t,NY SE American ,90s,Rev =
∑{f̂b(xi,j,t,NY SE American ,90s,Rev)}B

1

NB

The f̂b(xi, j, t, NY SE American , 90s, Rev) is estimated using XGBoost combined with

undersampling, as described in the previous section. This estimation is performed for stock

i, in time interval j, on date t, spanning the entire period 3, which encompasses the days

leading up to the implementation of the speed bump on NYSE American. As shown in Panel

A of Table 6, my control group exhibits similar tuning results, with ensemble undersampling

combined with XGBoost showing the best performance. I employ the same method to
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calculate the probability for the control group. The ROC curves for the control group are

displayed in Figure 9c and Figure 9d. Using the same approach, I calculate all Pi,j,t,control,Rev

values for stocks in the control group.

Pi,j,t,Control,90s,Rev =
{ Ĉb(x)}B

1

NB

The
{
Ĉb(x)

}B

1
is estimated by each decision tree votes as positive in random forest, NB

is the number of trees. Then, I calculate the daily average probability of NYSE American

stock’s mini flash crashes as:

Pi,t,NY SE American ,90s,Rev = Average(Pi,j,t,NY SE American ,90s,Rev) for all j in date t.

and its control group as:

Pi,t,Control,90s,Rev = Average(Pi,t,j,Control,90s,Rev) for all j in date t.

for each trading day t. Finally, I calculate relative probability of mini flash crashes with

quick reversal as:

Pi,t,90s,Rev = ln
(

Pi,t,NY SE American ,90s,Rev

Pi,t, control ,90s,Rev

)
.

for each stock and each day.

Panel B of 10 shows the daily average of mini flash crashes with reversal of all traded

stocks in NYSE American and the control group.

Table 10

5.4 Probability of medium term mini flash crashes regression

After successfully predicting the probability of mini flash crashes, both with and without

strict reversal, I proceed to conduct the following two regressions using a panel data approach

with fixed effects for both date and stock:

Pi,t,90s = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (32)
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Pi,t,90s,Rev = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (33)

In these equations, Pi,t,90s represents the daily average probability of mini flash crashes

without strict reversal, and Pi,t,90s,Rev represents the daily average probability of mini flash

crashes with strict reversal for stock i on day t. The variable αi denotes the stock and

date fixed effects, while SpeedBumpt is an indicator variable that takes the value of 1 after

the implementation of the speed bump and 0 otherwise. The term “Volatility” corresponds

to the opening value of the CBOE’s VIX index on day t. Additionally, there are control

variables denoted as ControlV ariablei,t,q, which encompass two stock-level control variables:

the daily turnover difference and the daily stock volatility difference, as calculated following

the method of Alizadeh et al. (2002). In the linear regression model without fixed effects,

we also include the market capitalization of the stock as an independent variable.

Table 12

Table 12 displays the results of regression analyses conducted with and without fixed

effects for both scenarios, considering mini flash crashes without strict reversal and those

with reversal requirements. In the linear regression models, I estimated the coefficients of the

dummy variable “speed bump,” enabling us to discern the causal effect of the speed bump

on the probability of mini flash crashes. The findings indicate that the speed bump had

a positive effect on Pi,t,90s, signifying an increase in the long-term probability of mini flash

crashes. These results consistently hold for both mini flash crashes without strict reversal

and those with reversals when accounting for stock fixed effects.

The results for the 90s analysis align comprehensively with the 180s analysis. For both

scenarios, encompassing mini flash crashes without reversal and those with reversal, we

observe that the speed bump has a positive impact on the long-term probability of mini

flash crashes in minutes. In summary, in the context of relatively long-term intervals at

the minute level, the speed bump appears to elevate the likelihood of impending mini flash
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crashes. This trend may be attributed to reduced price discovery in a condition where more

noise traders execute their trading activities in NYSE American.

5.5 Short Term Mini Flash Crashes Prediction

In this sub-section, I employ the same approach to investigate the short-term probability

of mini flash crashes in 15 seconds, considering both scenarios of mini flash crashes with

and without reversal. In the definition of mini flash crashes outlined in Section 4.1, we

characterize mini flash crashes as involving at least a tenfold increase or decrease in stock

prices. Within a 15-second timeframe, it becomes challenging for slow traders, such as

human investors, to react swiftly enough and induce such rapid price crashes. Hence, it is

reasonable to assume that this level of flash crashes is primarily attributed to fast traders,

such as high-frequency traders.

To train the models for calculating the probability of mini flash crashes before the speed

bump, I adhere to the same procedure, utilizing data spanning Period 1 and evaluating model

performance in Period 2. This evaluation phase serves as a means for strategy and model

selection, as well as hyperparameter tuning. For models aiming to predict the probability of

mini flash crashes occurring immediately after the speed bump, I employ data from Period

2 as the training set, and the subsequent 30 trading days from Period 3 are designated for

hyperparameter tuning.

By leveraging the best-performing model and optimal imbalanced data processing strat-

egy selected through the tuning process outlined above, I employ data from Period 2 and

Period 3 to train the model, capturing the most recent market information immediately pre-

ceding the test period before the speed bump (Period 3) and the test period following the

speed bump (Period 4).

For mini flash crashes without reversal, the tuning results of NYSE American are shown

in Panel C of Table 5 and the control group tuning results are shown in Panel C of 6.

For both tuning process for Period before the speed bump and after the speed bump, the

ensemble undersampling combined XGBoost achieve the best performance. Its ROC curve is
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shown in Figure 6a and Figure 6b. Therefore, I use the strategy to calculate the probability

through:

Pi,j,t,NY SE American ,15s =
∑{f̂b(xi,j,t,NY SE American ,15s)}B

1

NB

The f̂b(xi,j,t,NYSE American,15s) is estimated using XGBoost in conjunction with ensemble

undersampling, following the same methodology as described in the preceding two sub-

sections. This estimation is conducted for each stock i, within time interval j, and on date

t throughout Period 3, which encompasses the days leading up to the implementation of

the speed bump on NYSE American. As indicated by the results in Panel A of Table 6,

the control group exhibits similar tuning outcomes, with ensemble undersampling combined

XGBoost yielding the most favorable performance. The ROC curve for the control group

is illustrated in Figure 6c, and Figure 6d displays its performance after the speed bump. I

employ a similar approach to calculate the control group probability. Using this method,

I compute the probabilities for all Pi,j,t,control stocks within the control group in the same

manner.

Pi,j,t,Control,15s =
∑{f̂b(xi,j,t,Control,15s)}B

1

NB

Then, I calculate the daily average probability of NYSE American as:

Pi,t,NY SE American ,15s = Average(Pi,j,t,NY SE American ,15s) for all j in date t.

and its control group as:

Pi,t,Control,15s = Average(Pi,j,Control,15s) for all j in date t.

for each trading day t. Finally, I calculate relative probability

Pi,t,15s = ln
(

Pi,t,NY SE American ,15s

Pi,t, control,15s

)
.

for each stock and each day.
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Panel C of Table 9 shows the daily average of mini flash crashes without reversal of all

traded stocks in NYSE American and the control group.

Table 9

For mini flash crashes with reversal, the tuning results of NYSE American are shown

in Panel C of Table 7 and the control group tuning results are shown in Panel C of Table

8. Same as the no reversal version, both tuning process for Period before the speed bump

and after the speed bump, the ensemble undersampling combined XGBoost achieve the best

performance. Its ROC curve is shown in Figure 10a and Figure 10b. Therefore, I use the

same ensemble undersampling combined XGBoost to calculate the probability through:

Pi,j,t,NY SE American ,15s,Rev =
∑{f̂b(xi,j,t,Control,15s,Rev)}B

1

NB

The f̂b(xi,j,t,Control,15s,Rev) is estimated using XGBoost combined with ensemble undersam-

pling for each stock i, within time interval j, and on date t during Period 3, which comprises

the days preceding the implementation of the speed bump on NYSE American. As indicated

by the results in Panel A of Table 6, the control group exhibits similar tuning outcomes,

with ensemble undersampling combined XGBoost yielding the most favorable performance.

The ROC curve for the control group is illustrated in Figure 10c, and Figure 10d displays its

performance after the speed bump. Using a consistent approach, I calculate the probabilities

for all Pi,j,t,control, Rev stocks within the control group.

Pi,j,t,Control,15s,Rev =
∑{f̂b(xi,j,t,Control,15s,Rev)}B

1

NB

Then, I calculate the daily average probability of NYSE American stock’s mini flash crashes

as:

Pi,t,NY SE American ,15s,Rev = Average(Pi,j,t,NY SE American ,15s,Rev) for all j in date t.

and its control group as:

Pi,t,Control,15s,Rev = Average(Pi,t,j,Control,15s,Rev) for all j in date t.
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for each trading day t. Finally, I calculate relative probability of mini flash crashes with

quick reversal as:

Pi,t,15s,Rev = ln
(

Pi,t,NY SE American ,15s,Rev

Pi,t, control ,Rev

)
.

for each stock and each day.

Panel C of Table 10 shows the daily average of mini flash crashes with reversal of all

traded stocks in NYSE American and the control group.

Table 10

5.6 Probability of Short Term mini flash crashes regression

Through the successful prediction of the probability of mini flash crashes without and with

strict reversal, I perform the following two regressions using a panel data approach with fixed

effects by date and stock:

Pi,t,15s = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (34)

Pi,t,15s,Rev = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (35)

where Pi,t,15s is the daily average probability of mini flash crashes without strictly reversal

and Pi,t,15s,Rev is the daily average probability of mini flash crashes with strictly reversal

for stock i on day t, αi is the stock and date fixed effect, and SpeedBumpt is an indicator

variable taking the value of 1 after speed bump implementation, 0 otherwise. Volatility is the

opening value of CBOE’s VIX index on day t. The other independent variables are control

variables. The ControlV ariablei,t,q represents two stock-level control variables: the daily

turnover difference and the daily stock volatility difference (calculated as Alizadeh et al.

(2002)). For the linear regression without fixed effect, we also add market capitalization of

the stock.
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Table 13

Table 13 presents the results of a regression analysis conducted with and without fixed

effects for both scenarios, with and without the reversal requirement. In the linear regression,

we estimated the coefficients of the dummy variable speed bump, enabling us to observe the

causal effect of the speed bump on the probability of mini flash crashes. We discovered

that the speed bump had a negative effect on Pi,t,15s, signifying a decrease in the short-term

probability of mini flash crashes. These results hold true for both mini flash crashes, whether

with or without strict reversal, when considering regressions with stock fixed effects.

This outcome provides the first empirical evidence in the literature that the speed bump

can significantly reduce the probability of mini flash crashes. As a policy aimed at mitigating

the speed advantage of high-frequency trading, the speed bump, in addition to its other

effects on price discovery, adverse selection, and market liquidity, appears to effectively fulfill

its primary policy objective. By introducing a 350-microsecond delay for incoming orders,

NYSE American has successfully reduced the probability of mini flash crashes occurring

within 15 seconds.

5.7 Nanex (2010) Mini Flash Crashes Prediction

In the final sub-section, I examine the probability of mini flash crashes in the shortest term

(1.5s), considering both mini flash crashes without a reversal, as defined by Nanex (2010),

and mini flash crashes with a reversal under the same conditions as the previous sections.

Similar to the preceding sub-sections, I utilize data spanning from Period 1, consisting of

30 trading days, to train the initial model. The model’s performance is evaluated in Period 2,

which serves as the basis for strategy and model selection, as well as hyperparameter tuning.

For the models aimed at calculating the probability of mini flash crashes occurring immedi-

ately after the speed bump, I employ data from Period 2 for training and the subsequent 30

trading days from Period 3 for hyperparameter tuning.

After identifying the best model and optimal imbalanced data processing strategy through

the aforementioned tuning process, I utilize the data from Periods 2 and 3 to train the model,
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ensuring it captures the most up-to-date market information immediately preceding the test

period prior to the speed bump (Period 3) and the test period following the speed bump

(Period 4).

For mini flash crashes without a reversal, the tuning results for NYSE American are

presented in Panel D of Table 5, while the control group’s tuning results are displayed in

Panel D of Table 6. In both cases, for both the tuning process conducted prior to the speed

bump and after it, the ensemble undersampling combined with XGBoost yields the best

performance. The ROC curves for this strategy are depicted in Figure 7a and Figure 7b.

Consequently, I employ this strategy to calculate the probability as follows:

Pi,j,t,NY SE American ,1.5s =
∑{f̂b(xi,j,t,NY SE American ,1.5s)}B

1

NB

The f̂b(xi,j,t,NYSE American,1.5s) is estimated using XGBoost combined with ensemble under-

sampling, as described in the previous section. This is done for stock i, within time interval

j, and on date t during the entire Period 3, which includes the days leading up to the imple-

mentation of the speed bump on NYSE American. As indicated by the results in Panel A of

Table 6, my control group exhibits similar tuning outcomes, with ensemble undersampling

combined with XGBoost delivering the most favorable performance. The ROC curves for

the control group are presented in Figure 7c and Figure 7d. I employ the same approach to

calculate the probability for all Pi,j,t,control stocks within the control group in the following

manner:

Pi,j,t,Control,1.5s =
∑{f̂b(xi,j,t,Control,1.5s)}B

1

NB

Then, I calculate the daily average probability of NYSE American as:

Pi,t,NY SE American ,1.5s = Average(Pi,j,t,NY SE American ,1.5s) for all j in date t.

and its control group as:

Pi,t,Control,1.5s = Average(Pi,j,Control,1.5s) for all j in date t.
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for each trading day t. Finally, I calculate relative probability

Pi,t,1.5s = ln
(

Pi,t,NY SE American ,1.5s

Pi,t, control,1.5s

)
.

for each stock and each day.

Panel D of 9 shows the daily average of mini flash crashes without reversal of all traded

stocks in NYSE American and the control group.

Table 9

For mini flash crashes with reversal, the tuning results of NYSE American are shown in

Panel D of Table 7 and the control group tuning results are shown in Panel D of Table 8.

Same as the no reversal version, both tuning process for Period before the speed bump and

after the speed bump, the ensemble undersampling combined XGBoost achieve the best

performance. Its ROC curve is shown in Figure 11a and Figure 11b. Therefore, I use the

same ensemble undersampling combined XGBoost to calculate the probability through:

Pi,j,t,NY SE American ,1.5s,Rev =
∑{f̂b(xi,j,t,NY SE American ,1.5s,Rev)}B

1

NB

The fb(xi,t,j,NY SE American ,Rev) is estimated by XGBoost for each stock i, within time

interval j, and on date t during Period 3, which comprises the days preceding the imple-

mentation of the speed bump on NYSE American. As evident from the results in Panel A

of Table 6, my control group exhibits similar tuning outcomes, with ensemble undersam-

pling combined XGBoost yielding the most favorable performance. The ROC curves for the

control group are depicted in Figure 11c and Figure 11d. Employing the same approach, I

calculate the probabilities for all Pi,j,t,1.5s,control, Rev stocks within the control group.

Pi,j,t,Control,1.5s,Rev =
∑{f̂b(xi,j,t,Control,1.5s,Rev)}B

1

NB

Then, I calculate the daily average probability of NYSE American stock’s mini flash crashes

as:

Pi,t,NY SE American ,1.5s,Rev = Average(Pi,j,t,NY SE American ,180s,Rev) for all j in date t.
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and its control group as:

Pi,t,Control,1.5s,Rev = Average(Pi,t,j,Control,1.5s,Rev) for all j in date t.

for each trading day t. Finally, I calculate relative probability of mini flash crashes with

quick reversal as:

Pi,t,1.5s,Rev = ln
(

Pi,t,NY SE American ,1.5s,Rev

Pi,t,Control,1.5s,Rev

)
.

for each stock and each day.

Panel D of Table 10 shows the daily average of mini flash crashes with reversal of all

traded stocks in NYSE American and the control group.

Table 10

5.8 Nanex (2010) Mini Flash crashes regression

Having successfully predicted the probability of mini flash crashes without and with strict

reversal, I proceed to conduct the following two regressions using a panel data approach with

fixed effects by date and stock:

Pi,t,1.5s = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (36)

Pi,t,1.5s,Rev = αi + βSpeedBumpt + γVolatilityt +
2∑

q=1

δqControlVariablei,t,q + εi,t (37)

In these regressions, Pi,t,1.5s represents the daily average probability of mini flash crashes

without strict reversal, while Pi,t,1.5s,Rev denotes the daily average probability of mini flash

crashes with strict reversal for stock i on day t. The parameter αi captures stock and

date fixed effects, and SpeedBumpt is an indicator variable taking the value of 1 after the

speed bump implementation and 0 otherwise. Volatility represents the opening value of

CBOE’s VIX index on day t. Additionally, the models include control variables, denoted as

ControlV ariablei,t,q, which encompass two stock-level factors: the daily turnover difference
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and the daily stock volatility difference, calculated following the methodology of Alizadeh

et al. (2002). In the linear regression without fixed effects, market capitalization of the stock

is also included as an independent variable.

Table 14

Table 14 presents the results of a regression analysis conducted with and without fixed

effects for both cases, with and without the reversal requirement. In these linear regressions,

we estimated the coefficients of the dummy variable “speed bump”, enabling us to observe

the causal effect of the speed bump on the probability of mini flash crashes. Our findings

indicate that the speed bump had a positive effect on Pi,t,1.5s, signifying an increase in the

long-term probability of mini flash crashes. These results hold consistently for both mini flash

crashes without strict reversal and those with reversals in the regressions that incorporate

stock fixed effects.

In light of the empirical evidence presented by Liu (2023a), the speed bump has demon-

strated its ability to significantly reduce relative price discovery while simultaneously in-

creasing the cost of immediacy and overall volatility on NYSE American. This is attributed

to NYSE American becoming a slower market due to the delay of all incoming orders by 350

microseconds. Consequently, it is reasonable to assume that more uninformed noise traders

have migrated to NYSE American as a result of the speed bump. This influx of noise traders

has likely contributed to making NYSE American’s price signals less informative and has

introduced more microstructure noise into the market. As a consequence of these factors,

there is an increased likelihood of unusual price fluctuations, which aligns with our findings

regarding long-term mini flash crashes in the 180s and 90s.

6 Conclusion

To the best of our knowledge, this paper represents the pioneering effort to assess the impact

of a speed bump on the probability of mini flash crashes. This study introduces an empirical

approach for estimating the likelihood of mini flash crashes using machine learning techniques
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applied to real-time limit order book data.

Our analysis, which draws upon data from the NYSE American, demonstrates that the

implementation of a speed bump can indeed decrease the probability of identifiable patterns

leading to mini flash crashes. Concurrently, the speed bump transforms the dynamics of

today’s fragmented financial market, drawing more noise traders into the NYSE American—a

stock exchange employing this mechanism to safeguard slow traders from the high-frequency

arms race.

Through our empirical analysis, we identify mini flash crashes as market microstruc-

ture events displaying nonlinear patterns within the real-time limit order book, where high-

frequency trading executes nano-second-level algorithms. Although pinpointing the specific

trading behaviors responsible for triggering mini flash crashes or even market-wide flash

crashes remains a formidable challenge, it is reasonable to posit that the patterns leading to

market turmoil can be discerned. The introduction of an order delaying policy significantly

reduces the probability of these disruptive patterns emerging.

Simultaneously, when considered in the context of existing literature, our findings high-

light the speed bump’s pronounced impact on the short-term, spanning minutes and seconds.

Complementing prior research, which indicates diminished price discovery and reduced ad-

verse selection costs, our results suggest that the speed bump effectively attracts more un-

informed, noise traders into the market.

In summary, the “speed bump” policy may initially appear somewhat nebulous or enig-

matic, but our study demonstrates its remarkable effectiveness in mitigating the probability

of mini flash crashes while reshaping market dynamics.
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Source: Levine (2015)

Figure 1: Flash Crash, 06 May 2010
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Source: Nanex (2010)

Figure 2: Mini Flash Crash, Nanex
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Figure 3: Confusion Matrix

57



P
an

el
A
:
N
Y
S
E
A
m
er
ic
an

T
ra
in

T
u
n
e

18
0s

90
s

15
s

1.
5s

18
0s

90
s

15
s

1.
5s

T
ra
in

N
o.

S
to
ck
s:

16
0

14
2

11
5

87
16
0

14
2

11
5

87
0:

53
84
09

96
74
56

55
02
49
5

41
65
42
14

51
74
52

93
18
03

53
19
00
8

40
26
58
97

1:
23
52
4

20
04
7

37
05

13
86

23
32
8

19
79
6

36
52

11
83

R
at
io
:

4.
37
%

2.
07
%

6.
73

×
10

−
2
%

3.
33

×
10

−
3
%

4.
51
%

2.
12
%

6.
87

×
10

−
2
%

2.
94

×
10

−
3
%

T
es
t1

T
es
t2

N
o.

S
to
ck
s:

16
0

14
2

11
5

87
16
0

14
2

11
5

87
0:

52
25
36

93
92
30

53
19
33
2

40
26
62
90

52
81
62

94
85
57

53
18
35
3

40
26
62
52

1:
22
49
7

19
18
1

33
28

79
0

20
91
3

17
44
5

27
11

82
8

R
at
io
:

4.
31
%

2.
04
%

6.
25

×
10

−
2
%

1.
96

×
10

−
3
%

3.
95
%

1.
84
%

5.
09

×
10

−
2
%

2.
06

×
10

−
3
%

T
ab

le
1:

S
am

p
le

d
es
cr
ip
ti
ve

st
at
is
ti
cs

of
m
in
i
fl
as
h
cr
as
h
es

w
it
h
ou

t
re
ve
rs
al

58



P
an

el
B
:
C
on

tr
ol

G
ro
u
p

T
ra
in

T
u
n
e

18
0s

90
s

15
s

1.
5s

18
0s

90
s

15
s

1.
5s

T
ra
in

N
o.

S
to
ck
s:

16
0

14
2

11
5

87
16
0

14
2

11
5

87
0:

52
58
50

92
76
82

48
67
48
4
41
12
71
74

51
02
25

90
18
80

47
40
31
8
40
02
60
33

1:
16
88
7

29
23
5

18
14
1

17
46

15
57
7

27
86
7

17
80
6

16
47

R
at
io
:

3.
21
%

3.
15
%

0.
37
3%

4.
25

×
10

−
3
%

3.
05
1%

3.
08
%

0.
37
6%

4.
11

×
10

−
3
%

T
es
t1

T
es
t2

N
o.

S
to
ck
s:

16
0

14
2

11
5

87
16
0

14
2

11
5

87
0:

50
76
19

89
32
50

46
86
17
1
39
24
44
03

48
99
41

85
95
11

45
20
81
0
37
50
46
03

1:
15
38
3

27
11
0

15
20
2

12
37

13
76
7

23
89
6

15
08
2

13
97

R
at
io
:

3.
03
%

3.
03
%

0.
32
4%

3.
15

×
10

−
3
%

2.
81
%

2.
78
%

0.
33
4%

3.
72

×
10

−
3
%

T
ab

le
2:

S
am

p
le

d
es
cr
ip
ti
ve

st
at
is
ti
cs

of
m
in
i
fl
as
h
cr
as
h
es

w
it
h
ou

t
re
ve
rs
al

59



P
an

el
A
:
N
Y
S
E
A
m
er
ic
an

T
ra
in

T
u
n
e

18
0s

90
s

15
s

1.
5s

18
0s

90
s

15
s

1.
5s

T
ra
in

N
o.

S
to
ck
s:

14
0

10
7

69
45

14
0

10
7

69
45

0:
47
85
90

72
41
32

55
04
03
7
41
65
49
47

46
00
88

69
55
10

53
20
41
0
40
26
65
38

1:
67
64

45
28

21
63

65
3

66
00

44
26

22
50

54
2

R
at
io
:

1.
41
%

0.
62
5%

0.
03
9%

1.
57

×
10

−
3
%

1.
43
%

0.
63
6%

0.
04
2%

1.
35

×
10

−
3
%

T
es
t1

T
es
t2

N
o.

S
to
ck
s:

14
0

10
7

69
45

14
0

10
7

69
45

0:
46
50
68

70
14
75

53
20
87
5
40
26
68
17

46
97
50

70
88
36

53
19
60
5
40
26
67
73

1:
60
39

37
24

17
85

26
3

50
82

31
35

14
59

30
7

R
at
io
:

1.
30
%

0.
53
1%

0.
03
4%

6.
53

×
10

−
4
%

1.
08
%

0.
44
2%

0.
02
7%

7.
62

×
10

−
4
%

T
ab

le
3:

S
am

p
le

d
es
cr
ip
ti
ve

st
at
is
ti
cs

of
m
in
i
fl
as
h
cr
as
h
es

w
it
h
re
ve
rs
al

60



P
an

el
B
:
C
on

tr
ol

G
ro
u
p

T
ra
in

T
u
n
e

18
0s

90
s

15
s

1.
5s

18
0s

90
s

15
s

1.
5s

T
ra
in

N
o.

S
to
ck
s:

14
0

10
7

69
45

14
0

10
7

69
45

0:
46
27
24

70
47
20

32
46
13
5
21
03
46
03

45
16
06

69
09
15

31
69
37
0
20
61
98
02

1:
11
54
1

75
17

49
17

67
7

10
66
3

62
76

34
78

51
8

R
at
io
:

2.
49
%

1.
07
%

0.
15
1%

3.
21

×
10

−
3
%

2.
36
%

0.
90
8%

0.
11
0%

2.
51

×
10

−
3
%

T
es
t1

T
es
t2

N
o.

S
to
ck
s:

14
0

10
7

69
45

14
0

10
7

69
45

0:
44
71
21

68
54
25

31
57
32
4
20
63
59
19

43
35
63

66
59
82

30
43
62
2
20
28
45
69

1:
11
07
3

60
09

27
56

36
1

95
13

52
31

31
42

59
1

R
at
io
:

2.
48
%

0.
87
7%

0.
08
7%

1.
75

×
10

−
3
%

2.
19
%

0.
78
5%

0.
10
3%

2.
91

×
10

−
3
%

T
ab

le
4:

S
am

p
le

d
es
cr
ip
ti
ve

st
at
is
ti
cs

of
m
in
i
fl
as
h
cr
as
h
es

w
it
h
re
ve
rs
al

61



Panel A: 180s

Before After

TM UD EN SM TM UD EN SM
LOG 0.729 0.730 0.732 0.727 0.731 0.739 0.731 0.728
SVM 0.712 0.718 0.718 0.709 0.715 0.717 0.721 0.714
RF 0.545 0.767 0.597 0.633 0.551 0.770 0.602 0.658

XGB 0.762 0.735 0.841 0.569 0.761 0.769 0.842 0.523

Panel B: 90s

Before After

TM UD EN SM TM UD EN SM
LOG 0.751 0.749 0.755 0.749 0.754 0.752 0.754 0.752
SVM 0.732 0.735 0.740 0.729 0.738 0.744 0.743 0.736
RF 0.535 0.789 0.570 0.602 0.544 0.790 0.582 0.635

XGB 0.779 0.792 0.872 0.549 0.775 0.789 0.873 0.598

Panel C: 15s

Before After

TM UD EN SM TM UD EN SM
LOG 0.691 0.691 0.692 0.688 0.720 0.719 0.721 0.718
SVM 0.686 0.688 0.690 0.684 0.716 0.716 0.718 0.714
RF 0.573 0.726 0.612 0.648 0.600 0.749 0.636 0.664

XGB 0.716 0.720 0.793 0.593 0.737 0.745 0.812 0.533

Panel D: 1.5s

Before After

TM UD EN SM TM UD EN SM
LOG 0.788 0.788 0.789 0.788 0.701 0.719 0.713 0.700
SVM 0.785 0.788 0.788 0.787 0.709 0.715 0.713 0.699
RF 0.723 0.814 0.753 0.792 0.642 0.755 0.688 0.714

XGB 0.785 0.811 0.862 0.782 0.705 0.746 0.813 0.670

Notes: This table reports the AUC obtained through a tuning procedure, using both training and tuning

data to identify the optimal parameter combination and imbalanced data processing strategy. They are

prepared for calculating the probability of mini flash crashes in the period of 30 trading days before and

after the implementation of a speed bump on July 24th, 2017.

Table 5: Mini Flash Crash without reversal tuning result: NYSE American
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Panel A: 180s

Before After

TM UD EN SM TM UD EN SM
LOG 0.815 0.814 0.816 0.814 0.730 0.730 0.732 0.727
SVM 0.802 0.808 0.808 0.799 0.712 0.718 0.718 0.709
RF 0.585 0.853 0.656 0.709 0.545 0.767 0.598 0.637

XGB 0.833 0.846 0.910 0.635 0.762 0.769 0.921 0.562

Panel B: 90s

Before After

TM UD EN SM TM UD EN SM
LOG 0.782 0.780 0.783 0.782 0.791 0.789 0.792 0.791
SVM 0.762 0.770 0.773 0.760 0.774 0.776 0.780 0.771
RF 0.569 0.824 0.631 0.686 0.610 0.831 0.671 0.725

XGB 0.812 0.820 0.900 0.789 0.820 0.832 0.892 0.789

Panel C: 15s

Before After

TM UD EN SM TM UD EN SM
LOG 0.691 0.691 0.692 0.688 0.720 0.719 0.721 0.718
SVM 0.686 0.688 0.688 0.684 0.716 0.716 0.718 0.715
RF 0.572 0.728 0.613 0.648 0.601 0.749 0.636 0.666

XGB 0.716 0.720 0.792 0.593 0.737 0.744 0.811 0.533

Panel D: 1.5s

Before After

TM UD EN SM TM UD EN SM
LOG 0.823 0.823 0.821 0.820 0.824 0.800 0.822 0.815
SVM 0.826 0.821 0.825 0.822 0.817 0.804 0.818 0.809
RF 0.763 0.838 0.799 0.829 0.632 0.838 0.701 0.767

XGB 0.822 0.823 0.905 0.813 0.792 0.826 0.902 0.809

Notes: This table reports the AUC obtained through a tuning procedure, using both training and tuning

data to identify the optimal parameter combination and imbalanced data processing strategy. They are

prepared for calculating the probability of mini flash crashes in the period of 30 trading days before and

after the implementation of a speed bump on July 24th, 2017.

Table 6: Mini Flash Crash without reversal tuning result: Control Group
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 4: ROC curves of 180s without reversal
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 5: Tuning ROC curves of 90s without reversal
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 6: Tuning ROC curves of 15s without reversal
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 7: Tuning ROC curves of 1.5s without reversal
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Panel A: 180s

Before After

TM UD EN SM TM UD EN SM
LOG 0.822 0.822 0.822 0.822 0.806 0.806 0.805 0.806
SVM 0.813 0.817 0.816 0.812 0.796 0.803 0.803 0.796
RF 0.553 0.849 0.602 0.651 0.559 0.842 0.599 0.656

XGB 0.808 0.844 0.912 0.588 0.786 0.838 0.903 0.582

Panel B: 90s

Before After

TM UD EN SM TM UD EN SM
LOG 0.844 0.841 0.842 0.843 0.830 0.827 0.832 0.828
SVM 0.835 0.836 0.836 0.834 0.824 0.828 0.830 0.822
RF 0.557 0.866 0.600 0.605 0.568 0.859 0.606 0.622

XGB 0.813 0.859 0.929 0.592 0.779 0.855 0.922 0.578

Panel C: 15s

Before After

TM UD EN SM TM UD EN SM
LOG 0.814 0.806 0.819 0.810 0.816 0.815 0.815 0.815
SVM 0.813 0.810 0.824 0.812 0.814 0.812 0.813 0.813
RF 0.701 0.816 0.764 0.786 0.706 0.825 0.741 0.681

XGB 0.787 0.779 0.889 0.759 0.775 0.816 0.872 0.651

Panel D: 1.5s

Before After

TM UD EN SM TM UD EN SM
LOG 0.752 0.745 0.763 0.755 0.661 0.679 0.666 0.661
SVM 0.752 0.748 0.767 0.753 0.662 0.670 0.656 0.645
RF 0.792 0.900 0.791 0.790 0.534 0.692 0.562 0.580

XGB 0.791 0.884 0.782 0.773 0.578 0.671 0.753 0.603

Notes: This table reports the AUC obtained through a tuning procedure, using both training and tuning

data to identify the optimal parameter combination and imbalanced data processing strategy. They are

prepared for calculating the probability of mini flash crashes in the period of 30 trading days before and

after the implementation of a speed bump on July 24th, 2017.

Table 7: Mini Flash Crashes with reversal tuning results: NYSE American
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Panel A: 180s

Before After

TM UD EN SM TM UD EN SM
LOG 0.830 0.83 0.831 0.829 0.840 0.838 0.842 0.838
SVM 0.819 0.823 0.825 0.817 0.827 0.832 0.835 0.824
RF 0.572 0.871 0.638 0.691 0.635 0.879 0.704 0.764

XGB 0.835 0.869 0.932 0.620 0.849 0.876 0.941 0.596

Panel B: 90s

Before After

TM UD EN SM TM UD EN SM
LOG 0.863 0.860 0.865 0.862 0.871 0.867 0.871 0.867
SVM 0.855 0.857 0.860 0.852 0.860 0.864 0.868 0.857

RF 0.577 0.941 0.623 0.670 0.589 0.897 0.670 0.709

XGB 0.837 0.931 0.940 0.630 0.852 0.892 0.948 0.651

Panel C: 15s

Before After

TM UD EN SM TM UD EN SM
LOG 0.816 0.815 0.817 0.806 0.786 0.773 0.782 0.781
SVM 0.813 0.810 0.814 0.804 0.778 0.774 0.783 0.774
RF 0.610 0.827 0.649 0.703 0.579 0.802 0.641 0.666

XGB 0.715 0.818 0.882 0.681 0.740 0.798 0.873 0.711

Panel D: 1.5s

Before After

TM UD EN SM TM UD EN SM
LOG 0.886 0.882 0.886 0.885 0.710 0.692 0.729 0.706
SVM 0.884 0.886 0.891 0.882 0.711 0.675 0.709 0.706
RF 0.891 0.856 0.891 0.891 0.620 0.757 0.645 0.651

XGB 0.891 0.842 0.892 0.886 0.669 0.739 0.822 0.652

Notes: This table reports the AUC obtained through a tuning procedure, using both training and tuning

data to identify the optimal parameter combination and imbalanced data processing strategy. They are

prepared for calculating the probability of mini flash crashes in the period of 30 trading days before and

after the implementation of a speed bump on July 24th, 2017.

Table 8: Mini Flash Crashes with reversal tuning results: Control Group
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 8: ROC curves of 180s with reversal
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 9: Tuning ROC curves of 90s with reversal
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 10: Tuning ROC curves of 15s with reversal
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(a) Before (b) After

(c) Before (Control Group) (d) After (Control Group)

Figure 11: Tuning ROC curves of 1.5s with reversal
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Panel A: 180s
NYSE American Control

Before speed bump After speed bump
Diff=

Before-After
Before speed bump After speed bump

Diff=
Before-After

Mean 32.6 % 31.9% -0.7% 22.6% 21.9% -0.7%
std 16.2% 15.1% 1.1% 19.0% 18.3% 0.8%
N 4486 4334 152 4486 4334 152

Panel B: 90s

Mean 28.8% 36.0% -7.2% 25.6% 21.7% 3.9%
std 16.1% 16.0% 0.1% 18.7% 18.6% 0.03%
N 3988 3846 142 3988 3846 142

Panel C: 15s

Mean 28.9% 27.4% 1.5% 23.9% 26.1% -2.2%
std 5.4% 7.6% -2.2% 7.0% 7.0% 0.1%
N 3284 3147 101 3284 3147 101

Panel D: 1.5s

Mean 16.2% 15.7% 0.5% 16.5% 17.2% -0.6%
std 4.6% 4.7% -0.06% 6.9% 7.9% -1%
N 2439 2343 96 2439 2343 96

Notes: Notes: This table reports the average values of daily average probablity of mini flash crashes

without reversal predicted by machine learning model, their standard deviation and number of observations

from June 9th 2017 to September 5th 2017, which are around NYSE American speed bump

implementation. The speed bump is implemented at July 24th 2017. The table also reports the difference

between before and after speed bump.

Table 9: Probablity of mini flashes crashes without reversal
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Panel A: 180s
NYSE American Control

Before speed bump After speed bump
Diff=

Before-After
Before speed bump After speed bump

Diff=
Before-After

Mean 20.9% 20.9% 0.06% 19.7% 18.4% 1.36%
std 16.3% 14.8% 1.49% 18.9% 18.0% 0.9%
N 3958 3849 109 3958 3849 109

Panel B: 90s

Mean 15.8% 15.7% 0.13% 14.7% 12.8% 1.87 %
std 13.9% 13.0% 0.9% 15.5% 14.5% 1.05%
N 3017 2948 69 3017 2948 69

Panel C: 15s

Mean 10.7% 11.2% -0.053% 12.7% 15.8% -3.1%
std 5.6% 7.8% -2.2% 6.4% 7.9% -1.5%
N 1960 1902 58 1960 1902 58

Panel D: 1.5s

Mean 17.0% 20.0% -3% 13.2% 16.5% -3.4%
std 8.7% 8.8% -0.18% 8.8% 9.6% -0.78%
N 1274 1264 10 1274 1264 10

Notes: This table reports the average values of daily average probablity of mini flash crashes with reversal

predicted by machine learning model, their standard deviation and number of observations from June 9th

2017 to September 5th 2017, which are around NYSE American speed bump implementation. The speed

bump is implemented at July 24th 2017. The table also reports the difference between before and after

speed bump.

Table 10: Probability of mini flash crashes with reversal
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