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Abstract  

In this paper, I estimate the economic effects wildfire occurrence (fire location) and magnitude 

(fire duration) have on economic activities in the United States. While the vast majority of the 

existing wildfire literature adopts measured state-level GDP data, I use the county-level GDP 

data newly released by the U.S. Bureau of Economic Analysis (BEA). This is the first release of 

GDP data on county level, and its availability likely increases the accuracy of measurement as it 

provides a higher spatial resolution than the conventional measured state-level GDP data. In the 

empirical models, per-capita real gross county product (GCP) growth is a function of wildfire 

occurrence and fire duration days. Counties experienced large wildfires are expected to see a 

decline in GCP growth. Since wildfire occurrence and magnitude are potentially endogenous to 

economic activities, I use instrumental variable (IV) methods to provide consistent estimates of 

the effects. One plausible IV for wildfire occurrence is lightning strikes; one plausible IV for fire 

duration is annual mean of daily precipitation. I find statistically significant evidence that fire 

duration adversely impacts per capita real GCP growth, but the effect is practically marginal. 

Statistically, I did not find evidence that fire occurrence affects the per capita real GCP growth 

due to weak instrument problem.  
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1 Introduction  

According to the report of Suppression Costs (1985-2018) from National Interagency Fire Center 

(NIFC, n.d.), Catastrophic wildfires in the US have been driving up the wildfire suppression 

costs in the past few decades. The Colorado’s 2002 Hayman Fire that burned an area of 55,846.6 

hectares led to a cost of $115.9 million, which includes $38.7 million in insured private property 

and $34 million in timber value (USFS, 2013).  

 

As a contribution to understanding the costs, this paper estimates the impacts wildfires have on 

per capita real output growth in US counties. I hypothesize that experiencing large wildfires 

adversely impacts the economic growth on a county level.  

 

Throughout the last four decades, the average size of wildfires in the United States has increased 

from 11 hectares to 43 hectares per fire (Figure Appendix.1), but the number of wildfires has 

dropped by 40% (Figure Appendix.2) (NIFC – Total Wildland Fires and Acres, n.d.). Most of the 

increase in average size was driven by the increased number of catastrophic wildfires (Wood, 

2015), which not only are harder and more expensive to fight but also causes more damage. For 

only fire suppression, the Federal Firefighting spent around $0.24 billion in 1985 but more than 

$3 billion in 2018 (NIFC – Suppression Cost, n.d.). After adjusting for inflation using the CPI for 

all urban consumers (U.S. Bureau of Labor Statistics), the cost rose more than 5 times. I show in 

the following plot (Figure 1) how the total fire suppression cost has changed since 1985. The plot 

presents a clear upward trend for suppression cost with a growing slope.  
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Figure 1: Total US Fire Suppression Cost ($ billion) (1985 – 2018) 

 

 

Previous studies do not estimate total economic activities with data that have a higher spatial 

resolution than state level. The goal of this paper is to bridge this gap in the existing literature by 

estimating the partial effect of wildfires on real county-level output growth, measured by the 

newly released US county-level GDP data from the U.S. Bureau of Economic Analysis (BEA). 

Theoretically, population growth is positively correlated with real output growth, so I control for 

population growth by using per capita real county output.   

 

In previous literatures regarding wildfires damages, a 2001 paper by Butry et al estimates the 

costs caused by disastrous wildfires with respect to seven main categories: “presuppression costs, 

suppression costs, disaster relief expenditures, timber losses, property damage, tourism-related 

losses, and human health effects.” Later studies mostly fall into these categories. For example, 

using the hedonic price method, Stetler et al (2010) suggest that the view of burned areas reduces 
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property value; Hesseln et al (2003) and Molina et al (2019) suggest the recreation value of 

burned area is reduced. Also, wildfires lead to shrinking wildlife biodiversity (Soaga et al, 2013). 

 

Many recent studies estimate the economic impacts of wildfires mainly from the path of human 

health effects. For example, Moeltner et al (2013) conclude that wildfires cause considerable 

medical expenses. They find that at least several million dollars increase in health costs are 

caused by wildfires through smoke per fire season in just the Reno/Sparks area of Northern 

Nevada; they also suggest that together with the cost incurred by close communities in 

California, several million is just the lower bound. The US health spending per capita in 2013 

was $9,129 (CHCF, 2019), so several million dollars could support medical expense of hundreds 

of people.  

 

Miller et al (2017) find that transport of wildfire smoke significantly contributes to air pollution 

“for cities hundreds of miles away from the fire itself”. They also suggest that exposure to 

wildfire smoke causes remarkable mortality risk for the elderly. In addition, smoke exposure 

induces increase in healthcare costs (Miller et al, 2017). Furthermore, Borgschulte et al (2019) 

estimates the impact wildfire smoke has on labour market through the channel of air pollution. 

They find that smoke exposure negatively affects labour force participation by decreasing 

earnings. As a result, the social security payment is increased.  

 

In the second section (Methodology) below, I develop two economic models. In one model, GDP 

growth is a function of wildfire occurrence and other factors including the first lag of GDP 

growth, capital growth, technological growth, population growth, the type of main regional 
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economic activity, and regional fire suppression effort. In another model, I use fire duration days, 

a measure of fire magnitude, to replace wildfire occurrence. In the third section, I present the 

econometric model and the method used to estimate it. Fourth, I discuss how I obtain and use the 

datasets for this paper in the data section. Fifth, I report and discuss the results from the 

estimation. Lastly, in section six, I present my conclusions and discusses some limitations of the 

paper. 

 

2 Methodology  

To estimate the regional economic impact of wildfires, I use county-level GDP as a measure for 

regional economic activity. I refer to county-level GDP as gross county product (GCP) hereafter. 

The objective is to see how the GCP growth is affected by wildfire occurrence and magnitude, 

for which I also have data for the United States on a county basis.  

 

2.1 Endogeneity Problem 

Simple regression methods, however, may not provide valid estimates of the effects because of 

potential endogeneity. Unmeasured contributions to economic activity, such as regional wildfire 

suppression effort and types of regional economic activity, may also directly affect wildfire 

occurrence and magnitude. Below, I illustrate the endogeneity problem using my models. 

 

2.2 Model # 1:  

Function 1.1: 

𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,# = 𝑓(𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,#$%	, 𝑭𝒊𝒓𝒆𝒊,𝒕	, 𝐾	𝐺𝑟𝑜𝑤𝑡ℎ!,# , 	𝑇𝑒𝑐ℎ	𝐺𝑟𝑜𝑤𝑡ℎ!,#	, 
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𝑃𝑜𝑝	𝐺𝑟𝑜𝑤𝑡ℎ!,#	, 𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒! 	, 	𝑆𝑢𝑝𝑝𝑖,𝑡	) 

 

Function 1.2: 

𝐹𝑖𝑟𝑒!,# = 𝑓(𝐹𝑙𝑎𝑠ℎ!,#	, 	𝑃𝑟𝑒𝑐𝑖𝑝!,#	, 	𝑃𝑜𝑝	𝐺𝑟𝑜𝑤𝑡ℎ!,#	, 	𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒! 	, 	𝑀𝑎𝑥𝑇!,#) 

 

• 𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,#: GCP growth of county 𝑖 in year 𝑡 

• 𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,#$%: GCP growth of county 𝑖 in year 𝑡	– 	1 

• 𝐹𝑖𝑟𝑒!,#: number of fires in county 𝑖 during year 𝑡 

• 𝐾	𝐺𝑟𝑜𝑤𝑡ℎ!,#: Capital growth of county 𝑖 in year 𝑡 

• 𝑇𝑒𝑐ℎ	𝐺𝑟𝑜𝑤𝑡ℎ!,#: Technological growth of county 𝑖 in year 𝑡 

• 𝑃𝑜𝑝	𝐺𝑟𝑜𝑤𝑡ℎ!,#: Regional Population Growth of county 𝑖 in year 𝑡 

• 𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒!: Type of main regional economic activity of county 𝑖– e.g. agriculture, 

technology  

• 𝑆𝑢𝑝𝑝!,#: the regional fire suppression effort of county 𝑖 in year 𝑡 

• 𝐹𝑙𝑎𝑠ℎ!,#: number of lightning flashes of county 𝑖 in year 𝑡 

• 𝑃𝑟𝑒𝑐𝑖𝑝!,#: annual mean of daily precipitation of county 𝑖 in year 𝑡 

• 𝑀𝑎𝑥𝑇!,#: annual mean of daily maximum air temperature in degrees Celsius of county 𝑖 

in year 𝑡 

 

In the first economic model, Function 1.1 shows that GCP growth is a function of a variety of 

factors: (a) GCP growth in year t should be positively correlated with historical GCP growth. (b) 

Number of fires would adversely affect GCP growth as my hypothesis suggest. (c) & (d) Higher 

capital growth and technological growth directly increase output growth. (e) Similarly, Higher 
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population growth means higher labour supply growth, which directly brings higher output 

growth. (f) Type of regional economic activity could also affect GCP growth rate. For example, 

Silicon Valley likely has a higher growth on per capita real output than a central US county 

whose main industry is agriculture. (g) Suppression effort for large wildfires could lead to an 

economic loss. It could even induce greater economic instability by amplifying seasonal 

variation in employment in the long run. However, in the short run, it has a positive impact on 

the local labour market by employment it creates (Moseley et al, 2012). 

 

Function 1.2, on the other hand, shows the determinants of fire occurrence. First, wildfires 

always start by either natural causes or human-related causes. Natural wildfires are generally 

started by lightning. Second, high local precipitation would suppress the start of fires, and it 

would also be helpful in the later stage fire suppression. Third, 84% of wildfires in the US are 

caused by human (Sean et al, 2019). County population growth contributes to growing local 

population density, which would likely increase human-caused wildfires. Fourth, comparing to 

areas focusing on the emerging industries, areas with economic activity such as logging are more 

likely to have wildfires due to higher fuel stocks. Fifth, as a part of the “fire triangle” (heat, 

oxygen, and fuel), heat is needed for fires to develop, and high temperature is the main source of 

heat.  

 

Together the two functions suggest that GCP growth and fire occurrence are jointly determined 

by factors such as regional population growth, type of main regional economic activity, and 

potentially other factors. Variables such as 𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒! is not measured in my dataset, so they are 

left in the error term when I create the regression models. Therefore, the endogeneity problem 
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arises due to the omitted variables. Through the same path, we can see the endogeneity in model 

2. 

 

2.3 Model # 2 

Function 2.1: 

𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,# = 𝑓(𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,#$%	, 𝑫𝒖𝒓𝒊,𝒕	, 𝐾	𝐺𝑟𝑜𝑤𝑡ℎ!,# , 	𝑇𝑒𝑐ℎ	𝐺𝑟𝑜𝑤𝑡ℎ!,#	, 

𝑃𝑜𝑝	𝐺𝑟𝑜𝑤𝑡ℎ!,#	, 𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒! 	, 	𝑆𝑢𝑝𝑝𝑖,𝑡	) 

Function 2.2: 

𝐷𝑢𝑟$,% = 𝑓(𝑃𝑟𝑒𝑐𝑖𝑝$,%	, 	𝑃𝑜𝑝	𝐺𝑟𝑜𝑤𝑡ℎ$,%	, 	𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒$ 	, 	𝑀𝑎𝑥𝑇$,&	, 𝑆𝑢𝑝𝑝$,%) 

 

• 𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,#: GCP growth of county 𝑖 in year 𝑡 

• 𝐺𝐶𝑃	𝐺𝑟𝑜𝑤𝑡ℎ!,#$%: GCP growth of county 𝑖 in year 𝑡	– 	1 

• 𝐷𝑢𝑟!,#: number of fire days in county 𝑖 in year 𝑡 

• 𝐾	𝐺𝑟𝑜𝑤𝑡ℎ!,#: Capital growth of county 𝑖 in year 𝑡 

• 𝑇𝑒𝑐ℎ	𝐺𝑟𝑜𝑤𝑡ℎ!,#: Technological growth of county 𝑖 in year 𝑡 

• 𝑃𝑜𝑝	𝐺𝑟𝑜𝑤𝑡ℎ!,#: Regional Population Growth of county 𝑖 in year 𝑡 

• 𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒!: Type of main regional economic activity of county 𝑖– e.g. agriculture, 

technology  

• 𝑆𝑢𝑝𝑝!,#: the regional fire suppression effort of county 𝑖 in year 𝑡 

• 𝑃𝑟𝑒𝑐𝑖𝑝!,#: annual mean of daily precipitation of county 𝑖 in year 𝑡 

• 𝑀𝑎𝑥𝑇!,#: annual mean of daily maximum air temperature in degrees Celsius of county 𝑖 

in year 𝑡 
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In Function 2.1, I include 𝐷𝑢𝑟!,# (the number of fire days) because longer fire duration could lead 

to greater suppression cost and, on the other hand, higher short-term local employment. Other 

factors are the same as in Function 1.1. 

 

In Function 2.2, 𝐷𝑢𝑟!,# is not determined by lightning strikes, but it is determined by fire 

suppression effort. Intuitively, greater suppression effort would shrink the fire duration days.  

Other factors are the same as in Function 1.2. 

 

Analogously, these two functions suggest that GCP growth and fire magnitude are jointly 

determined by factors such as regional population growth, type of regional economic activity, the 

fire suppression effort, and potentially other factors. Unmeasured variables such as 𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒! 

and 𝑆𝑢𝑝𝑝$,%	are left in the error term, and the omitted variables cause endogeneity problem. 

 

3 IV Method 

To address the endogeneity problem, I use instrumental variables. Instrumental variable methods 

require instruments to model exogenous variation in wildfire occurrence or magnitude (or both). 

In the current context, two plausible instruments are the number of local lightning strikes and the 

annual mean of local daily precipitation for 𝐹𝑖𝑟𝑒!,# and 𝐷𝑢𝑟!,# respectively. The crucial 

characteristic potential instruments share is that they likely have no or little effect on economic 

activity except through wildfire occurrence or magnitude. 
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*annual mean of local daily precipitation 

In a recent study estimating the long-term impact of climate change on economic activity, using 

a panel dataset of 174 countries over the years 1960 to 2014, Kahn et al (2019) suggests that 

persistent changes in temperatures have statistically significant negative impacts on per-capita 

real output growth.  However, statistically, they do not find significant effects for changes in 

precipitation. Based on this study, I choose to use the annual mean of local daily precipitation as 

an instrument for fire duration days.  

 

* number of local lightning strikes 

Cloud-to-ground lightning strikes may cause direct damage on various business by interrupting 

the economic activities especially those that take place outdoors; for example, profits could be 

easily lost at oil or liquid natural gas terminals due to a large-scale lighting strike. These 

lightning strikes, however, could be prevented in advance since there are usually signs before 

they happen. For example, dark and cloudy sky could be a sign for outdoor employees to stay in 

the sheltered place until after the lightning or rain, so injuries or fatalities could be avoided. In 

addition, in a developed country like the United States, equipment like lightning rods is usually 

mounted on top of the buildings to effectively keep the lightning strikes from damaging the 

buildings. In short, although lightning strikes may directly affect GCP growth, modern society is 

well-equipped to prevent damages from them. Hence, I can reasonably assume the impact is 

marginal, and that makes the number of lightning strikes a plausible instrument for fire 

occurrence.  
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Based on my arguments above, I assume annual local precipitation and lightning strikes are 

exogenous to GCP growth hence plausible instruments for my models.  

 

On the other hand, there are some measured contributions to GCP growth that could affect 

wildfire occurrence and magnitude. One example is the regional urbanization level, which could 

be measured by county population. Thus, I utilize the county-level population data to obtain a set 

of per-capita GCP. After adjusting for inflation, I am able to obtain the dataset of per-capita real 

GCP growth, which I use as the dependent variable in my models.  

 

3.1 Regressions  

Model # 1:  𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K = 𝛽%𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K + 	𝛽(𝐹𝑖𝑟𝑒!,# + 𝑢!,# 

• 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K: change in the natural log of per capita real GCP of county 𝑖 in year 𝑡 

• 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K: change in the natural log of per capita real GCP of county 𝑖 in year 𝑡 - 1 

• 𝐹𝑖𝑟𝑒!,#: number of fires in county 𝑖 during year 𝑡 

• 𝑢!,# = error term that is assumed heteroskedastic  

 

Model # 2: 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K = 𝛽%𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K + 𝛽(𝐷𝑢𝑟!,# + 𝑢!,# 

• 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K: change in the natural log of per capita real GCP of county 𝑖 in year 𝑡 

• 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K: change in the natural log of per capita real GCP of county 𝑖 in year 𝑡 - 1 

• 𝐷𝑢𝑟!,#: number of fire days in county 𝑖 during year 𝑡 

• 𝑢!,# = error term that is assumed heteroskedastic  
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Both regressions are run with county and year fixed effects because I suspect the dependent 

variable 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K, per-capita real county output growth, is affected by unobserved factors 

that systematically vary across counties and time in my panel. The coefficient on any variable 

that’s correlated with this variation will have an omitted variable bias. By using fixed-effects 

models, I can remove omitted variable bias by measuring changes within counties and year.  

 

Comparing to regions where technological industry predominates, natural disasters like wildfires 

in agriculture intense regions would likely have a greater impact on the local per capita real 

output growth. Policies on fire suppression or fire prevention may also vary across counties and 

time, and these variations are directly correlated with wildfire occurrence and intensity. 

Therefore, I use year and county fixed effects in my models to help address the problem caused 

by unobserved variations.  

 

4 Data  

4.1 County-level GDP / GCP Data 

In this paper, the empirical models use GCP at constant prices (2012 US dollars) as a measure 

for economic activity across the US. This dataset is the first official release of GCP by the U.S. 

Bureau of Economic Analysis (U.S. Bureau of Economic Analysis). It covers annually reported 

GCP for all counties across the US from 2001 to 2018. Comparing to the state level GDP data, 

the GCP data helps to provide a higher spatial resolution and thus higher accuracy 

measurements. On the other hand, it enables county fixed effects in the models so that I can 

remove the omitted variable bias of the estimated coefficients caused by cross-county variation 

in unobserved factors.  
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4.2 SHELDUS Wildfire Data  

I use county-level wildfire data from Arizona State University’s Spatial Hazard Events and 

Losses Database for the United States (SHELDUS). The data contains information on time (year 

and month) of each fire and the real direct losses caused by the fire (property and crop losses, 

injuries, and fatalities) from 1960 to 2016.  

 

For the consistency of data frequency, I convert the monthly wildfire data to annual data so that 

it matches the GCP data. The yearly summation is calculated for each damage variable and 

number of fires. For example, if there was a fire record in county A in June and another in 

August during year t, the annually total number of fires is 2, and the real losses caused by these 

fires are summed. 

 

4.3 Data for Instruments 

4.3.1 Lightning Data 

For IV estimation, I utilize lightning reports by county from Lightning Products and Services of 

National Oceanic and Atmospheric Administration (NOAA). More specifically, I generate the 

annual sum of daily could-to-ground lightning flashes by county so it can be used as an 

instrument for fire occurrence.   

4.3.2 Precipitation Data 

I obtain yearly local precipitation data from North America Land Data Assimilation System 

(NLDAS) “Daily Precipitation years 1979-2011” on CDC WONDER online database. From the 
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dataset, I use the annual average value of “all of the daily precipitation measurements” (NLDAS) 

for US counties. 

 

4.4 Population Data 

To control for population growth in my models, I use the county-level population data from 

“Census U.S. Intercensal County Population Data, 1970-2014” of the National Bureau of 

Economic Research. This dataset contains county-level population from 1970 to 2014, and it 

helps me to obtain the per capita GCP growth.  

 

4.5 Combining Data 

To combine the GCP data, the identification variables used are the county FIPS and year. FIPS 

stands for the five-digit U.S. Federal Information Processing Standard codes, the first two digits 

and the last three digits of which respectively represents the state code and county code within 

the state. For the initial analysis, the missing values are set to zero for losses and fire records in 

counties without fire record in certain years. Due to data availability limitation of other variables 

used in this analysis, I only use GCP data from 2001 to 2011. For the same reason, the same time 

period applies to data of all variables in my analysis.  

 

Many counties have changed their borders or merged with other counties throughout 2001 to 

2011, for the consistency of the analysis, they are left out from the dataset I use. Most of these 

counties are from Alaska.  Besides, according to the wildfire data, Virginia was barely touched 

by wildfires during the time period; according to the GCP data, Virginia has many independent 

cities with small population, so the GCP data was combined for many groups of these 
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independent cities. For these reasons, the state of Alaska and Virginia are left out from my 

analysis; the same applies to Shannon County, SD (renamed) and Kalawao County, Hawaii 

(combined with Maui County).   

 

In the following map, I show all wildfires used in my analysis from 2001 to 2011. The eastern 

US experienced substantially more wildfires than western US. The areas colored as black consist 

of counties that are left out from my analysis. Maps of other variables (Figure Appendix.4 – 7) as 

well as figures showing the trend of wildfire occurrence (Figure Appendix.8 – 10) can be found 

in the appendix.  

 

Figure 2: Total wildfires occurred in the US (2001 – 2011) 
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5 Results  

First, I present the OLS estimation of my models in table 1 below.  
 

Table 1: OLS Estimation of GCP Growth Model (with County and Year Fixed Effects)  

 Dependent Variable 

	 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K	

  (1) (2) 

𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K 
- 0.198 *** 

(0.017) 
- 0.198 *** 

(0.017) 

𝐹𝑖𝑟𝑒!,# 
- 3.566e-04 
(2.758e-03)  

𝐷𝑢𝑟!,#  
- 1.504e-04 
(3.268e-04) 

𝑅( 0.115 0.115 

Adjusted 𝑅( 0.053 0.053 

Residual Std. Error 0.090 0.090 

F-statistics (full model, *iid*) 1.852 1.852 

F-statistics (proj model) 69.95 69.95 
Note:                                                                                                              *p < 0.1; **p < 0.05; ***p<0.01 
F (proj model) refers to the F-test of all regressors (not including fixed effects), while F (full model) 
refers to all regressors including the fixed effects. Robust standard errors are reported. 𝑅( and 
adjusted 𝑅( are from the full models. 

 

 

From Table 1, both fire occurrence and fire duration are statistically insignificant in the two 

models. Although the F-statistics of the projected models are large with the same value of 69.95, 

that is likely contributed by the Δ𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K. Several summary statistics for the two models 

are identical, potentially because the effect of 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K predominates in both models. 
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There is also potential endogeneity problem caused by omitting unobserved variables that 

correlate to both the dependent variables and the independent variables of interest, such as 

𝐸𝑐𝑜𝑛𝑇𝑦𝑝𝑒! and 𝑆𝑢𝑝𝑝!,#. To address the endogeneity problem, I then run the regressions again 

using instrumental variables. I present the results from IV estimation below in Table 2. 

 

Table 2: TSLS Estimation of GCP Growth Model (with County and Year Fixed Effects)  

 Dependent Variable 

	 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K	

  (1)  

𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K 
- 0.216 *** 

(0.021) 
- 0.192 *** 

(0.017) 

𝐹𝑖𝑟𝑒!,# 
- 0.343 
(0.194)  

𝐷𝑢𝑟!,#  
- 0.016** 

(0.006) 

Residual Std. Error 0.115 0.094 

F-statistics (full model, *iid*) 1.137 1.723 

F-statistics (proj model) 64.09 73.35 

Weak IV Test iid F = 4.418 iid F = 58.112 
Note:                                                                                                              *p < 0.1; **p < 0.05; ***p<0.01 
F (proj model) refers to the F-test of all regressors (not including fixed effects), while F (full model) 
refers to all regressors including the fixed effects. Robust standard errors are reported.  
 

 

From the two-stage least square estimation, as expected, Δ𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K is still statistically 

significantly contributing to 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K in both models. Although 𝐹𝑖𝑟𝑒!,# remains statistically 

insignificant, the magnitude of its coefficient increases considerably, and this could be one of the 
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results from removing the endogeneity. Fire duration, on the other hand, becomes statistically 

significant at 5% significance level after using annual mean precipitation as the instrument. 

Nevertheless, the small magnitude of the coefficient indicates practical insignificance. More 

specifically, the estimate suggests that 10 more days of fire duration is associated with a decrease 

in 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#K by only 0.16.  

 

In Table 3 below, I present the results from the first stage of the TSLS estimation.  

Table 3: First-Stage Estimation (with County and Year Fixed Effects)  

 Dependent Variable 

  

𝐹𝑖𝑟𝑒!,#  

(model 1) 

𝐷𝑢𝑟!,#  

(model 2) 

𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K 
- 0.053** 

(0.017) 
- 0.365** 

(0.121) 

𝐹𝑙𝑎𝑠ℎ!,# 
- 7.168e-07* 
(3.041e-07)  

𝑃𝑟𝑒𝑐𝑖𝑝!,#  
- 0.144*** 

(0.015) 

𝑅( 0.277 0.183 

Adjusted 𝑅( 0.227 0.126 

Residual Std. Error 0.210 1.523 

F-statistics (full model, *iid*) 5.492 3.213 

F-statistics (proj model) 7.485 48.74 

Weak IV Test iid F = 4.418 iid F = 58.112 
Note:                                                                                                              *p < 0.1; **p < 0.05; ***p<0.01 
F (proj model) refers to the F-test of all regressors (not including fixed effects), while F (full model) 
refers to all regressors including the fixed effects. Robust standard errors are reported.  
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In the first stage estimation, I regress the suspected endogenous variables, 𝐹𝑖𝑟𝑒!,# and 𝐷𝑢𝑟!,#, on 

corresponding instruments and 𝛥𝑙𝑛J𝐺𝐶𝑃𝑃!,#$%K for each model respectively. From the results, 

lightning flash is only statistically significant at 10% level. It is also very economically 

insignificant: on average, 1000 more lightning flashes are associated with a decrease in yearly 

number of fires by only 0.0007. Through the formal weak IV test, 𝐹𝑙𝑎𝑠ℎ!,# is a weak instrument 

according to the rule of thumb. Besides its insignificance, the coefficient has a negative sign, 

which does not match with my hypothesis. 

 

An instrument is weak when it is weakly correlated with the suspected endogenous variable. This 

relationship is revealed by the first stage estimation. An insignificant coefficient for the 

instrument variable usually indicates weak instrument problem. With a finite sample size, a weak 

instrument could make the IV estimators highly biased. But it might not be the major problem 

because my sample size is 26,883. However, with a weak instrument, it’s likely I haven’t 

removed the endogeneity from the model, so I do not have strong evidence to make a consistent 

conclusion based on the results of model 1. 

 

𝑃𝑟𝑒𝑐𝑖𝑝!,#, on the other hand, has a statistically significant impact on fire duration days at 1% 

level. 𝑃𝑟𝑒𝑐𝑖𝑝!,# is not a weak instrument according to the weak IV test, but it is practically 

insignificant. With every millimeter increase in yearly average of daily precipitation, the fire 

duration is expected to decrease by 0.144 days. The maximum of 𝑃𝑟𝑒𝑐𝑖𝑝!,# in my dataset is about 

9 millimeters, and 9 more millimeters in 𝑃𝑟𝑒𝑐𝑖𝑝!,# would only decrease fire duration by about 

1.3 days.  
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6 Conclusion and Discussion 

In this paper, using IV estimation with fixed effects, I do not find statistically significant 

evidence for the impact that fire occurrence has on per capita real GCP growth. It is likely 

because the number of lightning flash is a weak instrument. On the other hand, at 5% 

significance level, I find statistically significant evidence for the negative impact that fire 

duration has on real GCPP growth, but the effect is economically very insignificant. With 10 

more days of fire duration, GCPP growth rate decreases by only 0.16. 

 

The results of my models show that wildfires have little effect on GCPP growth, but one 

limitation of my analysis is that only GCP data for “all industry total” is used to estimate the total 

economic activity for each county. If GCP data for each industry was used, the results may 

appear differently because for example, wildfires likely have a greater impact on agriculture, 

forestry, fishing and hunting than on arts, entertainment, and recreation.  

 

Moreover, precipitation could potentially affect other natural disasters like floods, which cause 

damage to communities across the US and thus adversely impact economic activity. Hence, there 

is a chance that precipitation is not a valid instrument for my model. Future analysis that utilizes 

industry specific GCP data and better instruments is needed.  
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Appendix 

1. Summaries of General Wildfire Statistics in the US 

Figure Appendix.1: Average Size of Wildfires in the US (1985 – 2018) 

 
 

 

Figure Appendix.2: Number of Wildfires in the US (1985 – 2018) 
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Figure Appendix.3: Area (Hectares) Burned by Wildfires in the US (1985 – 2018) 

 
 

 

2. Maps showing the variable means (2001 – 2011)  

Figure Appendix.4: Mean GCP (2012 US Dollars) in the US (2001 – 2011) 
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Figure Appendix.5: Mean Number of Lightning Flashes in the US (2001 – 2011) 

 

 

Figure Appendix.6: Mean Precipitation (Millimetres) in the US (2001 – 2011) 
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Figure Appendix.7: Mean Population in the US (2001 – 2011) 

 

 

3. Maps showing the numbers of fires across time and counties. 

Figure Appendix.8: Wildfires Occurred in the US in 2003 

 

 



 

 27  
 

 

 

Figure Appendix.9: Wildfires Occurred in the US in 2007 

 

 

Figure Appendix.10: Wildfires Occurred in the US in 2011 

 


