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1 Introduction

Fractional variables are percentages, proportions, or rates bounded within the range

of [0, 1]. Some examples of fractional variables in economics include interest rates,

unemployment, participation rates, health insurance coverage, etc. Researchers place

a significant emphasis on modeling these types of variables to gain insights into various

economic phenomena; see Maddala (1991), Cox (1995), Kieschhnick & McCullough

(2003), among others. Given various applications of fractional variables in economic

research, understanding their properties is essential to conducting reliable economic

analysis.

The bounded nature of the fractional variable leads to its nonlinear relationship

with the independent variables. In other words, no change in the independent variable

can cause the fractional variable to be outside the range [0, 1]; therefore, the relation

is forced to be nonlinear, especially when the data points approach the values of 0 or 1

(Wu, Baleanu, & Luo, 2017). Another significant characteristic of fractional variables

is heteroskedasticity, where the expectation of the dependent variable conditional on

the independent variables is not constant. Instead, the residuals are more likely to

exhibit changes in variance at different levels of the independent variable, which can

complicate the modeling process and impact the reliability of the estimates (Elsas &

Florysiak, 2013). Due to these characteristics, the reliability of using traditional linear

regression (LR) to model fractional variables has been questioned, which is represented

as

E(yi | Xi) = XT
i β, (1)

where yi is the fractional dependent variable constrained within the unit interval, and

Xi represents the independent variables. LR in (1) is commonly used in economic

research due to its simple application and interpretation. LR utilizes the Ordinary
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Least Squares (OLS) method to minimize the mean squared errors and fit a linear line

to the data. Linearity and homoskedasticity are fundamental assumptions of the OLS

method. The OLS method assumes that each term in the model is either a constant

or a coefficient multiplied by an independent variable and that the error terms have

a constant variance regardless of the values of the independent variables. However,

OLS assumptions of linearity and homoskedasticity are more likely to be violated if

the dependent variable is fractional, which can cause biased estimators. Furthermore,

using LR in the case of fractional variables can lead to predictions that fall outside

the bounded values. For instance, predicting a negative unemployment rate or a 110

percent market share is impractical. Therefore, while LR is favored for its simplicity,

its application to fractional variables requires caution and the adoption of alternative

modeling approaches that account for the bounded nature and potential issues.

It is argued that using a log-odds transformation of fractional variables enables the

application of a linear model. The log-odds model is defined as

E
(
log

yi
1− yi

| Xi

)
= XT

i β. (2)

While the log-odds model (2) is popular because it ensures that predictions fall within

the range of [0, 1], it does not entirely address the issue associated with modeling

fractional variables. Papke & Wooldridge (1996) demonstrate that the log-odds model

is invalid when fractional variables take on values of 0 and 1. This limitation arises

because the logarithm of zero or the division by zero is undefined, making the trans-

formation problematic at these boundary values. In addition, Papke & Wooldridge

(1996) point out that using log-odds models requires estimating a conditional density

function, which is either difficult or tends to produce non-robust results. Therefore,

a log-odd model is not feasible in practice besides providing the possibility of using a
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linear model for fractional data while maintaining predictions within the unit interval.

The Tobit model is another common approach for handling fractional variables, partic-

ularly in cases with numerous observations clustered at the boundary values. Ramalho

& Ramalho (2011) highlight the Tobit model’s application in the variables that their

values are only observed up to a specific limit named censored data. However, the

rationale for using the Tobit model becomes challenging to justify for fractional vari-

ables, which are naturally limited within a bounded interval. Therefore, theoretically,

the Tobit model application in fractional variables may not be suitable.

To address the challenges of modeling fractional variables, Papke & Wooldridge

(1996) propose a model that assumes the existence of a known function G(·), ensuring

all predicted values fall within the unit interval (0 to 1). The model is expressed as

E(yi | Xi) = G(XT
i β), (3)

where G(·) is a distribution function, typically a logistic function G(z) = exp(z)
1+exp(z)

,

mapping z between 0 and 1. To estimate the parameters in the fractional model

(3), Papke & Wooldridge (1996) suggest using the specific quasi-maximum likelihood

(QML) method proposed by Gourieroux, Monfort, & Trognon (1984) and McCullagh

& Nelder (1989) to estimate the parameters in the model. This estimation involves

maximizing the Bernoulli log-likelihood function, as shown below

li(β) = yi log[G(XT
i β)] + (1− yi) log[1−G(XT

i β)]. (4)

They demonstrate that QML estimation is consistent and asymptotically normal, re-

gardless of the distribution of yi conditional on Xi, which provides greater flexibility for

this method. Furthermore, based on the sandwich formula (Cameron & Trivedi, 2005)

and the nonlinear conditional mean G(·), the asymptotic variance of β can also be
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estimated (Papke & Wooldridge, 1996). Fractional logistic regression (FLR) proposed

by Papke & Wooldridge (1996) provides a flexible and robust approach to model frac-

tional variables, even in the presence of heteroskedasticity, and ensures all the predicted

values remain within the unit interval. FLR has been applied in various studies across

different fields. Molowny-Horas, Basnou, & Pino (2017) utilize FLR to model land

use and cover dynamics in a Mediterranean landscape. Their findings indicate that

fragmentation is influenced not only by geographical and environmental factors but

also by the surrounding landscape. Fang & Ma (2012) use FLR to investigate Chinese

insurance coverage rates and their relationship with household size, income, expense,

and chronic disease. Papke & Wooldridge (2008) use FLR to examine the estimation

of spending on math test results for fourth-grade students in Michigan, demonstrat-

ing how changes in school funding in 1994 impacted students’ academic performance.

Martins (2018) compares FLR with LR and Tobit in handling the fractional nature of

efficiency scores of banks and concludes that FLR outperforms LR and Tobit in accu-

rately capturing the efficiency of Portuguese banks. Villadsen & Wulff (2021) show the

applicability of FLR in diverse research areas by replicating two published papers in

strategy and management research using FLR. These studies collectively demonstrate

the utility and versatility of FLR in addressing the complexities of fractional variables

across different research contexts.

While FLR offers advantages for analyzing fractional variables, it has yet to gain

widespread popularity among researchers. LR, log-odds, and Tobit continue to be

more commonly used despite FLR’s benefits. Villadsen & Wulff (2021) find that only

6 percent of published papers working with fractional variables in top journals utilized

FLR. Considering the best-suited modeling approach is essential to any research, as

unsuitable models can lead to incorrect estimations, misinterpreting results, and po-

tentially misleading decision-making. Therefore, researchers must carefully consider
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the characteristics of their data, the assumptions of different models, and the research

objectives before deciding on a modeling technique. While FLR may offer advantages

in particular contexts, the choice of model should always be guided by a thorough

understanding of the data, methodology, and research goals to ensure accurate and

meaningful results.

This study contributes to understanding the best practices for modeling fractional

variables. In Section 2, the paper briefly discusses the theoretical background of FLR,

such as model specification, assumptions, estimation procedure, and asymptotic prop-

erties, while comparing it to the LR. Then, in Section 3, the paper conducts Monte

Carlo simulations, where both FLR and LR are applied to simulated datasets with

different characteristics, providing model performance evaluation and a guideline for

model selection in the case of fractional variables. In Section 4, the paper validates FLR

applicability across various fields by replicating findings from three published papers

in the Journal of Applied Econometrics using FLR. In Section 5, the paper conducts

an empirical analysis examining the nonlinear relationship between poverty rate and

educational level. Finally, the paper concludes the findings in Section 6. Overall, this

study enhances our understanding of modeling fractional variables and demonstrates

the versatility of FLR in addressing complex economic relationships. Findings of this

research can serve as a valuable resource for researchers, practitioners, and policymak-

ers seeking to leverage FLR for more accurate and insightful analyses in economics and

related fields.

2 Methodology

This section outlines FLR’s theoretical background, including the model specification,

assumptions, estimation procedures, and asymptotic results, to highlight its advantages
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over LR in handling fractional dependent variables.

2.1 Model Specification

FLR is designed for fractional outcomes. The expected value of the dependent variable

yi given the explanatory variables Xi is expressed as

E(yi | Xi) = G(XT
i β), (5)

where G(·) is the logistic function defined as

G(z) =
exp(z)

1 + exp(z)
, (6)

and β represents the vector of parameters to be estimated. The logistic function (6) ad-

dresses the bounded nature of the fractional dependent variable, preventing predictions

from falling outside the [0, 1] range.

2.2 Assumptions

Several assumptions must be met to utilize FLR. The dependent variable yi must be

bounded between 0 and 1, and also the logistic function G(XT
i β) must correctly specify

the relationship between the dependent and independent variables. The observations

must also be independently and identically distributed (i.i.d), and there should be no

perfect multicollinearity among the independent variables Xi. Finally, the error term

should follow a logistic distribution to be able to use FLR.
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2.3 Estimation Procedure

The parameters in FLR are estimated using the QML method, which maximizes the

Bernoulli log-likelihood function, defined as

li(β) = yi log[G(XT
i β)] + (1− yi) log[1−G(XT

i β)]. (7)

This function in (7) represents the likelihood of observing the data given the parameters

β. This maximization occurs through an iterative optimization process called the

Newton-Raphson method, which can be defined as

β(k+1) = β(k) −H−1(β(k))U(β(k)), (8)

where k is the iteration indicator, U(β(k)) is the gradient of the log-likelihood function,

providing the direction and magnitude of the adjustments. H−1(β(k)) is the second

derivative of the log-likelihood function indicates the curvature of the log-likelihood

function. This method refines the parameter in each iteration until the changes in the

parameter values tend to zero.

2.4 Asymptotic Properties

Asymptotic properties of QML, including consistency and asymptotic normality, en-

able accurate inferences about parameters as the sample size increases. Consistency

implies that as the sample size n increases, the QML estimator β̂ converges to the

true parameter value β. The asymptotic normality means that as the sample size be-

comes large enough, the distribution of the QML estimator β̂ approximates a normal
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distribution, which can be expressed as

√
n(β̂ − β)

d−→ N (0, Vβ), (9)

where
d−→ denotes convergence in distribution, and N (0, Vβ) represents a normal distri-

bution with mean 0 and variance-covariance matrix Vβ. This property (9) is useful as

it enables us to construct confidence intervals and test the hypothesis. The variance-

covariance matrix Vβ determines the variability of the estimator and can be obtained

using a sandwich formula specified as

Vβ =

[
1

n

n∑
i=1

G′(XT
i β)XiX

T
i

]−1

[
1

n

n∑
i=1

(
yi −G(XT

i β)

G(XT
i β)[1−G(XT

i β)]

)2

XiX
T
i

]
[
1

n

n∑
i=1

G′(XT
i β)XiX

T
i

]−1

, (10)

where G′(·) is the first derivative of G(cdot).

2.5 FLR vs LR

LR uses the OLS method to estimate the results, which is defined as

yi = XT
i β + ϵi. (11)

The parameters β are estimated by minimizing the sum of squared residuals, resulting

in

β̂ =
(
XTX

)−1
XTy. (12)
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The variance of the OLS estimator in (12) is given by

Var(β̂) = σ2(XTX)−1, (13)

where σ2 is the variance of the error term. While LR is appreciated for its simple ap-

plication and interpretation, it faces challenges when applied to fractional dependent

variables. Specifically, LR does not constrain the predicted values within the [0, 1]

interval and assumes a linear relationship and homoskedastic errors, which are often

violated in the case of fractional data. On the other hand, FLR effectively addresses

these limitations. As discussed previously, FLR ensures that all predicted values re-

main within the unit interval, captures non-linear relationships, and provides consistent

estimates even in the presence of heteroskedasticity. Table 1 summarizes the critical

differences between FLR and LR in terms of Model Specification (1), Assumptions (2),

Estimation Procedure (3), and Asymptotic Properties (4).

While LR remains a powerful and widely used technique, FLR is a more appro-

priate method from a theoretical perspective for fractional outcomes. The following

section, Monte Carlo Simulations, will further illustrate these two regression techniques’

practical applications and comparative performance, highlighting scenarios where FLR

demonstrates clear advantages.

13



Table 1: Comparison between FLR and LR

# FLR LR

(1) E(yi | Xi) = G(XT
i β) yi = XT

i β + ϵi

(2)

Dependent variable bounded in [0, 1]

Logistic function specifies relationship

i.i.d observations

No perfect multicollinearity

Logistic distribution of errors

Linearity

Independence of errors

Homoskedasticity

Normality of errors

(3)

QML

Bernoulli log-likelihood function

Iterative optimization

OLS

minβ

∑n
i=1(yi −XT

i β)
2

(4)

Consistency

Asymptotic normality

Variance-covariance matrix estimation

Consistency

Asymptotic normality

Variance: σ2(XTX)−1

3 Monte Carlo Simulations

3.1 One Independent Variable

Monte Carlo simulations compare FLR’s and LR’s performance in modeling fractional

outcomes. Each simulation involves 500 iterations, and the average of estimated coef-

ficients (Coef), Mean Squared Error (MSE), and Standard Error of Estimates (SEE)

are reported. The simulation starts by drawing 1000 random values from a normal

distribution to construct an independent variable (Xi). To generate yi within [0, 1],
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the logistic model is used, which is defined by

yi =
1

1 + exp (−(ϵi +Xiβ))
, (14)

where β = 1 and ϵi is a random noise drawn from a normal distribution N (0, 0.5).1

To create datasets with diverse characteristics, the mean and variance of the normal

distribution from which Xi is drawn are systematically varied. The mean is varied

through values -5, 0, and 5; the variance is varied through values 0.1, 1, and 5. This

range of means and variances ensures that a wide spectrum of possible data scenarios

are captured. The finite sample performance of both estimators is investigated by

varying the sample size through 100, 500, 1000, and 5000 to understand asymptotic

results for both FLR and LR. Main scenarios are characterized by low, medium, and

high variation (defined based on the value of σ2
x). Each of these main scenarios is

further subdivided into three subgroups based on the value of µX (µX equals -5, 0, and

5). Each subgroup represents cases where the fractional variable yi is mostly scattered

around 0, in the middle, and 1.

3.1.1 Low Variation

Figure 1 illustrates both model predictions in case of low variation in the data, where

the variance of Xi is set at 0.1. Given the known relationship in the simulation between

Xi and yi, low variation in Xi also leads to relatively low variation in yi. This results

in data being concentrated around a specific point. To examine different subgroups

under low variation scenarios, the mean of the normal distribution from which the 1000

Xi values are drawn is varied. This allows the creation of cases where the fractional

variable yi is scattered close to 0 (top plot), around 0.5 (middle plot), and close to 1

1After examining various distributions for ϵi, the normal distribution N (0, 0.5) is found to provide
the best exercises for the model.

15



(bottom plot). Each plot in Figure 1 displays the dependent variable yi on the vertical

axis and the independent variableXi on the horizontal axis. The blue dots represent the

simulated data, while the green plus markers (+) and red dots indicate the predictions

from the LR and FLR, respectively. The vertical axis in each plot is adjusted to

different ranges to zoom into the specific section, allowing for a more straightforward

presentation of the predictions for both models. LR and FLR fit the model similarly in

all three sub-plots, and their predictions are mostly identical. This observation suggests

that when the variation in Xi is minimal, both models can accurately capture the

relationship betweenXi and yi. This is reasonable since the scenarios depicted in Figure

1 provide a controlled environment where the data points are closely clustered, thereby

minimizing the inherent complexity in the relationship between the independent and

dependent variables.

Table 2 provides the results of the Monte Carlo simulations, comparing the perfor-

mance of FLR and LR in case of low variation in data. The table summarizes MSE,

SEE, and Coef for both models across different subgroups with varying means of Xi.

For µX = −5, the LR model has an MSE of 0.9850 and a SEE of 0.0013, while the FLR

model shows a significantly lower MSE of 0.0298 and a SEE of 0.1676. The average

coefficient estimates differ, with FLR at 0.9953 and LR at 0.0075. For µX = 0, the

MSE for the LR model is 0.5817, and the SEE is 0.0378, while FLR has a much lower

MSE of 0.0255 and a SEE of 0.1523. The average coefficient estimates are 0.9553 for

FLR and 0.2382 for LR. For µX = 5, LR has an MSE of 0.9850 and a SEE of 0.0013,

while FLR again shows a lower MSE of 0.0281 and a SEE of 0.1676. The average

coefficient estimates are 1.0010 for FLR and 0.0075 for LR. Overall, Table 2 indicates

that for low variation scenario, FLR consistently outperforms LR by providing better

model fit with lower MSE and more accurate coefficient estimates. This accuracy in

coefficient estimation is critical for correctly understanding the relationship between
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the dependent and independent variables.

Figure 1: Model Predictions in Low Variation Case (3.1)

Table 2: Monte Carlo Simulation Results for Low Variation Case (3.1)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

1000 0.1 -5 0.9850 0.0013 0.0075 0.0298 0.1676 0.9953

1000 0.1 0 0.5817 0.0378 0.2382 0.0255 0.1523 0.9553

1000 0.1 5 0.9850 0.0013 0.0075 0.0281 0.1676 1.0010
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3.1.2 Medium Variation

Figure 2 represents the case where Xi and consequently yi have medium variation. To

construct medium variation in data, the normal distribution that Xi is drawn from is

set to have a variance of 1. The top plot shows when the fractional variable yi is mostly

scattered around 0, the middle plot is when yi is scattered within the unit interval, and

the bottom one shows when yi is mostly scattered around 1. As can be seen, the model

fit slightly differs, particularly in cases where the data are around the bounded values.

In the top plot, the LR predictions are negative in several cases, while FLR predictions

stay within the bounded value of 0. This behavior demonstrates the limitation of LR

in handling fractional outcomes as it can produce invalid negative predictions for yi. In

the middle plot, where yi values are scattered within the unit interval, the gap between

the model fits of FLR and LR becomes smaller. However, FLR continues to offer more

accurate predictions that respect the bounds of the unit interval. In the bottom plot,

where yi values are mostly around 1, LR predictions exceed the value of 1 and cannot

capture the non-linearity that existed in the data. Conversely, FLR predictions show

nonlinear behaviour and remain within the bounded value of 1. Overall, the difference

in model fitting between FLR and LR becomes more pronounced with greater variation

in the data, especially near the boundaries. This increased variability makes it clear

that FLR is better suited for modeling fractional outcomes, as it considers non-linearity

and naturally constrains the predictions within the valid range of [0, 1]. LR, on the

other hand, cannot account for the non-linearity and may produce invalid predictions

outside the range, leading to potential inaccuracies and misinterpretations in practical

applications.
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Figure 2: Model Predictions in Medium Variation Case (3.1)

Table 3 presents the results of Monte Carlo simulations in case of medium variation

in the data. For µ = −5, the MSE for LR is 0.9769 with a standard error of 0.0009

and an average coefficient estimate of 0.0116, while FLR shows a significantly smaller

MSE of 0.0011, a higher SEE of 0.0326, and a closer to accurate average coefficient

estimate of 0.9944. These results suggest that FLR offers a better fit and more precise

coefficient estimates in cases where the fractional variable yi is concentrated around

0. When µ = 0, LR and FLR have MSEs of 0.6409 and 0.0027, respectively, with

FLR maintaining a slight edge in MSE and a more precise average coefficient estimate
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of 0.9507 compared to LR’s 0.1995. This indicates that FLR provides a better fit

and more reliable coefficient estimation when yi is scattered within the unit interval.

For µ = 5, the MSE for LR is 0.9769 with a SEE of 0.0008, while FLR again shows

better performance with an MSE of 0.0010, a SEE of 0.0310, and an average coefficient

estimate of 0.9932. These results highlight FLR’s consistent ability to deliver a better fit

and more accurate coefficient estimates, particularly when yi is concentrated around 1.

Overall, Table 3 suggests that FLR consistently provides better fit and more accurate

coefficient estimates than LR, especially when data exhibit medium variation. The

improved performance of FLR is particularly evident in scenarios where yi is close to the

bounded values of 0 or 1. This behavior underscores FLR’s advantage in maintaining

the validity of predictions within the bounded range of fractional outcomes, which

becomes more pronounced with medium variation in the data.

Table 3: Monte Carlo Simulation Results for Medium Variation Case (3.1)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

1000 1 -5 0.9769 0.0009 0.0116 0.0011 0.0326 0.9944

1000 1 0 0.6409 0.0028 0.1995 0.0027 0.0157 0.9507

1000 1 5 0.9769 0.0008 0.0116 0.0010 0.0310 0.9932

3.1.3 High Variation

Figure 3 illustrates both model predictions in case of high variation (σ2 = 5) in the

data. High variation causes a more significant discrepancy in model fit and predic-

tions between FLR and LR. Across all subgroups, the LR predictions extend beyond

the unit interval, whereas the FLR predictions remain within [0, 1]. The LR model

produces numerous negative predictions in the top plot, where yi values are mostly
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scattered around 0. This is problematic because negative values are invalid for frac-

tional outcomes. In contrast, the FLR predictions stay within the bounded value of 0,

maintaining the validity of the predictions. In the middle plot, where yi is scattered

within the unit interval, the LR predictions exceed the unit interval on both ends.

This results in predictions that are not feasible within fractional data. Meanwhile,

the FLR model continues to provide more accurate predictions that remain within the

valid range. In the bottom plot, where yi is mostly scattered around 1, numerous LR

predictions surpass the value of 1, which is again impossible for fractional outcomes.

The FLR model, on the other hand, keeps its predictions within the bounded value of

1. Additionally, the fitted linear line from LR fails to adequately capture the nonlinear

relationship between Xi and yi, as seen in the scattered nature of the linear predictions,

which do not align well with the actual data distribution. The FLR model, however,

effectively captures this nonlinear relationship, providing a better fit to the data. This

ability to model non-linearity is particularly important in cases where the relationship

between variables is not strictly linear, as with fractional outcomes.

Table 4 illustrates the results of Monte Carlo simulations in case of high variation

in the data. For µ = −5, the LR shows a high MSE of 0.9059, with a SEE of 0.0018

and a Coef of 0.0482. In contrast, the FLR model demonstrates a much lower MSE

of 0.0014, a SEE of 0.0107, and a closer to true parameter Coef of 0.9639. Similarly,

for µX = 0, the LR has an MSE of 0.8556, a SEE of 0.0016, and a Coef of 0.0750.

Meanwhile, the FLR model shows better results with an MSE of 0.0015, a SEE of

0.0087, and a Coef of 0.9625. For µX = 5, the LR has an MSE of 0.9060, a SEE of

0.0017, and a Coef of 0.0481. The FLR outperforms LR with an MSE of 0.0015, a

SEE of 0.0114, and a Coef of 0.9636. Overall, the significantly lower MSE and a closer

to the true parameter estimation of FLR underscore the importance of using FLR for

fractional outcomes with high variability to ensure reliable and meaningful findings.
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LR’s inability to account for non-linearity and tendency to produce invalid predictions

outside the range becomes more pronounced as data variability increases.

Figure 3: Model Predictions in High Variation Case (3.1)
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Table 4: Monte Carlo Simulation Results for High Variation Case (3.1)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

1000 5 -5 0.9059 0.0018 0.0482 0.0014 0.0107 0.9639

1000 5 0 0.8556 0.0016 0.0750 0.0015 0.0087 0.9625

1000 5 5 0.9060 0.0017 0.0481 0.0015 0.0114 0.9636

3.1.4 Increasing Sample Sizes

Figure 4 shows the performance of FLR and LR models as the sample size increases.

The values of µx = 0 and σ2
x = 2 are selected to ensure the data cover the entire

range of [0, 1]. This allows us to evaluate the models’ performance around bounded

values and within the unit interval as we increase the sample size. The plots, from

top to bottom, represent sample sizes of 100, 500, 1000, and 5000. As the sample size

increases, the difference in how well the models fit values around 0 and 1 becomes more

noticeable, while the predictions within the unit interval do not show much difference.

This demonstrates that FLR fits better than LR when the data are near the bounded

values.

Table 5 shows the results of Monte Carlo simulations for increasing sample sizes.

Overall, as the sample size increases, the FLR model consistently outperforms the LR

model in terms of MSE and the average coefficient estimate. The Coef for the FLR

model ranges from 0.9559 to 0.9579, whereas for the LR model, it ranges from 0.1487 to

0.1498, showing the FLR model provides estimates much closer to the true parameter

across all sample sizes. The MSE remains consistently high for the LR model, ranging

from 0.7229 to 0.7247, whereas the FLR model shows much lower MSE values, ranging

from 0.0020 to 0.0029, indicating a better fit for the FLR model in all sample sizes.
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It is important to note that increasing the sample size cannot mitigate the problem of

biased estimates for LR.

Figure 4: Model Predictions with Increasing Sample Sizes (3.1)
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Table 5: Monte Carlo Simulation Results for Increasing Sample Sizes (3.1)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

100 2 0 0.7229 0.0078 0.1498 0.0029 0.0332 0.9579

500 2 0 0.7244 0.0036 0.1489 0.0022 0.0152 0.9559

1000 2 0 0.7246 0.0024 0.1488 0.0020 0.0104 0.9560

5000 2 0 0.7247 0.0011 0.1487 0.0020 0.0045 0.9559

3.2 Two Independent Variables

In this part of Monte Carlo simulations, two independent variables denoted as Xi and

Zi are considered to explore how FLR and LR handle the added complexity of multiple

predictors. The variable Xi is constructed by drawing random values from a normal

distribution, while Zi is drawn from a uniform distribution [-2, 2]. The fractional

dependent variable, Yi, is generated using a logistic model that incorporates both Xi

and Zi. The logistic model for generating Yi is defined by

Yi =
1

1 + exp (−(ϵi +Xi + Zi))
, (15)

where ϵi is a random noise drawn from a normal distribution N (0, 0.5). The mean

and standard deviation of the normal distribution for Xi are systematically varied.

Specifically, the mean varies through values -5, 0, and 5; the standard deviation varies

through 0.1, 1, and 5. Three major scenarios are considered: low, medium, and high

variation in X based on the value of σ2
x. Within each major scenario, three minor cases

are considered based on the value of µx: data primarily concentrated around 0, the

middle, and around 1. The finite sample performance of both models is investigated by
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varying the sample size through 100, 500, 1000, and 5000 to observe how the estimators

perform from small to large datasets.

3.2.1 Low Variation

Figure 5 shows a 3D plot comparing the actual data, LR, and FLR predictions in case

of low variation. The axes represent the values of the independent variables X, Z, and

the dependent variable Y . The data points are in blue, linear predictions are in red,

and FLR predictions are in green. The top plot illustrates the case where the fractional

variable yi is close to 0, the middle plot depicts the case where yi falls within the unit

interval, and the bottom plot represents when yi is close to 1. According to Figure 5,

the FLR predictions better capture the non-linearity in the actual data, mainly when

yi is around bounded values 0 and 1. For instance, in the top plot, the FLR model

predicts higher values of Y relative to LR for high values of Z and X, which aligns

more closely with the actual data. On the other hand, for low values of Z and X, the

linear model’s predictions exceed the boundary value, while the FLR model keeps its

predictions within the boundary.

26



Figure 5: Model Predictions in Low Variation Case (3.2)
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Table 6 shows the results of Monte Carlo simulations in case of low variation (σ2
x =

0.1) in the data. It is important to note that the targeted variable X results are only

reported in the table. For µ = −5, LR has an MSE of 0.9744, while FLR has a lower

MSE of 0.0579, indicating a better model fit by FLR. The SEE for the FLR is 0.2385,

which is higher than the LR’s SEE of 0.0037. However, the FLR’s Coef of 0.9674 is

much closer to the true parameter value (β = 1) than the LR’s Coef of 0.0127. For

µ = 0, the LR has an MSE of 0.6626, and the FLR performs better with a lower MSE

of 0.0248. The FLR’s SEE is 0.1521, higher than the LR’s 0.0299, but the FLR’s Coef

of 0.9593 is closer to the true parameter than the LR’s 0.1865. For µ = 5, the FLR

performs better with an MSE of 0.0589 compared to the LR’s 0.9748. The FLR has a

higher SEE of 0.2426, while the LR model’s SEE is 0.0037. Despite the higher SEE, the

FLR’s coefficient estimate of 1.0035 is closer to the true parameter value than the LR’s

estimate of 0.0127. Overall, the results of Monte Carlo simulations in low variation

case demonstrate that the FLR consistently outperforms the LR in terms of MSE and

coefficient accuracy.

Table 6: Monte Carlo Simulation Results for Low Variation Case (3.2)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

1000 0.1 -5 0.9744 0.0037 0.0127 0.0579 0.2385 0.9674

1000 0.1 0 0.6626 0.0299 0.1865 0.0248 0.1521 0.9593

1000 0.1 5 0.9748 0.0037 0.0127 0.0589 0.2426 1.0035

3.2.2 Medium Variation

According to Figure 6, in the medium variation case, the FLR continues to outperform

LR in capturing the non-linearity of the data. For example, in the top plot, LR cannot
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produce predictions for a higher value of yi while the FLR does. Moreover, the FLR

predictions align more closely with the actual data and do not exceed the boundaries,

while in all three plots, it can be seen that LR produces predictions outside the range

of [0,1]. Table 7 provides the Monte Carlo simulation results in medium variation

case (σ2
x = 1). When µ = −5, LR shows an MSE of 0.9637, while FLR achieves a

significantly lower MSE of 0.0014, suggesting a better model fit of FLR. The FLR’s

Coef of 0.9838 is much closer to the true parameter value than the LR model’s estimate

of 0.0183. The SEE is 0.0339 for FLR and 0.0017 for LR. When µ = 0, the FLR

continues outperforming the LR with a lower MSE of 0.0023 than the LR’s 0.6913.

The Coef of 0.9553 for the FLR is closer to the true parameter value than the LR’s

0.1686. The SEE is 0.0168 for FLR and 0.0034 for LR. For µ = 5, the FLR again

demonstrates better performance, with a lower MSE of 0.0015 compared to the LR’s

0.9641. The FLR’s Coef of 0.9825 is much closer to the true parameter value than the

LR’s estimate of 0.0181. The SEE is 0.0346 for FLR and 0.0018 for LR. Overall, the

results of Monte Carlo simulations in medium variation case highlight that the FLR

consistently outperforms the LR in terms of MSE and coefficient accuracy.

Table 7: Monte Carlo Simulation Results for Medium Variation Case (3.2)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

1000 1 -5 0.9637 0.0017 0.0183 0.0014 0.0339 0.9838

1000 1 0 0.6913 0.0034 0.1686 0.0023 0.0168 0.9553

1000 1 5 0.9641 0.0018 0.0181 0.0015 0.0346 0.9825
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Figure 6: Model Predictions in Medium Variation Case (3.2)
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3.2.3 High Variation

According to Figure 7, FLR continues to outperform LR in high variation case. LR

struggles to account for the non-linear relationship in the data, leading to numerous

predictions that fall outside the range of [0, 1], which can be seen in all three plots.

In contrast, the FLR’s predictions remain within the boundary. Moreover, it can be

seen that in the top plot, LR cannot effectively produce predictions for the high value

of yi while FLR does. Similarly, in the bottom plot, the LR cannot effectively produce

values for the low value of yi while FLR performs better. The Table 8 provides the

results of Monte Carlo simulations in high variation case (σ2
x = 5). When µ = 5, the

LR has an MSE of 0.9063, while the FLR has a significantly lower MSE of 0.0014,

indicating a better model fit by the FLR. The FLR’s Coef of 0.9640 is much closer to

the true parameter value than the LR’s Coef of 0.0480. The SEE is 0.0112 for FLR and

0.0017 for LR. When µ = 0, the FLR continues to outperform the LR with an MSE of

0.0015, compared to the LR’s 0.8591. The Coef of 0.9623 for the FLR is closer to the

true parameter value than the LR’s 0.0731. The SEE is 0/0095 for the FLR and 0.0016

for the LR. Finally, when µ = −5, the FLR demonstrates better performance again

with an MSE of 0.0014 compared to the LR’s 0.9063, and the FLR’s Coef of 0.9640

is much closer to the true parameter value than the LR’s 0.0480. The SEE is 0.0095

for the FLR and 0.0016 for the LR. Overall, the results of Monte Carlo simulations in

high variation case highlight that the FLR consistently outperforms the LR regarding

MSE and coefficient accuracy.
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Figure 7: Model Predictions in High Variation Case (3.2)
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Table 8: Monte Carlo Simulation Results for High Variation Case (3.2)

LR FLR

n σ2
x µx MSE SEE Coef MSE SEE Coef

1000 5 -5 0.9063 0.0017 0.0480 0.0014 0.0112 0.9640

1000 5 0 0.8591 0.0016 0.0731 0.0015 0.0095 0.9623

1000 5 5 0.9064 0.0017 0.0479 0.0014 0.0116 0.9642

3.2.4 Increasing Sample Sizes

Figure 8 displays the performance of FLR and LR models in terms of prediction as

the sample size increases. As shown in the figure, FLR predictions align more closely

with the actual data than LR predictions, particularly near the boundaries of 0 and

1. This difference between the two models becomes more considerable by increasing

the sample size. As the sample size increases, the non-linear behavior in the actual

data becomes more noticeable. This non-linearity is captured by FLR but not by the

LR, and the difference in capturing this non-linearity becomes more apparent as the

sample size grows. This inability of LR to capture non-linearity ends up in predictions

outside boundaries.

Table 9 presents the results of the Monte Carlo simulations as the sample size

increases. We set µx = 0 and σ2
x = 2 to ensure the fractional variable is spread across

the entire unit interval [0, 1]. As the sample size increases, the SEE for both models

decreases, indicating improved precision. For example, when the sample size grows from

100 to 5000, the SEE improves from 0.0083 to 0.0011 for LR and from 0.0353 to 0.0047

for FLR. The average coefficient estimates in both models remain relatively stable

across different sample sizes. However, FLR consistently produces estimates closer to

the true parameter than LR. For instance, at n = 100, the coefficient estimate for FLR

33



((a)) N = 100 ((b)) N = 500

((c)) N = 1000 ((d)) N = 5000

Figure 8: Model Predictions with Increasing Sample Size (3.2)
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is 0.9593, while for LR, it is only 0.1361. FLR also consistently provides a smaller MSE

across all sample sizes, indicating a better model fit. As the sample size increases, the

MSE for FLR improves, going from 0.0029 to 0.0018, while the MSE for LR worsens

slightly, increasing from 0.7464 to 0.7471. This demonstrates that FLR performs better

as the sample size grows, while LR does not show the same improvement.

Table 9: Monte Carlo Simulation Results for Increasing Sample Size (3.2)

LR FLR

n σ2 µ MSE SEE Coef MSE SEE Coef

100 2 0 0.7464 0.0083 0.1361 0.0029 0.0353 0.9593

500 2 0 0.7467 0.0036 0.1357 0.0021 0.0152 0.9564

1000 2 0 0.7470 0.0027 0.1357 0.0019 0.0106 0.9576

5000 2 0 0.7471 0.0011 0.1356 0.0018 0.0047 0.9576

3.3 Summary of Findings

The LR and FLR provide identical predictions in low variation cases even when the

fractional variable is mostly scattered around bounded values zero or one. The differ-

ence in predictions of both models is negligible when the data has medium variation

and is mainly scattered in the middle, so the number of data points valued at 0 and

1 are minimal. However, when the data with medium variation scatter mostly around

bounded values, the difference becomes noticeable, and LR can no longer provide solid

predictions. At the same time, FLR continues to have accurate predictions. Regarding

high variation in data, it is observed that LR cannot provide accurate predictions even

if most data points are scattered in the middle, and only a small proportion of data

has values of 0 and 1. However, FLR can produce solid predictions. In addition, FLR
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provides estimations close to the true parameter and low MSE in all examined condi-

tions, while LR provides biased estimation and a large MSE. Importantly, increasing

the sample size cannot mitigate the problem of a biased estimate in LR. Using LR in

case of low variation can be reasonable even if the data points take values around 1 or 0,

as it provides a more straightforward interpretation. However, in high or medium vari-

ation cases, especially when data is mostly scattered around 0 or 1, the FLR appears

to be a better method.

4 Replication Study

In this section, the analysis from three papers published in the Journal of Applied

Econometrics are replicated, each using fractional outcomes for their research. These

papers cover various topics, highlighting the diverse applications of fractional outcomes

in economic studies. This replication study applies both LR and FLR. Finally, compar-

ing the results of these two models demonstrates how model selection can significantly

impact the findings and interpretations of the analysis and provide a clear understand-

ing of their performance in real-world applications.

4.1 Employee Participation Rates

4.1.1 Review of Original Paper

Papke & Wooldridge (1996) suggest FLR in modeling fractional outcomes. They use

FLR to examine the relationship between match rate and employee participation rate

in 401(k) pension plans as an empirical analysis. The dataset used in their analysis

consists of 4,734 observations and includes variables such as the participation rate

(prate), match rate (mrate), total employment (totemp), the average age of the plan

(age), and whether the plan is the sole plan offered by the employer (sole). The average
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participation rate across the dataset is 0.87, with a standard deviation of 0.17. Notably,

over 40 percent of the plans in their research had 100 percent participation. The match

rate has an average of 0.75 with a standard deviation of 0.84, a minimum of 0.01, and

a maximum of 5. In addition, the total employment across plans has a mean of 4,621.

The average plan’s age is roughly 13 years, and close to 41 percent of the plans in

the dataset are sole plans offered by the employer. Notably, the original paper uses

a restricted sample of the data, focusing only on cases where the match rate (mrate)

is less than or equal to one (mrate ≤ 1). To ensure consistency, the same restriction

and independent variables as the original paper are used in this replication study to

explain the participation rate.

Table 10: Summary Statistics of Variables (4.1)

prate mrate totemp age sole

Count 4734 4734 4734 4734 4734

Mean 0.8696 0.7463 4621.07 13.14 0.4149

Std 0.1668 0.8444 16299.64 9.63 0.4928

Min 0.0232 0.0110 53.00 4.00 0.00

25% 0.7803 0.2701 278.00 7.00 0.00

50% 0.9367 0.4398 628.00 8.00 0.00

75% 1.0000 0.8359 2173.25 17.00 1.00

Max 1.0000 5.0000 44304.00 76.00 1.00

4.1.2 Replication Results

Figure 9 shows the actual data for participation rate and match rate in blue, the LR’s

predictions in green, and the FLR’s predictions in red. The fractional variable prate

mostly stays around 1, and the FLR keeps predictions within this range, while the
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linear regression model predicted participation over 100 percent. The FLR also seems

to capture the non-linear pattern, while LR cannot.

Figure 9: Participation Rate Predictions (4.1)

According to Table 11, the results from the FLR and LR show significant differences

in both the magnitude of the coefficients and the associated standard errors. The

FLR captures more complex relationships, particularly in variables like mrate and

log(totemp). However, these gains come with increased variability, as indicated by the

higher standard errors in the FLR estimates. For example, the LR’s coefficient is 0.2394

for mrate variable, significantly lower than the 1.2180 estimated by the FLR model,

suggesting that LR may underestimate the impact of match rates on participation.

The FLR model captures a stronger relationship but with more significant uncertainty,

as reflected by its higher standard error (0.780 compared to 0.043 in LR). Additionally,

the squared term mrate2 shows opposite signs in the two models, with LR estimating
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a negative effect and FLR estimating a positive one. The variable log(totemp) also

exhibits substantial differences between the models, where the LR estimate is -0.1117,

while the FLR estimate is much larger in magnitude at -1.0021, suggesting that FLR

captures a stronger negative effect of firm size on participation rates. Again, the FLR

model shows a higher standard error (0.254 versus 0.014 in LR), which reflects more

variability in its estimates. These patterns extend to other variables, such as age, where

FLR estimates a stronger positive effect on participation rates than LR. The standard

errors in FLR remain consistently larger, indicating that the flexibility of the logistic

model introduces additional uncertainty.

The conclusion can be that while the FLR model provides a better fit for capturing

complex, non-linear relationships in fractional data, it also comes with increased un-

certainty, as shown by the higher standard errors. Although LR provides simpler and

lower standard error results, it may need to capture these relationships more effectively.

These findings emphasize the importance of choosing the appropriate model for the spe-

cific characteristics of the data. Simply adding quadratic terms to a linear model, as

seen with the mrate variable, may not be sufficient to capture the actual relationships

in the data, and a more flexible functional form, like FLR, may be necessary.
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Table 11: Comparison of LR and FLR Results (4.1)

Variable LR FLR

mrate 0.2394 1.2180

(0.043) (0.780)

mrate2 -0.0873 0.1960

(0.043) (0.850)

log(totemp) -0.1117 -1.0021

(0.014) (0.254)

log(totemp)2 0.0057 0.0522

(0.001) (0.016)

age 0.0059 0.0503

(0.001) (0.020)

age2 -6.653e-05 -1.80e-05

(2.33e-05) (0.0001)

sole 0.0008 0.0006

(0.010) (0.107)

Observations 3784 3784

4.2 Investment-to-GDP Ratio

4.2.1 Review of Original Paper

Hacıoğlu Hoke & Kapetanios (2020) explore how the relationship between national

savings and investment changes as countries become more open to trade. They utilize
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the model expressed as

yit = β01xit + β02xitg(qit : γ, c) + eit, (16)

where yit is the investment-to-GDP ratio in country i at time t, and xit is the savings

rate. The function g(qit : γ, c) called interaction term allows the link between savings

and investment to change based on how open a country is, defined as

g(qit : γ, c) = [1 + exp(−γ(qit − c))]−1 , (17)

where qit represents the level of openness, and γ and c are given parameters. The

dataset of this paper includes 27 OECD countries from 1951 to 2006. Table 12 provides

a summary statistics of variables. The saving ratio has an average of 24.36 percent,

with a standard deviation of 8.07 percent, a minimum of -1.64 percent, and a maximum

of 57.84 percent. The Investment-to-GDP ratio has an average of 24.36 percent, with

a standard deviation of 6.01 percent, minimum of 5.97 percent, and maximum of 46.76

percent, meaning the Investment-to-GDP ratio does not take any bounded value. The

openness variable has an average of 59.26 and a standard deviation of 39.99, indicating

considerable differences in the level of openness across countries. It has a minimum

value of 0 and a maximum value of 319.55.

In the original paper, although a nonlinear transition for the variable Openness is

considered, the relation between dependent and independent variables is captured by

LR. Since the dependent variable is the investment-to-GDP ratio, a fractional variable

bounded between zero and one, FLR is deemed more appropriate.
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Table 12: Summary Statistics of Variables (4.2)

Statistic Saving ratio Investment-to-GDP ratio Openness

Count 1620 1620 1620

Mean 24.36 24.36 59.26

Std Dev 8.07 6.01 39.99

Min -1.64 5.97 0.00

25% 19.15 20.27 32.78

50% 23.64 24.19 53.50

75% 29.07 28.03 71.66

Max 57.84 46.76 319.55

4.2.2 Replication Results

Figure 10 shows the actual data for the interaction term and investment-to-GDP ratio

in blue, along with the LR and the FLR predictions, which are overlaid in green and red,

respectively. In this case, both models produce nearly identical predictions, capturing

the same linear trend in the data.

According to Table 13, the results from the LR and FLR show significant differences

in both the magnitude of the coefficients and their interpretations. The LR model, with

a constant term of 0.0998, suggests that the average investment-to-GDP ratio, when

other variables are zero, is approximately 9.98 percent. On the other hand, the FLR

model estimates a negative constant of -0.0468, indicating a lower base level for the

investment-to-GDP ratio when considering the bounded nature of the data. The LR

shows a positive coefficient of 0.0065 for the saving ratio with a very small standard

error, indicating a clear positive relationship between savings and investment, align-

ing with traditional economic theories. However, in the FLR model, the coefficient
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for the saving ratio turns negative (-0.0014). It comes with a larger standard error

(0.006), suggesting that once the bounded nature of the investment-to-GDP ratio is

accounted for, the positive relationship observed in LR may not hold. The relationship

could even be negative. The interactive term, which captures the effect of openness on

the savings-investment relationship, also shows contrasting results between the mod-

els. The LR model’s coefficient is slightly negative (-0.0014), indicating that higher

openness weakens the savings-investment link. In contrast, the FLR model shows a

positive coefficient (0.0154), suggesting that openness could strengthen the relationship

between savings and investment. However, the larger standard error in the FLR model

indicates more uncertainty in this estimate.

Figure 10: Investment-to-GDP Ratio Predictions (4.2)
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Table 13: Comparison of LR and FLR Results (4.2)

Variable LR FLR

Constant 0.0998 -0.0468

(0.004) (0.003)

Saving ratio 0.0065 -0.0014

(0.000) (0.006)

Interactive term -0.0014 0.0154

(0.000) (0.006)

Observations 1620 1620

In summary, while the LR provides a simpler and more direct interpretation, it

may not fully capture the complexities of the data, particularly with respect to the

bounded nature of the investment-to-GDP ratio. The FLR, despite of introducing more

variability and uncertainty, offers a more detailed understanding of the relationship

between savings, investment, and openness. These differences highlight the importance

of selecting the appropriate model based on the characteristics of the data.

4.3 Return On Investment

4.3.1 Review of Original Paper

Gallizo, Gargallo, & Salvador (2008) examine how a company’s sector and size affect

financial ratios. We use the dataset from this paper to replicate the findings, focusing

on Return on Investment (ROI) using both FLR and LR. Since ROI is bounded between

-1 and 1, we transform it using the formula (ROI + 1)/2, allowing us to maintain its

non-linear nature while bounding it between zero and one for the FLR model. The data

used in this replication are drawn from the AMADEUS database, as in the original
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study, and cover a balanced panel of European manufacturing firms from 1994 to

2003. The dataset includes 3,950 observations, with key variables such as ROI, SIZE,

a binary variable indicating whether the firm is small/medium (coded as 0) or large

(coded as 1), and SECTOR, a categorical variable identifying the sector in which the

firm operates, with values 1 (Wood and Paper), 2 (Chemicals and Petroleum Products),

and 3 (Minerals and Machinery). Table 14 presents the summary statistics of variables.

The ROI variable has a mean of 0.0699 and a standard deviation of 0.0920, indicating

a relatively low average return with moderate variability. The SIZE variable is evenly

distributed between small/medium and large firms, while SECTOR shows a higher

concentration in sectors 2 (Chemicals and Petroleum Products) and 3 (Minerals and

Machinery).

Table 14: Summary Statistics of Variables (4.3)

SIZE SECTOR ROI

Count 3950 3950 3950

Mean 0.5063 2.2785 0.0699

Std 0.5000 0.8073 0.0920

Min 0.00 1.00 -0.5883

25% 0.00 2.00 0.0235

50% 1.00 2.00 0.0666

75% 1.00 3.00 0.1171

Max 1.00 3.00 0.9003

4.3.2 Replication Results

Figure 11 shows the actual data for the ROI and variable sector in blue, along with

the predictions from both the LR and FLR, which are overlaid in green and red,
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respectively. In this case, both models produce nearly identical predictions.

Figure 11: Return On Investment Predictions (4.3)

According to Table 15, the results from the LR and FLR show noticeable differ-

ences in both the magnitude of the coefficients and their interpretations. The LR,

with a constant term of 0.5299, suggests that the average dependent variable, when

other predictors are zero, is approximately 52.99 percent. On the other hand, the FLR

estimates a lower constant of 0.1197, indicating a smaller base level when accounting

for the characteristics of the data. For the SIZE variable, the LR shows a positive

coefficient of 0.0109 with a very small standard error, indicating a significant positive

relationship. This is in line with expectations from traditional linear modeling ap-

proaches. However, the FLR provides a much larger coefficient of 0.0437, though with

a higher standard error (0.064), suggesting that the relationship might be stronger, but

also more uncertain, when considering the specific nature of the data. The SECTOR
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variable shows a near-zero coefficient in both models, with the LR estimating a coef-

ficient of -0.0002 and the FLR showing a coefficient of -0.0008. The small magnitude

and the lack of statistical significance indicate that SECTOR might not have a strong

influence on the dependent variable in this context.

Table 15: Comparison of LR and FLR Results (4.3)

Variable LR FLR

Constant 0.5299 0.1197

(0.002) (0.100)

SIZE 0.0109 0.0437

(0.001) (0.064)

SECTOR -0.0002 -0.0008

(0.001) (0.040)

Observations 3950 3950

In summary, while the LR provides a simpler and more direct interpretation, the

FLR offers a different perspective with potentially stronger but more uncertain relation-

ships. These differences underscore the importance of model selection in understanding

the complexities of the data, as each model provides unique insights into the underlying

relationships between variables.
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5 Empirical Application: Impact of Education on

Poverty rate

5.1 Background

Education is widely seen as a way to reduce poverty. It gives people the required skills

and knowledge to improve their economic situation. Many studies have shown that

people with more education are less likely to be poor. Majumder & Biswas (2017)

find that in Bangladesh, households lead by people with secondary education or higher

have a much lower chance of being poor. Chaudhary et al. (2010) find that although

primary and middle school education for household heads have some benefits, they

are not as strong as higher education. Zuluaga (2006) finds that education improves

incomes and living conditions in Colombia, especially for poorer families. Education

does not just raise income; it also significantly improves health and housing conditions.

Other studies, such as Qureshi & Arif (2001), also support that education significantly

reduces poverty beyond just earning more money but also by impacting health con-

ditions. Appleton (1997) estimates that each additional year of primary schooling

reduces the risk of poverty by 2.5 percent, with even greater benefits at the secondary

level. Haughton & Khandker (2009), Sackey (2005), and Tilak (2005) emphasize that

higher education leads to long-term economic growth and poverty reduction. In this

empirical application, we provide more evidence on how education impacts poverty

using FLR and compare the results with LR to see how different approaches might

lead to different conclusions.
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5.2 Data Summary and Methodology

To explore the relationship between education and poverty rates, both FLR and LR

are used. In FLR, the dependent variable is the poverty rate for each country, while

the independent variables are the level of education and real GDP per capita. The

constant in the model is represented by β0, and β1 and β2 represents the coefficients of

the independent variables, with ϵi capturing the error term. Same variables and nota-

tion are also used in LR. The poverty rates come from the World Bank and show the

percentage of the population living on less than $2.15 per day. Educational attainment

refers to the percentage of the population aged 15-24 that has completed secondary ed-

ucation, and this dataset is sourced from UNESCO’s Education Attainment Database.

Economic performance is measured by real GDP per capita (adjusted for inflation),

which is obtained from the Penn World Table, measuring a country’s economic output

per person. The equations for the models are as follows

E(povertyi | edui, rgdpi) =
1

1 + exp (−(β0 + β1 · edui + β2 · rgdpi))
, (18)

povertyi = β0 + β1 · edui + β2 · rgdpi + ϵi. (19)

Table 16 provides a summary of the data, which includes 73 countries and covers

poverty rates, education levels, and real GDP per capita. On average, the poverty rate

is 5.45 percent, with most countries having a rate below 4.6 percent. However, some

countries, such as Benin, experience significantly higher rates, reaching 60.80 percent.

At the other extreme, countries like Austria have a poverty rate of 0. Education

levels also show significant variation. On average, 34.85 percent of the population has

completed secondary education, but this number varies widely, with Niger at only 3.53

percent, while Armenia has 65.04 percent completion. Real GDP per capita also varies
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considerably, with an average of $25,647.99 and a standard deviation of $20,266.20.

For instance, Mozambique has a low GDP per capita of $1,786.91, while wealthier

countries like Luxembourg reach $105,998.20.

Table 16: Summary Statistics of Variables

Poverty Rate (%) Education (%) Real GDP per capita (US$)

Count 73 73 73

Mean 5.45 34.85 25,647.99

Std. Dev. 12.16 13.02 20,266.20

Min 0.00 3.53 1,786.91

25% 0.10 25.26 10,879.27

50% 0.70 34.56 23,051.01

75% 4.60 44.56 36,712.50

Max 60.80 65.04 105,998.20

5.3 Regression Results

Figure 12 compares the predictions of LR and FLR with the actual data. The blue

dots represent the actual data, the green dots show the FLR’s predictions, and the red

dots represent the LR’s predictions. As can be seen, the LR struggles to capture the

pattern in the data, especially for higher poverty rates, where its predictions fall short.

On the other hand, the FLR performs better, especially in predicting higher poverty

rates, showing a closer fit to the actual data.
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Figure 12: Model Prediction Comparison

Table 17 compares the LR and FLR for analyzing the impact of education and real

GDP per capita on the poverty rate. The models estimate the relationship between

these variables differently. In the LR, the constant term is estimated at 0.2261, a

result that is statistically significant at the 1% significance level. This indicates that

even when education and real GDP per capita are held constant, the poverty rate is

positively affected by other factors. In contrast, the FLR model provides a constant

estimate of -0.0726, with a larger standard error of 1.248. This suggests the FLR model

does not provide strong evidence for an intercept when controlling for education and

GDP. When examining the impact of education, the LR model estimates the coefficient

at -0.3256, with a relatively small standard error of 0.094. This suggests that higher

levels of education are associated with decreased poverty rates. The FLR model also

finds a negative relationship between education and poverty, but with a much larger

coefficient of -3.3321 and an extremely large standard error of 4.640. While the direction
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of the effect remains consistent, the FLR results imply a much stronger relationship

between education and poverty but with considerable uncertainty due to the high

standard error. For the real GDP per capita variable, the OLS model estimates a

coefficient of -2.264e-06, which is statistically significant at the 1% level, indicating a

very small but significant negative effect of real GDP per capita on poverty. The FLR

model, however, estimates the coefficient at -0.0001, with a standard error of 0.000.

Though this result suggests a similarly small real GDP per capita effect on poverty, it

is not significant, which contrasts with the LR findings.

Table 17: Comparison of LR and FLR Results

Variable LR FLR

Constant 0.2261*** -0.0726

(0.036) (1.248)

Education -0.3256*** -3.3321

(0.094) (4.640)

Real GDP per Capita -2.264e-06*** -0.0001

(6.05e-07) (0.000)

Observations 73 73

While both models aim to explain the relationship between poverty, education, and

real GDP per capita, the results are quite different. The LR model offers more precise

estimates with smaller standard errors, particularly for the education and real GDP

variables, suggesting a well-defined linear relationship. However, it may fail to capture

more complex non-linear effects. On the other hand, the FLR attempts to account for

non-linearities in the data. However, this comes with the cost of much higher variability

in the estimates, especially for education, making the results less precise.
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6 Conclusion

FLR is a valuable method for analyzing dependent variables bounded between 0 and

1 without adjusting the data, as it estimates the conditional expectation directly. The

Monte Carlo simulations in this study support that FLR provides better fit and pre-

dictions than LR, especially when there is high variation in the dependent variable or

medium variation with data points clustered around bounded values 0 or 1. However,

this better model fit for FLR is achieved with the cost of more uncertainty in the esti-

mation relative to LR. The replication study shows the versatility of FLR in economic

research and the differences between FLR and LR, which depend on the character-

istics of the data. For instance, when analyzing employee participation rates, where

many observations were equal to 1, the FLR model performs quite differently than

LR. However, in cases like the investment-to-GDP ratio, where values of 0 and 1 are

minimal, the difference in predictions and estimates between the two models is much

smaller. Finally, this paper’s empirical analysis shows how FLR effectively addresses

the relationship between poverty rates and education levels. It captures the data’s

nonlinearity and provides reasonable predictions for high poverty rates, which the LR

struggles to explain. While the FLR shows a higher magnitude in the coefficient for

education, it also comes with greater uncertainty, whereas the LR offered more precise

and statistically significant estimates. In conclusion, FLR is particularly well-suited

when the fractional dependent variable significantly varies or when the data contain a

medium variation and a substantial number of 0 and 1 values.
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