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Abstract

Droughts have a substantial socio-economic impact, and their severity and du-
ration are only being exacerbated by climate change. Understanding the dynam-
ics of droughts is important for enabling societies to adapt and create policies
to mitigate their effects. Droughts are measured using indices; one of those is
the Standardized Precipitation Evapotranspiration Index (SPEI). In this essay, I
train and analyze the performance of 4 different forecasting methodologies: Sea-
sonal ARIMA, Machine Learning techniques such as Random Forests and Artificial
Neural Networks, and Hybrid models using Wavelet Transformation + ARIMA. I
compare the forecast performance using RMSE and MAE indicators, as well as the
Diebold-Mariano Test. I work with a gridded global database of SPEI, which al-
lows us to train models and produce forecasts at a pixel level. Given the geographic
focus on the North America Region (Canada, the United States, and Mexico), I
conclude that Seasonal ARIMA models achieve the lowest RMSE overall, but their
forecasting power is geographically dependent. Other models perform better de-
pending on geography. In very few locations, the lowest-RMSE model shows a
statistically significant difference according to the Diebold-Mariano Test.
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1 Introduction and Motivation

Droughts have a substantial socio-economic impact, and the magnitude, severity, and dura-

tion are only being exacerbated by global warming (Gebrechorkos et al., 2025). According

to the IPCC AR6 Synthesis Report—Section 3, “Long-Term Climate and Development Fu-

tures”— (IPCC, 2023), global warming will lead to long-term changes in key climatological

variables such as precipitation and soil moisture, as well as a more widespread propensity to

extremes that will reflect into more and more intense droughts.

Studying this phenomenon from an economic perspective is essential given its wide range

of potential consequences. Severe drought generates serious effects, including lower agri-

cultural yields (Gouveia, Trigo, & DaCamara, 2009) or reduced water supply to populated

areas (Gober, Sampson, Quay, White, & Chow, 2016), disruptions to hydroelectric power

(Azouaoui & Assani, 2018), or even disruptions to the global supply chain, e.g., the Panama

Canal (Aguilar & Naranjo, 2022). Droughts require substantial investments in water man-

agement infrastructure and other adaptation measures. According to the United Nations

Convention to Combat Desertification, addressing drought impacts may require up to US$210

billion in planned investments worldwide (Thomas et al., 2024). To forecast drought condi-

tions, understanding their dynamics is fundamental to creating policies and planning ahead.

In this Essay, I apply different econometric models to forecast droughts. I implement

Seasonal ARIMA models, hybrid models combining wavelet transformation with Seasonal

ARIMA, and machine learning models, including Random Forests and Artificial Neural

Networks. I compare the forecasting power of these methods using the Root Mean Square

Error (RMSE) and the Mean Absolute Error (MAE), and perform a Diebold-Mariano test.

This Essay focuses on the North American region (Canada, the United States, and Mex-

ico). North America offers a wide range of climates and environments to compare the per-

formance of each model. A main contribution to the literature is the use of a gridded dataset
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of North America to forecast drought conditions with the regional climatological dynamics.

Dracup, Lee, and Paulson (1980) and Wilhite and Glantz (1985) agreed that there is a lack

of a single definition of drought. They also coincide in the categories of drought: meteorolog-

ical, agricultural, hydrological, and socio-economic. They define meteorological droughts as

the balance between precipitation and potential evapotranspiration. Agricultural droughts

are related to precipitation and the soil moisture required by crops; hydrological droughts

are related to reduced water levels in rivers or reservoirs; and socio-economic droughts are

related to water shortages that affect the availability of resources to the population.

Other efforts to define the drought come along with methodologies to measure it. To

measure drought, the literature has focused on developing drought indices. The Handbook

of Drought Indicators and Indices from the World Meteorological Organization provides a

list of more than 50 indicators and indices (World Meteorological Organization & Global

Water Partnership, 2016). One of the first attempts is the Palmer Drought Severity Index

(PDSI), introduced by Palmer (1965). The PDSI incorporates a water balance model that

accounts for both supply (precipitation) and demand (soil moisture and evapotranspiration).

The disadvantages of this methodology are the need for calibration to effectively measure

droughts in each region and the inability to measure droughts across different time scales.

These disadvantages were addressed by the introduction of the Standardized Precipitation

Index (SPI) by McKee, Doesken, and Kleist (1993). For the SPI, the definition of drought is

based on the precipitation deficit: the difference between the actual precipitation (Pt ) and

the long-term levels of precipitation (P̄ ). The authors recommend a 30-year period for a

long-run mean. Precipitation and long-run precipitation can be calculated on different time

scales: 3, 6, 12, 24, or 48 months.

The contribution of SPI to the drought index literature was the standardisation process.

An intuitive way to think of a standardization process is to divide the precipitation deficit by

the standard deviation of the same long-term period (SP ). However, the author clarifies that
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precipitation data is not normally distributed, invalidating this approach. To address this

problem, the proposed approach is to fit the precipitation data into a Gamma Distribution.

Now, with an established relationship between observed precipitation and the probability of

observing it, the probability is associated with a Normal Distribution using an estimate of the

inverse standard normal cumulative distribution function. After the standardisation process,

the SPI Index is essentially a Z-score. The SPI simplified the data requirements compared

to PDSI and enabled the possibility of generating a multiscalar index. The disadvantage was

the simplified definition of drought, which does not account for evapotranspiration or other

variables related to water demand.

The Standardized Precipitation Evapotranspiration Index (SPEI) was introduced by Vicente Ser-

rano, Begueŕıa, and López-Moreno (2010). The SPEI is developed from the SPI; it is also

a multiscalar index and follows a standardisation process. The main difference is that, for

the SPEI, the definition of drought includes not only precipitation but also Potential Evapo-

transpiration (PET). Effectively solving the disadvantages of the SPI with minimal increase

in data and processing.

The PET definition used is from Thornthwaite (1948), who defined PET as the amount

of water that could be evaporated or transpired if available. This includes both sides of the

water balance equation: the supply of water to the soil and the demand for water from the

system.

The calculation of the SPEI starts with the balance in the water equation defined as Dt

being equal to the difference between the precipitation P and the Potential Evapotranspira-

tion PET for a given month t. The Equation (1) summarise it:

Dt = Pt − PETt (1)

The PET calculation methodology used by the authors follows the methodology described

by Thornthwaite (1948). In the methodology, PET is a function of temperature, a heat index,
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and the hours of sunlight in a given month, all of which vary by geographic location. The

PET calculation is comprehensive, accounts for several physical variables, and is designed

to compare different geographies and climates.

The values for Dt are aggregated to the desired time scale. For the standardization

process, the process followed is to fit the value of the aggregated Dt into a Log-Logistic

Distribution. The authors selected this distribution after testing several others, including

the gamma distribution followed in SPI. The log-logistic distribution was chosen because it

performed better across different geographies. The final step, as in SPI, is to associate the

probability with a Normal Distribution using an estimate of the inverse standard normal

cumulative distribution function.

The standardization process produces an indicator that is comparable over time and

space, with a mean of 0 and a variance of 1. As an additional benefit, it also relates to a

Z-score widely known in statistics.

The SPEI is usually translated into a qualitative drought characteristic. The Table 1

summarizes the different classifications of droughts based on SPEI values. An intuitive

approach to extreme events in SPEI is the Z-score definition. Only 5% of the events fall

beyond ±1.96, characterizing the extremes. A deviation of ±0.5 from the mean of 0 is

categorized as a wet event or a drought event.

Table 1: Categorization of drought/wet conditions according to SPEI

Category SPEI value range

Extremely wet SPEI ≥ 2.0
Very wet 1.5 ≤ SPEI < 2.0
Moderately wet 1.0 ≤ SPEI < 1.5
Mildly wet 0.5 ≤ SPEI < 1.0
Normal −0.5 ≤ SPEI < 0.5
Mild drought −1.0 ≤ SPEI < −0.5
Moderate drought −1.5 ≤ SPEI < −1.0
Severe drought −2.0 ≤ SPEI < −1.5
Extreme drought SPEI ≤ −2.0
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In this Essay, the forecasted variable is the SPEI Index, specifically, the SPEI-12. The

database used is the SPEI Global Database published by the same authors (Begueŕıa, Vi-

cente Serrano, Reig-Gracia, and Latorre Garcés (2024)).

This Essay is structured as follows: in Chapter 2, I provide a literature review focusing

on forecasting methods, studies on drought forecasting, and tools for comparing forecasts.

Chapter 3 describes the Database used for this study. Chapter 4 covers the Methodol-

ogy,explaining in detail the process followed. Chapter 5 presents the Results, and Chapter

6 concludes and outlines potential next steps for this topic.

2 Literature Review

2.1 Methods and Applications in Drought Forecasting

Traditional time-series models, particularly ARIMA and Seasonal ARIMA (S-ARIMA), re-

main among the most widely used techniques in drought forecasting. For example, Achite

et al. (2022), Mishra and Desai (2005), and Durdu (2010) employ Seasonal ARIMA models

to forecast drought indices.

More recent studies increasingly rely on machine-learning methods. Random forest models

have been applied in diverse contexts, including Q. Wang et al. (2022), Hussain et al. (2025),

and Dikshit, Pradhan, and Alamri (2020). Artificial Neural Networks (ANN) are applied

as well by Morid, Smakhtin, and Bagherzadeh (2007). A common practice in the machine

learning literature is to present a wide variety of methods, among them Oyounalsoud, Yilmaz,

Abdallah, and Abdeljaber (2024), Yaseen, Ali, Sharafati, Al-Ansari, and Shahid (2021), and

Gupta et al. (2024) include Random Forest and ANN, among other methodologies. Another

technique in the literature is Wavelet Transformation, which should be used in combination

with ARIMA or Machine Learning methods, and is used by Rezaiy and Shabri (2023), Khan,

Muhammad, and El-Shafie (2020), and Wu et al. (2021).

More details on the methods and studies are provided in the next sections. The main
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methodology followed in this Essay was developed based on these studies.

2.1.1 Seasonal ARIMA Model

ARIMA stands for Autoregressive Integrated Moving Average Model. Formalised by Box,

Jenkins, and Reinsel (1994), the ARIMA model is defined as ARIMA(p, d, q) where p is the

auto-regressive order defined as the number of lagged values of the series included in the

model. The moving average order is represented as q, meaning how many past error terms

influence the current observations of the variable. Last, d specifies the degree of differencing

required.

A development from the ARIMA also included in Box et al. (1994) is the Seasonal ARIMA

(S-ARIMA) models, defined as ARIMA(p, d, q)(P,D,Q)[s]. Where P,D,Q are respectively

the seasonal autoregressive order, the seasonal differencing order, and the seasonal moving

average order. s is the seasonal period, which is commonly 12 if the data is monthly, or 4 if

the data is quarterly. The functional form is as follows:

Φ(Bs)ϕ(B) (1−B)d(1−Bs)Dyt = Θ(Bs) θ(B) εt, (2)

Where: ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p is the AR order, θ(B) = 1 + θ1B + θ2B
2 +

· · · + θqB
q is the MA order and Φ(Bs) = 1− Φ1B

s − Φ2B
2s − · · · − ΦPB

Ps is the Seasonal

AR Order, Θ(Bs) = 1 + Θ1B
s +Θ2B

2s − · · ·+ΘQB
Qs the seasonal MA order.

A common approach in ARIMAmodels is to use information criteria to select a model that

balances fitness and complexity. The indicators used are the Akaike Information Criterion

(AIC) (Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 1978). By

design, these indicators penalise the increase in the likelihood value from a more complex

model. The criteria are defined as follows:

AIC = −2 lnL+ 2k (3)
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and

BIC = −2 lnL+ k lnn (4)

, where k is the number of parameters estimated in the model, and L is the value of

the likelihood function. The selected model will be the one with the lowest AIC or BIC,

respectively.

One of the papers following S-ARIMA models is Achite et al. (2022), which uses it to fore-

cast Drought Indices such as SPI (Standardised Precipitation Index) and SRI (Standardised

Runoff Index). The region they focus on is the Wadi Ouahrane Basin in Algeria, and they

have precipitation data from 1972 to 2018 (46 years). The model identification process they

follow is to iterate over different model specifications and select one using Information Crite-

ria AIC and BIC. Their procedure selected the models ARIMA(1,0,0)(2,0,1)[12] for SPI-12

and ARIMA(0,1,0)(0,1,1)[12] for SRI-12. For model testing, they use the years 2011-2017.

They evaluate and test the model using correlation coefficient R2, Mean Absolute Error

(MAE), and Root Mean Squared Error (RMSE). They conclude that the model produces a

reasonable adjusted forecast over 12 months.

Another study is Mishra and Desai (2005), which uses S-ARIMA models to forecast

drought. They focus only on SPI and the geographic region of the Kansabati river basin in

India. They compute an SPI at different time scales using data from five raingauge stations,

spanning from 1965 to 1994 (29 years). To select the model, they use the Information Crite-

ria methodology, AIC, and BIC. The chosen model for SPI-12 was ARIMA(1,0,0)(2,1,0)[12].

They run residual diagnostics, including tests for autocorrelation, conditional heteroskedas-

ticity, and normality. For the testing part, they use data from 1994 to 2001. Their conclu-

sions are that the model provides reasonably good results with up to 2 months of lead time,

and the precision decreases over time. Durdu (2010) follows the same methodology, using

S-ARIMA models to predict drought in the Büyük Menderes River basin in Turkey. They

forecast SPI and used data from 1975 to 2006 (31 years).
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It is worth noting that other authors also use an S-ARIMA model, but with a different

data-collection approach. Mossad and Alazba (2015) studied a region in Saudi Arabia,

characterised by a hyper-arid climate. They use SPEI and use data from 1950 to 1989.

They use the same database I use in this study, the SPEI Global Database (Begueŕıa et

al. (2024)). Although they do not exploit the gridded characteristics. Another study with

particularities with the data is Al Sayah, Abdallah, Khouri, Nedjai, and Darwich (2021).

They study drought in Lebanon, which has a Mediterranean climate. They extract data and

produce simple drought indices from remote-sensing databases like LANDSAT, which can

also be reproduced in other geographies.

2.1.2 Machine Learning models: Random Forest & Artificial Neural Network

Most recent papers on drought forecasting are leaning towards machine learning methods.

In this Essay, I focused on Random Forest and Artificial Neural Networks.

Random Forest methodology was introduced by Breiman (2001) and is based on his earlier

work on decision trees and bootstrap aggregation Breiman (1996). A decision tree recur-

sively splits the data using explanatory variables to classify and later use this classification

to predict a dependent variable. Breiman (1996), demonstrated that predictive accuracy im-

proves when multiple decision trees are built on different bootstrap samples of the original

dataset and their predictions are averaged.

In Random Forest, the process is extended by creating ntrees decision trees, each trained

on its own bootstrap sample of the training data. Then, adding an additional layer of ran-

domness: at every split within a tree, only a random subset of predictors, mtry, is considered

as candidates for splitting. Each tree produces its own prediction, and these predictions are

aggregated (averaged when using continuous data). Growing more trees yields a more stable

and accurate forecast. The predicted data will be the average across all trees. The process

is also explained in Liaw and Wiener (2007). The parameters, called hyperparameters in the
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literature, that need to be chosen by the researcher are ntrees and mtry. This process is often

iterative and is called tuning.

In drought forecasting literature, Q. Wang et al. (2022) uses a random forest to predict

the value of SPEI-06. They rely on remote-sensing databases ( MODIS and GPM). The

geographic area is Inner Mongolia, in China. They do not train the model using lags; they

exploit the richness of the databases and use variables such as Precipitation Status Index,

Temperature Status Index, Enhanced Vegetation Index, Elevation, and terrain slope. The

tuning process decides the optimal ntrees and mtry. They found the optimal number of trees

to be ntrees = 1000 and the mtry is 4.

Another study Hussain et al. (2025) uses a Random Forest approach to examine drought as

measured by the SPI-03. The geographic area is in Punjab, Pakistan. They test their results

by comparing it to a logistic regression. The data used is monthly data from 1981 to 2021,

with 70% for training and 30% for validation. It is not explicit what the hyperparameter

selection is.

Dikshit et al. (2020) also applies Random Forest models to analyse droughts in New South

Wales (NSW), Australia. They computed SPEI using data from the Climatic Research Unit

(University of East Anglia). They train using data from 1901 to 2010, validate the model

from 2011 to 2015, and test the model on the period from 2016 to 2018. The explanatory

variables are rainfall, potential evapotranspiration (PET), vapour pressure, cloud cover, and

temperature. As expected, the most important variables are rainfall and temperature. They

train the model using random search and grid search methods for hyperparameter selection.

The study follows objectives similar to this Essay, as it produces a gridded forecast.

Artificial Neural Networks (ANNs) are based on a mathematical model of the brain and

are then applied to nonlinear regression analysis Ripley (1994). An ANN consists of inter-

connected neurons arranged in layers. The input layer receives the predictor variables. In a

simple neural network without a hidden layer, the input layer is a linear combination of the
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output layer (similar to regression). The hidden layer contains the neurons where the core

data processing occurs. In forecasting applications, an ANN learns complex, nonlinear rela-

tionships between a dependent variable and its predictors. Inside those neurons, the inputs

are transformed using linear and non-linear combinations. The output layer will be where

the prediction is. The network will try to minimise a loss function by properly selecting the

prediction of the dependent variable.

Following Kuhn and Johnson (2013), each neuron k in the hidden layer first computes a

linear combination of the predictor variables xj using a set of weights βjk and a bias term

β0k. This linear combination is then transformed by a nonlinear activation function g(·).

Formally,

u = β0k +
∑
j

xjβjk, (5)

and the output of neuron k is defined as

hk(x) = g(u), (6)

where g(·) is commonly chosen as a sigmoid activation function:

g(u) =
1

1 + e−u
. (7)

Finally, the outputs of the hidden neurons are combined through a linear function to

produce the network’s prediction. Each hidden neuron contributes to the final output with

an associated weight γk:

f(x) = γ0 +
H∑
k=1

γkhk. (8)

The hyperparameters that need to be chosen by the researcher are now size and decay.

size is the number of neurons in the hidden layer, and decay is a parameter that regulates
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the weights in the network when predicting a value, penalizing larger weights.

In the drought forecasting literature, Morid et al. (2007) uses an Artificial Neural Net-

work (ANN) to forecast SPI in the Tehran Region, Iran. They trained different models

with different inputs to select the best architecture for their Neural Network, tested various

networks and learning algorithms, and found feed-forward training to be the most suitable.

A variety of inputs were used, including SPI lags and rainfall lags. Additionally, some mod-

els include large-scale climate indices such as the Southern Oscillation Index (SOI) and the

North Atlantic Oscillation (NAO). The selected model was the one trained using SPI lags of

1 to 4 periods, a seasonal lag of 12 periods and Rainfall lags of 1 to 2. The SOI and NAO

models did not perform well. This study contributes to the idea of generating an ANN only

with lagged variables.

A recent study applies not only one but several machine learning methods to forecast

drought. In Oyounalsoud et al. (2024), they forecast SPEI among other indicators for Alice

Springs, Australia. The data is for 36 years. They use Random Forest (RF), Artificial Neural

Network (ANN), and other methods (Decision Tree (DT), Generalised Linear Model (GLM),

Support Vector Machine (SVM), and Deep Learning (DL)). These studies, doing ensembles

of models, are quite popular in the machine learning literature. Other authors, such as

Yaseen et al. (2021) and Gupta et al. (2024), also analyse a wide range of methodologies, but

focus on forecasting precipitation and, with those forecasts, calculate an SPI. An interesting

question arising from this paper is whether the forecast variable should be precipitation

rather than the Drought Index. The question is whether the models will be able to better

recognise relationships in rainfall data rather than in index data. Also, it supports the idea

of generating 4 different forecasts, which I follow in this study.

13



2.1.3 Hybrid Model: Wavelet Transformation + ARIMA

A common approach to forecasting time series in the climate and drought literature is the

Wavelet Transformation. This process decomposes the original data into multiple frequency

components and then applies time-series forecasting methods to each decomposed series.

The forecast of the original series is reconstructed by summing together the forecasts of the

individual components.

The Wavelet Transformation was first formalised by Mallat (1989), who developed a

theoretical framework for decomposing signals—initially images—into different pieces of in-

formation to obtain a new representation known as the wavelet representation. Although

Mallat’s goal was not time-series forecasting, subsequent developments extended wavelet

theory into economics, hydrology, and climate time-series analysis.

One of the first applications in economics was performed by Ramsey and Zhang (1997),

which analysed foreign exchange rates. The motivation for applying wavelet methods in fore-

casting is that disaggregating the original data into different frequency bands may improve

predictive accuracy. Each frequency component may capture distinct patterns—short-term

fluctuations or long-term trends—that traditional models may not fully exploit it when ap-

plied to the raw series. After forecasting each component separately, the final forecast is

obtained by recomposing (summing) the individual forecasts.

One paper applying wavelet transformation to drought forecasting is Rezaiy and Shabri

(2023). The original SPI series is first decomposed into 4 sub-series using the Discrete

Wavelet Transform (DWT). The 4 series are forecasted using ARIMA models, and then the

original series is reconstructed by summing the 4 forecasts. They apply the methodology to

SPI at 3, 6, 9, and 12 months. Another technical detail is that, for the wavelet transformation,

they use the Daubechies2 filter. The authors compare it to ARIMA and find improvements

in RMSE and MAE on all SPI time scales.
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Other studies apply the wavelet transformation method and use multiple forecasting

methodologies depending on the forecasted frequency. Khan et al. (2020) employs this tech-

nique on the SPI. Using 30 years of monthly rainfall data (1986 to 2016) from the Langat

River Basin, Malaysia. The wavelet transformation produces low-frequency series, which are

modelled using ARIMA, while the high-frequency series is modelled using ANN methods.

They argue that high-frequency signals are not linear and that ANNs perform better with

this type of structure. For the low-frequency, they follow the reviewed ARIMA methodol-

ogy, identifying the best model using Information Criteria. Another similar approach was

followed by Wu et al. (2021), but with rainfall forecasting rather than the drought index.

Their methodology is to disaggregate the original series, then forecast the low-frequency

using ARIMA, and solve the high-frequency problem using a Long Short-Term Memory

(LSTM) model.

One parameter in the wavelet transformation process is the filter used. There are several

methods, and Polanco-Mart́ınez, Fernández-Macho, and Medina-Elizalde (2020) says that

the Daubechies Least Asymetric 8 (LA(8)) works better for Climate Series.

2.1.4 Other determinants of Droughts

Notable works focused on climatological and physical models are valuable for modelling

droughts. Studies such as Chiang, Mazdiyasni, and AghaKouchak (2021), Gebrechorkos

et al. (2025), and S. Wang, Hipps, Gillies, and Yoon (2014) may be useful for integrating

explanatory variables into future research for forecasting purposes.

One potential explanatory variable is anthropogenic emissions, which contribute to cli-

mate change (by affecting temperature and, in turn, drought). Chiang et al. (2021) used

different precipitation values from the model CMIP6. They compared historical data with

the natural-only model simulation (which excludes anthropogenic aerosol emissions). Using

this data, the authors recreate an SPI Drought Index (only with precipitation data) and find
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that anthropogenic aerosols have influenced droughts in different regions of the world. By

expanding their analysis to include Potential Evapotranspiration, they find an even greater

likelihood of drought.

In Gebrechorkos et al. (2025), the focus is on what factors contribute to droughts. Instead

of PET, they use a concept called atmospheric evaporative demand (AED), which is a broader

definition of PET. Ensembling different global drought datasets and data from 1901-2022,

they find that AED has increased in importance for drought severity by an average of 40%.

They use and combine datasets to recreate a SPEI Index collecting data from MSWEP

((Beck et al., 2019))and CHIRPS (Climate Hazards Center (2025)) for precipitation and

GLEAM (Miralles et al. (2025) and hPET(Singer et al. (2021) for AED, creating 4 different

indexes. These findings support the importance of using SPEI, including PET.

Another major part of the climate literature and the relationship with Droughts is to

follow the impact of the different climate patterns. S. Wang et al. (2014) studied climate

patterns in the Pacific Ocean, specifically: ENSO (El Niño Southern Oscillation) and the

Pacific decadal oscillation - a pattern of climate variability and a main driver of the North

Pacific climate. They focus on the 2013-2014 drought in California. Using the Community

Earth System Model (CESM), they analysed a ridge (a relatively high atmospheric pressure

region) that formed in the western North Pacific, deepening a trough (a relatively low at-

mospheric pressure region) in the northeastern U.S. region. They traced this anomaly to

the precursors to El Niño-Southern Oscillation (ENSO), attributable to the greenhouse gas

footprint. Others, like Klavans et al. (2025), compared several climate model simulations

and focused on the Pacific Decadal Oscillation (PDO). Potentially being one of the deter-

minants of droughts in British Columbia and the western United States. Using attribution

techniques, they conclude the PDO trend can be attributed to anthropogenic emissions.

If regressors were required for drought forecasting, the data availability is not a ma-

jro problem. Variables such as temperature and precipitation are available in a variety of
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databases (for the context of this Essay, I analysed Beaudoing, Rodell, and NASA/GSFC/HSL

(2020)). Others, like ENSO and PDO, are also found in indices. The problem arises when

calculating an out-of-sample forecast. In the methodologies proposed in this Essay, any

potential regressor included will require a forecast to predict the drought index.

2.2 Forecasting Performance

Once a model is trained, it may have a good fit to the historical observations used as training

data, but there is no certainty about the performance when predicting future values, which

is the goal of the forecasting process. An out-of-sample forecast evaluation is required to

assess the model’s forecasting performance.

The tools used in this Essay to test for Forecasting Performance are the Root Mean

Squared Errors (RMSE), Mean Absolute Errors (MAE), and Diebold-Mariano Test (Diebold

& Mariano, 1995).

2.2.1 Root Mean Squared Error and Mean Absolute Error

The Root Mean Squared Errors calculation starts with the calculation of the error term,

defined as the forecasted value ŷt minus the observed value yt. The result is then squared

to prevent negative values and then averaged, dividing by T , the total number of forecasted

periods. This is called the Mean Squared Error. The last step for the calculation is to

calculate the square root of the Mean Squared Error.

MSE =
1

T

N∑
t=1

(ŷt − yt)
2 (9)

RMSE =

√√√√ 1

T

T∑
t=1

(ŷt − yt)2. (10)

A disadvantage of the RMSE is that it penalizes larger errors more than smaller ones. A

second option is the Mean Absolute Error (MAE). This index handles negative values using
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the Absolute Term.

MAE =
1

T

T∑
t=1

|ŷt − yt| (11)

The lower the RMSE or MAE, the better the model. However, we require a formal test to

compare different forecasts using RMSE and MAE and conclude that we have a statistically

significantly lower RMSE or MAE.

2.2.2 Diebold Mariano Test

The Diebold Mariano Test (Diebold & Mariano, 1995) is a formal test to compare the

performance between a pair of forecasts. The test start with the definition of a loss function

g(ϵ1t) and g(ϵ2t). The forecast errors are calculated for both forecasts as ϵ1 = ŷ1t − yt and

ϵ2 = ŷt−yt. One possible definition for the loss function is the squared error loss, g(ϵ1t) = ϵ21t:

d̄ =
1

T

T∑
t=1

(ϵ21t − ϵ22t). (12)

The main assumption is that if both forecasts have the same accuracy, E(d̄) = 0; hence, a

Null Hypothesis for this test is H0 : d̄ = 0. Under the null, it can be standardized as follows:

DM =
d̄

ˆV ar(d̄)

d−→ N(0, 1), (13)

One extension of the Diebold Mariano test was done by Harvey, Leybourne, and Newbold

(1997). They were concerned about the performance of the original test with small sam-

ples, which is often the case with forecast methods (this study aims to forecast for up to 24

months). The argument was that, for small samples, the statistic’s variance should be cor-

rected, which changes both its calculation and its distribution. The approach is to introduce

a correction to the original DM indicator, based on the total number of forecast observations

generated, T , and the forecast horizon h being evaluated. The corrected statistic will be now

DM∗, defined as:
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DM∗ = DM [
T + 1− 2h+ h(h−1)

T

T
]
1
2

d−→ tT−1, (14)

The ”forecast” package in R (R. J. Hyndman and Khandakar (2008)) includes the function

dm.test to perform a Diebold-Mariano test, and it presents the DM Statistic and p-value

using the methodology of Harvey et al. (1997). This is the methodology followed in this

Essay.

3 Available Data

SPEI stands for Standardised Precipitation-Evapotranspiration Index, a multi-scalar drought

index that allows comparison of drought severity over time and space (Vicente Serrano et al.,

2010). The authors also publish a database containing the calculations for the index. The

SPEI Global Database (Begueŕıa, Vicente Serrano, Reig-Gracia, & Latorre Garcia, 2023)

is a global database with a resolution of 0.5 x 0.5 degrees. The data is available monthly

from 1901 to 2022. The Index is calculated at different time scales: SPEI 1 month, SPEI 12

months, SPEI 24 months, SPEI 36 months, and SPEI 48 months.

In this Essay, SPEI-12 months is used. SPEI-12 reflects the difference between precipita-

tion and potential evapotranspiration over 12 months and is a proper indicator of persistent

Droughts.

As the SPEI is a global gridded dataset, it is possible to produce data from any geography;

in this study, I focus only on North America (Canada, the United States, and Mexico). In

total, there are 11,871 pixels ordered on a World Geodetic System WGS 84, the global

standard geodetic reference system (latitude and longitude).

Figure 1 shows different time scales of SPEI for Victoria BC (lon -123.75, lat 48.75). It

can be observed that SPEI-01 is more volatile, responding more quickly to rainy months or

hot months. SPEI-06 and SPEI-12 move slowly, reacting more slowly to a rainy month or a

dry month.
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Figure 1: SPEI Index at different time scales for Victoria, BC

In Figure 2, the values for June 2020 and December 2020, June 2022 and December 2022

are presented. The figure shows the spatial and temporal patterns of drought. In June 2020,

the West of the United States was experiencing a mild drought; within 6 months, it was

now a severe drought and expanded north. In Canada, in June 2020, only Quebec and the

Atlantic were experiencing milder droughts; two years later, the situation was worse in the

Northwest Territories and Nunavut, which have a polar climate. Vancouver Island and the

west coast were also experiencing moderate droughts. Drought is spatially dependent and

can occur across a wide range of climates.
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Figure 2: Spatial Distribution of Drought 2020-2022

4 Methodology

I trained four models to forecast the drought index SPEI-12 using the SPEI V2.0 database

(Begueŕıa et al. (2024)). I used different forecasting models: Seasonal ARIMA, Random

Forests (750 trees, hyperparameters tuned over a gridmtry ∈ {2, 4, 6, 8, 10} andmin.node.size ∈

{5, 10, 20}), Artificial Neural Networks ( single hidden layer; tuning grid: size ∈ {3, 7, 11},

decay ∈ {0.001, 0.01, 0.1}), and Wavelet Transformation+ARIMA. I exploit the gridded

structure of the SPEI Global database to generate one trained model for each pixel and a

methodology for the North American continent (Canada, the United States, and Mexico).
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The four models trained are meant to be autoregressive, only training on lags of the same

SPEI-12 and a moving-average term in the ARIMA and Wavelet models. This aligns with

most cases in the literature. Few papers in the literature include additional regressors, such

as rainfall, temperature, or evapotranspiration data. Others suggest including some climate

phenomena, such as the El Niño–Southern Oscillation (ENSO), as a next step. The problem

with including any of these variables is the need for properly forecasted data to create a real

out-of-sample forecast. That is why, for this Essay, I decided to focus on the autoregressive

characteristics.

4.1 S-ARIMA model

For the training of the Seasonal ARIMA models: AIRMA(p, d, q)(P,D,Q)[12] models, a

monthly frequency is maintained. The data is divided into a training set and a test set, with

the last 24 months reserved for the test set. The first step is to test the series for stationarity.

As the SPEI is always centered at 0, it is expected to be stationary. As a second step, I

run an ACF and a PACF to understand the presence of seasonality. Figure 3 shows it. The

next step follows an iterative process of training and testing different model specifications.

Each pixel is tested at different levels of p, d, q, and P, D, Q, and the Information Criteria

is calculated for each one.
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Figure 3: ACF and PACF of the SPEI-12 series for the Victoria pixel

The ARIMA model is selected using Information Criteria, where the model with the

minimum AIC is chosen. The selection process evaluates models on the complete set of

parameters AIRMA(p, d, q)(P,D,Q)[12]. Only for British Columbia, I train models using

the BIC Information Criteria. I tested it, and there are no differences in the accuracy.

I also completed a residual evaluation. Tests for residual autocorrelation, conditional het-

eroskedasticity, and residual normality were performed. As the objective is to forecast, these

requirements are less strict; nevertheless, the test can provide more diagnostic information

about the models if needed.

The last step in the methodology for Seasonal ARIMA models is to forecast 24 months (H

= 24) and then test its accuracy on a test set. This forecast is dynamic: the first month is

forecast using the model, and that forecast is used, if required, as a lag in the second-month

prediction. Performance is evaluated by calculating RMSE and MAE.

The process is run in R using the packages ”forecast” by R. J. Hyndman and Khandakar

(2008) and R. Hyndman et al. (2025). Functions used are “auto.arima”, “forecast”, and
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“accuracy”.

4.2 Random Forest model

For the Random Forest Model, a similar approach is used for the training and test sets.

Unlike ARIMA models, where the lags are determined within the process using Information

Criteria, the Random Forest Model requires predetermined lags to be set in advance to learn

from them.

The first step in the Random Forest methodology is to construct these lags. The ACF

and the PACF suggested a strong short-term correlation and seasonal dependence at the

seasonal lags 12 and 24. (see Figure 3). Based on this, the lags introduced in the trained

models were from 1 through 6, as well as seasonal lags at 12 and 24 months. It includes a

dummy indicating the month and a trend value.

By design, random forests randomly sample observations. For time series, this will imply

that the time characteristic would be broken. To avoid this problem, and following the

literature, I used a cross-validation time-lapse approach, following Kuhn (2007). This will

generate samples using a random initial date, with a 120-period (10-year) training set and

2 years more for validation. The validation set will be used to test the performance of the

hyperparameters. Doing this, the temporal order will be respected.

The number of trees selected for the training is 750. In the literature, the number of

trees ranges from 500 to 1,000. Increasing the number of trees generally improves the results

but also increases computational cost. After experiments with a small number of pixels, I

decided to balance predictive performance and computation time across 750 trees.

The hyperparameters were tuned using a grid-search strategy, which ensures the evalua-

tion of all possible combinations of mtry ∈ {2, 4, 6, 8, 10} and min.node.size ∈ {5, 10, 20}).

The grid search evaluates each candidate configuration and selects the best combination

of mtry and min.node.size ∈ {5, 10, 20} that yields the best forecast performance (lowest
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cross-validated RMSE).

Using Random Forest, a measure of the importance of the input variable can be presented.

Variable importance measures how much each predictor contributes to improving prediction

accuracy or reducing error across the entire model. This is computed for each model in each

pixel.

After the training, a dynamic forecast is performed by feeding the model the first period

of data from the test set, h = 1, and predicting the value. The predicted values are used as

lags to calculate the next period until h = 24 is reached. Performance measures, RMSE and

MAE, are calculated and stored.

The Random Forest process is run in R using the packages ”caret” by Kuhn (2008) and

”ranger” by Wright and Ziegler (2017).

4.3 Artificial Neural Network model

The Artificial Neural Network is calibrated as follows: single hidden layer; tuning grid:

size ∈ {3, 7, 11}, decay ∈ {0.001, 0.01, 0.1}.

As with the Random Forest model, the lags in the training data need to be selected before

training. The same lag structure selected for Random Forest was used in ANN: 1-6 months

of lag data, and seasonal lags of 12 and 24 months. Similarly, I used a cross-validation time-

lapse approach with 120 periods for the training set and 24 periods for the validation set.

A grid search strategy was used for the Artificial Neural Network. The hyperparameters to

be chosen are,: size ∈ {3, 7, 11} and decay = 0.001, 0.01, 0.1. This will evaluate all possible

hyperparameter combinations.

After the training, the dynamic forecast is generated using the same process as Random

Forest. The performance measures, RMSE and MAE, are calculated and stored.

The Artificial Neural Network process is run in R using the packages ”caret” by Kuhn

(2008) and ”nnet” by Venables and Ripley (2002).
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4.4 Wavelet Transformation

The first step in the wavelet transformation process is the disaggregation of data into different

frequencies.

I decided to disaggregate the data into 4 different waves, following the literature. The

method used for the disaggregation was the Maximum Overlap Discrete Wavelet Transform,

mainly because it maintains the time periods. The methodology also requires a filter; there

are several, but I chose LA(8) (least asymmetric) according to the literature on climate

time series. The 4 shows the 4 different waves, and the original data for Victoria, B.C., is

presented. The sum of the 4 different waves is the original value.

Figure 4: Wavelet Transformation for Victoria, BC

The next step is to proceed with the training models. The methodology here is similar

to that used for the ARIMA models. We will have 4 different trained models.

After the training, 4 forecasts are calculated, and then summarized to return the forecast

for the original data.

The Wavelet Transformation process is run in R using the package ”wavelets” by ? (?),
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using the function ”mra”. ARIMA models are trained using the ”forecast” package by

R. J. Hyndman and Khandakar (2008) and R. Hyndman et al. (2025) and the ”auto.arima”

function.

4.5 Training Set and Test Set

I split the data into two sections: the training set and the test set (not to be confused with

the validation period in Random Forest and ANN methods, which is used for hyperparameter

tuning). Initially, I used train data from 1950 to 2020 (70 years), and the test set from 2020

to 2022 (24 months). One challenge identified in the first attempts to train models was the

high computational power required. The SPEI Global database on North America provides

information on 11,871 pixels. I conducted some experiments and tested the procedure on

selected pixels, focusing on different cities across North America with varying climates and

locations.

In Tables 2, 3, 4, and 5, I show the results of RMSE on different starting times for the

training set. The first column, 1950, is the model with 70 years of data. The last column,

2000, is the model using only 20 years. The bolded number highlights the minimum RMSE.

For the ARIMA methodology, 1950 was the model with the minimum RMSE for 3 cities,

and 1990 for two. Similar results were obtained with Random Forest, ANN, and Wavelet

Transformation.

Table 2: ARIMA Model (AIC): RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000

1 Victoria, BC 0.296 0.297 0.288 0.297 0.292 0.300
2 Vancouver, BC 0.250 0.259 0.251 0.255 0.250 0.254
3 Dallas, TX 0.256 0.422 0.479 0.361 0.272 0.815
4 Houston, TX 0.289 0.389 0.392 0.374 0.397 0.397
5 San Francisco, CA 1.180 1.157 1.155 0.898 1.090 0.932
6 Los Angeles, CA 0.723 0.705 0.716 0.705 0.583 0.636
7 Monterrey, MX 0.746 0.752 0.805 0.813 0.694 0.833
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Table 3: Random Forest: RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000

1 Victoria, BC 0.400 0.456 0.465 0.460 0.437 0.416
2 Vancouver, BC 0.535 0.389 0.362 0.346 0.435 0.403
3 Dallas, TX 0.417 0.426 0.419 0.409 0.407 0.352
4 Houston, TX 0.538 0.532 0.527 0.517 0.491 0.521
5 San Francisco, CA 0.464 0.371 0.448 0.947 0.633 0.781
6 Los Angeles, CA 0.333 0.353 0.396 0.475 0.555 0.460
7 Monterrey, MX 0.698 0.899 0.936 0.928 0.930 0.926

Table 4: ANN: RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000

1 Victoria, BC 0.603 0.507 0.685 0.886 0.577 0.440
2 Vancouver, BC 0.406 0.301 0.382 0.401 0.377 0.341
3 Dallas, TX 0.399 0.327 0.348 0.384 0.591 0.637
4 Houston, TX 0.472 0.410 0.367 0.318 0.580 0.645
5 San Francisco, CA 0.912 0.762 0.713 0.985 2.109 1.977
6 Los Angeles, CA 0.708 0.444 1.056 0.462 0.794 0.617
7 Monterrey, MX 0.586 0.478 1.147 0.764 0.596 1.167

Table 5: Wavelet Transformation + ARIMA: RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000

1 Victoria, BC 0.578 0.437 0.407 0.424 0.511 0.516
2 Vancouver, BC 0.592 0.523 0.401 0.588 0.360 0.421
3 Dallas, TX 0.720 0.495 0.759 0.252 0.326 0.509
4 Houston, TX 0.498 0.769 0.913 0.874 0.767 0.727
5 San Francisco, CA 2.017 1.728 2.134 1.916 1.382 1.561
6 Los Angeles, CA 1.153 1.173 1.478 1.187 0.608 0.868
7 Monterrey, MX 0.823 0.998 0.799 0.914 0.878 0.911

The next step is to perform a Diebold-Mariano Test to formally conclude if we are really

losing forecasting power. In Tables 6, 7, 8, 9 a summary is presented. The Diebold-Mariano

Test shows that there is no significant difference between the forecasts.
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Table 6: ARIMA Model (AIC): DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000

1 Victoria, BC 1970 -0.49 -0.47 NA -0.51 -0.44 -0.26
2 Vancouver, BC 1950 NA -0.21 0.45 -0.64 0.67 -0.54
3 Dallas, TX 1950 NA 0.60 0.52 0.67 0.23 -1.03
4 Houston, TX 1950 NA 0.56 0.55 0.60 0.55 0.55
5 San Francisco, CA 1980 -4.14 -2.05 -1.90 NA -2.38 -0.25
6 Los Angeles, CA 1990 -1.89 -1.83 -1.68 -1.70 -1.32 NA
7 Monterrey, MX 1990 -0.41 -0.42 -0.67 -0.53 -0.90 NA

Table 7: Random Forest: DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000

1 Victoria, BC 1950 -0.94 -1.15 -1.14 -1.13 -1.02 NA
2 Vancouver, BC 1980 0.23 -0.99 NA 0.06 0.39 -0.09
3 Dallas, TX 2000 -1.39 -1.35 -1.35 -1.16 NA -1.44
4 Houston, TX 1990 -1.13 -2.01 -2.06 NA 0.05 -1.23
5 San Francisco, CA 1960 NA -0.65 -0.93 -2.00 -3.79 -0.60
6 Los Angeles, CA 1950 0.64 0.43 0.34 -1.13 0.17 NA
7 Monterrey, MX 1950 -0.79 -0.83 -0.82 -0.83 -0.81 NA

Table 8: ANN: DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000

1 Victoria, BC 2000 0.13 0.20 -0.03 0.42 NA -0.89
2 Vancouver, BC 1960 0.53 -1.02 -0.49 -0.66 0.56 NA
3 Dallas, TX 1960 0.25 0.87 0.84 0.62 -1.24 NA
4 Houston, TX 1980 0.60 0.73 NA 0.61 0.58 0.75
5 San Francisco, CA 1970 -2.08 NA 0.21 -0.82 -0.69 -0.87
6 Los Angeles, CA 1960 -0.97 -1.85 -0.89 -0.24 -0.85 NA
7 Monterrey, MX 1960 -1.08 -1.11 -0.78 -0.73 -1.11 NA
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Table 9: Wavelet Transformation + ARIMA (AIC): DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000

1 Victoria, BC 1970 -2.02 0.32 0.41 -0.19 -1.38 NA
2 Vancouver, BC 1990 -0.46 -2.60 -0.51 NA -0.89 -1.11
3 Dallas, TX 1980 -1.95 -1.50 NA -0.90 -2.74 -2.61
4 Houston, TX 1950 NA -1.27 -1.31 -1.96 -1.29 -1.49
5 San Francisco, CA 1990 -1.34 -2.42 -2.09 NA -3.11 -1.42
6 Los Angeles, CA 1990 -4.25 -3.76 -3.74 NA -2.16 -1.97
7 Monterrey, MX 1970 -0.05 -0.77 -0.70 -0.40 -1.84 NA

Based on these results, the decision was to set 1990 as the starting year for the training set

and to use 30 years of data to train all models, which improved the computational efficiency.

On a standard computer, training the four models for a single pixel took approximately 7

minutes using data from 1950 onward. Using data starting in 1990 reduced training time to

about 3 minutes, a 64% reduction in computation time.

5 Results

I summarise the results of the methods for a single pixel, in this case, Victoria, BC (lon -

123.75, lat 48.75). All the results for Victoria are also available for the remaining 11,870 pixels

in North America. Later, I will discuss the model’s performance using a map visualization.

The final part of the results shows the Ensemble of models, with a visualization showing the

model with the minimum RMSE for each pixel.

The Figure 5 summarizes the 4 different forecasts for the 24-month period for Victoria,

BC. For the first months, S-ARIMA follows the observed values and reacts to sudden changes

in direction. However, after 1 year, the model reaches the long-run mean and becomes

practically flat. Another model with notable performance is the ANN Model, which follows

the trend of the original series in December 2021 and also decreases as observed values

decrease at the end of 2022; however, not in the expected magnitude. Random Forest and
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Wavelet+ARIMA models don’t appear to follow the series in the first year; however, Random

Forest reaches the observed value in the second year, in December 2022. None of the models

captured a sharp increase in the SPEI value in June 2022. Other regions may follow different

dynamics.

Figure 5: Forecast by methodology and Error Comparative of Victoria BC

In Table 10, I present the results for ARIMA models. For British Columbia (Victo-

ria, B.C included), I produced two models with two different Information Criteria: AIC

and BIC. For AIC, the selected model was ARIMA(3,0,1)(0,0,1)[12], while the BIC was

ARIMA(3,0,0)(0,0,1)[12]. In Figure 3, the ACF and the PACF are presented. The ACF

suggests that Victoria has AR characteristic. The PACF suggests it may be AR(1); it also

shows the seasonal component. An interesting result is that the ARIMA function didn’t
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capture the seasonal component.

Table 10: Results for Victoria BC: ARIMA Best Model using AIC

AIC Model BIC Model
AR(1) 1.995∗∗∗ 1.109∗∗∗

(0.072) (0.052)
AR(2) −1.079∗∗∗ −0.100

(0.119) (0.078)
AR(3) 0.081 −0.031

(0.053) (0.052)
MA(1) −0.914∗∗∗

(0.051)
S-MA(1) −0.784∗∗∗ −0.783∗∗∗

(0.039) (0.039)
AIC 115.910 115.838
AICc 116.140 116.001
BIC 139.423 135.432
Log Likelihood −51.955 −52.919
Num. obs. 372 372
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

In Table 11, I present the results for Random Forest for Victoria, BC. A total of 750 trees

were created. After tuning, the hyperparameter selected in the methodology was mtry = 8

(randomly selected inputs) and a minimum node size of 20. The mtry and node sizes were

selected via a grid search. Table 12 shows the results of the calculation of the Variable

Importance. This indicator is the variable’s contribution to reducing the prediction error.

Lag 1 is the variable that contributes the most. The next one is Lag 2. The seasonal lags

Lag 12 and Lag 24 also appear, but with marginal values.
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Table 11: Random Forest model settings and cross-validated performance for Victoria, BC.

Setting Value

Method ranger
Number of trees 750
mtry 8
Split rule 1
Minimum node size 20

Training samples 348
CV RMSE 0.423
CV MAE 0.333
CV R-squared 0.564

Table 12: Top 10 predictors by variable importance in the RF model for Victoria, BC.

Predictor Importance

lag 1 281.075
lag 2 48.673
lag 3 7.598
trend 5.194
lag 24 3.952

lag 12 3.723
season 2.967
lag 4 1.784
lag 5 1.631
lag 6 1.278

In Table 13, I present the results for ANN for Victoria, BC. The selected architecture is

10–3–1. Even when the grid search method enabled 7 and 11, the selected hidden units were

3. Interesting that ANN would not be able to find more nonlinear relationships.
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Table 13: ANN model settings and cross-validated performance for Victoria, BC.

Setting Value

Method nnet
Hidden units (size) 3
Weight decay 0.1
Number of inputs 10
Training samples 348

CV RMSE 0.567
CV MAE 0.463
CV R-squared 0.45

In Figure 6, the RMSE and MAE for the ARIMA method are shown in a map of North

America. Important to note that the calculations of RMSE and MAE only take into account

12 months of forecasts for the purpose of this visualization. The color pattern in this and

the following maps is yellow for models with low RMSE and MAE, and purple for models

with the highest RMSE and MAE. ARIMA models perform very well in the Arctic region,

except on the west coast of Alaska. There is an interesting pattern in which the ARIMA

model doesn’t fit well, from central California to the Canadian provinces of Manitoba and

Saskatchewan, extending into the Great Lakes region and finishing in Atlantic Canada. This

”purple patch” in the middle of the continent encompasses a wide range of climates and

geographies. Other areas where the ARIMA model struggles to perform well include the

desert region of Texas, the northern part of Mexico, and southern regions in the United

States, such as Mississippi and Alabama.
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Figure 6: Forecasting Accuracy for ARIMA Model RMSE and MAE

The ARIMA model, one of the best performers, struggles to understand and forecast the

drought index in different elevations, climates, latitudes, and longitudes.

In Figure 7, I show the Random Forest performance results. The regions where the model

struggles are related to the ARIMA model. The Random Forest model performs better in

polar regions, with lower RMSE than in other regions. For example, the Canadian Territory

of Nunavut has an average RMSE of 0.235, vs. Texas at 0.794 for the Random Forest model.

Figure 7: Forecasting Accuracy for Random Forest Model RMSE and MAE

In Figure 8, the ANN performance is shown. It also follows a pattern similar to that of
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Random Forest and ARIMA. It is a bit noisier than the two previous models; while some

regions are defined as yellow and have a lower RMSE, it is not surprising to find a purple

pixel with a higher RMSE surrounded by yellow. Finally, in Figure 9, the map with the

results of the model Wavelet+ARIMA is presented. Overall, the map shows the model has

the highest RMSE and MAE among the methodologies, but it still produces decent forecasts

in some areas, for example, the Yucatan Peninsula in Mexico.

Figure 8: Forecasting Accuracy for Artificial Neural Network Model RMSE and MAE

Figure 9: Forecasting Accuracy for Wavelet Transformation Model RMSE and MAE

The Ensemble forecast, which shows the combination of the lowest RMSE across the
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models for each pixel, is shown in Figure 10. The map looks with fewer purple areas, as

expected. However, some areas where all the models struggled can be identified. Regions

like the west coast of Alaska, the Texas Desert, the north of Mexico, and the Great Lakes

are where all models struggled to forecast.

Figure 10: Combination of the lowest RMSE of any model for in each Pixel

Figure 11 presents a map summarising which model is the one with a lower RMSE. The

results also follow a spatial pattern with some interesting results. Wavelet+ARIMA, overall

the model with the highest RMSE, is still the model in some regions; interestingly, these

regions are also the ones where other models struggled. Random Forest also performs better

on the West Coast of the United States. California RMSE for Random Forest is 0.576, while

for ARIMA is 0.805, ANN is 0.940, and Wavelet+ARIMA is 1.087.
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Figure 11: Model with the lowest RMSE in each Pixel

Finally, in Figure 12, I show a Diebold-Mariano Test for every pixel. The test failed

to identify a significant difference in the forecast for most of the pixels. The statistically

significant pixels follows a spatial pattern, with concentrations in specific regions, such as

West Alaska for Wavelet Transformation+ARIMA, or North California for Random Forest.
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Figure 12: Diebold-Mariano Test, for the lowest RMSE Model in each Pixel

6 Next Steps and Conclusions

In this Essay, I analyzed four different forecasting methodologies and their application to the

Drought Index SPEI, focused on North America (Canada, the United States, and Mexico). I

presented a brief description of the drought phenomenon and how it is measured in Drought

Indexes, as outlined in the climate and hydrologic literature.

The applied forecasting methods were Seasonal ARIMA, Random Forest (750 trees, hy-

perparameters tuned over a grid mtry ∈ {2, 4, 6, 8, 10} and min.node.size ∈ {5, 10, 20}),

Artificial Neural Networks ( single hidden layer; tuning grid: size ∈ {3, 7, 11}, size ∈

{0.001, 0.01, 0.1}), and Hybrid models using Wavelet Transformation + ARIMA. Seasonal

ARIMA is the model with the lowest overall RMSE; however, in some regions, the method-

ology struggles to produce reliable forecasts. Other models worked better in these areas.

When formally testing forecast performance using a Diebold-Mariano Test, very few areas
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actually have a statistically significant improvement in forecast performance.

The main contribution to the drought forecast literature is the type of data presented

in the study. The analysis of the gridded database was not a common concept in the

reviewed studies. This global, gridded database also allows this study to be recreated in

other geographies.

Introducing additional regressors into the models is a potential next step for follow-up

research. Variables like ENSO, Rainfall, Temperature, and altitude may have a greater role

in explaining droughts, and should have forecasting power. There is more to learn from

the regions where all the models failed to produce a reliable forecast. There are challenges

to overcome, such as producing truly out-of-sample forecasts for each additional regressor

included in the models.

This study focused on SPEI12. I chose this because I was more interested in the long-term

definition of drought. Another potential next step for follow-up research may be to repeat

the methodology on other time scales of the Index, such as SPEI-01, SPEI-03 (for seasonal

characteristics), or SPEI-06.

Additional research questions may be asked: Is GDP growth explained by droughts? If

so, a drought forecast variable may be added to the GDP growth forecast models. Addi-

tional uses of the SPEI Global database include the study of droughts and their economic

consequences. Using the gridded dataset, a city-level drought index can be built, and the

adaptability to droughts studied. The results and methodology discussed in this essay con-

tribute to other research on drought and its economic consequences.
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