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Abstract

Droughts have a substantial socio-economic impact, and their severity and du-
ration are only being exacerbated by climate change. Understanding the dynam-
ics of droughts is important for enabling societies to adapt and create policies
to mitigate their effects. Droughts are measured using indices; one of those is
the Standardized Precipitation Evapotranspiration Index (SPEI). In this essay, I
train and analyze the performance of 4 different forecasting methodologies: Sea-
sonal ARIMA, Machine Learning techniques such as Random Forests and Artificial
Neural Networks, and Hybrid models using Wavelet Transformation + ARIMA. I
compare the forecast performance using RMSE and MAE indicators, as well as the
Diebold-Mariano Test. I work with a gridded global database of SPEI, which al-
lows us to train models and produce forecasts at a pixel level. Given the geographic
focus on the North America Region (Canada, the United States, and Mexico), I
conclude that Seasonal ARIMA models achieve the lowest RMSE overall, but their
forecasting power is geographically dependent. Other models perform better de-
pending on geography. In very few locations, the lowest-RMSE model shows a
statistically significant difference according to the Diebold-Mariano Test.
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1 Introduction and Motivation

Droughts have a substantial socio-economic impact, and the magnitude, severity, and dura-
tion are only being exacerbated by global warming (Gebrechorkos et al., 2025). According
to the IPCC ARG6 Synthesis Report—Section 3, “Long-Term Climate and Development Fu-
tures”— (IPCC,| 2023)), global warming will lead to long-term changes in key climatological
variables such as precipitation and soil moisture, as well as a more widespread propensity to
extremes that will reflect into more and more intense droughts.

Studying this phenomenon from an economic perspective is essential given its wide range
of potential consequences. Severe drought generates serious effects, including lower agri-
cultural yields (Gouveia, Trigo, & DaCamara, 2009) or reduced water supply to populated
areas (Gober, Sampson, Quay, White, & Chow, 2016), disruptions to hydroelectric power
(Azouaoui & Assani, 2018), or even disruptions to the global supply chain, e.g., the Panama
Canal (Aguilar & Naranjo, 2022)). Droughts require substantial investments in water man-
agement infrastructure and other adaptation measures. According to the United Nations
Convention to Combat Desertification, addressing drought impacts may require up to US$210
billion in planned investments worldwide (Thomas et al., 2024). To forecast drought condi-
tions, understanding their dynamics is fundamental to creating policies and planning ahead.

In this Essay, I apply different econometric models to forecast droughts. I implement
Seasonal ARIMA models, hybrid models combining wavelet transformation with Seasonal
ARIMA, and machine learning models, including Random Forests and Artificial Neural
Networks. I compare the forecasting power of these methods using the Root Mean Square
Error (RMSE) and the Mean Absolute Error (MAE), and perform a Diebold-Mariano test.

This Essay focuses on the North American region (Canada, the United States, and Mex-
ico). North America offers a wide range of climates and environments to compare the per-

formance of each model. A main contribution to the literature is the use of a gridded dataset



of North America to forecast drought conditions with the regional climatological dynamics.

Dracup, Lee, and Paulson| (1980)) and Wilhite and Glantz (1985) agreed that there is a lack
of a single definition of drought. They also coincide in the categories of drought: meteorolog-
ical, agricultural, hydrological, and socio-economic. They define meteorological droughts as
the balance between precipitation and potential evapotranspiration. Agricultural droughts
are related to precipitation and the soil moisture required by crops; hydrological droughts
are related to reduced water levels in rivers or reservoirs; and socio-economic droughts are
related to water shortages that affect the availability of resources to the population.

Other efforts to define the drought come along with methodologies to measure it. To
measure drought, the literature has focused on developing drought indices. The Handbook
of Drought Indicators and Indices from the World Meteorological Organization provides a
list of more than 50 indicators and indices (World Meteorological Organization & Global
Water Partnershipl [2016). One of the first attempts is the Palmer Drought Severity Index
(PDSI), introduced by [Palmer| (1965]). The PDSI incorporates a water balance model that
accounts for both supply (precipitation) and demand (soil moisture and evapotranspiration).
The disadvantages of this methodology are the need for calibration to effectively measure
droughts in each region and the inability to measure droughts across different time scales.

These disadvantages were addressed by the introduction of the Standardized Precipitation
Index (SPI) by McKee, Doesken, and Kleist| (1993). For the SPI, the definition of drought is
based on the precipitation deficit: the difference between the actual precipitation (P, ) and
the long-term levels of precipitation (P ). The authors recommend a 30-year period for a
long-run mean. Precipitation and long-run precipitation can be calculated on different time
scales: 3, 6, 12, 24, or 48 months.

The contribution of SPI to the drought index literature was the standardisation process.
An intuitive way to think of a standardization process is to divide the precipitation deficit by

the standard deviation of the same long-term period (Sp ). However, the author clarifies that



precipitation data is not normally distributed, invalidating this approach. To address this
problem, the proposed approach is to fit the precipitation data into a Gamma Distribution.
Now, with an established relationship between observed precipitation and the probability of
observing it, the probability is associated with a Normal Distribution using an estimate of the
inverse standard normal cumulative distribution function. After the standardisation process,
the SPI Index is essentially a Z-score. The SPI simplified the data requirements compared
to PDSI and enabled the possibility of generating a multiscalar index. The disadvantage was
the simplified definition of drought, which does not account for evapotranspiration or other
variables related to water demand.

The Standardized Precipitation Evapotranspiration Index (SPEI) was introduced by Vicente Ser-
rano, Begueria, and Lopez-Moreno (2010). The SPEI is developed from the SPI; it is also
a multiscalar index and follows a standardisation process. The main difference is that, for
the SPEI, the definition of drought includes not only precipitation but also Potential Evapo-
transpiration (PET). Effectively solving the disadvantages of the SPI with minimal increase
in data and processing.

The PET definition used is from Thornthwaite| (1948)), who defined PET as the amount
of water that could be evaporated or transpired if available. This includes both sides of the
water balance equation: the supply of water to the soil and the demand for water from the
system.

The calculation of the SPEI starts with the balance in the water equation defined as D;
being equal to the difference between the precipitation P and the Potential Evapotranspira-

tion PET for a given month t. The Equation summarise it:

Dy = P — PET; (1)

The PET calculation methodology used by the authors follows the methodology described

by [Thornthwaite, (1948). In the methodology, PET is a function of temperature, a heat index,



and the hours of sunlight in a given month, all of which vary by geographic location. The
PET calculation is comprehensive, accounts for several physical variables, and is designed
to compare different geographies and climates.

The values for D; are aggregated to the desired time scale. For the standardization
process, the process followed is to fit the value of the aggregated D, into a Log-Logistic
Distribution. The authors selected this distribution after testing several others, including
the gamma distribution followed in SPI. The log-logistic distribution was chosen because it
performed better across different geographies. The final step, as in SPI, is to associate the
probability with a Normal Distribution using an estimate of the inverse standard normal
cumulative distribution function.

The standardization process produces an indicator that is comparable over time and
space, with a mean of 0 and a variance of 1. As an additional benefit, it also relates to a
Z-score widely known in statistics.

The SPEI is usually translated into a qualitative drought characteristic. The Table
summarizes the different classifications of droughts based on SPEI values. An intuitive
approach to extreme events in SPEI is the Z-score definition. Only 5% of the events fall
beyond +£1.96, characterizing the extremes. A deviation of £0.5 from the mean of 0 is
categorized as a wet event or a drought event.

Table 1: Categorization of drought/wet conditions according to SPEI

Category SPEI value range
Extremely wet SPEI > 2.0

Very wet 1.5 < SPEI < 2.0
Moderately wet 1.0 <SPEI < 1.5
Mildly wet 0.5 <SPEI < 1.0
Normal —0.5<SPEI<0.5
Mild drought —1.0 < SPEI < —-0.5
Moderate drought —1.5 < SPEI < —1.0
Severe drought —2.0<SPEI < —1.5

Extreme drought SPEI < -2.0




In this Essay, the forecasted variable is the SPEI Index, specifically, the SPEI-12. The
database used is the SPEI Global Database published by the same authors (Begueria, Vi

cente Serrano, Reig-Gracia, and Latorre Garcés| (2024)).

This Essay is structured as follows: in Chapter 2, I provide a literature review focusing
on forecasting methods, studies on drought forecasting, and tools for comparing forecasts.
Chapter 3 describes the Database used for this study. Chapter 4 covers the Methodol-
ogy,explaining in detail the process followed. Chapter 5 presents the Results, and Chapter

6 concludes and outlines potential next steps for this topic.
2 Literature Review
2.1 Methods and Applications in Drought Forecasting

Traditional time-series models, particularly ARIMA and Seasonal ARIMA (S-ARIMA), re-

main among the most widely used techniques in drought forecasting. For example,

et al. (2022), Mishra and Desai (2005), and (2010) employ Seasonal ARIMA models

to forecast drought indices.

More recent studies increasingly rely on machine-learning methods. Random forest models

have been applied in diverse contexts, including Q. Wang et al.| (2022)), Hussain et al.| (2025)),

and Dikshit, Pradhan, and Alamri (2020). Artificial Neural Networks (ANN) are applied

as well by Morid, Smakhtin, and Bagherzadeh| (2007). A common practice in the machine

learning literature is to present a wide variety of methods, among them Oyounalsoud, Yilmaz,|

'Abdallah, and Abdeljaber| (2024)), Yaseen, Ali, Sharafati, Al-Ansari, and Shahid| (2021]), and

Gupta et al. (2024)) include Random Forest and ANN, among other methodologies. Another

technique in the literature is Wavelet Transformation, which should be used in combination

with ARIMA or Machine Learning methods, and is used by Rezaiy and Shabri (2023), Khan,

Muhammad, and El-Shafie (2020), and [Wu et al.| (2021]).

More details on the methods and studies are provided in the next sections. The main



methodology followed in this Essay was developed based on these studies.

2.1.1 Seasonal ARIMA Model

ARIMA stands for Autoregressive Integrated Moving Average Model. Formalised by [Box,
Jenkins, and Reinsel| (1994)), the ARIMA model is defined as ARIM A(p, d, q) where p is the
auto-regressive order defined as the number of lagged values of the series included in the
model. The moving average order is represented as ¢, meaning how many past error terms
influence the current observations of the variable. Last, d specifies the degree of differencing
required.

A development from the ARIMA also included in Box et al.| (1994)) is the Seasonal ARIMA
(S-ARIMA) models, defined as ARIM A(p, d, q)(P, D,Q)[s]. Where P, D, are respectively
the seasonal autoregressive order, the seasonal differencing order, and the seasonal moving
average order. s is the seasonal period, which is commonly 12 if the data is monthly, or 4 if

the data is quarterly. The functional form is as follows:

®(B*) ¢(B) (1 — B)(1 — B*)”y = ©(B°) (B) &, (2)

Where: ¢(B) =1—¢;B — ¢B* —--- — ¢, BP is the AR order, §(B) =1+ 6,B + 0,B* +

-+++6,B7 is the MA order and ®(B*) =1 — & B* — ®;B* — ... — &pB"* is the Seasonal
AR Order, O(B®) =1+ 0,B° + 0,B% — - .- + OB the seasonal MA order.

A common approach in ARIMA models is to use information criteria to select a model that
balances fitness and complexity. The indicators used are the Akaike Information Criterion
(AIC) (Akaike, |1974)) and the Bayesian Information Criterion (BIC) (Schwarz, 1978). By
design, these indicators penalise the increase in the likelihood value from a more complex

model. The criteria are defined as follows:

AIC = —2In L + 2k (3)



and

BIC =—-2InL+klnn (4)

, where k is the number of parameters estimated in the model, and L is the value of
the likelihood function. The selected model will be the one with the lowest AIC or BIC,
respectively.

One of the papers following S-ARIMA models is|Achite et al.| (2022), which uses it to fore-
cast Drought Indices such as SPI (Standardised Precipitation Index) and SRI (Standardised
Runoff Index). The region they focus on is the Wadi Ouahrane Basin in Algeria, and they
have precipitation data from 1972 to 2018 (46 years). The model identification process they
follow is to iterate over different model specifications and select one using Information Crite-
ria AIC and BIC. Their procedure selected the models ARIMA(1,0,0)(2,0,1)[12] for SPI-12
and ARIMA(0,1,0)(0,1,1)[12] for SRI-12. For model testing, they use the years 2011-2017.
They evaluate and test the model using correlation coefficient R?, Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE). They conclude that the model produces a
reasonable adjusted forecast over 12 months.

Another study is [Mishra and Desai (2005), which uses S-ARIMA models to forecast
drought. They focus only on SPI and the geographic region of the Kansabati river basin in
India. They compute an SPI at different time scales using data from five raingauge stations,
spanning from 1965 to 1994 (29 years). To select the model, they use the Information Crite-
ria methodology, AIC, and BIC. The chosen model for SPI-12 was ARIMA(1,0,0)(2,1,0)[12].
They run residual diagnostics, including tests for autocorrelation, conditional heteroskedas-
ticity, and normality. For the testing part, they use data from 1994 to 2001. Their conclu-
sions are that the model provides reasonably good results with up to 2 months of lead time,
and the precision decreases over time. Durdu (2010)) follows the same methodology, using
S-ARIMA models to predict drought in the Biiyiik Menderes River basin in Turkey. They

forecast SPI and used data from 1975 to 2006 (31 years).
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It is worth noting that other authors also use an S-ARIMA model, but with a different
data-collection approach. |Mossad and Alazba (2015) studied a region in Saudi Arabia,
characterised by a hyper-arid climate. They use SPEI and use data from 1950 to 19809.
They use the same database I use in this study, the SPEI Global Database (Begueria et
al| (2024))). Although they do not exploit the gridded characteristics. Another study with
particularities with the data is |Al Sayah, Abdallah, Khouri, Nedjai, and Darwich (2021]).
They study drought in Lebanon, which has a Mediterranean climate. They extract data and
produce simple drought indices from remote-sensing databases like LANDSAT, which can

also be reproduced in other geographies.

2.1.2 Machine Learning models: Random Forest & Artificial Neural Network

Most recent papers on drought forecasting are leaning towards machine learning methods.
In this Essay, I focused on Random Forest and Artificial Neural Networks.

Random Forest methodology was introduced by [Breiman, (2001)) and is based on his earlier
work on decision trees and bootstrap aggregation Breiman| (1996)). A decision tree recur-
sively splits the data using explanatory variables to classify and later use this classification
to predict a dependent variable. Breiman! (1996)), demonstrated that predictive accuracy im-
proves when multiple decision trees are built on different bootstrap samples of the original
dataset and their predictions are averaged.

In Random Forest, the process is extended by creating n;,...s decision trees, each trained
on its own bootstrap sample of the training data. Then, adding an additional layer of ran-
domness: at every split within a tree, only a random subset of predictors, my,,, is considered
as candidates for splitting. Each tree produces its own prediction, and these predictions are
aggregated (averaged when using continuous data). Growing more trees yields a more stable
and accurate forecast. The predicted data will be the average across all trees. The process

is also explained in Liaw and Wiener| (2007)). The parameters, called hyperparameters in the
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literature, that need to be chosen by the researcher are nyc.s and my,,,. This process is often
iterative and is called tuning.

In drought forecasting literature, |Q. Wang et al.| (2022) uses a random forest to predict
the value of SPEI-06. They rely on remote-sensing databases ( MODIS and GPM). The
geographic area is Inner Mongolia, in China. They do not train the model using lags; they
exploit the richness of the databases and use variables such as Precipitation Status Index,
Temperature Status Index, Enhanced Vegetation Index, Elevation, and terrain slope. The
tuning process decides the optimal nees and my,,. They found the optimal number of trees
to be nypees = 1000 and the my,, is 4.

Another study Hussain et al.|(2025)) uses a Random Forest approach to examine drought as
measured by the SPI-03. The geographic area is in Punjab, Pakistan. They test their results
by comparing it to a logistic regression. The data used is monthly data from 1981 to 2021,
with 70% for training and 30% for validation. It is not explicit what the hyperparameter
selection is.

Dikshit et al. (2020) also applies Random Forest models to analyse droughts in New South
Wales (NSW), Australia. They computed SPEI using data from the Climatic Research Unit
(University of East Anglia). They train using data from 1901 to 2010, validate the model
from 2011 to 2015, and test the model on the period from 2016 to 2018. The explanatory
variables are rainfall, potential evapotranspiration (PET), vapour pressure, cloud cover, and
temperature. As expected, the most important variables are rainfall and temperature. They
train the model using random search and grid search methods for hyperparameter selection.
The study follows objectives similar to this Essay, as it produces a gridded forecast.

Artificial Neural Networks (ANNs) are based on a mathematical model of the brain and
are then applied to nonlinear regression analysis Ripley (1994)). An ANN consists of inter-
connected neurons arranged in layers. The input layer receives the predictor variables. In a

simple neural network without a hidden layer, the input layer is a linear combination of the
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output layer (similar to regression). The hidden layer contains the neurons where the core
data processing occurs. In forecasting applications, an ANN learns complex, nonlinear rela-
tionships between a dependent variable and its predictors. Inside those neurons, the inputs
are transformed using linear and non-linear combinations. The output layer will be where
the prediction is. The network will try to minimise a loss function by properly selecting the
prediction of the dependent variable.

Following |[Kuhn and Johnson| (2013), each neuron & in the hidden layer first computes a
linear combination of the predictor variables z; using a set of weights ;; and a bias term
Pox- This linear combination is then transformed by a nonlinear activation function g(-).

Formally,

u = Bor + Z%ﬂjk, (5)

and the output of neuron k is defined as

where ¢(-) is commonly chosen as a sigmoid activation function:

B 1
S l4e v’

g(u) (7)

Finally, the outputs of the hidden neurons are combined through a linear function to

produce the network’s prediction. Each hidden neuron contributes to the final output with

an associated weight ~y:

f(x) =+ Z’thk- (8)

The hyperparameters that need to be chosen by the researcher are now size and decay.

size is the number of neurons in the hidden layer, and decay is a parameter that regulates

12



the weights in the network when predicting a value, penalizing larger weights.

In the drought forecasting literature, Morid et al. (2007) uses an Artificial Neural Net-
work (ANN) to forecast SPI in the Tehran Region, Iran. They trained different models
with different inputs to select the best architecture for their Neural Network, tested various
networks and learning algorithms, and found feed-forward training to be the most suitable.
A variety of inputs were used, including SPI lags and rainfall lags. Additionally, some mod-
els include large-scale climate indices such as the Southern Oscillation Index (SOI) and the
North Atlantic Oscillation (NAO). The selected model was the one trained using SPI lags of
1 to 4 periods, a seasonal lag of 12 periods and Rainfall lags of 1 to 2. The SOI and NAO
models did not perform well. This study contributes to the idea of generating an ANN only
with lagged variables.

A recent study applies not only one but several machine learning methods to forecast
drought. In |Oyounalsoud et al.| (2024)), they forecast SPEI among other indicators for Alice
Springs, Australia. The data is for 36 years. They use Random Forest (RF), Artificial Neural
Network (ANN), and other methods (Decision Tree (DT'), Generalised Linear Model (GLM),
Support Vector Machine (SVM), and Deep Learning (DL)). These studies, doing ensembles
of models, are quite popular in the machine learning literature. Other authors, such as
Yaseen et al. (2021) and Gupta et al.| (2024), also analyse a wide range of methodologies, but
focus on forecasting precipitation and, with those forecasts, calculate an SPI. An interesting
question arising from this paper is whether the forecast variable should be precipitation
rather than the Drought Index. The question is whether the models will be able to better
recognise relationships in rainfall data rather than in index data. Also, it supports the idea

of generating 4 different forecasts, which I follow in this study.
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2.1.3 Hybrid Model: Wavelet Transformation + ARIMA

A common approach to forecasting time series in the climate and drought literature is the
Wavelet Transformation. This process decomposes the original data into multiple frequency
components and then applies time-series forecasting methods to each decomposed series.
The forecast of the original series is reconstructed by summing together the forecasts of the
individual components.

The Wavelet Transformation was first formalised by Mallat| (1989), who developed a
theoretical framework for decomposing signals—initially images—into different pieces of in-
formation to obtain a new representation known as the wavelet representation. Although
Mallat’s goal was not time-series forecasting, subsequent developments extended wavelet
theory into economics, hydrology, and climate time-series analysis.

One of the first applications in economics was performed by Ramsey and Zhang (1997)),
which analysed foreign exchange rates. The motivation for applying wavelet methods in fore-
casting is that disaggregating the original data into different frequency bands may improve
predictive accuracy. Each frequency component may capture distinct patterns—short-term
fluctuations or long-term trends—that traditional models may not fully exploit it when ap-
plied to the raw series. After forecasting each component separately, the final forecast is
obtained by recomposing (summing) the individual forecasts.

One paper applying wavelet transformation to drought forecasting is Rezaiy and Shabri
(2023)). The original SPI series is first decomposed into 4 sub-series using the Discrete
Wavelet Transform (DWT). The 4 series are forecasted using ARIMA models, and then the
original series is reconstructed by summing the 4 forecasts. They apply the methodology to
SPI at 3, 6, 9, and 12 months. Another technical detail is that, for the wavelet transformation,
they use the Daubechies2 filter. The authors compare it to ARIMA and find improvements
in RMSE and MAE on all SPI time scales.

14



Other studies apply the wavelet transformation method and use multiple forecasting
methodologies depending on the forecasted frequency. [Khan et al.| (2020)) employs this tech-
nique on the SPI. Using 30 years of monthly rainfall data (1986 to 2016) from the Langat
River Basin, Malaysia. The wavelet transformation produces low-frequency series, which are
modelled using ARIMA, while the high-frequency series is modelled using ANN methods.
They argue that high-frequency signals are not linear and that ANNs perform better with
this type of structure. For the low-frequency, they follow the reviewed ARIMA methodol-
ogy, identifying the best model using Information Criteria. Another similar approach was
followed by Wu et al.| (2021), but with rainfall forecasting rather than the drought index.
Their methodology is to disaggregate the original series, then forecast the low-frequency
using ARIMA, and solve the high-frequency problem using a Long Short-Term Memory
(LSTM) model.

One parameter in the wavelet transformation process is the filter used. There are several
methods, and Polanco-Martinez, Fernandez-Macho, and Medina-Elizalde| (2020) says that

the Daubechies Least Asymetric 8 (LA(8)) works better for Climate Series.

2.1.4 Other determinants of Droughts

Notable works focused on climatological and physical models are valuable for modelling
droughts. Studies such as [Chiang, Mazdiyasni, and AghaKouchak| (2021)), Gebrechorkos
et al.| (2025), and S. Wang, Hipps, Gillies, and Yoon (2014) may be useful for integrating
explanatory variables into future research for forecasting purposes.

One potential explanatory variable is anthropogenic emissions, which contribute to cli-
mate change (by affecting temperature and, in turn, drought). (Chiang et al.| (2021) used
different precipitation values from the model CMIP6. They compared historical data with
the natural-only model simulation (which excludes anthropogenic aerosol emissions). Using

this data, the authors recreate an SPI Drought Index (only with precipitation data) and find
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that anthropogenic aerosols have influenced droughts in different regions of the world. By
expanding their analysis to include Potential Evapotranspiration, they find an even greater
likelihood of drought.

In Gebrechorkos et al.| (2025)), the focus is on what factors contribute to droughts. Instead
of PET, they use a concept called atmospheric evaporative demand (AED), which is a broader
definition of PET. Ensembling different global drought datasets and data from 1901-2022,
they find that AED has increased in importance for drought severity by an average of 40%.
They use and combine datasets to recreate a SPEI Index collecting data from MSWEP
((Beck et al. 2019))and CHIRPS (Climate Hazards Center| (2025)) for precipitation and
GLEAM (Miralles et al. (2025) and hPET(Singer et al.| (2021) for AED, creating 4 different
indexes. These findings support the importance of using SPEI, including PET.

Another major part of the climate literature and the relationship with Droughts is to
follow the impact of the different climate patterns. |S. Wang et al.| (2014) studied climate
patterns in the Pacific Ocean, specifically: ENSO (El Nifio Southern Oscillation) and the
Pacific decadal oscillation - a pattern of climate variability and a main driver of the North
Pacific climate. They focus on the 2013-2014 drought in California. Using the Community
Earth System Model (CESM), they analysed a ridge (a relatively high atmospheric pressure
region) that formed in the western North Pacific, deepening a trough (a relatively low at-
mospheric pressure region) in the northeastern U.S. region. They traced this anomaly to
the precursors to El Nino-Southern Oscillation (ENSO), attributable to the greenhouse gas
footprint. Others, like |Klavans et al| (2025)), compared several climate model simulations
and focused on the Pacific Decadal Oscillation (PDO). Potentially being one of the deter-
minants of droughts in British Columbia and the western United States. Using attribution
techniques, they conclude the PDO trend can be attributed to anthropogenic emissions.

If regressors were required for drought forecasting, the data availability is not a ma-

jro problem. Variables such as temperature and precipitation are available in a variety of
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databases (for the context of this Essay, I analysed Beaudoing, Rodell, and NASA /GSFC/HSL
(2020)). Others, like ENSO and PDO, are also found in indices. The problem arises when
calculating an out-of-sample forecast. In the methodologies proposed in this Essay, any

potential regressor included will require a forecast to predict the drought index.
2.2 Forecasting Performance

Once a model is trained, it may have a good fit to the historical observations used as training
data, but there is no certainty about the performance when predicting future values, which
is the goal of the forecasting process. An out-of-sample forecast evaluation is required to
assess the model’s forecasting performance.

The tools used in this Essay to test for Forecasting Performance are the Root Mean
Squared Errors (RMSE), Mean Absolute Errors (MAE), and Diebold-Mariano Test (Diebold
& Mariano, 1995).

2.2.1 Root Mean Squared Error and Mean Absolute Error

The Root Mean Squared Errors calculation starts with the calculation of the error term,
defined as the forecasted value y; minus the observed value y;. The result is then squared
to prevent negative values and then averaged, dividing by 7', the total number of forecasted
periods. This is called the Mean Squared Error. The last step for the calculation is to

calculate the square root of the Mean Squared Error.

N
1 N 2
MSE = f ;(?Jt - yt) (9)
1 T
RMSE = | == > (5 — w)* (10)

t=1

A disadvantage of the RMSE is that it penalizes larger errors more than smaller ones. A

second option is the Mean Absolute Error (MAE). This index handles negative values using

17



the Absolute Term.

T
MAE = 7.3l -l (1)
The lower the RMSE or MAE, the better the model. However, we require a formal test to
compare different forecasts using RMSE and MAE and conclude that we have a statistically
significantly lower RMSE or MAE.

2.2.2 Diebold Mariano Test

The Diebold Mariano Test (Diebold & Mariano|, 1995)) is a formal test to compare the
performance between a pair of forecasts. The test start with the definition of a loss function
g(€11) and g(eg). The forecast errors are calculated for both forecasts as €; = g1, — y; and

€ = Js —y¢. One possible definition for the loss function is the squared error loss, g(e1;) = €%,

T

-1

d= T § (€1, — €3,)- (12)
t=1

The main assumption is that if both forecasts have the same accuracy, F(d) = 0; hence, a

Null Hypothesis for this test is Hy : d = 0. Under the null, it can be standardized as follows:

d 4
M = For@ N(0,1), (13)

One extension of the Diebold Mariano test was done by Harvey, Leybourne, and Newbold

(1997). They were concerned about the performance of the original test with small sam-
ples, which is often the case with forecast methods (this study aims to forecast for up to 24
months). The argument was that, for small samples, the statistic’s variance should be cor-
rected, which changes both its calculation and its distribution. The approach is to introduce
a correction to the original DM indicator, based on the total number of forecast observations
generated, T, and the forecast horizon h being evaluated. The corrected statistic will be now

DM, defined as:
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T+1—2p+ 2D
- T J2 & ¢, (14)

The "forecast” package in R (R. J. Hyndman and Khandakar| (2008)) includes the function

DM* = DM]|

dm.test to perform a Diebold-Mariano test, and it presents the DM Statistic and p-value
using the methodology of Harvey et al.| (1997). This is the methodology followed in this

Essay.
3 Available Data

SPEI stands for Standardised Precipitation-Evapotranspiration Index, a multi-scalar drought
index that allows comparison of drought severity over time and space (Vicente Serrano et al.l
2010). The authors also publish a database containing the calculations for the index. The
SPEI Global Database (Begueria, Vicente Serrano, Reig-Gracia, & Latorre Garcial 2023)
is a global database with a resolution of 0.5 x 0.5 degrees. The data is available monthly
from 1901 to 2022. The Index is calculated at different time scales: SPEI 1 month, SPEI 12
months, SPEI 24 months, SPEI 36 months, and SPEI 48 months.

In this Essay, SPEI-12 months is used. SPEI-12 reflects the difference between precipita-
tion and potential evapotranspiration over 12 months and is a proper indicator of persistent
Droughts.

As the SPEI is a global gridded dataset, it is possible to produce data from any geography;
in this study, I focus only on North America (Canada, the United States, and Mexico). In
total, there are 11,871 pixels ordered on a World Geodetic System WGS 84, the global
standard geodetic reference system (latitude and longitude).

Figure (1| shows different time scales of SPEI for Victoria BC (lon -123.75, lat 48.75). It
can be observed that SPEI-01 is more volatile, responding more quickly to rainy months or
hot months. SPEI-06 and SPEI-12 move slowly, reacting more slowly to a rainy month or a

dry month.
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Figure 1: SPEI Index at different time scales for Victoria, BC

SPEI-01

In Figure [2 the values for June 2020 and December 2020, June 2022 and December 2022
are presented. The figure shows the spatial and temporal patterns of drought. In June 2020,
the West of the United States was experiencing a mild drought; within 6 months, it was
now a severe drought and expanded north. In Canada, in June 2020, only Quebec and the
Atlantic were experiencing milder droughts; two years later, the situation was worse in the
Northwest Territories and Nunavut, which have a polar climate. Vancouver Island and the
west coast were also experiencing moderate droughts. Drought is spatially dependent and

can occur across a wide range of climates.
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SPEI 12: Real Data
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Figure 2: Spatial Distribution of Drought 2020-2022

4 Methodology

I trained four models to forecast the drought index SPEI-12 using the SPEI V2.0 database

(Begueria et al.| (2024)). I used different forecasting models: Seasonal ARIMA, Random

Forests (750 trees, hyperparameters tuned over a grid my,, € {2,4,6,8,10} and min.node.size €
{5,10,20}), Artificial Neural Networks ( single hidden layer; tuning grid: size € {3,7,11},
decay € {0.001,0.01,0.1}), and Wavelet Transformation+ARIMA. I exploit the gridded
structure of the SPEI Global database to generate one trained model for each pixel and a

methodology for the North American continent (Canada, the United States, and Mexico).
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The four models trained are meant to be autoregressive, only training on lags of the same
SPEI-12 and a moving-average term in the ARIMA and Wavelet models. This aligns with
most cases in the literature. Few papers in the literature include additional regressors, such
as rainfall, temperature, or evapotranspiration data. Others suggest including some climate
phenomena, such as the El Nino-Southern Oscillation (ENSO), as a next step. The problem
with including any of these variables is the need for properly forecasted data to create a real
out-of-sample forecast. That is why, for this Essay, I decided to focus on the autoregressive

characteristics.

4.1 S-ARIMA model

For the training of the Seasonal ARIMA models: AIRM A(p,d,q)(P, D, Q)[12] models, a
monthly frequency is maintained. The data is divided into a training set and a test set, with
the last 24 months reserved for the test set. The first step is to test the series for stationarity.
As the SPEI is always centered at 0, it is expected to be stationary. As a second step, I
run an ACF and a PACF to understand the presence of seasonality. Figure |3|shows it. The
next step follows an iterative process of training and testing different model specifications.
Each pixel is tested at different levels of p, d, q, and P, D, Q, and the Information Criteria

is calculated for each one.
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Figure 3: ACF and PACF of the SPEI-12 series for the Victoria pixel

The ARIMA model is selected using Information Criteria, where the model with the
minimum AIC is chosen. The selection process evaluates models on the complete set of
parameters AIRM A(p,d, q)(P, D,Q)[12]. Only for British Columbia, I train models using
the BIC Information Criteria. I tested it, and there are no differences in the accuracy.

I also completed a residual evaluation. Tests for residual autocorrelation, conditional het-
eroskedasticity, and residual normality were performed. As the objective is to forecast, these
requirements are less strict; nevertheless, the test can provide more diagnostic information
about the models if needed.

The last step in the methodology for Seasonal ARIMA models is to forecast 24 months (H
= 24) and then test its accuracy on a test set. This forecast is dynamic: the first month is
forecast using the model, and that forecast is used, if required, as a lag in the second-month
prediction. Performance is evaluated by calculating RMSE and MAE.

The process is run in R using the packages ”forecast” by |R. J. Hyndman and Khandakar

(2008) and [R. Hyndman et al. (2025). Functions used are “auto.arima”, “forecast”, and
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“accuracy”.
4.2 Random Forest model

For the Random Forest Model, a similar approach is used for the training and test sets.
Unlike ARIMA models, where the lags are determined within the process using Information
Criteria, the Random Forest Model requires predetermined lags to be set in advance to learn
from them.

The first step in the Random Forest methodology is to construct these lags. The ACF
and the PACF suggested a strong short-term correlation and seasonal dependence at the
seasonal lags 12 and 24. (see Figure [3). Based on this, the lags introduced in the trained
models were from 1 through 6, as well as seasonal lags at 12 and 24 months. It includes a
dummy indicating the month and a trend value.

By design, random forests randomly sample observations. For time series, this will imply
that the time characteristic would be broken. To avoid this problem, and following the
literature, I used a cross-validation time-lapse approach, following Kuhn (2007)). This will
generate samples using a random initial date, with a 120-period (10-year) training set and
2 years more for validation. The validation set will be used to test the performance of the
hyperparameters. Doing this, the temporal order will be respected.

The number of trees selected for the training is 750. In the literature, the number of
trees ranges from 500 to 1,000. Increasing the number of trees generally improves the results
but also increases computational cost. After experiments with a small number of pixels, I
decided to balance predictive performance and computation time across 750 trees.

The hyperparameters were tuned using a grid-search strategy, which ensures the evalua-
tion of all possible combinations of my,.,, € {2,4,6,8,10} and min.node.size € {5,10,20}).
The grid search evaluates each candidate configuration and selects the best combination

of my,, and min.node.size € {5,10,20} that yields the best forecast performance (lowest
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cross-validated RMSE).

Using Random Forest, a measure of the importance of the input variable can be presented.
Variable importance measures how much each predictor contributes to improving prediction
accuracy or reducing error across the entire model. This is computed for each model in each
pixel.

After the training, a dynamic forecast is performed by feeding the model the first period
of data from the test set, h = 1, and predicting the value. The predicted values are used as
lags to calculate the next period until h = 24 is reached. Performance measures, RMSE and
MAE, are calculated and stored.

The Random Forest process is run in R using the packages ”caret” by Kuhn| (2008) and
"ranger” by |Wright and Ziegler| (2017)).

4.3 Artificial Neural Network model

The Artificial Neural Network is calibrated as follows: single hidden layer; tuning grid:
size € {3,7,11}, decay € {0.001,0.01,0.1}.

As with the Random Forest model, the lags in the training data need to be selected before
training. The same lag structure selected for Random Forest was used in ANN: 1-6 months
of lag data, and seasonal lags of 12 and 24 months. Similarly, I used a cross-validation time-
lapse approach with 120 periods for the training set and 24 periods for the validation set.
A grid search strategy was used for the Artificial Neural Network. The hyperparameters to
be chosen are,: size € {3,7,11} and decay = 0.001,0.01,0.1. This will evaluate all possible
hyperparameter combinations.

After the training, the dynamic forecast is generated using the same process as Random
Forest. The performance measures, RMSE and MAE, are calculated and stored.

The Artificial Neural Network process is run in R using the packages ”caret” by Kuhn
(2008) and "nnet” by Venables and Ripley| (2002).
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4.4 Wavelet Transformation

The first step in the wavelet transformation process is the disaggregation of data into different
frequencies.

I decided to disaggregate the data into 4 different waves, following the literature. The
method used for the disaggregation was the Maximum Overlap Discrete Wavelet Transform,
mainly because it maintains the time periods. The methodology also requires a filter; there
are several, but I chose LA(8) (least asymmetric) according to the literature on climate
time series. The [4] shows the 4 different waves, and the original data for Victoria, B.C., is
presented. The sum of the 4 different waves is the original value.

SPEI12 Original Series
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Figure 4: Wavelet Transformation for Victoria, BC

The next step is to proceed with the training models. The methodology here is similar
to that used for the ARIMA models. We will have 4 different trained models.

After the training, 4 forecasts are calculated, and then summarized to return the forecast
for the original data.

The Wavelet Transformation process is run in R using the package "wavelets” by 7| (7)),
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using the function "mra”. ARIMA models are trained using the ”forecast” package by
R. J. Hyndman and Khandakar| (2008) and R. Hyndman et al.|(2025) and the ”auto.arima”

function.
4.5 Training Set and Test Set

I split the data into two sections: the training set and the test set (not to be confused with
the validation period in Random Forest and ANN methods, which is used for hyperparameter
tuning). Initially, I used train data from 1950 to 2020 (70 years), and the test set from 2020
to 2022 (24 months). One challenge identified in the first attempts to train models was the
high computational power required. The SPEI Global database on North America provides
information on 11,871 pixels. I conducted some experiments and tested the procedure on
selected pixels, focusing on different cities across North America with varying climates and
locations.

In Tables[2] [B] [l and [5] I show the results of RMSE on different starting times for the
training set. The first column, 1950, is the model with 70 years of data. The last column,
2000, is the model using only 20 years. The bolded number highlights the minimum RMSE.
For the ARIMA methodology, 1950 was the model with the minimum RMSE for 3 cities,
and 1990 for two. Similar results were obtained with Random Forest, ANN, and Wavelet

Transformation.

Table 2: ARIMA Model (AIC): RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000
1 Victoria, BC 0.296 0.297 0.288 0.297 0.292 0.300
2 Vancouver, BC 0.250 0.259 0.251 0.255 0.250 0.254
3 Dallas, TX 0.256 0.422 0.479 0.361 0.272 0.815
4 Houston, TX 0.289 0.389 0.392 0374 0.397 0.397
5  San Francisco, CA 1.180 1.157 1.155 0.898 1.090 0.932
6 Los Angeles, CA 0.723 0.705 0.716 0.705 0.583 0.636
7 Monterrey, MX 0.746 0.752 0.805 0.813 0.694 0.833
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Table 3: Random Forest: RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000
1 Victoria, BC 0.400 0.456 0.465 0.460 0.437 0.416
2 Vancouver, BC 0.535 0.389 0.362 0.346 0.435 0.403
3 Dallas, TX 0.417 0.426 0.419 0.409 0.407 0.352
4 Houston, TX 0.538 0.532 0.527 0.517 0.491 0.521
5  San Francisco, CA 0.464 0.371 0.448 0.947 0.633 0.781
6 Los Angeles, CA  0.333 0.353 0.396 0.475 0.555  0.460
7 Monterrey, MX 0.698 0.899 0.936 0.928 0.930 0.926

Table 4: ANN: RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000
1 Victoria, BC 0.603 0.507 0.685 0.886 0.577 0.440
2 Vancouver, BC 0.406 0.301 0.382 0.401 0.377 0.341
3 Dallas, TX 0.399 0.327 0.348 0.384 0.591 0.637
4 Houston, TX 0.472 0.410 0.367 0.318 0.580 0.645
5  San Francisco, CA 0.912 0.762 0.713 0.985 2.109 1.977
6 Los Angeles, CA  0.708 0.444 1.056 0462 0.794 0.617
7 Monterrey, MX 0.586 0.478 1.147 0.764 0.596 1.167

Table 5: Wavelet Transformation + ARIMA: RMSE (12 months) by dataset (Row Minimum in Bold)

id Pixel ID 1950 1960 1970 1980 1990 2000
1 Victoria, BC 0.578 0437 0.407 0424 0.511 0.516
2 Vancouver, BC 0.592 0.523 0.401 0.588 0.360 0.421
3 Dallas, TX 0.720 0495 0.759 0.2562 0.326 0.509
4 Houston, TX 0.498 0.769 0.913 0874 0.767 0.727
5 San Francisco, CA 2.017 1.728 2.134 1916 1.382 1.561
6 Los Angeles, CA 1.153 1.173 1478 1.187 0.608 0.868
7 Monterrey, MX 0.823 0998 0.799 0914 0.878 0.911

The next step is to perform a Diebold-Mariano Test to formally conclude if we are really
losing forecasting power. In Tables[0], [7 [§ [0]a summary is presented. The Diebold-Mariano

Test shows that there is no significant difference between the forecasts.
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Table 6: ARIMA Model (AIC): DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000
1 Victoria, BC 1970 -0.49 -047 NA -0.51 -0.44 -0.26
2 Vancouver, BC 1950 NA -0.21 045 -0.64 0.67 -0.54
3 Dallas, TX 1950 NA 060 052 067 023 -1.03
4 Houston, TX 1950 NA 0.56 0.55 0.60 0.55 0.55
5  San Francisco, CA 1980 -4.14 -2.05 -190 NA -238 -0.25
6 Los Angeles, CA 1990 -1.89 -1.83 -1.68 -1.70 -1.32 NA
7 Monterrey, MX 1990 -041 -042 -0.67 -0.53 -0.90 NA

Table 7: Random Forest: DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000
1 Victoria, BC 1950 -094 -1.15 -1.14 -1.13 -1.02 NA
2 Vancouver, BC 1980 023 -099 NA 0.06 039 -0.09
3 Dallas, TX 2000 -1.39 -1.35 -1.35 -1.16 NA -1.44
4 Houston, TX 1990 -1.13 -2.01 -2.06 NA 0.05 -1.23
5  San Francisco, CA 1960 NA -065 -093 -2.00 -3.79 -0.60
6 Los Angeles, CA 1950 0.64 043 034 -1.13 0.17 NA
7 Monterrey, MX 1950 -0.79 -0.83 -0.82 -0.83 -0.81 NA

Table 8: ANN: DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000
1 Victoria, BC 2000 0.13 0.20 -0.03 042 NA -0.89
2 Vancouver, BC 1960 0.53 -1.02 -0.49 -0.66 0.56 NA
3 Dallas, TX 1960 0.25 0.87 0.84 062 -1.24 NA
4 Houston, TX 1980 0.60 0.73 NA 061 058 0.75
5  San Francisco, CA 1970 -2.08 NA 021 -0.82 -0.69 -0.87
6 Los Angeles, CA 1960 -0.97 -1.85 -0.89 -0.24 -0.85 NA
7 Monterrey, MX 1960 -1.08 -1.11 -0.78 -0.73 -1.11 NA
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Table 9: Wavelet Transformation + ARIMA (AIC): DM Test Statistic (Best Model given RMSE vs Other)

id City Best Year 1950 1960 1970 1980 1990 2000
1 Victoria, BC 1970 -2.02 0.32 041 -0.19 -1.38 NA
2 Vancouver, BC 1990 -0.46 -2.60 -0.51 NA -0.89 -1.11
3 Dallas, TX 1980 -1.95 -1.50 NA -0.90 -2.714 -2.61
4 Houston, TX 1950 NA -1.27 -1.31 -1.96 -1.29 -1.49
5  San Francisco, CA 1990 -1.34  -242 -209 NA -3.11 -1.42
6 Los Angeles, CA 1990 -4.25 -3.76 -3.74 NA -2.16 -1.97
7 Monterrey, MX 1970 -0.05 -0.77 -0.70 -0.40 -1.84 NA

Based on these results, the decision was to set 1990 as the starting year for the training set
and to use 30 years of data to train all models, which improved the computational efficiency.
On a standard computer, training the four models for a single pixel took approximately 7
minutes using data from 1950 onward. Using data starting in 1990 reduced training time to

about 3 minutes, a 64% reduction in computation time.
5 Results

I summarise the results of the methods for a single pixel, in this case, Victoria, BC (lon -
123.75, lat 48.75). All the results for Victoria are also available for the remaining 11,870 pixels
in North America. Later, I will discuss the model’s performance using a map visualization.
The final part of the results shows the Ensemble of models, with a visualization showing the
model with the minimum RMSE for each pixel.

The Figure |5l summarizes the 4 different forecasts for the 24-month period for Victoria,
BC. For the first months, S-ARIMA follows the observed values and reacts to sudden changes
in direction. However, after 1 year, the model reaches the long-run mean and becomes
practically flat. Another model with notable performance is the ANN Model, which follows
the trend of the original series in December 2021 and also decreases as observed values

decrease at the end of 2022; however, not in the expected magnitude. Random Forest and
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Wavelet+ARIMA models don’t appear to follow the series in the first year; however, Random
Forest reaches the observed value in the second year, in December 2022. None of the models
captured a sharp increase in the SPEI value in June 2022. Other regions may follow different

dynamics.

Figure 5: Forecast by methodology and Error Comparative of Victoria BC
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In Table I present the results for ARIMA models. For British Columbia (Victo-
ria, B.C included), I produced two models with two different Information Criteria: AIC
and BIC. For AIC, the selected model was ARIMA(3,0,1)(0,0,1)[12], while the BIC was
ARIMA(3,0,0)(0,0,1)[12]. In Figure [3} the ACF and the PACF are presented. The ACF
suggests that Victoria has AR characteristic. The PACF suggests it may be AR(1); it also

shows the seasonal component. An interesting result is that the ARIMA function didn’t

31



capture the seasonal component.

Table 10: Results for Victoria BC: ARIMA Best Model using AIC

AIC Model BIC Model

AR(1) 1.995*** 1.109***

(0.072) (0.052)
AR(2) —1.079*** —0.100

(0.119) (0.078)
AR(3) 0.081 —0.031

(0.053) (0.052)
MA(1) —0.914***

(0.051)
S-MA(1) —0.784*** —0.783***

(0.039) (0.039)
AIC 115.910 115.838
AlCc 116.140 116.001
BIC 139.423 135.432
Log Likelihood —51.955 —52.919
Num. obs. 372 372

***p < 0.001; **p < 0.01; *p < 0.05

In Table [T}, T present the results for Random Forest for Victoria, BC. A total of 750 trees
were created. After tuning, the hyperparameter selected in the methodology was my., = 8
(randomly selected inputs) and a minimum node size of 20. The my,, and node sizes were
selected via a grid search. Table shows the results of the calculation of the Variable
Importance. This indicator is the variable’s contribution to reducing the prediction error.
Lag_1 is the variable that contributes the most. The next one is Lag 2. The seasonal lags

Lag_ 12 and Lag 24 also appear, but with marginal values.
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Table 11: Random Forest model settings and cross-validated performance for Victoria, BC.

Setting Value
Method ranger
Number of trees 750
mtry 8
Split rule 1

Minimum node size 20

Training samples 348

CV RMSE 0.423
CV MAE 0.333
CV R-squared 0.564

Table 12: Top 10 predictors by variable importance in the RF model for Victoria, BC.

Predictor Importance

lag_1 281.075
lag_2 48.673
lag_3 7.598
trend 5.194
lag_24 3.952
lag_12 3.723
season 2.967
lag 4 1.784
lag_5 1.631
lag_6 1.278

In Table [13] I present the results for ANN for Victoria, BC. The selected architecture is
10-3-1. Even when the grid search method enabled 7 and 11, the selected hidden units were

3. Interesting that ANN would not be able to find more nonlinear relationships.
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Table 13: ANN model settings and cross-validated performance for Victoria, BC.

Setting Value
Method nnet
Hidden units (size) 3
Weight decay 0.1

Number of inputs 10
Training samples 348

CV RMSE 0.567
CV MAE 0.463
CV R-squared 0.45

In Figure [0, the RMSE and MAE for the ARIMA method are shown in a map of North
America. Important to note that the calculations of RMSE and MAE only take into account
12 months of forecasts for the purpose of this visualization. The color pattern in this and
the following maps is yellow for models with low RMSE and MAE, and purple for models
with the highest RMSE and MAE. ARIMA models perform very well in the Arctic region,
except on the west coast of Alaska. There is an interesting pattern in which the ARIMA
model doesn’t fit well, from central California to the Canadian provinces of Manitoba and
Saskatchewan, extending into the Great Lakes region and finishing in Atlantic Canada. This
"purple patch” in the middle of the continent encompasses a wide range of climates and
geographies. Other areas where the ARIMA model struggles to perform well include the
desert region of Texas, the northern part of Mexico, and southern regions in the United

States, such as Mississippi and Alabama.
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Out of the Sample Forecast Accuracy
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Figure 6: Forecasting Accuracy for ARIMA Model RMSE and MAE

The ARIMA model, one of the best performers, struggles to understand and forecast the
drought index in different elevations, climates, latitudes, and longitudes.

In Figure[7], I show the Random Forest performance results. The regions where the model
struggles are related to the ARIMA model. The Random Forest model performs better in
polar regions, with lower RMSE than in other regions. For example, the Canadian Territory

of Nunavut has an average RMSE of 0.235, vs. Texas at 0.794 for the Random Forest model.

Out of the Sample Forecast Accuracy
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Figure 7: Forecasting Accuracy for Random Forest Model RMSE and MAE

In Figure [§, the ANN performance is shown. It also follows a pattern similar to that of
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Random Forest and ARIMA. It is a bit noisier than the two previous models; while some
regions are defined as yellow and have a lower RMSE, it is not surprising to find a purple
pixel with a higher RMSE surrounded by yellow. Finally, in Figure [9 the map with the
results of the model Wavelet+ARIMA is presented. Overall, the map shows the model has
the highest RMSE and MAE among the methodologies, but it still produces decent forecasts

in some areas, for example, the Yucatan Peninsula in Mexico.
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Figure 8: Forecasting Accuracy for Artificial Neural Network Model RMSE and MAE
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Figure 9: Forecasting Accuracy for Wavelet Transformation Model RMSE and MAE

The Ensemble forecast, which shows the combination of the lowest RMSE across the
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models for each pixel, is shown in Figure The map looks with fewer purple areas, as
expected. However, some areas where all the models struggled can be identified. Regions
like the west coast of Alaska, the Texas Desert, the north of Mexico, and the Great Lakes

are where all models struggled to forecast.
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Figure 10: Combination of the lowest RMSE of any model for in each Pixel

Figure [11] presents a map summarising which model is the one with a lower RMSE. The
results also follow a spatial pattern with some interesting results. Wavelet+ARIMA, overall
the model with the highest RMSE, is still the model in some regions; interestingly, these
regions are also the ones where other models struggled. Random Forest also performs better
on the West Coast of the United States. California RMSE for Random Forest is 0.576, while
for ARIMA is 0.805, ANN is 0.940, and Wavelet+ARIMA is 1.087.
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Model with the lowest RMSE in each Pixel
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Figure 11: Model with the lowest RMSE in each Pixel

Finally, in Figure I show a Diebold-Mariano Test for every pixel. The test failed
to identify a significant difference in the forecast for most of the pixels. The statistically
significant pixels follows a spatial pattern, with concentrations in specific regions, such as

West Alaska for Wavelet Transformation+ARIMA, or North California for Random Forest.
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Figure 12: Diebold-Mariano Test, for the lowest RMSE Model in each Pixel

6 Next Steps and Conclusions

In this Essay, I analyzed four different forecasting methodologies and their application to the
Drought Index SPEI, focused on North America (Canada, the United States, and Mexico). 1
presented a brief description of the drought phenomenon and how it is measured in Drought
Indexes, as outlined in the climate and hydrologic literature.

The applied forecasting methods were Seasonal ARIMA, Random Forest (750 trees, hy-
perparameters tuned over a grid my,, € {2,4,6,8,10} and min.node.size € {5,10,20}),
Artificial Neural Networks ( single hidden layer; tuning grid: size € {3,7,11}, size €
{0.001,0.01,0.1}), and Hybrid models using Wavelet Transformation + ARIMA. Seasonal
ARIMA is the model with the lowest overall RMSE; however, in some regions, the method-
ology struggles to produce reliable forecasts. Other models worked better in these areas.

When formally testing forecast performance using a Diebold-Mariano Test, very few areas
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actually have a statistically significant improvement in forecast performance.

The main contribution to the drought forecast literature is the type of data presented
in the study. The analysis of the gridded database was not a common concept in the
reviewed studies. This global, gridded database also allows this study to be recreated in
other geographies.

Introducing additional regressors into the models is a potential next step for follow-up
research. Variables like ENSO, Rainfall, Temperature, and altitude may have a greater role
in explaining droughts, and should have forecasting power. There is more to learn from
the regions where all the models failed to produce a reliable forecast. There are challenges
to overcome, such as producing truly out-of-sample forecasts for each additional regressor
included in the models.

This study focused on SPEI12. T chose this because I was more interested in the long-term
definition of drought. Another potential next step for follow-up research may be to repeat
the methodology on other time scales of the Index, such as SPEI-01, SPEI-03 (for seasonal
characteristics), or SPEI-06.

Additional research questions may be asked: Is GDP growth explained by droughts? If
so, a drought forecast variable may be added to the GDP growth forecast models. Addi-
tional uses of the SPEI Global database include the study of droughts and their economic
consequences. Using the gridded dataset, a city-level drought index can be built, and the
adaptability to droughts studied. The results and methodology discussed in this essay con-

tribute to other research on drought and its economic consequences.
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