
 
Department of Economics 

 
 

 
 
 
 

   
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 
 

 

 

 

 
 
 

 

  Econometrics Working Paper EWP0401
 

ISSN 1485-6441

 

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY 

Lauren Bin Dong 
& 

David E. A. Giles 

Department of Economics, University of Victoria 
Victoria, B.C., Canada V8W 2Y2 

 

February, 2004 

Author Contact:  
Lauren Dong, Statistics Canada; e-mail: Lauren.Dong@statcan.can; FAX: (613) 951-3292 
David Giles, Dept. of Economics, University of Victoria, P.O. Box 1700, STN CSC, Victoria, B.C., 
Canada V8W 2Y2; e-mail: dgiles@uvic.ca; FAX: (250) 721-6214 

Abstract 
 
 
The empirical likelihood ratio (ELR) test for the problem of testing for normality is derived in this paper. The 

sampling properties of the ELR test and four other commonly used tests are provided and analyzed using the 

Monte Carlo simulation technique. The power comparisons against a wide range of alternative distributions 

show that the ELR test is the most powerful of these tests in certain situations. 
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1 INTRODUCTION

The purpose of this paper is to develop an empirical likelihood approach to the problem

of testing for normality in a population. The maximum empirical likelihood (EL) method

is a relatively recently developed nonparametric technique (Owen, 1988) for conducting

estimation and hypothesis testing. It is a distribution-free method that still incorporates the

notions of the likelihood function and the likelihood ratio. It has several merits. First, it

is able to avoid mis-specification problems that can be associated with parametric methods.

Second, using the empirical likelihood method enables us to fully employ the information

available from the data in an asymptotically efficient way.

In this paper, as well as developing an empirical likelihood ratio (ELR) test for normality,

we analyze its sampling properties by undertaking a detailed power comparison of the ELR

test and four other commonly used tests. It is well known that a normal distribution has

skewness coefficient α3 = 0 and kurtosis coefficient α4 = 3. The sample skewness and

kurtosis statistics are excellent descriptive and inferential measures for evaluating normality.

Any test based on skewness or kurtosis is usually called an omnibus test. An omnibus test

is sensitive to various forms of departure from normality. Among the commonly used tests

for normality, the Jarque-Bera (1980) test (JB), D’Agostino’s (1971) D test, and Pearson’s

(1900) χ2 goodness of fit test (χ2 test) are selected. These are all omnibus tests. Using them

separately gives us the opportunity of testing for departures from normality in different

respects.

Random data sets are generated using the Gauss package (Aptech Systems, 2002). In

each replication, the same data set is used for all of the tests that we consider. The five tests,

the ELR, the JB, the D test, the χ2, and the χ2∗ (the adjusted χ2 test to be defined in section

3.3) are all asymptotic tests. The properties of the tests in finite samples are unknown,

although some of them have received some previous consideration in the literature. We

simulate their actual sizes and calculate their size-adjusted critical values. These results allow

us to undertake a power comparison of the tests at the same actual significance levels. One

exception is the D test. The actual critical values of the D test are taken from D’Agostino

(1971 and 1972). The reason for this is given Section 3.2. We find that the ELR test has good

power properties and it is invariant with respect to the form of the information constraints.

These results are robust with respect to various changes in the parameters and to the form

of the alternative hypothesis. We recommend the use of the ELR test for normality.
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The outline of this paper is as follows. Section 2 describes the approach of using the

empirical likelihood method and the ELR test for the problem of testing for normality.

Section 3 discusses the conventional tests that we consider. Section 4 outlines the Monte

Carlo simulation experiment and provides the empirical results of the tests. Some of the

computational issues associated with the ELR test are discussed in Section 5, and Section 6

provides a summary and our conclusions.

2 ELR TEST

The main focus of this section is to derive an ELR test. Consider a random data

set of size n: y1, y2, . . . , yn which is i.i.d. and has a common distribution F0(θ) that

is unknown. θ is the parameter vector of the underlying distribution. In the context of

testing for normality, the parameter vector becomes θ = (µ, σ2)′. Our interest is to test for

normality H0 : N(µ, σ2) using the information from the sample and the empirical likelihood

approach.

2.1 EL Method

The EL method has many favorable features. First, the method utilizes the concept of

likelihood functions, which is very important. The likelihood method is very flexible. It

is able to incorporate the information from different data sources and knowledge arising

from outside of the sample of data. The assumption of the underlying data distribution is

important in constructing a parametric likelihood function. The usual parametric likelihood

methods lead to asymptotically best estimators and asymptotically powerful tests of the

parameters if the specification of the underlying distribution is correct. The term “best”

means that the estimator has the minimum asymptotic variance. The likelihood ratio test

and the Wald test can be constructed based on the estimates and distributional assumptions

to make useful inferences. A problem with parametric likelihood inference is that we may not

know the correct distributional family to use and there is usually not sufficient information

to assume that a data set is from a specific parametric distribution family. Mis-specification

can cause likelihood based estimates to be inefficient and inconsistent, and inferences based

on the wrongly specified underlying distribution can be completely inappropriate. Using the
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empirical likelihood method, we are able to avoid mis-specification problems that can be

associated with parametric methods.

Second, the empirical likelihood method enables us to fully employ the information avail-

able from the data in an asymptotically efficient way. It is well known that the generalized

method of moments (GMM) approach uses the estimating equations to provide asymptot-

ically efficient estimates for parameters of interest using the information constraints. The

empirical likelihood method is able to use the same set of estimating equations together with

the empirical likelihood function approach to provide the empirical likelihood estimates for

the parameters. The empirical likelihood estimator is obtained in an operationally optimal

way and is asymptotically as efficient as the GMM estimator. The ability to incorporate

both the likelihood approach and estimating equations should also benefit the ELR test from

a power perspective.

2.2 ELR Test

The ELR test is based on the empirical likelihood function. First, we assign a probability

parameter pi to each data point yi and then form the empirical likelihood function L(F ) =∏n
i=1 pi. The pi ’s are subject to the usual probability constraints: 0 < pi < 1 and

∑n
i=1 pi = 1.

The maximum empirical likelihood method is to maximize the likelihood function subject

to information constraints. These constraints arise from the data naturally: they are the

moment equations and the probability constraints. We will match the sample and population

moments. Let h(y, θ) be the moment function vector. Under the null hypothesis that the

data are from a normal distribution with mean µ and variance σ2, the first four unbiased

empirical moment equations, Ep(h(y, θ)) = 0, have the form:

n∑
i=1

piyi − µ = 0 (1)

n∑
i=1

piy
2
i − (µ2 + σ2) = 0 (2)

n∑
i=1

piy
3
i − (µ3 + 3σ2µ) = 0 (3)

n∑
i=1

piy
4
i − (µ4 + 6σ2µ2 + 3σ4) = 0. (4)
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The first term on the left hand of each equation is the sample moment; the second term is

the population moment under the null hypothesis H0. We match the two terms to set up the

moment equation. We denote this system of equations as Ep(h(y, θ)) = 0. The probability

constraints are the usual ones: 0 < pi < 1 and
∑n

i=1 pi = 1.

The reasons that we have chosen to use the first four moment equations are as follows.

First, we need at least three moment equations so that the number of moment equations, m,

is greater than the number of parameters, p. If m < p, then the system is under-identified;

there will be a set of solutions to the system. If m = p, then, the solution to the estimating-

equation system is exactly the solution to the EL approach with pi = 1/n. Only when m > p,

the EL system will yield a unique and more efficient solution. Second, we would like to make

the various tests that we have consider comparable. The JB test uses the standardized first

four moments, therefore, the ELR test should use four moment equations.

We transform the objective function by taking the natural logarithm of the likelihood

function. This is an affine transformation and it does not alter the location of the maximum

of the objective function. The log empirical likelihood is of the form: l(F ) =
∑n

i=1 log pi.

The constrained optimization problem is then set up in the Lagrangian function form:

G = n−1
n∑

i=1

log pi − η(
n∑

i=1

pi − 1)− λ′Eph(y, θ). (5)

Making use of the first order conditions of the Lagrangian function with respect to the

probability parameter pi’s and the constraint of pi’s, we find that

pi = n−1(1 + λ′Ep(h(yi, θ)))−1.

The optimal value for the Lagrangian multiplier η is unity. Substituting the pi’s and η

into the Lagrangian function, the original maximization problem over the pi’s, λ, and θ is

transformed into an optimization problem over a smaller number of parameters, namely the

elements of the vector λ and θ.

The first order conditions of the Lagrangian function with respect to the parameter
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vector θ = (µ, σ2)′ have the form:

n∑
i=1

pi(λ1 + 2µλ2 + 3(µ2 + σ2)λ3 + 4(µ3 + 3σ2µ)λ4) = 0 (6)

n∑
i=1

pi(λ2 + 3µλ3 + 6(µ2 + σ2)λ4) = 0. (7)

With the four moment equations and the two first order conditions, the solution θ̂ and λ̂ can

be obtained using a nonlinear equation solver procedure. In our study, we use Eqsolve, one of

the nonlinear equation solver in the Gauss package. The log likelihood function here is log-

concave, and the constraint functions are well behaved with positive coefficients associated

with parameter terms. Therefore, the conditions for a unique solution are satisfied.

The EL estimator of the parameter vector is θ̂ and the estimated Lagrangian multiplier

vector is λ̂. Substituting these values into the formula for the pi’s, we get the p̂i’s as the

estimated probability values for the yi’s. The estimated maximum value of the empirical

likelihood function is L(F̂ ) =
∏n

i=1 p̂i.

The null hypothesis and the alternative hypothesis for the ELR test are:

H0 : y′is ∼ iidN(µ, σ2); Ha : not H0.

The empirical likelihood ratio function has the form: R(F ) = L(F )
L(Fn)

, where F is the underlying

distribution and L(Fn) = n−n. Under the null hypothesis, minus two times the log empirical

likelihood ratio has the limiting distribution (Owen, 1988):

−2 log R(F )
d→ χ2

(m−p)

where m is the number of moment equations and p is the number of parameters of interest.

The value of the ELR test statistic based on the values of the restricted and unrestricted

empirical likelihood functions is:

−2 log R(θ̂) = −2 log(L(F̂ )/L(Fn)) (8)

= 2
n∑

i=1

log(1 + λ̂′h(yi, θ̂)). (9)
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The ELR test is an asymptotic test. The actual sizes of the ELR test for finite samples

are unknown and are therefore computed using Monte Carlo simulations. We reject the

null hypothesis when the value of the test statistic is greater than the critical value based

on the asymptotic distribution of the test statistic. The total number of the rejections are

counted and are divided by the number of replications, which gives us the actual rejection

rate. This rejection rate is considered as the actual size of the test for this value of n, given

that the number of the replication is large enough, say 10, 000. The values of the ELR test

statistic are stored and sorted in ascending order so that the percentiles of their empirical

distribution can be determined. In this way we can obtain, say, 10%, 5%, 2% and 1%,

size-adjusted critical values. In another words the size-adjusted critical values are the values

of the test statistic when the actual sizes of the test equal the nominal significance levels.

These critical values can then be used to simulate the power of the test in finite samples, by

considering various forms of the alternative hypothesis

3 CONVENTIONAL TESTS

We have chosen other four commonly used tests in testing for normality as the competi-

tors. They are the Jarque-Bera test, the D’Agostino’s test, Peason’s χ2 goodness of fit test

and the χ2∗ test which is the adjusted χ2 goodness of fit test. The set-up of each test is

given below.

3.1 Jarque-Bera Test (JB)

The JB test was proposed by Jarque and Bera (1980). This test is based on the difference

between the skewness and kurtosis of the data set {y1, y2, . . . , yn} and those of the assumed

normal distribution.

The null hypothesis and the alternative for the JB test are:

H0 : y′is ∼ iidN(µ, σ2); Ha : not H0.

The JB test statistic is:

JB = n(
α2

3

6
+

(α4 − 3)2

24
), (10)
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where

α3 ≡ n−1 ∑n
i=1(yi − ȳ)3

s3
(11)

α4 ≡ n−1 ∑n
i=1(yi − ȳ)4

s4
(12)

s2 ≡ n−1
n∑

i=1

(yi − ȳ)2. (13)

Here, ȳ is the sample mean, and s2, α3 and α4 are the second, third, and fourth sample

moments about the mean, respectively. The JB statistic has an asymptotic distribution

which is χ2
(2) under the null hypothesis.

The JB test is known to have very good power properties in testing for normality; it is

clearly easy to compute; and it is commonly used in the regression context in econometrics.

One limitation of the test is that it is designed only for testing for normality, while the ELR

test can be applied to test for any types of underlying distribution with some appropriate

modification to the moment equations.

3.2 D’Agostino’s Test (D)

The D test was originally proposed by D’Agostino (1971). It has been widely used for testing

for normality. Suppose y1, y2, . . . , yn is the data set. y1,n, y2,n, . . . , yn,n are the ordered

observations, where y1,n ≤ y2,n ≤ . . .≤ yn,n . The D test statistic has the form:

D =
T

n2s
, (14)

where s is the sample standard deviation, which is the square root of s2 as defined in the

context of the JB test, and T =
∑n

i=1{i − n+1
2
}yi,n . If the sample is drawn from a normal

distribution, then

E(D) =
(n− 1)Γ(n

2
− 1

2
)

2
√

2nπΓ(n
2
)

≈ (2
√

π)−1 ≈ 0.28209479. (15)
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The asymptotic standard deviation of the D test statistic is:

asd(D) = (
12
√

3− 37 + 2π

24nπ
)

1
2 ≈ 0.02998598/

√
n. (16)

The standardized D test statistic is:

D∗ =
D − E(D)

asd(D)
, (17)

and the null hypothesis and the alternative for the D test are:

H0 : y′is ∼ iidN(µ, σ2); Ha : not H0.

Under the null hypothesis, D∗ is asymptotically distributed as N(0, 1). If the sample

is drawn from a distribution other than normal, E(D∗) tends to differ from zero. If the

underlying distribution has greater than normal kurtosis, then, E(D∗) < 0. If it has less

than normal kurtosis, then, E(D∗) > 0. So to guard against both possibilities, the test is a

two-sided test.

The percentage points for sample sizes, n = 30, 50, 70, 100 are given by D’Agostino

(1972). They were constructed using Pearson curves fitted by moments and extensive simu-

lations. The percentile points for larger sample sizes, n = 150, 200, 500, 1000, are provided

by D’Agostino (1971) and they are based on Cornish-Fisher expansions. These percentile

points were calculated and verified by D’Agostino (1972). In our study, instead of simulating

critical values, we use these published values. The D test is an omnibus test in the sense

of being able to appropriately detect deviations from normality due either to skewness or to

kurtosis.

The Shapiro-Wilks (1965) W test for normality is also known to be a relatively powerful

test. The W test is based on the ratio of the best linear unbiased estimator of the population

standard deviation to the sample variance. Appropriate weights for the ordered sample

observations are needed in computing the numerator of the W test statistic and in computing

the percentile points of the null distribution of W for small samples. Each sample size

requires a new set of appropriate weights. The W test is also an omnibus test. It has

power properties that are superior to those of the chi-squared goodness of fit test in many

situations. However, the more recent D test has power properties that compare favorably
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with the W test (D’Agostino, 1971). Shapiro and Wilks did not extend their test beyond

samples of size 50. D’Agostino (1971) commented on the W test that there are a number

of indications that it is best not to make such an extension, although subsequently Royston

(1982) did extend the W test for normality to large samples. We have chosen not to include

the W test in our study as it is known to have power similar to the D test, while being more

difficult to implement computationally.

3.3 Pearson’s χ2 Goodness of Fit Test (χ2)

Pearson’s (1900) χ2 goodness of fit test was the first constructive test in the statistics liter-

ature and is a commonly used nonparametric test. It is based on the discrepancies between

the observed and expected data frequencies. Consider a sample of independent observa-

tions of size n, y1, y2, . . . , yn, with a common distribution F (y, θ) unknown, where θ is the

parameter vector. The null hypothesis is:

H0 : F (y, θ) = F0(y, θ),

where F0 is the distribution function of a particular specified distribution.

In our study, we first transform the yi data to be xi = yi−µ̄
σ̄

, where µ̄ and σ̄ are the sample

mean and sample deviation. Then, we specify F0 as N(0, 1). The sample of data is classified

into k mutually exclusive categories. The number of categories, k, and the boundaries of

the categories are determined in advance, independently of the data. Let p0i denote the

expected probability of an observation falling in the ith category, np0i denote the expected

frequencies, and ni denote the observed frequencies, where i = 1, 2, . . . , k.

The χ2 test statistic is:

χ2 =
k∑

i=1

(ni − np0i)
2

np0i

(18)

=
1

n

k∑
i=1

n2
i

p0i

− n (19)

and it has a limiting distribution χ2
(k−3) if the null hypothesis is true.

The number of mutually exclusive categories k is supposed to be arbitrary and inde-
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pendent of the observed data. The asymptotic theory of the χ2 test is valid no matter how

the k categories are determined provided that they are determined without reference to the

observations. There are some basic criteria that k should meet, for example k < n. Often,

an additional restriction is imposed in practice on the choice of k. The resulting intervals

should be such that npi ≥ 5, for all i. In this case we will denote the test statistic as χ2∗.

The χ2 and the χ2∗ tests may not be applicable when the sample size is very small. Both

the ELR test and the χ2 tests are nonparametric and are applicable when testing for any

type of underlying distributions.

4 MONTE CARLO SIMULATIONS AND RESULTS

This section discusses the Monte Carlo simulations applying the empirical likelihood

ratio test and the four conventional tests that we have considered for testing for normality.

The sampling properties of the tests are provided. In particular, power comparisons of the

ELR test and the four other tests are conducted.

4.1 Data Generating Process

The null hypothesis is that the underlying population has a distribution that is N(µ, σ2).

The four alternative distributions that we consider are: Lognormal (LN); χ2
(2); Student

t(5); and the Double Exponential distribution (DE). These distributions cover a range of

situations from symmetric, fat-tailed to skewed distributions. The Log-normal and the χ2
(2)

distributions are skewed to the right. The student t(5) is symmetric and fat-tailed. The

Double Exponential is a symmetric and long-tailed distribution.

Without loss of generality, all of these distributions are standardized to have mean zero

and variance unity. This serves only to fix the true values of the location and scale, possibly

both unknown, and does not preclude inferences about those values. This approach is also

taken by White and MacDonald (1980), for example.

1. Data for the standardized Lognormal distribution are generated by transforming the

standard normal variable z ∼ N(0, 1) to y ∼ LN(0, 1):

y = exp (z)/2.161197416− 0.762873978. (20)
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2. Data for the standardized χ2
(2) distribution are obtained from two independent standard

normal variates: z1 and z2:

χ2
(2) = ((z2

1 + z2
2)− 2)/2. (21)

3. Data for the standardized Student t(5) distribution are obtained by:

t(5) =
z
√

3/5√
χ2

(5)/5
, (22)

where z ∼ N(0, 1), z and χ2
(5) are independent of each other.

4. Data for the standardized Double Exponential distribution are obtained by:

y =
x1 − x2

2
√

2
, (23)

where xi ∼ χ2
(2), i = 1, 2 are independent of each other.

Two particular questions are of interest. First, how do the five tests differ in terms of size

distortion in finite samples? Second, how do the powers of the tests compare with each other

across all of the alternatives, once the size distortion has been taken into account?

4.2 Size Distortion

All of the five tests are asymptotic tests and their sizes in finite samples are unknown.

The actual sizes of all of the tests, except the D test, for finite samples are simulated and

illustrated in Table 1 in the appendix. The size distortion is the difference between the

actual size of the test and the nominal significance level. The size-adjusted critical values

are the values that ensure that the actual sizes of a test equal the nominal significance levels

based on the asymptotic distribution of the test statistic. Table 1 also provides the size-

adjusted critical values for the tests (excluding the D test). The percentile points, i.e. the

size-adjusted critical values, for the D test, do not appear in the table but are taken from

D’Agostino (1971 and 1972), as the accuracy of these values have been verified by other

authors.
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The true size of the ELR test is quite large for small samples. For example, the actual

size is 34.94% when the nominal significance level is 10%, at n = 30. The sizes come down

quickly and converge to the correct nominal levels as n increases, as would be expected. The

size of the JB test is much lower than the respective nominal level for small sample sizes.

For example, the actual size is about 4.38% when the nominal significance level is 10% for

n = 30. The sizes converge to the correct nominal levels when n grows. The size distortion

of the χ2 test is smaller than that of the ELR test for small samples. However, it is worse

than that of the ELR test when the sample size grows. In particular, the size distortion does

not vanish as the sample size n → ∞. This problem is avoidable if the adjusted chi-square

goodness of fit test, the χ2∗ test, is used. The χ2∗ test is the χ2 goodness of fit test adjusted

so that the expected frequencies in each category is greater than or equal to five.

The ELR test is an asymptotic test with a limiting distribution of χ2. The purpose of

the Monte Carlo simulation study is to provide the actual distribution for the test statistic in

finite samples. The fact that the size distortion of the ELR test is relative large indicates that

the approximation of the finite sample distribution in small samples using the asymptotic

χ2 is relatively poor.

Owen (1990) suggested that, for small sample size n, we should replace χ2
(d) with (n−1)d

(n−d)

times F (d, n− d) for a better approximation. This would be very effective to reduce the size

of the ELR test. For example, at n = 30, the following are the critical values of χ2
(2) and

(n− 1)d/(n− d)F (d, n− d), where d = 2 and n = 30:

α χ2
(2)

29×2
28

F (2, 28)

10% 4.6052 5.1786

5% 5.9915 6.9354

2% 7.8240 9.3484

1% 9.2100 11.3141

From the table above, we can see that the critical values under the adjusted F distribution

are larger than that of χ2
(2). Using the critical values of F distribution, the size distortion of

the ELR test will be smaller. However, we did not explore this point further in this study.
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4.3 Power Comparisons

Tables 2 to 5 give the power comparisons of the five tests for normality across certain

alternatives. It is recalled that the null distribution for all the tests is N(µ, σ2), where

the true values for the parameters are µ = 0 and σ2 = 1. In order to conduct the power

comparisons, we need to use the same standards for the different tests. The size-adjusted

critical values are used for this purpose. We have seen that the five tests have different actual

sizes in finite samples. By using the size-adjusted critical values, we are able to compare the

power of the five tests at the same actual significance levels, 10%, 5%, 2%, and 1%.

Table 2 gives the results when the alternative distribution is Lognormal. The ELR test

has the highest power among the tests for significance levels of 5%, 2%, 1% . The power of

the JB is in the same range as that of the ELR test, especially for small sample sizes. For

example, the power of the ELR test is 93.76% for n = 30 and an actual level of 5%, while

the JB test has a power of 92.77%. Both the ELR and the JB tests are very powerful for this

skewed alternative distribution. The powers of the two tests converge to 100% at n = 100.

The power of the D test is inferior to that of the ELR and the JB tests for small sample

sizes. The χ2 and the χ2∗ tests are not applicable for some of the smaller sample sizes. The

powers of all of the tests converge to 100% as n grows, though more slowly for the χ2∗ test

than for the other ones.

Table 3 gives the results when the alternative distribution is χ2
(2). The ELR test is the

most powerful one among all of the five tests considered for the various sample sizes. The

power is 93.07% when n = 30, compared with 92.33% for the JB test, when the significance

level is 10%. It’s power converges to 100% faster than for any of the other tests and it reaches

100% at n = 50. Again, the power of the D test and χ2∗ tests are lower than those of the

ELR and the JB tests.

When the alternative distributions are symmetric, as for the Student t(5) and the Double

Exponential distributions, all of the tests have quite low power. It is difficult for any test

to detect this forms of departure from the normality. Tables 4 and 5 illustrate these case.

The JB test in this situation is the most powerful test among those considered. With a

true significance level of 10%, its power is 37.7% and 46.5% against the St(5) and the DE

distributions, respectively, when n = 30; while the ELR test has a power of 10.6% and 13.2%,

respectively, at a true significance level of 10%. The power of the ELR is even lower than
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that of the D test for small sample sizes. All of the three tests, the ELR, the JB, and the

D, have higher power when the sample size reaches n = 200. The powers of the three tests

are about 100% at n = 500. This indicates that the power of the ELR test improves quickly

as the sample size increases from n = 30 to n = 500, even though it starts at a low value for

the small samples for the symmetric alternative distributions.

The relatively good power properties of the ELR test result from the ability of the EL

method to incorporate the most information available. For instance, in the context of testing

for normality, using the first four moment equations, the EL method is able to take into

account the information of the sample mean, the variance, the skewness, and the kurtosis.

The JB test has the same advantage as the ELR test with four moment equations since

the design of the JB test incorporates the standardized third and fourth sample moments.

Moreover, the EL method naturally utilizes the likelihood function which may lead to some

efficiency gain. Therefore, the ELR test exhibits some attractive features in the application

of testing for normality.

To provide some guidance for practitioners in taking the advantage of the good power

properties of the ELR test in finite samples, we would suggest that one could use the size-

adjusted critical values that we have provided in this study when the values of one’s parame-

ters match the values that we have considered. In addition, it would be worthwhile to devote

some future effort to the provision of the size-adjusted critical values for a more extensive

range of sample sizes.

4.4 Invariance of the ELR Test

In this section, we show that the ELR test is robust to changes in the functional form of

the unbiased moment equations. Instead of using the first four raw moment equations, we

consider the first four standardized central moment equations. The data are distributed i.i.d.

N(µ, σ2). We standardize the data so that, theoretically, the data will be i.i.d.N(0, 1).

The transformation from the raw moments to the standardized central moments is a

smooth and nonlinear transformation in the parameter space. The raw and the standardized

central moment equations have the form as follows.
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Raw moment conditions Standardized central moment conditions

E(y − µ) = 0 E(y−µ
σ

) = 0

E(y2 − (µ2 + σ2)) = 0 E( (y−µ)2

σ2 − 1) = 0

E(y3 − (µ3 + 3σ2µ)) = 0 E( (y−µ)3

σ3 ) = 0

E(y4 − (µ4 + 6µ2σ2 + 3σ4)) = 0 E( (y−µ)4

σ4 − 3) = 0

Using the standardized central moment conditions places the ELR test on the same basis

as the JB test. The JB test uses the skewness and the kurtosis coefficients of the data which

are in the form of standardized central moments.

Table 6 gives the actual sizes and size-adjusted critical values of the ELR test, and Table

7 gives the power of the ELR test using the first four standardized moment conditions about

the mean with two unknown parameters. The null distribution is again N(µ, σ2). From

Table 6, it is easy to see that the range and the pattern of the size distortion of the ELR

test using standardized moment conditions about the mean are the same as the ones in

the nonstandardized case. The size is approximately 33% at n = 30 and converges to the

nominal level of 10% as n increases. In Table 7, the power of the ELR test is also in the same

relative range as it is in the nonstandardized case. It is slightly higher at the lower actual

significance levels for asymmetric alternatives and lower for symmetric ones, relatively.

Owen (2001, p. 50) discusses the transformation invariance of EL. This relates to the

fact that empirical likelihood confidence regions are invariant under one to one parameter

transformations and are also invariant under one to one invertible transformations of data.

The empirical evidence of the invariance of the EL method that we have found in this study

is that the distribution of the ELR test statistic in finite samples is invariant with respect

to the functional form of the moment equations. There is an implicit connection between

these two types of invariance of the EL method. The confidence regions and the power of the

ELR test are two sides of the same coin. It would be worthwhile to explore the theoretical

underpinnings of these findings in more detail. Indeed, a deeper understanding of this issue

may also assist in preparing practical guidance for practitioners regarding size adjustment

when applying the various EL-based tests.
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4.5 The ELR Test with Increased Number of Moment Equations

Table 8 gives the sizes and the size-adjusted critical values for the ELR test using five

moment equations, rather than four. Table 9 contains the power comparisons of the ELR

tests, the ELR4 and ELR5 with the first four and the first five moment equations, and the

JB test for small and medium sample sizes. In Tables 2 to 5, we have seen that the ELR

test has very good power properties for large sample sizes over various types of alternative

distributions and it is the most powerful test (among those considered) for small sample

sizes against skewed alternative distributions. However, it is inferior to the JB test with

respect to symmetric alternative distributions such as the St(5) and the Double Exponential

distributions. The purpose of this section is to see if the power of the ELR test can be

improved by using an increased number of functionally independent moment equations.

Mittelhamer et al. (2000) conjectured that the power of the ELR test increases with

the number of moment conditions. Hopefully the power of the ELR test can be improved

in the case of symmetric alternative distributions. However, we should be aware of the

following three issues. First, for the St(5) distribution, the integer-order moments exist only

up to four at most. Second, there is a potential problem of infeasibility in finite samples in

computational practice of the EL method. Given the constraints on the pi’s, a set of over-

identified moment equations may not provide a valid solution for θ. The probability of this

infeasibility is small. However, when we increase the number of correctly specified moment

equations, this potential may increase. That is, the probability of the potential problem may

increase as the number of the moment equations increases. Third, the increased degree of

over-identification may cause an increase in the computing time for the method.

The null distribution is still the same, namely H0 : N(µ, σ2). We illustrate that for

small samples, i.e. n = 30, the power of the ELR test does increase significantly, especially

at small significance levels such as 1% and 2%. Table 3.9 shows that the power of the

ELR5 test has increased up to 17% in small sample sizes against skewed distributions, with

especially large increases over the low significance levels for each alternative distribution.

For example, for the alternative χ2
(2) distribution, the increment is approximately 17% at the

actual significance level of 1% and at n = 30, which is quite significant. For the symmetric

alternative distribution, the Double Exponential, at n = 30 and α = 1%, the increment

is about 3%. The results overall are consistent with the conjecture in Mittelhammer et al.

(2000). Unfortunately, the power of the ELR5 test is still lower than that of the JB test in
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small samples against the alternative distribution of the Double Exponential.

5 COMPUTING ISSUES

The nonlinear equation solver, the Eqsolve algorithm, works very well in the application

considered in this study. Each draw from the underlying population is valid in the sense

that the sample of data is able to work well for all of the tests: the ELR test, the JB test,

the D test, the χ2 test, and the χ2∗ test. If a sample draw from the underlying distribution

could not provide a valid numerical solution for the ELR test either because the estimated

p̂i is not in the (0, 1) range or because the iteration could not converge to provide a valid

solution, then, the sample would be thrown away. There are very few data sets being thrown

away in small samples and no data sets being thrown away when the sample size is greater

than fifty. That is, there is no selection bias when using the EL approach in this application.

The computing time in testing for normality is very reasonable. For example, it takes

approximately one minute of processing time on a Pentium 4 2.0 GHZ personal computer

to conduct a simulation experiment with 10, 000 replications to determine just the empirical

size of the ELR test when n = 30. It takes about three minutes for 10, 000 replications and

all of the five tests when n = 30.

6 SUMMARY AND CONCLUSIONS

In this paper, we have developed an empirical likelihood ratio test for the problem of

testing for normality. Monte Carlo simulations are used to provide the actual sizes and the

size-adjusted critical values for the ELR test and for four other tests. These critical values

are used in computing the power of each test and conducting power comparisons between

the tests. The empirical results provide evidence that the ELR test is a relatively powerful

test. It is the most powerful test over asymmetric alternative distributions among all of the

five tests considered here. For the symmetric alternative distributions, the power of the ELR

test is slightly inferior to that of the JB test. The power of the ELR test can be improved by

increasing the number of moment equations we use. The ELR test is invariant to the form
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of the moment equations. Overall, the ELR test for normality has good power properties,

and it is quite easily implemented.
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APPENDIX: TABLES IN NORMALITY TEST

Table 1: Size and Size-adjusted Critical Values for the Four Tests: ELR, JB, χ2, and χ2∗

m : 10,000 H0 : N(µ, σ2)
n : 30 50 70 100 200 250 500 1,000 2,000 5,000 10,000

ELR test at nominal levels:
10% 0.3494 0.3215 0.2910 0.2668 0.2142 0.2043 0.1650 0.1423 0.1235 0.1129 0.1051
5% 0.2490 0.2203 0.2044 0.1825 0.1438 0.1325 0.1030 0.0819 0.0695 0.0562 0.0554
2% 0.1534 0.1402 0.1251 0.1152 0.0843 0.0738 0.0572 0.0411 0.0297 0.0267 0.0209
1% 0.1049 0.0988 0.0866 0.0792 0.0562 0.0494 0.0360 0.0255 0.0149 0.0141 0.0111

Size-adjusted Critical Values:
10% 9.3778 9.1638 8.7144 8.3184 7.2353 6.8555 6.0854 5.4348 5.1198 4.8842 4.7309
5% 12.1792 11.6566 11.1896 10.9248 9.5447 9.1718 8.2100 7.2881 6.6690 6.2568 6.1587
2% 15.4973 14.8743 14.4297 14.2330 12.7728 12.3614 11.2863 9.8560 8.6991 8.5000 7.9667
1% 17.7115 17.4968 17.1119 16.8595 15.5300 15.7825 13.6090 11.7415 10.4135 9.8666 9.5787

JB test at nominal levels:
10% 0.0438 0.0543 0.0569 0.0633 0.0785 0.083 0.0865 0.0881 0.0937 0.0976 0.0984
5% 0.0294 0.0353 0.0366 0.0390 0.0472 0.0467 0.0475 0.0455 0.0455 0.0484 0.0491
2% 0.0192 0.0229 0.0229 0.0246 0.0268 0.0278 0.0221 0.0231 0.0196 0.0189 0.0186
1% 0.0147 0.0165 0.0176 0.0183 0.0191 0.0194 0.0147 0.0149 0.0110 0.0102 0.0106

Size-adjusted Critical Values:
10% 2.7415 3.1072 3.3437 3.5628 4.0822 4.164 4.3016 4.3573 4.5162 4.5533 4.5620
5% 4.2229 4.8305 4.9965 5.2076 5.7969 5.8276 5.8854 5.7599 5.7988 5.9441 5.9562
2% 7.6184 8.3630 8.7360 8.8227 8.9930 9.1034 8.0600 8.2455 7.7146 7.7384 7.6884
1% 11.2731 12.4052 12.4829 12.6074 11.8813 12.5295 10.7754 10.4652 9.3900 9.2140 9.3332

χ2 goodness of fit test at nominal levels:
10% 0.1320 0.1115 0.1022 0.1071 0.1239 0.1324 0.1357 0.1366 0.1398 0.1361 0.1267
5% 0.0605 0.0596 0.0537 0.0654 0.0768 0.0837 0.0851 0.0833 0.0863 0.0866 0.0788
2% 0.0214 0.0262 0.0267 0.0355 0.0461 0.0514 0.0479 0.0487 0.0510 0.0504 0.0454
1% 0.0105 0.0149 0.0162 0.0241 0.0344 0.0371 0.0350 0.0352 0.0359 0.0361 0.0322

Size-adjusted Critical Values:
10% 5.0784 9.3466 12.9873 19.0312 37.3835 45.7889 55.8576 57.7062 58.8775 59.5980 59.4830
5% 6.2818 11.3592 15.2381 22.3365 42.1121 51.1546 61.9765 63.2299 64.3628 65.5994 65.5305
2% 7.8279 13.6176 18.4865 26.2892 50.2357 59.7278 71.3387 73.1178 73.5503 75.5200 74.6156
1% 9.1078 15.4547 20.8135 30.9140 63.5271 74.2101 85.9508 88.8786 90.9052 95.0253 87.8157

χ2∗ goodness of fit test at nominal levels:
10% – 0.1693 0.1316 0.1187 0.1079 0.1104 0.1082 0.1045 0.1064 0.1012 0.0991
5% – 0.0888 0.0671 0.0616 0.0568 0.0552 0.0541 0.0538 0.0547 0.0519 0.0501
2% – 0.0410 0.0279 0.0267 0.0230 0.0231 0.0209 0.0213 0.0210 0.0224 0.0207
1% – 0.0212 0.0137 0.0132 0.0117 0.0115 0.0096 0.0115 0.0105 0.0113 0.0111

Size-adjusted Critical Values:
10% – 7.4047 9.1804 12.4743 22.8229 27.7303 38.1887 43.0001 46.4041 49.2212 50.7836
5% – 9.3701 11.1657 14.6779 25.5606 30.8296 41.6029 46.7956 50.3262 53.4114 55.1265
2% – 11.6226 13.6931 17.5926 29.0460 34.3290 45.7909 51.4873 54.6466 58.5462 60.1098
1% – 13.2294 15.4926 19.5909 31.2562 37.3967 48.6595 55.1539 58.1896 62.3658 63.3077

Notes to table: m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
The χ2 tests may not be applicable with some small sample sizes.
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Table 2: Power Comparison of the ELR Test with JB, D, χ2, χ2∗ Tests

m 10,000 Ha : Lognormal(0, 1)
n 30 50 70 100 150 200 250

ELR test:
10% 0.9811 0.9999 1 1 1 1 1
5% 0.9376 0.9991 1 1 1 1 1
2% 0.8368 0.9966 0.9999 1 1 1 1
1% 0.7212 0.9897 0.9997 1 1 1 1

JB test:
10% 0.9854 0.9995 1 1 1 1 1
5% 0.9277 0.9970 1 1 1 1 1
2% 0.8081 0.9642 0.9976 1 1 1 1
1% 0.7037 0.9088 0.9878 0.9998 1 1 1

D test:
10% 0.8905 0.9761 0.9963 0.9999 1 1 1
5% 0.8374 0.9592 0.9931 0.9996 1 1 1
2% 0.7579 0.9300 0.9852 0.9990 1 1 1
1% 0.6982 0.9016 0.9771 0.9979 1 1 1

χ2 test:
10% – – 0.8887 0.9662 0.9984 0.9997 1
5% – – 0.8434 0.9498 0.9973 0.9997 1
2% – – 0.7809 0.9252 0.9938 0.9994 0.9998
1% – – 0.7072 0.8957 0.9894 0.9980 0.9995

χ2∗ test:
10% – – – 0.8991 0.9962 0.9997 1
5% – – – 0.8236 0.9909 0.9997 1
2% – – – 0.7041 0.9784 0.9990 1
1% – – – 0.6178 0.9642 0.9984 1

Notes to table: m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
The χ2 tests may not be applicable with some small sample sizes.
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Table 3: Power Comparison of the ELR Test with JB, D, χ2, χ2∗ Tests

m 10,000 Ha : χ2
(2)(0, 1)

n 30 50 70 100 150 200 250

ELR test:
10% 0.9307 0.9975 1 1 1 1 1
5% 0.8295 0.9929 0.9998 1 1 1 1
2% 0.6411 0.9734 0.9986 1 1 1 1
1% 0.4767 0.9383 0.9970 1 1 1 1

JB test:
10% 0.9233 0.9974 0.9999 1 1 1 1
5% 0.7475 0.9661 0.9975 1 1 1 1
2% 0.5535 0.8240 0.9599 0.9990 1 1 1
1% 0.4331 0.6909 0.8824 0.9867 1 1 1

D test:
10% 0.6536 0.8621 0.9467 0.9888 0.9995 0.9999 1
5% 0.5533 0.7941 0.9150 0.9775 0.9984 0.9997 1
2% 0.4480 0.6997 0.8561 0.9579 0.9957 0.9995 0.9999
1% 0.3819 0.6265 0.8021 0.9352 0.9929 0.9991 0.9999

χ2 test:
10% – 0.6111 0.7521 0.8922 0.9830 0.9974 0.9998
5% – 0.4812 0.6569 0.8364 0.9748 0.9960 0.9996
2% – 0.3615 0.5310 0.7573 0.9497 0.9914 0.9988
1% – 0.2949 0.4580 0.6649 0.9183 0.9771 0.9959

χ2∗ test:
10% – 0.2669 0.4057 0.6569 0.9411 0.9927 0.9989
5% – 0.1349 0.2537 0.5204 0.8874 0.9831 0.9975
2% – 0.0637 0.1390 0.3640 0.8088 0.9659 0.9959
1% – 0.0390 0.0927 0.2743 0.7345 0.9450 0.9925

Notes to table: m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
The χ2 tests may not be applicable with some small sample sizes.
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Table 4: Power Comparison of the ELR Test with JB, D, χ2, χ2∗ Tests

m 10,000 Ha : Student t(5)(0, 1)
n 30 50 70 100 150 200 250 500 1,000

ELR test:
10% 0.1060 0.1635 0.2394 0.3746 0.5818 0.7506 0.8502 0.9924 1
5% 0.0483 0.0874 0.1375 0.2464 0.4307 0.6346 0.7675 0.9829 1
2% 0.0208 0.0393 0.0659 0.1347 0.2752 0.4831 0.6330 0.9580 1
1% 0.0097 0.0196 0.0364 0.0786 0.1876 0.3704 0.4858 0.9303 0.9997

JB test:
10% 0.3767 0.5033 0.6050 0.7182 0.8262 0.9037 0.9419 0.9972 1
5% 0.2913 0.4167 0.5212 0.6501 0.7801 0.8678 0.9183 0.9947 1
2% 0.2071 0.3222 0.4198 0.5454 0.6963 0.8017 0.8655 0.9901 1
1% 0.1575 0.2605 0.3501 0.4686 0.6257 0.7532 0.8191 0.9822 1

D test:
10% 0.3157 0.4594 0.5745 0.7099 0.8369 0.9121 0.9563 0.9981 1
5% 0.2342 0.3663 0.4868 0.6314 0.7762 0.8710 0.929 0.9963 1
2% 0.1615 0.2753 0.3852 0.5330 0.6928 0.8080 0.8894 0.9906 1
1% 0.1251 0.2267 0.3224 0.4656 0.6334 0.7574 0.8541 0.9853 1

χ2 test:
10% 0.1885 0.2863 0.3758 0.4695 0.5853 0.6889 0.7463 0.9494 0.9990
5% 0.1220 0.2133 0.3040 0.3932 0.5230 0.6270 0.6879 0.9268 0.9983
2% 0.0774 0.1621 0.2396 0.3317 0.4465 0.5474 0.6225 0.8904 0.9956
1% 0.0604 0.1393 0.2010 0.2854 0.4033 0.4711 0.5461 0.8365 0.9880

χ2∗ test:
10% – 0.1407 0.1671 0.1864 0.2148 0.2282 0.2308 0.3559 0.8340
5% – 0.0735 0.0985 0.1089 0.1271 0.1460 0.1462 0.2532 0.7535
2% – 0.0343 0.0477 0.0562 0.0697 0.0785 0.0844 0.1577 0.6365
1% – 0.0229 0.0265 0.0367 0.0441 0.0531 0.0509 0.1121 0.5374

Notes to table: m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
The χ2 tests may not be applicable with some small sample sizes.
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Table 5: Power Comparison of the ELR Test with JB, D, χ2, χ2∗ Tests

m 10,000 Ha : DoubleExponential(0, 1)
n 30 50 70 100 150 200 250 500 1,000

ELR test:
10% 0.1318 0.2163 0.3484 0.5824 0.8286 0.9486 0.9843 1 1
5% 0.0720 0.1277 0.2222 0.4207 0.7102 0.8974 0.9650 0.9996 1
2% 0.0337 0.0665 0.1139 0.2636 0.5260 0.7986 0.9157 0.9992 1
1% 0.0188 0.0397 0.0635 0.1670 0.4147 0.6953 0.8371 0.9986 1

JB test:
10% 0.4648 0.6266 0.7359 0.8541 0.9433 0.9805 0.9938 0.9998 1
5% 0.3620 0.5281 0.6541 0.7888 0.9126 0.9660 0.9895 0.9997 1
2% 0.2562 0.4059 0.5162 0.6744 0.8470 0.9326 0.9719 0.9994 1
1% 0.1866 0.3196 0.4279 0.5800 0.7764 0.8928 0.9458 0.9993 1

D test:
10% 0.4540 0.6648 0.7972 0.9079 0.9773 0.9948 0.9990 1 1
5% 0.3418 0.5551 0.7128 0.8603 0.9612 0.9897 0.9977 1 1
2% 0.2367 0.4329 0.5968 0.7796 0.9258 0.9772 0.9945 1 1
1% 0.1784 0.3546 0.5125 0.7176 0.8923 0.9631 0.9906 1 1

χ2 test:
10% 0.2851 0.4421 0.5694 0.6980 0.8390 0.9124 0.9478 0.9993 1
5% 0.1956 0.3373 0.4747 0.5995 0.7688 0.8596 0.9154 0.9980 1
2% 0.1260 0.2504 0.3628 0.5002 0.6564 0.7621 0.8493 0.9925 1
1% 0.0950 0.2039 0.3040 0.4080 0.5739 0.6155 0.7289 0.9766 1

χ2∗ test:
10% – 0.2588 0.3601 0.4755 0.6180 0.7253 0.7929 0.9816 1
5% – 0.1483 0.2341 0.3432 0.4813 0.6094 0.6872 0.9610 1
2% – 0.0758 0.1311 0.2070 0.3408 0.4614 0.5588 0.9218 0.9999
1% – 0.0465 0.0832 0.1442 0.2464 0.3689 0.4488 0.8856 0.9999

Notes to table: m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
The χ2 tests may not be applicable with some small sample sizes.
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Table 6: Size and Size-adjusted Critical Values of the ELR Test Using Standardized Central Moment
Equations

m 10,000 H0 : N(µ, σ2)
n 30 50 70 100 150 200 500 1,000 2,000 5,000 10,000

ELR test at nominal levels:
10% 0.3321 0.2852 0.2579 0.2399 0.2388 0.1904 0.1497 0.1273 0.1153 0.1113 0.1057
5% 0.2338 0.2004 0.1792 0.1625 0.1574 0.1162 0.0880 0.0729 0.0616 0.0563 0.0526
2% 0.1666 0.1393 0.1239 0.1162 0.1092 0.0789 0.0528 0.0411 0.0347 0.0284 0.0260
1% 0.1054 0.0855 0.0767 0.0711 0.0657 0.0462 0.0297 0.0205 0.0156 0.0111 0.0104

Size and Size-adjusted critical values:
10% 9.43 8.55 8.17 7.95 7.71 6.48 5.64 5.15 4.87 4.82 4.72
5% 12.02 11.21 11.09 10.51 10.20 8.95 7.56 6.88 6.53 6.19 6.09
2% 15.71 14.39 14.74 14.15 13.49 12.19 10.27 9.28 8.67 8.04 7.87
1% 18.44 16.72 17.46 16.95 16.62 14.45 12.46 11.31 10.05 9.46 9.27

Notes to table: The data is standardized to be xi = (yi − µ)/σ, for i = 1, 2, . . . , n. The true value of θ = (µ, σ2)′ is (0, 1)′.
m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
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Table 7: Power of The ELR Test Using Standardized Central Moment Equations

m 10,000 H0 : N(µ, σ2)
n 30 50 70 100 150 200 250 500

Ha : Lognormal
10% 0.9787 1 1
5% 0.9429 0.9991 1
2% 0.8454 0.9958 1
1% 0.7308 0.9916 0.9998

Ha : χ2
(2)

10% 0.9440 0.9984 1
5% 0.8689 0.9945 1
2% 0.7061 0.9802 0.9992
1% 0.5634 0.9600 0.9975

Ha : Student t(5)
10% 0.0759 0.1163 0.1850 0.3147 0.5781 0.7596 0.8917 0.9953
5% 0.0398 0.0593 0.0835 0.1862 0.4336 0.6283 0.8254 0.9874
2% 0.0168 0.0269 0.0342 0.0782 0.2814 0.4646 0.7203 0.9679
1% 0.0090 0.0157 0.0194 0.0409 0.1793 0.3628 0.6241 0.9442

Ha : Double Exponential
10% 0.0876 0.1939 0.3501 0.5758 0.8399 0.9525 0.9898 0.9999
5% 0.0437 0.0996 0.1870 0.4116 0.7295 0.8999 0.9776 0.9999
2% 0.0188 0.0431 0.0843 0.2252 0.5703 0.8026 0.9450 0.9997
1% 0.0116 0.0255 0.0474 0.1273 0.4194 0.7147 0.9072 0.9993

Notes to table: The data is standardized to be xi = (yi − µ)/σ, for i = 1, 2, . . . , n. m and n are the number of replications
and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
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Table 8: Size of the ELR Test with Five Moment Equations

m 10,000 H0 : N(µ, σ2)
n 30 50 70 100 150 200 250 500

ELR test at nominal levels:
10% 0.4301 0.4216 0.3993 0.3817 0.3478 0.3283 0.2999 0.2546
5% 0.3349 0.3259 0.3099 0.2877 0.2655 0.2437 0.2156 0.1797
2% 0.2325 0.2345 0.2172 0.1976 0.1820 0.1631 0.1455 0.1139
1% 0.1786 0.1750 0.1641 0.1485 0.1383 0.1246 0.1076 0.0817

Size-adjusted Critical Values:
10% 14.3394 14.2768 14.1680 13.7818 13.2607 12.6498 11.7367 10.4588
5% 18.3187 17.8126 17.6145 17.3194 17.0302 16.5965 15.4773 13.5068
2% 24.2292 22.5592 22.6917 22.1746 21.8368 21.8703 20.2833 18.1422
1% 30.3333 26.8072 25.9431 25.7542 25.2727 25.6406 24.2938 22.2712

Notes to table: m and n are the number of replications and the sample size. The true values of the parameters (µ, σ2)′ = (0, 1)′.
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Table 9: Power of the ELR Test Using Five Moment Equations

m 10,000 H0 : N(µ, σ2)
n 30 50 30 50

Ha : Lognormal Ha : χ2
(2)

ELR4 test:
10% 0.9811 0.9999 0.9307 0.9975
5% 0.9376 0.9991 0.8295 0.9929
2% 0.8368 0.9966 0.6411 0.9734
1% 0.7212 0.9897 0.4767 0.9383

ELR5 test:
10% 0.9874 0.9965 0.9751 0.9997
5% 0.9642 0.9944 0.9352 0.9984
2% 0.9006 0.9868 0.8114 0.9950
1% 0.7810 0.9770 0.6465 0.9874

JB test:
10% 0.9854 0.9995 0.9233 0.9974
5% 0.9277 0.9970 0.7475 0.9661
2% 0.8081 0.9642 0.5535 0.8240
1% 0.7037 0.9088 0.4331 0.6909

n 30 50 70 100 150 200 250 500

Ha : Double Exponential
ELR4 test:

10% 0.1318 0.2163 0.3484 0.5824 0.8286 0.9486 0.9843 1
5% 0.0720 0.1277 0.2222 0.4207 0.7102 0.8974 0.9650 0.9996
2% 0.0337 0.0665 0.1139 0.2636 0.5260 0.7986 0.9157 0.9992
1% 0.0188 0.0397 0.0635 0.1670 0.4147 0.6953 0.8371 0.9986

ELR5 test:
10% 0.1692 0.1659 0.2132 0.3582 0.6445 0.8398 0.9389 0.9998
5% 0.1025 0.0992 0.1219 0.2130 0.4672 0.7030 0.8599 0.9996
2% 0.0525 0.0513 0.0564 0.0956 0.2655 0.4887 0.7169 0.9959
1% 0.0303 0.0317 0.0352 0.0533 0.1640 0.3475 0.5824 0.9886

JB test:
10% 0.4648 0.6266 0.7359 0.8541 0.9433 0.9805 0.9938 0.9998
5% 0.3620 0.5281 0.6541 0.7888 0.9126 0.9660 0.9895 0.9997
2% 0.2562 0.4059 0.5162 0.6744 0.8470 0.9326 0.9719 0.9994
1% 0.1866 0.3196 0.4279 0.5800 0.7764 0.8928 0.9458 0.9993

Notes to table: ELR4 and ELR5 are the ELR test with four and five moment equations. The degrees of freedom of the ELR5

test is 3. The alternative of student t(5) is not applicable. m and n are the number of replications and the sample size. The

true values of the parameters (µ, σ2)′ = (0, 1)′.
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