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1 Introduction

Quantitative structural modeling represents a widely popular way of undertaking macroeconomic analysis. Mod-

els with incomplete markets, household-level heterogeneity, and a mix of idiosyncratic and aggregate shocks

are especially valuable because they allow to perform counterfactual computational experiments together with

studying the welfare and distributional implications of various policy interventions. A number of contributions

assessing the consequences of business cycles with this class of models have found substantial welfare benefits

of eliminating aggregate risk, which are approximately an order of magnitude larger than those originally doc-

umented by Lucas (1987). Notable studies in this literature are Krusell and Smith (1999), Storesletten, Telmer,

and Yaron (2001), Mukoyama and Sahin (2006), and Krusell, Mukoyama, Sahin, and Smith (2009). Castaneda,

Diaz-Gimenez, and Rios-Rull (1998), Heathcote (2005), and Chiu and Molico (2010) propose variants of the

baseline framework to quantify the macroeconomic outcomes and distributional effects of cyclical variations in

the income distribution, and of fiscal and monetary policies.

In order to perform a reliable welfare analysis, and provide a sound guidance for policy design, it is desirable

to compare these models with the data in a systematic way. Furthermore, given that the researcher is free to

consider many different dimensions of heterogeneity, among other modeling choices, the relative performance of

different models should be assessed with an internally consistent empirical framework. Finally, since the issue of

parameter uncertainty is important for many macroeconomic models, the empirical analysis should accommodate

it. Although the use of Bayesian empirical methodologies has a long tradition in macroeconomic models with

representative agents, the computational challenges of solving models with incomplete markets and aggregate

shocks make using these estimation techniques an exceptional hurdle for most specifications.1 In this paper, I

compare four versions of the incomplete markets model with aggregate uncertainty by means of their Minimal

Econometric Interpretation (MEI). This is a simple Bayesian empirical framework, proposed by Geweke (2010),

which in turn represents a generalization of DeJong, Ingram, and Whiteman (1996). It is a computationally

tractable procedure, because it requires calculating numerically the models’ (marginal) likelihood only once,

which can be accurately approximated with a large –but manageable– number of independent parameter draws

(that are trivially parallelized across different processors). Unlike traditional Bayesian estimation, where the

Markov chain Monte Carlo algorithm necessitates both an enormous number of sequential parameter draws

and to evaluate the likelihood function at every iteration. From a methodological perspective, this framework

interprets the economic models as purely theoretical tools that have implications for distributions of population

moments. This is an appealing feature when dealing with set-ups that rely on a parsimonious specification for

the shocks, an assumption made in most models with incomplete markets, because formal statistical testing

based on the models’ likelihood would reject many of them.2

1See, among others, An and Schorfheide (2007), Canova (2009), Fernandez-Villaverde, Guerron, and Rubio-Ramirez (2010), Rios-

Rull, Schorfheide, Fuentes-Albero, Kryshko, and Santaeulalia-Llopis (2012), and Appendix F. In the recent literature, a number of

contributions estimate incomplete markets models with classical methods, neglecting the role of parameter uncertainty. Also, notice

that the method proposed by Ahn, Kaplan, Moll, Winberry, and Wolf (2017) is not suitable for Bayesian estimation, because in

their model the reduction technique leads to 300 state variables, making the Kalman smoother intractable. Moreover, their method

relies on a certainty equivalent approximation, which is known to be an inadequate tool for the computation of welfare effects.
2For instance, if the set of observables were to include the time series of the unemployment rate, all models considered in this
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In particular, I use the MEI to analyze whether risk aversion heterogeneity helps accounting for the time

series behavior of aggregate consumption, its correlation with income, and their relative volatility. These are key

elements of any dynamic macroeconomic model, because they are intimately linked to consumption smoothing

behavior. In models with incomplete markets, the welfare consequences of a policy intervention are affected

by both the insurance properties of the policy being evaluated and by the households’ response in terms of

their consumption/saving decisions, which can trigger important general equilibrium effects. Ultimately, the

level of trust in the quantitative assessment of the welfare effects arising from, say, a stabilization policy rests

on a model’s ability to adequately capture the dynamics of consumption at business cycle frequencies, and its

correlation with income.

The starting point is the Krusell and Smith (1998) set-up, with or without discount factor heterogeneity. More

novel variants of the model are proposed, where Panel Study of Income Dynamics (PSID) data are used to

provide a parsimonious, yet data-driven, specification for heterogeneity in risk aversion. The emphasis is on

treating this aspect as observed heterogeneity. The first contribution is to assess the empirical performance

of these models, along the dimensions they are designed to tackle, namely the behavior of both consumption

and income in a time series sense. I provide evidence on which specifications of the model are more likely to

have generated the data, in an empirical framework that allows for parameter uncertainty, does not assume

that one of the competing models is the true one, and interprets the model as a theoretical tool, providing

information on population moments.3 The results show that all models with preference heterogeneity possess

some empirical validity, while the complete markets version of the model performs poorly. Using the Bayes factor

as a formal measure of fit, the two models with risk aversion heterogeneity are found to dominate the other

specifications. A second contribution is represented by a thorough Monte Carlo analysis, which shows that the

MEI recovers the Data Generating Processs (DGP), by assigning higher marginal likelihoods to the true DGP.

This occurs even when the model-generated samples are limited in size, and close to the dimension of actual

datasets. A third contribution is to show how to incorporate microeconomic moments into the methodology,

allowing to assess the models’ fit also along this dimension. This is a valuable extension, because estimation

methods based on the likelihood of aggregate data cannot credibly identify many microeconomic parameters,

and combining likelihoods of aggregate and individual data is challenging. Consequently, I augment the set of

empirical moments to include the wealth Gini index, but in my application this extension does not alter the

ranking of the models in terms of their fit. A final contribution is to provide an assessment of the long-run

welfare costs of business cycle fluctuations, which highlights how models with risk aversion heterogeneity can

paper would be summarily dismissed. Moreover, many DSGE models imply exact relationships between endogenous variables that

are not supported by the data. Finally, a low number of shocks can be preferable, not only to reduce the computational burden,

but also because a common challenge of DSGE modeling is how to credibly introduce several shocks, needed to avoid the stochastic

singularity problem.
3Perhaps implicitly, this is the interpretation that currently applies to most applications relying on models with heterogeneous

agents and aggregate uncertainty. The endogenous variables are typically obtained from arbitrarily long simulations (after an

indispensable burn-in), instead of considering the actual data series length. Since these models have heterogeneous agents, the

simulations are often performed with large synthetic panel data, with a cross sectional dimension that does not match the size of

real longitudinal datasets. This comment is all the more true when the model’s solution does not rely on simulations, and the

aggregate law of motion is solved for with projection methods, as described in den Haan (2010).
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have remarkably different implications.

The rest of the paper is organized as follows. Section 2 briefly presents the models and reports some of their

quantitative implications. Section 3 discusses the choice of prior distributions for the parameters. Section 4

outlines the empirical methodology. Section 5 presents the results, while Section 6 concludes. Several on-line

appendices discuss in more detail the (numerical and empirical) methods used, and present additional results.

2 Preference Heterogeneity in Macroeconomic Models with Aggre-

gate Risk

I consider four versions of the incomplete markets model with heterogeneous agents and aggregate risk to address

whether preference heterogeneity (in discount factors and/or risk aversions) helps accounting for the correlation

between aggregate consumption and income, the autocorrelation of aggregate consumption, and the relative

standard deviation of consumption and income. The four models differ in the degree and nature of household

heterogeneity. The starting point is the framework proposed by Krusell and Smith (1998), and I am going to

consider both their baseline model (denoted as M1 (IM)) and the extension with preference heterogeneity in the

discount factors β (denoted as M2 (β)). The other two models introduce another layer of heterogeneity, allowing

agents to differ also in their preferences for risk. One version of the model focuses only on heterogeneity in risk

aversion γ (denoted as M3 (γ)), while another version assumes that preferences differ both in the relative risk

aversion, and in the degree of patience (denoted as M4 (β,γ)).
4 For ease of comparison, the complete markets

counterpart of the basic version of the model without preference heterogeneity (denoted as M0 (CM)) is also

included in the analysis.

[Table 1 about here]

Table 1 lists the five specifications of the models that are going to be studied. The simplest incomplete mar-

kets framework coincides with the standard model introduced by Krusell and Smith (1998), the only difference

being the formulation of the income received by the unemployed. Following den Haan, Judd, and Juillard (2010),

I assume the existence of a budget-balanced Unemployment Insurance (UI) scheme, which raises contributions

by taxing employed workers and distributes unemployment benefits to jobless workers.

2.1 Models Set-up

Time is discrete. The models assume a production economy with aggregate risk, such that productivity shocks

hit the economy every period, inducing aggregate fluctuations. The economy is populated by a measure one

of infinitely-lived agents subject to idiosyncratic risk. Agents face different employment histories (idiosyncratic

4In Cozzi (2014), I show that a model with risk aversion heterogeneity and endogenous sorting into risky jobs accounts for many

features of the U.S. wealth distribution. That model, however, abstracts from aggregate uncertainty and time-varying preference

heterogeneity.
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shocks are correlated with aggregate shocks), and self-insure by accumulating a single risky asset. An exogenous

borrowing constraint (amin) hampers the households’ ability to smooth consumption.

Technology: Production is modeled as a constant returns to scale technology of the Cobb-Douglas form,

which relies on aggregate capital Kt and labor Lt to generate final output Yt = ztK
α
t L

1−α
t . The aggregate shock

takes only two values: zt = {zG, zB}, where the index G (B) denotes booms (recessions), and zG > zB . The

aggregate shock follows a symmetric Markov chain. Firms hire workers from a competitive labor market. Total

labor services are Lt = lNt, namely they are the product of the share (l) of the time endowment (normalized

to 1) devoted to market activities and the employment level Nt. Firms rent capital from a competitive asset

market, and this input depreciates at the exogenous rate δ. The firm’s first order conditions to the profit

maximization problem give the expressions for the net real return to capital rt and the wage rate wt:

rt = αzt

(
Lt

Kt

)1−α

− δ, (1)

wt = (1− α) zt

(
Kt

Lt

)α

. (2)

Government: The government taxes the labor income of employed agents at rate τt to finance a budget-

balanced UI scheme. Unemployed agents receive UI benefits equal to a fixed replacement rate ϕ of the going

labor income. Since labor supply is fixed, and the aggregate unemployment rate can only take two values (uG

when zt = zG and uB when zt = zB), the equilibrium tax rate is τt = ϕ(1−Nt)/Nt, with Nt = 1− ut.

Households: Preferences are represented by a time-separable utility function U(.). Every household i ∈ [0, 1]

chooses consumption (ci,t) and future asset holdings (ai,t+1) to maximize their objective function:

max
{ci,t,ai,t+1}∞

t=0

E0

∞∑
t=0

βt
i,t

c
1−γi,t

i,t − 1

1− γi,t

where E0 is the expectation operator. In the simplest set-up, preference parameters are homogeneous, and all

agents share the same discount factor β and the same risk aversion γ. In general, these parameters will differ

across agents and they are indexed by i to highlight this possibility. Furthermore, they are indexed by t to

indicate that they can potentially evolve over time. βi,t ∈ (0, 1) is the agents’ discount factor, and in models

M2 (β) and M4 (β,γ) it can take up to three different values, βi,t ∈ {βl, βm, βh}, with βl < βm < βh. In these

cases, each agent’s discount factor can vary over time according to a three-state Markov chain. Similarly, in

models M3 (γ) and M4 (β,γ), the risk aversion γi,t > 0 can take up to three different values γi,t ∈ {γl, γm, γh},
with γl < γm < γh. Risk aversion can also vary over time according to a three-state Markov chain.

Agents can be employed (s = e) or unemployed (s = u). The employment probabilities follow a first-order

Markov process, and depend on both the idiosyncratic employment status (s) and on the aggregate state of the

economy (z). I use recursive methods to solve the model, and the value function associated with this problem

is denoted with V (a, β, γ, s, z,K). This represents the expected lifetime utility of an agent whose current asset

holdings are equal to a, whose current discount factor is β, whose current risk aversion is γ, whose current
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employment status is s, facing the aggregate shock z and in an economy with K units of aggregate capital. The

Bellman equation is:

V (a, β, γ, s, z,K) = max
c,a′

{
c1−γ − 1

1− γ
+ βEβ′,γ′,s′,z′|β,γ,s,zV (a′, β′, γ′, s′, z′,K ′)

}

s.t.

c+ a′ = (1 + r) a+ (1− τ)wl, if s = e

c+ a′ = (1 + r) a+ ϕwl, if s = u

c ≥ 0, a′ ≥ amin

lnK ′ = θ0,j + θ1,j lnK, if z = zj , j = {G,B} (3)

The appropriate Markov chains for β, γ, s and z

Agents optimally set their consumption/savings plans. They enjoy utility from consumption and face several

uncertain events in the future. Notice that, according to the algorithm that I use to solve this model, the

relevant state variable in the agents’ problem is just aggregate capital K, rather than the whole endogenous

distribution over idiosyncratic states. Agents forecast future prices relying on the (equilibrium) evolution of

the aggregate capital stock, the Aggregate Law of Motion (ALM) being specified as the pair of equations (3).

Moreover, every version of the model will include the laws of motion (i.e., the Markov chains) for the evolution

of the exogenous stochastic state variables (β, γ, s and z) that apply to each specific case.

2.2 Long-Run Welfare Effects of Eliminating Business Cycles and Liquidity Con-

strained Households

A substantive issue is whether the introduction of risk aversion heterogeneity matters for the determination of

macroeconomic outcomes. In this subsection, I focus on studying the welfare costs of aggregate fluctuations and

the prevalence of liquidity-constrained households. Because of the intractable computational burden, it is not

feasible to compute these statistics for all model parameterizations discussed in Section 3. Instead, for every

model, I compute them for a benchmark case (i.e., at the average of the parameter priors postulated below).

The first macroeconomic outcome of interest is the welfare cost of aggregate fluctuations. Adapting the

methods outlined in Krusell and Smith (1998), Mukoyama and Sahin (2006) and Krusell, Mukoyama, Sahin,

and Smith (2009), I compute the distribution of the long-run welfare effects of eliminating business cycles, where

each welfare effect depends on a specific pair of aggregate and individual states. The welfare effects are obtained
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by applying the integration principle, which eliminates the correlation between the aggregate and idiosyncratic

shocks.5 The welfare effects are expressed as the consumption percentage change (denoted as CEV) in all

states of the world that would make the welfare in the economy with aggregate risk equal to the welfare in the

economy without aggregate risk. The average welfare effects in the four models with incomplete markets are:

M1 (IM) = 0.12%, M2 (β) = −1.05%, M3 (γ) = −1.01%, M4 (β,γ) = −62.21%.

[Figure 1 about here]

Figure 1 plots the welfare effects densities, omitting the distribution for model M1 (IM), as its average is

close to zero and it displays limited dispersion. The long-run welfare effects for models M2 (β) and M3 (γ) can

be quantitatively important (a loss in excess of 3%), possess substantial dispersion, and their distributions

are relatively similar. An extremely different outcome is obtained when considering model M4 (β,γ), whose

average long-run welfare effect has a stunning value. The reason behind this large cost of eliminating aggregate

fluctuations stems from the role of precautionary savings. In this economy, wealth is very concentrated and it

is mostly kept by the very risk-averse and very patient households. The elimination of aggregate risk leads to a

large adjustment in these households’ wealth holdings. This triggers a general equilibrium effect, which increases

the long-run (annualized) interest rate considerably (eventually changing from 4.0% to 24.8%). The implied

income effect further decreases savings, leading to a 77% drop in the aggregate capital stock. The long-run

fall in aggregate income and wages explains the spectacular welfare cost of eliminating business cycles.6 The

analysis of the long-run welfare effects provides a strong reason to compare formally the fit of these models, as

their welfare implications can be radically different.

Liquidity Constrained Households: Table 2 reports the percentage of households that are liquidity con-

strained, which is another statistic that is important for the design of macroeconomic policy. First, I consider a

broad measure of “Hand-to-Mouth” (HtM) households. I then compute a measure of “Wealthy Hand-to-Mouth”

(W-HtM) households that is closer in spirit to the one used by Kaplan, Violante, and Weidner (2014).

[Table 2 about here]

The share of HtM households is defined as the percentage of households that consume all of their income, or

more. All models have a sizable share of households that behave in a HtM fashion, which is consistent with the

empirical evidence. It is also worth reporting that this variable displays substantial volatility over the business

cycle.

5In particular, the recursive formulation of the household problem has to be modified, by both introducing additional idiosyncratic

states and amending the related Markov chain. For more details, see Appendix E.
6These computations focus on a comparison with the long-run equilibrium, such that the economy without aggregate fluctuations

is in the steady state. The positive effects on welfare of the transitional dynamics are neglected by construction, which explains why

the results for model M2 (β) differ from the ones reported by Krusell, Mukoyama, Sahin, and Smith (2009). However, computing

this transition is not straightforward, and a more complete welfare analysis deserves a paper in its own right.
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There are several factors that affect the prevalence of HtM behavior. During booms, an important one is

the employment status, as the unemployed individuals rely on the totality of their current income and some

accumulated wealth to prevent their consumption profile from falling excessively.

Generally speaking, in this class of models unemployed individuals tend to display HtM behavior. This

applies unless they are extremely rich, holding more than ten times the average wealth, which is a low probability

event. In the model without preference heterogeneity, the saving decisions are such that during booms only the

unemployed agents run down their wealth. This explains why the related number is exactly 4.0%. In the other

versions of the model, some employed individuals that are (temporarily) impatient and/or with low risk aversion

are also HtM. During recessions, and whenever the aggregate capital is below its long run value, a sizable share

of employed individuals display HtM behavior.

The results show that preference heterogeneity has an important effect in determining this statistic. In

particular, the share of HtM households in a recession increases substantially, with the models with risk aversion

heterogeneity attaining the largest shares. This finding is important, as the effectiveness of fiscal policies and

stimulus-style interventions depends crucially on the marginal propensity to consume.

Since the models that I consider do not have two assets, I cannot apply the same W-HtM definition as in

Kaplan, Violante, and Weidner (2014). In order to approximate their concept, I apply an adjustment to the

models’ asset holdings. Namely, I truncate the wealth distribution, selecting the truncation point such that

the truncated distribution matches the median wealth/income ratio reported in Table 2 of Kaplan, Violante,

and Weidner (2014). I then consider the share of households whose assets lie in the support of the truncated

distribution that consume all of their income (or more). This statistic is what I consider as the measure of

W-HtM households.7 In the two models that allow for this correction, the adjustment reduces the share of

liquidity constrained individuals. In model M2 (β), about 76% of HtM households are W-HtM, and the average

share of liquidity constrained households is 15.5%. In model M4 (β,γ), almost all HtM households are W-HtM.

These values are roughly consistent with the estimates reported in Kaplan, Violante, and Weidner (2014).

3 Parameterizing the Models

The issue of parameter uncertainty is ubiquitous in quantitative macroeconomics. The models’ level of abstrac-

tion frequently leads to mismatches between model variables and their empirical counterparts. For instance,

think of capital: housing represents a large component of household wealth, and it is usually included in the

value of the capital stock, which affects its depreciation rate, but to what extent can it be considered a factor

of production? Parameter uncertainty can be easily accommodated by specifying prior distributions for the

parameters, embracing one of the building blocks of Bayesian empirical analysis.

As for the specification of the priors, I am going to consider four different cases, listed in Table 1. The simplest

case assumes independent uniform priors (Case 2), reflecting the idea that a-priori information can only provide

parameter bounds. The other cases consider correlated priors (Case 1), introduce curvature using Beta priors

7Notice that this statistic can be computed only for two versions of the model, as in models M1 (IM) and M3 (γ) the median

wealth/income ratio from the un-truncated distribution is already larger than the Kaplan, Violante, and Weidner (2014) figures.
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(Case 3), and change the bounds of the heterogeneous discount factors and risk aversions, by increasing their

range (Case 4).

[Table 3 about here]

3.1 Parameter Bounds common across all Models

The bounds of the prior distributions that are going to be used are reported in Table 3. The top of the Table

focuses on the parameters that are common across all models (apart from amin, which is present only under

incomplete markets).

The bounds for the capital share α are chosen on the basis of the labor share values found in the Penn World

Tables 8.0. In the period 1950−2011 the labor share has fluctuated between 62% and 68%. Since the downward

trend in the labor share has been very persistent, I use an upper bound for the capital share of 40%. Moreover,

since most studies in the RBC literature use a capital share of 36%, it seems appropriate to center its range at

this value.8

The model considers only one type of capital, hence its depreciation rate δ is the weighted average of the

depreciation rates of many different capital goods. A range for δ between 8% and 10% on an annual basis spans

many of the estimates available in the literature.

The borrowing limit amin ranges between amin = 0, which is the most extreme case of market incompleteness

such that borrowing is not allowed, and amin = −2, which is approximately (minus) twice the average quarterly

income.

As for the range related to the exogenous labor supply l, Juster and Stafford (1991) documented that the

share of time devoted to market activities, averaged between males and females, is approximately 32%. The

midpoint of the range is then set to this value, l = 0.32. Since the consensus is that answers to the time

allocation survey questions are contaminated by measurement error, I consider a range of ±10% around this

estimate.

For comparability with Krusell and Smith (1998), I work with their parameterization for the (average)

values of the unemployment rate during booms (uG) and recessions (uB): uB = 10% and uG = 4%. For both

parameters, I consider a range which is ±1 percentage point around these averages. In order to understand

whether these bounds are plausible, I split the Bureau of Labor Statistics data on the monthly unemployment

rates for the 1948M1 − 2019M12 period into two groups, one group with the observations above the average

unemployment rate of 5.7%, and the other group with the observations below it. The 3%−5% range corresponds

to the 3rd−63rd percentiles of the unemployment rates below the average, while the 9%−11% range corresponds

to the top 11% of the unemployment rate distribution for the unemployment rates above the average (with 10.8%

8For this statistic, I do not use the more recent versions of the Penn World Tables because they feature a sizable downward

revision of the U.S. labor share (larger than 2 percentage points), making it inconsistent with the value of the capital share typically

used in the literature.
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being the highest recorded unemployment rate).9

The bounds for the remaining parameters, which are also listed in Table 3, are model-specific and are

discussed next.

3.2 Model-specific Parameters and their Bounds

The parameters whose bounds still need to be discussed are the discount rate and the risk aversion.10 Because

of data limitations, discount rate heterogeneity must be considered as unobserved heterogeneity. Differently,

if one is willing to make a structural distributional assumption, (relative) risk aversion heterogeneity can be

obtained from the data, exploiting questions on attitudes towards risk currently included in a number of large

datasets, such as the PSID and the Health and Retirement Study (HRS).

In model M1 (IM), the β and γ parameters are the same for all agents. In this case the range for γ is [1.0, 3.0],

which spans most of the available estimates of the inverse of the elasticity of intertemporal substitution, obtained

with a variety of methods and surveyed by Attanasio and Weber (2010), among others. Choosing bounds for

the subjective discount factor is more complicated, because there is not much direct information regarding this

parameter. Exploiting its relationship with the interest rate, I work with a range for β equal to [0.985, 0.995].

The rationale being that the equilibrium annual interest rate in the steady-state of the corresponding complete

markets economy is between 0.5% and 6%, and it is well-known that in the benchmark Krusell and Smith (1998)

model precautionary savings have a limited quantitative importance.

In model M2 (β), the range for γ is still [1.0, 3.0], while there are three time-varying discount factor types.

In this case, the range for βl is [0.9848, 0.9868], the range for βm is [0.9884, 0.9904], and the range for βh is

[0.992, 0.994]. The three ranges are chosen for the discount factors not to overlap, an assumption that will be

relaxed in Case 4. Furthermore, since in Cozzi (2015) I found that this economy solved at the priors’ averages

matches a wealth Gini index of 0.8 and attains an average annualized interest rate of 4%, I consider fairly tight

bounds around that calibration.

Models M3 (γ) and M4 (β,γ) introduce heterogeneity in the agents’ preferences for risk.

Parameterizing Risk Aversion Heterogeneity: Thanks to hypothetical lottery questions included in the

PSID in 1996, this can be dealt with as observed heterogeneity. In particular, I apply the procedure proposed

by Kimball, Sahm, and Shapiro (2008). With appropriate statistical methods, and postulating that γ is log-

9This statistic, hence the choice of the range for the unemployment rate in recessions, might seem extreme. However, it should

be interpreted as including the marginally attached workers, an enlarged concept of the unemployment rate for which consistent

measurements are available only since 1994 (labeled U5RATE in the FRED database). In the above average unemployment rate

sample, this alternative unemployment rate has been 1.3 percentage points above the standard unemployment rate. Considering

this adjustment, the 7.7% − 9.7% unemployment rate range corresponds to the 73rd − 95th percentiles, which is somewhat less

extreme.
10The probabilities in the Markov chains also vary across replications. In order to guarantee that they all stay non-negative, and

add up to one, I consider a tight range of approximately ±1% around the calibrations in Krusell, Mukoyama, Sahin, and Smith

(2009) and Cozzi (2015). The probabilities in the risk aversion Markov chain are taken from the bootstrapped estimates discussed

below.
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normally distributed in the population, I find that the estimated distribution is LN
(
µγ = 1.07, σ2

γ = 0.76
)
.11

Although the true underlying distribution is log-normal, it is feasible to consider only three risk aversion types.12

Therefore, I partition the PSID data in three groups with mass 20%, 30% and 50%. The conditional averages of

γ for each of these subgroups are then obtained exploiting the CDF of the true distribution. This step delivers

the three desired values for the risk aversion types: γl = 0.92, γm = 2.12, and γh = 7.55. There are some

additional facts about the risk aversion distribution that are going to guide the next modeling choices. Since

Kimball, Sahm, and Shapiro (2008) document that measurement error in the HRS is large, I consider fairly wide

ranges for each parameter, which are going to be further increased in Case 4. The range for γl is [0.62, 1.22], the

range for γm is [1.82, 2.42], and the range for γh is [7.25, 7.85]. Another fact is that the distribution of answers

to the lottery questions in the HRS is virtually stationary over time. It is therefore appropriate to assume that

the evolution of the risk aversion is governed by a time-invariant Markov chain.

Estimating the Risk Aversion Markov Chain: I obtain an estimate for the Markov chain probabilities

by using a moment-matching procedure. I start by imposing appropriate restrictions on the structure of the

Markov chain, so that it is parameterized by only three probabilities: pγl
, pγm

, and pγh
.13 I can then use the

observed cross sectional distribution of risk preferences to identify two of these probabilities, while the third

one is backed out to replicate the intergenerational correlation between the risk aversion of parents and their

children documented by Kimball, Sahm, and Shapiro (2009). The Markov chain (Π) that I have to recover from

the data is:

Π ≡ π
(
γi, γ

′
j

)
=


pγl

1− pγl
0

pγm 1− 2pγm pγm

0 1− pγh
pγh

 , with i, j ∈ {l,m, h}

The stationarity of the risk aversion distribution allows me to consider the system of linear equations µ∗
γ =

Π′µ∗
γ , where µ∗

γ =
[
µ∗
γl
, µ∗

γm
, 1− µ∗

γl
− µ∗

γm

]
denotes the stationary distribution over the vector of risk aversions

[γl, γm, γh]. Since the entries in µ∗
γ must add up to one, I can use only two fractions from the data to assign

values to the Markov chain probabilities: µ̂∗
γl

= 0.201 and µ̂∗
γm

= 0.303.

Exploiting the stationarity condition, it is possible to write the following system of equations:

11Fore more details, see Cozzi (2014). In that model, I work with the assumption that preference types are permanent, so it is

worthwhile considering the implications of time varying risk aversions.
12First, there is a data limitation issue that will be discussed below. Moreover, this model is computationally costly, and I need

to simplify the problem in order to solve it many times (I draw 1, 000 combinations of parameters from their priors).
13Note that other parameterizations of the CRRA Markov chain suffer from identification issues. For example, it is easy to show

that a chain that imposes the additional restriction pγh = pγl cannot be identified. Similarly, more general chains with four or

more unknown probabilities would require more pieces of information from the data and cannot be recovered.
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

µ∗
γl

= pγl
µ∗
γl
+ pγm

µ∗
γm

µ∗
γm

= (1− pγl
)µ∗

γl
+ (1− 2pγm

)µ∗
γm

+ (1− pγh
)µ∗

γh

µ∗
γh

= pγmµ∗
γm

+ pγh
µ∗
γh

which, for given p̂γm , µ̂∗
γl

and µ̂∗
γm

, leads to the following expressions for the two remaining probabilities:
p̂γl

= 1− p̂γm

µ̂∗
γm

µ̂∗
γl

p̂γh
= 1− p̂γm

µ̂∗
γm

µ̂∗
γh

(4)

The estimation procedure then relies on a simulated minimum distance estimator. The following steps are

considered: a) construct a fine grid for pγm , b) consider one grid-point at a time, whose value is denoted with

p̃γm , c) get p̃γl
and p̃γh

from system (4), d) simulate the implied Markov chain for 200 periods (50 years × 4

quarters per year) with 100,000 agents (i.e., risk aversion types), d) compute the intergenerational correlation

ρΠγ , e) select p̂γm
as p̂γm

= Argmin
p̃γm

[
ρΠγ (p̃γm

)− ρPSID
γ

]2
. The procedure leads to the following estimates for

the Markov chain probabilities: pγh
= 0.9948, pγm

= 0.0085 and pγl
= 0.9872.14

Finally, choosing bounds for the priors of the CRRA Markov chain probabilities boils down to choosing a

range for pγm
. This is obtained by relying on the empirical distribution of 1, 000 minimum distance estimates

obtained by simulating the chain with 5, 662 artificial agents, which corresponds to the cross sectional dimension

of the household heads in the 1996 PSID sample that provided an answer to the lottery questions.

The last case left to consider is model M4 (β,γ), which allows for both types of preference heterogeneity. As

for the heterogeneity in the discount factor, I use the same specification as in M2 (β), namely three discount

factor types that evolve over time through a Markov chain. In this case, the range for βl is [0.980, 0.982] , the

range for βm is [0.984, 0.986] , and the range for βh is [0.992, 0.994]. In this model, the role of precautionary

savings is more pronounced, explaining the downward shift in the ranges for the first two types. Lower discount

factors are imposed for the model to display average interest rates that are similar to the other models. As for

the risk aversion types, the priors are kept the same as in model M3 (γ). The ranges of all preference parameters

will be increased in Case 4.

3.3 Further Details on the Choice of Priors

The information provided above fully characterizes the case postulating uncorrelated Uniform priors, while the

other ones need some additional details. In both the case with correlated Uniform priors and independent

Beta priors, I retain the same bounds listed above. For the correlated Uniform priors, the correlation matrix

is obtained as follows. From the Penn World Tables, I compute the correlations between the labor share, the

real rate of return, and the capital depreciation rate. These values are used to pin down the correlation matrix

between α, β (or βl, βm, βh), and δ. Since borrowing constraints are less likely to be binding when workers

14As shown in Figure 7 in Appendix G, given two of the three probabilities, the remaining one is uniquely identified.
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face better labor market conditions, the amin and l priors are assumed to have a negative correlation equal

to −0.25. Similar considerations lead me to set the correlation between both the amin and uG priors and the

amin and the uB priors to 0.25. Since hours worked are lower when the unemployment rate is higher, I set

the correlation between both the l and uG priors and the l and the uB priors to −0.25. Finally, lacking sound

evidence on how risk aversion correlates with the other parameters, the γ (or γl, γm, γh) priors are assumed to

be independent. In the Beta priors case, I assume that the densities are symmetric around their mean, with

both shape parameters set to 5. To conclude, the case with overlaps in the heterogeneous preference parameters

uses the same midpoints reported above, but increases the range of these parameters only.15

4 The Empirical Framework

At this stage, the analysis does not have explicit empirical content, because the models provide quantitative

assessments about population moments. Moreover, for a given parameterization, each model delivers a point

for every moment of interest. By assuming priors for the parameters one obtains distributions for the moments,

which are generated by parameter uncertainty. DeJong, Ingram, andWhiteman (1996) stress that the framework

needs another element to be able to link the models’ implications to the information contained in the data. This

link takes the form of a reduced-form Bayesian econometric model, which allows to relate the observables to

the population moments. The interaction between these two elements of the MEI equips the researcher with an

empirical framework where formal model comparison can be undertaken.16

Since the main focus of heterogeneous-agent models is to carefully micro-found the determination of con-

sumption/saving decisions, I am going to assess their performance in three dimensions, all pertaining to the

behavior of aggregate consumption and its relationship with income.

Data: The time period is 1947Q1 − 2019Q4, and the number of observations is 292. As customary in the

RBC literature, I consider as aggregate consumption (C̃t) the sum of the expenditures on Services and Non-

durables.17 Aggregate output (Ỹt) is defined as the sum of Services, Non-durables, and Investment, because

all model economies are closed, and there is no public expenditure in the form of government consumption.

Since it is well-known that the detrending methodology can heavily affect the business cycle statistics, the Ỹt

15The upper and lower bounds are obtained as follows. In model M2 (β), the midpoint of βl is increased (decreased) by 0.0016

(0.001), the midpoint of βm is increased (decreased) by 0.0016 (0.0016), and the midpoint of βh is increased (decreased) by 0.001

(0.0016). In both model M3 (γ) and M4 (β,γ), the midpoint of γl is increased (decreased) by 0.55 (0.3), the midpoint of γm is

increased (decreased) by 2.5 (0.55), and the midpoint of γh is increased (decreased) by 0.3 (2.5). In model M4 (β,γ), the midpoint

of βl is increased (decreased) by 0.0016 (0.001), the midpoint of βm is increased (decreased) by 0.003 (0.0016), and the midpoint

of βh is increased (decreased) by 0.001 (0.003).
16An additional appealing feature of this approach is that it treats symmetrically the uncertainty in the moments of both the

theoretical model and the data. In the MEI framework, prior distributions are specified for both the theoretical and the empirical

models, which induce probability distributions over moments of interest. The degree of overlap between these distributions is then

used to assess the models’ fit.
17Notice that I exclude durables from the analysis. A possible alternative could be to include durables in investment. Although

the empirical results are fairly similar, this procedure is inconsistent with the model’s assumption that total investment contributes

to the accumulation of capital.
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and C̃t series are detrended with two different filters. I consider both the one-sided HP filter of Stock and

Watson (1999) and the BN filter of Kamber, Morley, and Wong (2018), which is based on a Beveridge-Nelson

decomposition.18

A Bayesian VAR(1): In this framework, there is the need to link the distributions of population moments

to the observables. In order to study the empirical characteristics of the relevant moments of consumption

and income, I specify a Bayesian VAR(1) process on detrended aggregate income Yt and detrended aggregate

consumption Ct. Diffuse priors are assumed for all the parameters.

 Yt

Ct

 =

 d11 d12

d21 d22

 Yt−1

Ct−1

+

 ηYt

ηCt


 ηYt

ηCt

 iid∼ N

 0

0

 ,Σ =

 σ11 σ12

σ21 σ22


With a more compact notation, the VAR can be represented as Yt = DYt−1+Et, where Yt is a T ×2 matrix,

whose columns are Yt and Ct, D is the 2× 2 matrix of parameters to be estimated, and Et is the T × 2 matrix

of innovations. The error terms ηYt and ηCt are assumed to be normally distributed, with a zero mean and a

variance/covariance matrix denoted by Σ.

It is well-known, see for example Koop and Korobilis (2009), that in VAR models with normally dis-

tributed shocks the flat priors assumption implies that the posteriors’ marginal distributions are multivari-

ate t distributions centered around the OLS estimates. However, the estimation for all seven parameters

(d11, d12, d21, d22, σ11, σ12, σ22) is accomplished with a posterior simulator. Simulation methods are needed be-

cause the objects of interest are not the posteriors of the parameters, but functions of them (i.e., some moments),

and I draw from their posteriors.19

The incomplete markets models are evaluated by comparing the draws from the joint posteriors of the

autocorrelation of consumption (mρC
), the correlation between consumption and income (mρCY

), and the

relative standard deviation of consumption and income (msdCY
), all obtained from the Bayesian VAR, with the

draws for the same (population) moments predicted by the theoretical models.

18Following Kamber, Morley, and Wong (2018), I use both a low signal-to-noise ratio (δ̄BN = 0.21) and a Bayesian AR(12)

forecasting model with a “Minnesota” shrinkage prior (on the second-difference coefficients). This formulation is desirable because

it provides estimates of the cyclical component that are highly persistent and large in amplitude. As a robustness check, I also

detrended the time series data with a two-sided HP filter with a smoothing parameter of 1, 600, finding that the ranking of the

models in terms of their fit is preserved.
19The three moments’ posteriors are plotted in Figure 3 in Appendix G, while Appendix C provides more details on how the

computations are actually implemented. DeJong and Ripoll (2007) use a similar methodology, relying on the predictive distributions

to perform model comparison.
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5 Results

I begin this section by discussing the model comparison based on the MEI approach. I then present a Monte

Carlo study examining the MEI performance, which is followed by an extension to the MEI that allows to

exploit both macro and micro-economic data.

5.1 Model Comparison

The first step consists of computing the models’ Log Marginal Likelihoods (LML), which are reported in Table 4.

These are then exploited to derive the Bayes factors (BF), which are used to perform the model comparison.20

[Table 4 about here]

The LML results show that, even when using macro-economic moments only, models with preference hetero-

geneity dominate the other ones in terms of fit. Irrespective of the filtering method, models M3 (γ) and M4 (β,γ)

attain the highest LML. The models without preference heterogeneity display the lowest LML, suggesting that

preference heterogeneity provides a quantitatively important improvement in accounting for the consumption

dynamics at business cycle frequencies. In particular, the major failure of models M0 (CM) and M1 (IM) is with

respect to the relative standard deviation of consumption and income, as their distributions are highly concen-

trated around their means. These two models imply excessive consumption smoothing, as they understate the

role of wealth inequality and of binding borrowing constraints. As for the different cases for the priors, the

values of the LML are quite stable across them.21

The Bayes factors can be computed for any pair of models Mi and Mj (i, j = 0, ..., 4), and they are the ratio

of two marginal likelihoods, P1(Mi|data,E1) and P1(Mj |data,E1), whose expressions are:

BF1 ≡ P1(Mi|data,E1)

P1(Mj |data,E1)
=

P1(Mi|E1)P1(data|Mi, E1)

P1(Mj |E1)P1(data|Mj , E1)

=
P1(Mi|E1)

∫ ∫ ∫
P1(mρC

,mρCY
,msdCY

|Mi)P1(data|mρC
,mρCY

,msdCY
, E1)dmρC

dmρCY
dmsdCY

P1(Mj |E1)
∫ ∫ ∫

P1(mρC
,mρCY

,msdCY
|Mj)P1(data|mρC

,mρCY
,msdCY

, E1)dmρC
dmρCY

dmsdCY

∝

∫ ∫ ∫
P1(mρC

,mρCY
,msdCY

|Mi)P1(mρC
,mρCY

,msdCY
|data,E∗

1 )dmρC
dmρCY

dmsdCY∫ ∫ ∫
P1(mρC

,mρCY
,msdCY

|Mj)P1(mρC
,mρCY

,msdCY
|data,E∗

1 )dmρC
dmρCY

dmsdCY

≈

1
NMi

NE∗
1

NMi∑
u=1

NE∗
1∑

v=1
K1

(
mMi

ρC,u
,mMi

ρCY,u
,mMi

sdCY,u
;m

E∗
1

ρC,v ,m
E∗

1
ρCY,v ,m

E∗
1

sdCY,v

)
1

NMj
NE∗

1

NMj∑
u=1

NE∗
1∑

v=1
K1

(
m

Mj
ρC,u ,m

Mj
ρCY,u ,m

Mj

sdCY,u
;m

E∗
1

ρC,v ,m
E∗

1
ρCY,v ,m

E∗
1

sdCY,v

)
20BF1 (BF2) is used to denote the Bayes factors computed on the macro (micro) moments, and a similar notation is also used

to denote the other variables in the formulas, such as the densities and marginal likelihoods.
21For Case 2, the three distributions of the model-generated moments are plotted in Figure 4 in Appendix G.
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Posterior odds ratios, denoted as P1(Mi|data,E1)/P1(Mj |data,E1), are a common tool in Bayesian empirical

work. Notice how these depend on both the data and an incomplete econometric model denoted as E1. This

model is needed to provide the framework with empirical content. In particular, E1 specifies a conditional

distribution of observables P1(Y,C|mρC
,mρCY

,msdCY
, θ, E1) together with a prior for the parameters θ in the

econometric model. This econometric model is incomplete, because it does not provide a joint prior distribution

for the moments mρC
, mρCY

, and msdCY
. The prior is instead provided by each theoretical model Mi in turn.

Under appropriate conditions, listed in Geweke (2010), the density P1(data|mρC
,mρCY

,msdCY
, E1) that appears

in the triple integral can be replaced by the density P1(mρC
,mρCY

,msdCY
|data,E∗

1 ). The latter density is easy

to work with, because it corresponds to the posterior density for the moments of interest implied by an auxiliary

econometric model E∗
1 , which in this application is the BVAR model introduced above.

In the formula approximating the integrals, I rely on an independent trivariate normal kernel K1 (.; .).
22

The numbers NMi and NE∗ stand for the number of draws for the theoretical models (1, 000 each) and for the

Bayesian VAR (10, 000).23

[Table 5 about here]

The ten Bayes factors related to fitting the three macroeconomic moments are reported in Table 5. In Case

1, when the data are detrended with the HP filter, the ordering by Bayes factors is model M4 (β,γ) over M3 (γ)

over M2 (β) over M1 (IM) over M0 (CM), with the ratios being roughly 75 : 13 : 1 : 0.0006 : 0.0002.24

When focusing on a detrending method, the ordering of the models is remarkably stable across cases, with

the exception of models M3 (γ) and M4 (β,γ), which can swap their place at the top. A key takeaway is that

the overall empirical performance of the two models with risk aversion heterogeneity is similar, and better than

what the other versions achieve, indicating that this element of heterogeneity should be routinely included in

quantitative work. Differently, the two simpler models do not appear to be fruitful frameworks.

5.2 Monte Carlo Analysis

A natural question is whether the MEI methodology is a reliable tool for empirical analysis. This concern is

a valid one, especially when the models’ fit is assessed on the basis of a limited number of observations and

moments. In order to tackle this issue, I conduct a Monte Carlo analysis. The Data Generating Process is

postulated to be one of the four incomplete markets models (in turn, and with all parameters set at the average

22For all density approximations, I use a fixed bandwidth equal to 0.003. I also experimented using a different value, such as

0.005 and 0.01, and the ranking of the models was not affected.
23In previous versions of the paper, I was using 2, 000 parameter draws, and I verified that the results were similar to the ones

obtained using 1, 000 draws. It is also worth mentioning that in both models with risk aversion heterogeneity the ALM does not

converge and shows cycles in a small number of replications, which are discarded. This also happens in the more traditional versions

of the model, but in Cozzi (2015) I have shown with a perturbation approach that self-fulfilling equilibria are not likely to arise in

the incomplete markets model with aggregate shocks and discount factor heterogeneity.
24When the data are detrended with the BN filter, whose results are in Table 9 in Appendix G, the ordering is model M3 (γ) over

M4 (β,γ) over M2 (β) over M1 (IM) over M0 (CM), with the ratios being roughly 14.3 : 14.2 : 1 : 0.000005 : 0.0000001.
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of the uncorrelated uniform priors).25 For each assumed DGP, I compute the equilibrium ALM and decision

rules, I simulate an artificial sample, I construct the aggregate variables, and I filter their series using both the

(one-sided) HP filter and the BN one. The priors for the parameters of the theoretical models are assumed to

be uncorrelated Uniforms, whose bounds are the DGP parameter values ±10%.26 Table 6 reports the Bayes

factors of the Monte Carlo experiments using 300 model-generated observations. The label at the top of a

column states the specific DGP that the case is representing. The experiments with 150 and 3,000 observations

are included in Appendix G.

[Table 6 about here]

On the one hand, it is reassuring that the MEI recovers the DGPs, by assigning them higher marginal

likelihoods even with a relatively small, and empirically relevant, sample size. However, in a handful of com-

parisons, the Bayes factors do not provide overwhelming evidence in favor of the DGP. In some cases, this is

unavoidable. For instance, when model M1 (IM) is assumed to be the DGP, because the distributions of its

populations moments are almost identical to those of model M0 (CM). Any moment-based empirical procedure

would have a hard time rejecting one of the two models in their pairwise comparison. A valuable lesson learned

from the Monte Carlo analysis is that the MEI works well when using a fixed bandwidth for the kernel density

approximations. This is not the case when the bandwidth is allowed to change from one model comparison to

the next, such as when using Silverman’s rule of thumb. Using relatively small bandwidths is preferable. These

can also vary with the moment under consideration, but they have to be set equal in all approximations across

model comparisons. Failure to do so can lead to the wrong model ranking.

5.3 Micro Vs. Macro Data and Measures of Fit

The models under study have implications for both macro and micro-economic outcomes. Given the presence of

household heterogeneity, it is possible to consider formally their cross-sectional properties. I therefore examine

an extension to the measure of fit considered above, to include both macro and micro-economic moments.

Data limitations coupled with modeling challenges make it unfeasible to work with joint marginal likelihoods,

stemming from a mix of micro and macro data.27 Instead, I consider the marginal likelihood conditional on

the macro data separately from the marginal likelihood conditional on the micro data. To combine the two

25Since the complete markets model M0 (CM) implies moments that are very close to its corresponding incomplete markets

version, the Monte Carlo results for the two models must be similar.
26For most parameters, these bounds are similar to the ones listed in Section 3. However, it is not possible to apply the ±10%

perturbation to the discount factors, as they would exceed 1, and I perturb them by ±0.001 (±0.005) when they are heterogeneous

(homogeneous). Finally, the ±10% perturbation would imply small ranges for the risk aversions, and I perturb them by ±0.3 (±1.0)

when they are heterogeneous (homogeneous).
27There are virtually no panel datasets representative of the population of interest (i.e., a whole country) with a long time series

dimension and collected at a frequency that can accurately capture short-run economic fluctuations. In particular, in the PSID

there are no questions that would allow to measure aggregate consumption or investment. Not to mention that those data were

collected annually and, more recently, every other year. Other popular alternatives, the NLSY and the HRS, consider selected

samples, which are not amenable to an aggregate analysis.
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dimensions, I rely on a weighted average of the two related Bayes factors, using the relative number of moments

employed in each case as weights (ω).28 The average Bayes factors BF , which are the average of the underlying

macro and micro ones, are obtained as follows: BF = ω∗BF1+(1− ω)∗BF2, where in this application ω = 3/4.

It is now understood that two separate a-theoretical econometric models, E∗
1 and E∗

2 , are needed to obtain the

posterior densities of the macro and micro moments, respectively.

As all the economic models have non-degenerate wealth distributions, the microeconomic dimension of

interest is the long-run wealth Gini index (g).29 The formula for the micro Bayes factors is:

BF2 ≡ P2(Mi|micro data,E2)

P2(Mj |micro data,E2)
=

P2(Mi|E2)P2(micro data|Mi, E2)

P2(Mj |E2)P2(micro data|Mj , E2)

=
P2(Mi|E2)

∫
P2(g|Mi)P2(micro data|g,E2)dg

P2(Mj |E2)
∫
P2(g|Mj)P2(micro data|g,E2)dg

∝

∫
P2(g|Mi)P2(g|micro data,E∗

2
)dg∫

P2(g|Mj)P2(g|micro data,E∗
2 )dg

≈

1
NMi

NE∗
2

NMi∑
u=1

NE∗
2∑

v=1
K2

(
gMi
u ; g

E∗
2

v

)
1

NMj
NE∗

2

NMj∑
u=1

NE∗
2∑

v=1
K2

(
g
Mj
u ; g

E∗
2

v

)
In this case, the computation of the posterior odds ratios is achieved with simple univariate kernel density

approximations.

A Bayesian Econometric Model for the Wealth Gini Index: In the extended framework, there is the

need to link the distribution of the population wealth inequality to the observables, which are the cross sectional

wealth distributions in the PSID waves between 1984 and 2019. Therefore, for each wave, I specify a simple

cross-sectional Bayesian model for log wealth ãi ≡ log ai: ãi
iid∼ N(µa, σ

2
a).

30

Under this distributional assumption there is a closed form formula for the Gini index g = 2Φ(σa/
√
2)− 1,

28Since in principle there are no restrictions to the number of moments that can be considered in either dimension, it is reasonable

to take this element into account, to give more importance to the aspect that is assessed with more moments. Also, computing the

Bayes factor by taking ratios of average marginal likelihoods is not feasible, as in its formula the terms P1(Y,C|E∗
1 ) and P2(a|E∗

2 )

would not drop out.
29Recall that in the PSID the consumption measure is not ideal, as it refers to food expenditure. This makes it undesirable

to consider the same correlations at both the macro and micro levels. Also, data on the wealth distribution are not available at

the quarterly frequency, and the SCF data are typically collected every two years. Since the wealthiest households tend to be the

entrepreneurs, which are not modeled here, I rely on the PSID wealth data instead. Finally, although the U.S. wealth distribution

has been fairly stable over time, I consider several cross sections to make the population moment of interest –the long-run wealth

Gini index– consistent with the available data.
30More precisely, I consider a truncated distribution, as wealth holdings can be negative. The log-normal assumption applies

above a truncation point aq1 such that ãi
iid∼ N(µa, σ2

a)|ai > aq1 . Some experimentation showed that truncating the empirical

distributions at the first quartile provides an excellent fit between the actual Gini index and the theoretical one. For computational

convenience, the truncation point aq1 is assumed to be known.
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where Φ(.) is the CDF of the standard normal. This helps tremendously in the computation of the posterior

for the wealth Gini index, as it is readily obtained by sampling from the posterior distribution of σ2
a.

I assume a diffuse prior for both µa and σ2
a. Following well-known results in Zellner (1971) and Lancaster

(2004), the marginal posterior for the variance σ2
a is proportional to a Gamma(ν) distribution, where ν denotes

the degrees of freedom. The computation of the posterior distribution for the Gini index for a given cross

sectional sample is then straightforward. A complication arises from the fact that the data consists of a sequence

of cross sections, and that the models have implications for the long-run degree of wealth inequality. I deal with

this aspect by considering the mixture of the resulting posterior distributions, each equally weighted, and with

a weight corresponding to the inverse of the number of PSID waves (NPSID = 14) used in the analysis.

P2(g|micro data,E∗
2 ) =

NPSID∑
q=1

1

NPSID
P2,q(g|micro data in wave q, E∗

2 )

The results related to the marginal likelihoods are included in the bottom part of Table 4, while the bottom

portions of Table 5 and 9 report the average Bayes factors.31

It is not surprising that, in this dimension, the model without preference heterogeneity displays a poor

fit. Differently, the LML for the other three models are similar and quite stable across cases. Considering

the weighted average of the two Bayes factors computed on the macro and micro moments does not alter the

ranking obtained with the macro moments only. The evidence in favor of the two models with risk aversion

heterogeneity becomes somewhat weaker, but the results based on detrending the aggregate data with the HP

filter still offer substantial evidence in favor of model M4 (β,γ).

[Table 7 about here]

To conclude with, I perform a Monte Carlo analysis also for the microeconomic moment, whose results

are reported in Table 7. For these experiments, I consider model-generated data with 30,000 cross sectional

observations collected in 4 waves (notice that these simulations do not require detrending). Also when working

with the wealth Gini index, the MEI recovers the DGPs, by assigning them both higher marginal likelihoods and

sizable Bayes factors. Finally, the bottom portions of the Table report the average Bayes factors of the Monte

Carlo experiments, combining the macro and micro moments. In most comparisons, the true DGPs display

very large average Bayes factors. The results in these Monte Carlo experiments are valuable also because they

help gauging how big the average Bayes factors should be in order to be informative. When comparing the top

two models, values above 2 seem to be large enough to provide evidence supporting the DGP against its closest

competitor.

31The mixture of the wealth Gini index’s posterior densities is plotted in Figure 5 in Appendix G, which in Figure 4 also includes

the distributions of the model-generated wealth Gini index, for Case 2.
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6 Conclusions

In this paper, I have undertaken a formal comparison of models with heterogeneous agents and aggregate uncer-

tainty, extending the computationally tractable Bayesian framework of DeJong, Ingram, and Whiteman (1996)

and Geweke (2010). I have incorporated time-varying heterogeneity in risk aversion, finding that this additional

layer of heterogeneity improves the model’s fit. Relying on three aggregate moments that are closely linked to

consumption smoothing behavior, I have found that the two models with risk aversion heterogeneity attain the

largest marginal likelihoods. This result holds also when I incorporate into the empirical framework an addi-

tional microeconomic moment, the wealth Gini index. Finally, I have also assessed the MEI methodology with a

Monte Carlo analysis, showing that both macroeconomic and microeconomic data help discriminating between

different specifications of the model. The results have shown that risk aversion heterogeneity is quantitatively

important, and it should be routinely included in macroeconomic models with aggregate shocks.

To conclude, given that fully Bayesian methods are infeasible for most specifications of incomplete markets

model with aggregate risk, the MEI represents a viable and coherent approach for model comparison in the

presence of parameter uncertainty. In more general models, say with flexible labor supply or overlapping-

generations, the set-up can be easily extended to consider a larger number of microeconomic moments, such as

the correlation between wealth and leisure, or the life-cycle dynamics of wealth and hours worked.
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Label Model Set-up

M0 (CM) Complete Markets and No Heterogeneity

M1 (IM) Incomplete Markets and No Preference Heterogeneity

M2 (β) Incomplete Markets and β Heterogeneity (No γ Heterogeneity)

M3 (γ) Incomplete Markets and γ Heterogeneity (No β Heterogeneity)

M4 (β,γ) Incomplete Markets and β and γ Heterogeneity

Label Parameter Priors Set-up

Case 1 Correlated Uniforms

Case 2 Uncorrelated Uniforms

Case 3 Uncorrelated Betas

Case 4 Uncorrelated Uniforms with overlaps in the heterogeneous preference parameters

Monte Carlo Uncorrelated Uniforms with bounds around the DGP(±10%)

Table 1: Models and Cases Description.
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Case M1 (IM) M2 (β) M3 (γ) M4 (β,γ)

HtM Recessions 26.0% 34.1% 53.9% 37.2%

HtM Booms 4.0% 6.9% 4.1% 14.0%

W-HtM Recessions - 26.9% - 35.6%

W-HtM Booms - 4.2% - 13.5%

Table 2: Share of Hand-to-Mouth and Wealthy Hand-to-Mouth households.

22



0
.2

.4
.6

D
en

si
ty

-3 -2 -1 0 1
CEV %

kernel = gaussian, bandwidth = 0.1141

Model M2

0
.1

.2
.3

.4
D

en
si

ty

-4 -2 0 2
CEV %

kernel = gaussian, bandwidth = 0.1579

Model M3

0
.1

.2
.3

D
en

si
ty

-66 -64 -62 -60 -58
CEV %

kernel = gaussian, bandwidth = 0.2247

Model M4

0
.2

.4
.6

-60 -40 -20 0
CEV %

kdensity betahet kdensity sigmanobeta

kdensity sigmabeta

Models M2-M4

Figure 1: Kernel Densities of the Long-Run Welfare Effects (CEV%) of Eliminating Business Cycles in models

M2 (β), M3 (γ), and M4 (β,γ). Notes: The welfare effects are obtained by applying the integration principle.
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Model Parameter Description Min Max

All α Capital share α = 0.32 α = 0.40

All δ Capital depreciation rate δ = 0.020 δ = 0.025

M1-M4 amin Borrowing limit amin = −2.0 amin = 0

All l Hours worked (share of time endowment) l = 0.287 l = 0.351

All uG Unemployment rate in expansions uG = 0.03 uG = 0.05

All uB Unemployment rate in recessions uB = 0.09 uB = 0.11

M0 (CM) β Discount factor β = 0.985 β = 0.995

γ Relative risk aversion γ = 1.0 γ = 3.0

M1 (IM) β Discount factor β = 0.9849 β = 0.9949

γ Relative risk aversion γ = 1.0 γ = 3.0

M2 (β) βh Discount factor (type-specific) βh = 0.992 βh = 0.994

βm ” βm = 0.9884 βm = 0.9904

βl ” βl = 0.9848 βl = 0.9868

γ Relative risk aversion γ = 1.0 γ = 3.0

M3 (γ) β Discount factor β = 0.984 β = 0.994

γh Relative risk aversion (type-specific) γh = 7.247 γh = 7.847

γm ” γm = 1.818 γm = 2.418

γl ” γl = 0.623 γl = 1.223

pγj
CRRA Markov chain probabilities See text

M4 (β,γ) βh Discount factor (type-specific) βh = 0.992 βh = 0.994

βm ” βm = 0.984 βm = 0.986

βl ” βl = 0.980 βl = 0.982

γh Relative risk aversion (type-specific) γh = 7.247 γh = 7.847

γm ” γm = 1.818 γm = 2.418

γl ” γl = 0.623 γl = 1.223

pγj
CRRA Markov chain probabilities See text

Table 3: Model parameters and their priors’ support. Notes: The model period is a quarter. The parameters

listed in the top of the table are common to the four incomplete markets models. The others are model-specific.
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Model LML (Case 1) LML (Case 2) LML (Case 3) LML (Case 4)

Macro Moments - One-sided HP Filter

M0 (CM) - CM and No Heterogeneity −13.953 −12.915 −14.767 −12.915

M1 (IM) - No Preference Heterogeneity −13.017 −12.167 −14.125 −12.167

M2 (β) - β Heterogeneity −5.539 −4.799 −8.654 −4.756

M3 (γ) - γ Heterogeneity −2.957 −2.955 −4.073 −3.949

M4 (β,γ) - β and γ Heterogeneity −1.209 −0.920 −1.863 −2.904

Macro Moments - BN Filter

M0 (CM) - CM and No Heterogeneity −18.152 −16.766 −19.325 −16.766

M1 (IM) - No Preference Heterogeneity −14.737 −14.971 −17.662 −14.971

M2 (β) - β Heterogeneity −2.455 −1.177 −6.266 −1.043

M3 (γ) - γ Heterogeneity 0.202 0.009 −0.076 0.095

M4 (β,γ) - β and γ Heterogeneity 0.199 0.077 −1.033 −0.356

Micro Moment

M0 (CM) - CM and No Heterogeneity NA NA NA NA

M1 (IM) - No Preference Heterogeneity −0.127 −2.816 −18.112 −2.816

M2 (β) - β Heterogeneity 3.836 3.797 3.901 3.663

M3 (γ) - γ Heterogeneity 3.650 3.533 2.884 3.371

M4 (β,γ) - β and γ Heterogeneity 3.972 3.950 3.820 3.786

Table 4: Log Marginal Likelihoods (LML) under the Minimal Econometric Interpretation. Notes: The top

and middle panels (bottom panel) report the LML based on the Macro-economic (Micro-economic) moments

(moment). The time series data are filtered with either the one-sided HP filter (top panel) or the BN filter

(middle panel). A fixed bandwidth equal to 0.003 is used for all density approximations.
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Comparison Macro BF (Case 1) Macro BF (Case 2) Macro BF (Case 3) Macro BF (Case 4)

P (M0(CM)|.)/P (M1(0)|.) 0.392 0.474 0.527 0.474

P (M0(CM)|.)/P (M2(β)|.) 0.000 0.000 0.002 0.000

P (M0(CM)|.)/P (M3(γ)|.) 0.000 0.000 0.000 0.000

P (M0(CM)|.)/P (M4(β,γ)|.) 0.000 0.000 0.000 0.000

P (M1(0)|.)/P (M2(β)|.) 0.001 0.001 0.004 0.001

P (M1(0)|.)/P (M3(γ)|.) 0.000 0.000 0.000 0.000

P (M1(0)|.)/P (M4(β,γ)|.) 0.000 0.000 0.000 0.000

P (M2(β)|.)/P (M3(γ)|.) 0.076 0.158 0.010 0.446

P (M2(β)|.)/P (M4(β,γ)|.) 0.013 0.021 0.001 0.157

P (M3(γ)|.)/P (M4(β,γ)|.) 0.174 0.131 0.110 0.352

Comparison Average BF (Case 1) Average BF (Case 2) Average BF (Case 3) Average BF (Case 4)

P (M1(0)|.)/P (M2(β)|.) 0.005 0.001 0.003 0.001

P (M1(0)|.)/P (M3(γ)|.) 0.006 0.001 0.000 0.001

P (M1(0)|.)/P (M4(β,γ)|.) 0.004 0.000 0.000 0.000

P (M2(β)|.)/P (M3(γ)|.) 0.358 0.444 0.699 0.670

P (M2(β)|.)/P (M4(β,γ)|.) 0.228 0.230 0.272 0.339

P (M3(γ)|.)/P (M4(β,γ)|.) 0.312 0.263 0.180 0.429

Table 5: Model Comparison: Bayes Factors, One-sided HP Filter.
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Comparison \ DGP M1(IM) M2(β) M3(γ) M4(β,γ)

One-Sided HP Filter

P (M0(CM)|.)/P (M1(IM)|.) 0.935 0.753 0.845 0.366

P (M0(CM)|.)/P (M2(β)|.) 1.624 0.239 2.130 0.0001

P (M0(CM)|.)/P (M3(γ)|.) 4.060 1.069 0.612 0.0001

P (M0(CM)|.)/P (M4(β,γ)|.) 506.233 17.971 98.652 0.0001

P (M1(IM)|.)/P (M2(β)|.) 1.737 0.317 2.520 0.0001

P (M1(IM)|.)/P (M3(γ)|.) 4.345 1.419 0.724 0.0001

P (M1(IM)|.)/P (M4(β,γ)|.) 541.691 23.857 116.682 0.0001

P (M2(β)|.)/P (M3(γ)|.) 2.501 4.479 0.287 0.004

P (M2(β)|.)/P (M4(β,γ)|.) 311.776 75.325 46.307 0.003

P (M3(γ)|.)/P (M4(β,γ)|.) 124.674 16.818 161.239 0.774

BN Filter

P (M0(CM)|.)/P (M1(IM)|.) 0.839 0.474 0.611 1.000

P (M0(CM)|.)/P (M2(β)|.) 1.798 0.077 1.254 0.0001

P (M0(CM)|.)/P (M3(γ)|.) 3.970 0.383 0.355 0.0001

P (M0(CM)|.)/P (M4(β,γ)|.) 989.205 8.389 108.171 0.0001

P (M1(IM)|.)/P (M2(β)|.) 2.144 0.162 2.053 0.0001

P (M1(IM)|.)/P (M3(γ)|.) 4.734 0.808 0.581 0.0001

P (M1(IM)|.)/P (M4(β,γ)|.) 1179.529 17.687 177.119 0.0001

P (M2(β)|.)/P (M3(γ)|.) 2.208 4.979 0.283 0.0001

P (M2(β)|.)/P (M4(β,γ)|.) 550.141 109.010 86.287 0.0001

P (M3(γ)|.)/P (M4(β,γ)|.) 249.182 21.893 304.668 0.586

Table 6: Model Comparison for the Monte Carlo analysis, T = 300: Macro Bayes Factors. Notes: The true

DGP is indicated by the column labels.
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Model or Comparison \ DGP M1(IM) M2(β) M3(γ) M4(β,γ)

Micro BF

P (M1(IM)|.)/P (M2(β)|.) 1567.7 0.013 ∞ 0.328

P (M1(IM)|.)/P (M3(γ)|.) 12.368 0.056 0.046 0.916

P (M1(IM)|.)/P (M4(β,γ)|.) 127.60 0.029 552.293 0.115

P (M2(β)|.)/P (M3(γ)|.) 0.008 4.429 0.000 2.788

P (M2(β)|.)/P (M4(β,γ)|.) 0.081 2.329 0.000 0.350

P (M3(γ)|.)/P (M4(β,γ)|.) 10.317 0.526 12091.9 0.126

Average BF (HP Filter)

P (M1(IM)|.)/P (M2(β)|.) 393.23 0.241 ∞ 0.082

P (M1(IM)|.)/P (M3(γ)|.) 6.351 1.078 0.554 0.229

P (M1(IM)|.)/P (M4(β,γ)|.) 438.17 17.900 225.585 0.029

P (M2(β)|.)/P (M3(γ)|.) 1.878 4.466 0.215 0.700

P (M2(β)|.)/P (M4(β,γ)|.) 233.85 57.076 34.730 0.090

P (M3(γ)|.)/P (M4(β,γ)|.) 96.085 12.745 3143.9 0.612

Average BF (BN Filter)

P (M1(IM)|.)/P (M2(β)|.) 393.54 0.125 ∞ 0.082

P (M1(IM)|.)/P (M3(γ)|.) 6.642 0.620 0.447 0.229

P (M1(IM)|.)/P (M4(β,γ)|.) 916.55 13.273 270.912 0.029

P (M2(β)|.)/P (M3(γ)|.) 1.658 4.842 0.212 0.697

P (M2(β)|.)/P (M4(β,γ)|.) 412.63 82.340 64.715 0.087

P (M3(γ)|.)/P (M4(β,γ)|.) 189.46 16.552 3251.4 0.471

Table 7: Monte Carlo Analysis for the Wealth Gini Index: Bayes Factors. Notes: The true DGP is indicated

by the column labels.
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Appendix A - Computation

� All codes solving the economies were written in the FORTRAN 95 language, relying on the Intel Fortran

Compiler, build 18.0.02 (with the IMSL library). They were compiled selecting the O3 option (maximize

speed), and without automatic parallelization. They were run on a 64-bit PC platform, running Windows

10 Professional Edition, with either an Intel Xeon E5− 2687Wv2 Octo-core processor clocked at 3.4 Ghz,

or an Intel Core i7− 9900k Octo-core processor clocked at 4.8 Ghz.

� The 1, 000 replications are run in parallel across cores and for model M4 take up to 4 days to complete.

Notice that typically from 15 to 25 iterations on the ALM are needed to find each equilibrium.

� In the actual solution of the model I need to discretize the continuous state variables a and K (the discount

factor heterogeneity β, the risk aversion heterogeneity γ, the employment status s, and the aggregate

productivity shock z are already discrete). For the household assets a I rely on an unevenly spaced grid,

with the distance between two consecutive points increasing geometrically. This is done to allow for a

high precision of the policy rules at low values of a, where the change in curvature is more pronounced.

In order to keep the computational burden manageable, I use 101 grid points on the household assets

space (75 grid points for model M4 ), the lowest value being the borrowing constraint b and the highest

one being a value amax high enough not to be binding in the simulations (amax = 500). For the aggregate

capital K I use a fairly dense grid. Over the [3, 27] interval I use 25 points, which are far more than the

typical 4-6. Given the large number of parameterizations, in the iterative process on the ALM parameters

the simulations do visit regions for aggregate capital that are very far from the support of the ergodic

equilibrium distribution, causing convergence issues when using a coarse grid.

� As for the solution method for the household problem, I use the Endogenous Grid Method (EGM) with

linear interpolation in the (a,K) dimensions. This method is much faster and more stable than the

relatively popular value function iteration scheme with cubic spline interpolation.

� The aggregate dynamics are computed by simulating a large panel of individuals for 6, 000 periods, with

the first 2, 000 periods being discarded as a burn-in. The panel size is 50, 000 agents for the economies

with preference heterogeneity, and 30, 000 agents for the other one. As for the approximation method, I

rely on a bi-linear approximation scheme for the saving functions, for values of a and K falling outside

the grid.

� The welfare effects are computed by simulating a large panel of individuals for 6, 000 periods, with the

first 2, 000 periods being discarded as a burn-in. The panel size is 100, 000 agents.

� If the numerical procedure fails to converge in some of its steps, the related results are discarded.
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Appendix B - Algorithm for the Models Solution

The computational procedure used to solve the incomplete markets model economies can be represented by

the following algorithm:

1. Solve each version of the model at the average of the uniform prior distributions and store the equilibrium

ALM parameters Θ∗.

2. Consider model Mi, i = 1, ..., 4.

3. Draw 1, 000 combinations of parameters from their prior distributions and store them.

4. Begin the replications and set j = 1.

5. Parametrize the model by reading the vector j of parameter draws and begin the model solution.

6. Generate a discrete grid over the aggregate capital space [Kmin, ...,Kmax] .

7. Generate a discrete grid over the individual asset space [−b, ..., amax] .

8. Guess a vector of parameters Θg representing the ALM, using in the first iteration Θ∗, the converged

parameters for the model solved at the average of the priors.

9. Get the saving functions a′(a, β, γ, s, z,K).

10. Simulate the model under the guessed ALM, and compute an update Θg′ as the parameter estimates of

OLS regressions on the simulated data.

11. Repeat steps 8− 10 until the four parameters in Θ converge.

12. Compute the BN or HP filtered series for consumption and income, and get mρCY
, mρC

and msdCY
.

13. Save the output, set j = j + 1 and repeat steps 5− 12 NMi
times.

14. Move to the next model and repeat all the steps above.

To ensure similar numerical accuracy, also the complete markets model M0 is solved with global meth-

ods, following a procedure similar to the one outlined above. Since the social planner problem breaks the

computational efficiency of the EGM, it is solved using a collocation method instead.
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Appendix C - Algorithm for the Bayesian VAR and the Moments’ Posteriors
The computational procedure used to obtain the posterior distributions for the moments of interest can be

represented by the following algorithm:

1. Get the OLS estimates D̂OLS for the VAR parameters and stack the estimates in the vector d̂OLS =

vec(D̂OLS).

2. Compute the residuals Yt−D̂OLSYt−1 and the associated matrix S =
(
Yt − D̂OLSYt−1

)′ (
Yt − D̂OLSYt−1

)
.

3. Get the inverse S−1 and V =
(
Y ′
t−1Yt−1

)−1
.

4. Begin the replications and set j = 1.

5. Since the posterior for the matrix Σ is a Wishart distribution ΣPOST |data ∼ W (S, v), where v denotes

the degrees of freedom, draw from the inverse Wishart distribution Σ−1
POST ∼ W (S−1, v).

6. To obtain Wishart draws, get the Cholesky decomposition of S−1, draw v times from a correlated bivariate

normal (there are only two variables in the VAR), collect the draws in the matrix H, and set Σ−1
POST =

H ′H.

7. Get the inverse ΣPOST and use it to draw the VAR parameters from their posterior, which is a correlated

normal d̂POST |Σ, data ∼ N
(
d̂OLS ,Σ⊗ V

)
.

8. Set up a system of three linear equations, whose unknowns are the population second order moments

of Y and C. The entries in the vector of constants are the three distinct elements of the current draw

ΣPOST , while the entries in the matrix of coefficients are simple functions of the current draws of the VAR

parameters d̂POST .

9. Consider the current posterior draws, solve the system, compute the moments of interest and store them.

10. Set j = j + 1 and repeat steps 5− 9 NE∗ times.
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Appendix D - Data
The time series were obtained from the Federal Reserve Bank of St. Louis FRED II data base. The data

are quarterly and the range is 1947Q1− 2019Q4 (Source: http://research.stlouisfed.org/fred2/).

Aggregate output is defined as the sum of Services, Non Durables and Investment, and the corresponding

series are:

- Real personal consumption expenditures per capita: Nondurable goods (series ID: A796RX0Q048SBEA).

- Real personal consumption expenditures per capita: Services (series ID: A797RX0Q048SBEA).

- Real Gross Private Domestic Investment (series ID: GPDIC1).

Since the Investment series represents total investment in the economy, I divide it by the Civilian Non-

institutional Population (series ID: B230RC0Q173SBEA).

In the empirical analysis, all time series are filtered, and so are the simulated series obtained from each

model.

The cross sectional wealth data were obtained from the Survey Research Center at the University of

Michigan. The wealth data were collected irregularly, first every five years, then every other year (Source:

https://simba.isr.umich.edu/data/data.aspx). I use the following waves: 1984, 1989, 1994, 1999, 2001, 2003,

2005, 2007, 2009, 2011, 2013, 2015, 2017, 2019. Each cross section is truncated below the first quartile.
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Appendix E - Long-Run Welfare Effects of Eliminating Business Cycles
In order to compute the welfare effects arising from the elimination of aggregate risk I follow the procedure

proposed by Krusell and Smith (1999), Mukoyama and Sahin (2006) and Krusell, Mukoyama, Sahin, and

Smith (2009). There are two issues worthy of being discussed. First, aggregate risk and idiosyncratic risk

are correlated via the state dependent employment process. Eliminating aggregate risk involves adjusting the

employment process, a procedure which does not correspond to considering the unconditional average of the

Markov chains. Krusell, Mukoyama, Sahin, and Smith (2009) refer to this step as the integration principle,

which requires formulating the models without aggregate risk in a recursive way by including two new values for

the employment state variable. I follow the same formulation used by Mukoyama and Sahin (2006) and carefully

presented in the Appendix of Mukoyama and Sahin (2005). In the models with risk aversion heterogeneity there

is an additional complication, as this household characteristic is time varying. Because of this element, the

CRRA coefficient is changing over time and, unlike in Krusell, Mukoyama, Sahin, and Smith (2009), the welfare

effects cannot be obtained in closed form. The long-run welfare effects need to be computed by solving a non-

linear equation, which is computationally demanding when evaluating the whole distribution of welfare effects

(there is one potential welfare effect per initial condition, namely a specific combination of both aggregate and

individual states).
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Appendix F - The Relation to some Recent Methodological Papers
In this appendix, I outline how my approach differs from some recent papers in the literature, and what are

the relative pros and cons.

Ahn, Kaplan, Moll, Winberry, and Wolf (2017) is an important contribution, but its limitations should not

be underplayed. Their method allows to solve models with both heterogeneity and frictions that are impossible

to tackle with the traditional recursive methods and solution algorithms. I believe that this is where the method

should be applied, while using it for estimation is problematic. The appeal of Ahn, Kaplan, Moll, Winberry,

and Wolf (2017) is the impressive speed of their solution method. An important caveat is that the authors are

not solving the Krusell and Smith (1998) (KS) economy. In their formulation, there is one simplification that

might seem innocuous, but has important implications. The stochastic process for the employment status must

be time-invariant, and cannot depend on the aggregate state, which is a key assumption for their procedure

to work. Granted, their aggregate shock has a continuous support, rather than the two-point process that I

am considering. However, a simple simulation would reveal an important shortcoming: their labor market does

not display booms and recessions, as the unemployment rate is constant over time. I should stress that this

is not just a way to simplify the exposition in their paper. Rather, it is an essential feature of their method,

as the model first needs to be solved by eliminating the effect of the aggregate shock. They are considering

idiosyncratic uncertainty, but this cannot depend on the aggregate state, which is one of the defining features

of KS’s framework. Therefore, the accuracy results they report are not very informative, because they do

not incorporate the errors introduced by neglecting the aggregate fluctuations in the labor market. Their DM

statistic is somewhat better than what is reported in den Haan (2010). However, they are solving a different

model, so the actual errors are likely to be large, because the decision rules are the ones for the average

unemployment rate. Moreover, in the discussion section of the paper, Per Krusell points out that applying

certainty equivalence (as they are doing) precludes studying important outcomes, such as the welfare costs

of business cycles. Finally, likelihood based estimation is not feasible, because in their two-asset model their

reduction technique leads to 300 state variables, which makes using the Kalman smoother intractable. It goes

without saying that the MEI can be easily applied also to that model, and it is feasible. Moreover, I am

providing a relatively easy way to incorporate cross sectional information into the empirical implementation of

the theoretical models.

Winberry (2018) proposed to solve models with heterogeneity using perturbation methods. However, it is

not clear how accurate these solutions are. In the firm heterogeneity set-up, Terry (2017) has shown that the

method is not very accurate. In the household heterogeneity set-up, I used the codes included in Winberry

(2018), and the results are inaccurate, as shown in the plot below for the unemployed agents. In terms of

the long-run average of aggregate capital, comparing these results to what is delivered by an accurate solution

method shows that there is a 3% discrepancy. This gap is extremely high (as a reference, when assessing different

solution methods, den Haan already considers a 1% gap as being excessive). Clearly, a 3% gap can bias in severe

and hard to predict ways the welfare effects computations of different policies, among many other outcomes.

And the procedure would fare worse in models with fat tails, which is a feature of my models with preference

heterogeneity. This problem is not present in the solution method I am using, as I checked that, when solving
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the steady state version of the model, simulating a large panel (as done in KS) or approximating numerically the

CDF give very similar values for aggregate capital (and the other endogenous variables). In terms of estimation,

notice that Winberry (2018) uses only two observables, and the feasibility of his method is due to a combination

of model characteristics, and parameters that are estimated, because they do not affect the steady state of the

model. Finally, in Table 8 I compare the moments obtained solving Winberry’s household model with aggregate

shocks (using the Krusell and Smith (1998) calibration), to those that I get with the KS algorithm. Some

statistics are remarkably different. In terms of computing time, using the same PC, Winberry’s method solves

the model in approximately 155 seconds, while my solution implemented in Fortran 95 takes 125 seconds.

Figure 2: Cross Sectional Distributions.

Method KS Winberry

Sd(Y) 0.0237 0.0116

Sd(C) 0.0035 0.0041

Sd(I) 0.0882 0.0281

ρC,Y 0.7369 0.8372

ρC,I 0.6790 0.7401

ρY,I 0.9966 0.9980

ρY 0.5929 0.5985

ρC 0.7913 0.8131

ρI 0.5866 0.5600

Table 8: Comparison of Krusell and Smith (1998) and Winberry (2018).
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Appendix G - Additional Plots, Tables and Results
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Figure 3: Kernel Approximation of the Moments’ Posterior Densities, BVAR(1) on US Data. Solid line: one-

sided HP Filter; Dashed line: two-sided HP Filter (λHP = 1600); Dash-dotted line: BN Filter (AR(12) with

δ̄BN = 0.21). Gaussian Kernels with fixed bandwidth (bw = 0.003).
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Figure 4: Kernel Approximation of the Densities of the Model-Generated Moments, Uncorrelated Uniform

Priors. Top (Bottom) row: one-sided HP Filter (BN) Filter. Black line: M0(CM); Blue line: M1(IM); Grey

line: M2(β); Green line: M3(σ); Red line: M4(β,σ).
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Figure 5: Kernel Approximation of the Mixture of Wealth Gini Index’s Posterior Densities, PSID 1984-2019

Data. Each Cross Section is Truncated Below the First Quartile. Gaussian Kernel with fixed bandwidth

(bw = 0.003).
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Figure 6: Kernel Approximation of the Densities of the Model-Generated Wealth Gini Index, Uncorrelated

Uniform Priors. Blue line: M1(IM); Grey line: M2(β); Green line: M3(σ); Red line: M4(β,σ) Gaussian Kernels

with fixed bandwidth (bw = 0.003).
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Figure 7: Identification of the CRRA Markov chain probability pγm .
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Comparison Macro BF (Case 1) Macro BF (Case 2) Macro BF (Case 3) Macro BF (Case 4)

P (M0(CM)|.)/P (M1(0)|.) 0.033 0.166 0.190 0.166

P (M0(CM)|.)/P (M2(β)|.) 0.000 0.000 0.000 0.000

P (M0(CM)|.)/P (M3(γ)|.) 0.000 0.000 0.000 0.000

P (M0(CM)|.)/P (M4(β,γ)|.) 0.000 0.000 0.000 0.000

P (M1(0)|.)/P (M2(β)|.) 0.000 0.000 0.000 0.000

P (M1(0)|.)/P (M3(γ)|.) 0.000 0.000 0.000 0.000

P (M1(0)|.)/P (M4(β,γ)|.) 0.000 0.000 0.000 0.000

P (M2(β)|.)/P (M3(γ)|.) 0.070 0.305 0.002 0.320

P (M2(β)|.)/P (M4(β,γ)|.) 0.070 0.285 0.005 0.503

P (M3(γ)|.)/P (M4(β,γ)|.) 1.003 0.934 2.602 1.569

Comparison Average BF (Case 1) Average BF (Case 2) Average BF (Case 3) Average BF (Case 4)

P (M1(0)|.)/P (M2(β)|.) 0.005 0.000 0.000 0.000

P (M1(0)|.)/P (M3(γ)|.) 0.006 0.000 0.000 0.001

P (M1(0)|.)/P (M4(β,γ)|.) 0.004 0.000 0.000 0.000

P (M2(β)|.)/P (M3(γ)|.) 0.354 0.555 0.693 0.575

P (M2(β)|.)/P (M4(β,γ)|.) 0.271 0.429 0.275 0.598

P (M3(γ)|.)/P (M4(β,γ)|.) 0.934 0.865 2.050 1.342

Table 9: Model Comparison: Bayes Factors, BN Filter.
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Comparison \ DGP M1(IM) M2(β) M3(γ) M4(β,γ)

One-Sided HP Filter

P (M0(CM)|.)/P (M1(IM)|.) 0.989 0.798 0.912 0.277

P (M0(CM)|.)/P (M2(β)|.) 2.344 0.333 3.099 0.0001

P (M0(CM)|.)/P (M3(γ)|.) 5.039 1.506 1.028 0.0001

P (M0(CM)|.)/P (M4(β,γ)|.) 903.175 43.077 267.004 0.0001

P (M1(IM)|.)/P (M2(β)|.) 2.371 0.417 3.397 0.0001

P (M1(IM)|.)/P (M3(γ)|.) 5.096 1.888 1.127 0.0001

P (M1(IM)|.)/P (M4(β,γ)|.) 913.485 53.989 292.651 0.0001

P (M2(β)|.)/P (M3(γ)|.) 2.149 4.526 0.332 0.001

P (M2(β)|.)/P (M4(β,γ)|.) 385.275 129.414 86.155 0.001

P (M3(γ)|.)/P (M4(β,γ)|.) 179.253 28.595 259.652 0.774

BN Filter

P (M0(CM)|.)/P (M1(IM)|.) 0.976 0.585 0.776 1.000

P (M0(CM)|.)/P (M2(β)|.) 3.434 0.160 2.481 0.0001

P (M0(CM)|.)/P (M3(γ)|.) 5.664 0.790 0.888 0.0001

P (M0(CM)|.)/P (M4(β,γ)|.) 1950.789 42.291 397.940 0.0001

P (M1(IM)|.)/P (M2(β)|.) 3.517 0.273 3.198 0.0001

P (M1(IM)|.)/P (M3(γ)|.) 5.802 1.349 1.144 0.0001

P (M1(IM)|.)/P (M4(β,γ)|.) 1998.164 72.278 512.808 0.0001

P (M2(β)|.)/P (M3(γ)|.) 1.650 4.948 0.358 0.0001

P (M2(β)|.)/P (M4(β,γ)|.) 568.151 265.059 160.371 0.0001

P (M3(γ)|.)/P (M4(β,γ)|.) 344.414 53.564 448.286 0.614

Table 10: Model Comparison for the Monte Carlo analysis, T = 3000: Macro Bayes Factors. Notes: The true

DGP is indicated by the column labels.
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Comparison \ DGP M1(IM) M2(β) M3(γ) M4(β,γ)

One-Sided HP Filter

P (M0(CM)|.)/P (M1(IM)|.) 0.991 0.794 0.900 0.594

P (M0(CM)|.)/P (M2(β)|.) 2.896 0.417 3.301 0.015

P (M0(CM)|.)/P (M3(γ)|.) 5.668 1.734 1.133 0.001

P (M0(CM)|.)/P (M4(β,γ)|.) 1159.762 52.129 282.778 0.0001

P (M1(IM)|.)/P (M2(β)|.) 2.922 0.525 3.668 0.025

P (M1(IM)|.)/P (M3(γ)|.) 5.718 2.185 1.259 0.001

P (M1(IM)|.)/P (M4(β,γ)|.) 1170.094 65.681 314.299 0.001

P (M2(β)|.)/P (M3(γ)|.) 1.957 4.162 0.343 0.036

P (M2(β)|.)/P (M4(β,γ)|.) 400.449 125.108 85.676 0.029

P (M3(γ)|.)/P (M4(β,γ)|.) 204.619 30.056 249.635 0.795

BN Filter

P (M0(CM)|.)/P (M1(IM)|.) 0.897 0.531 0.686 0.145

P (M0(CM)|.)/P (M2(β)|.) 2.204 0.114 1.713 0.0001

P (M0(CM)|.)/P (M3(γ)|.) 4.467 0.572 0.527 0.0001

P (M0(CM)|.)/P (M4(β,γ)|.) 1194.104 19.528 199.551 0.0001

P (M1(IM)|.)/P (M2(β)|.) 2.457 0.214 2.496 0.0001

P (M1(IM)|.)/P (M3(γ)|.) 4.980 1.076 0.769 0.0001

P (M1(IM)|.)/P (M4(β,γ)|.) 1331.308 36.761 290.886 0.0001

P (M2(β)|.)/P (M3(γ)|.) 2.027 5.017 0.308 0.0001

P (M2(β)|.)/P (M4(β,γ)|.) 541.795 171.420 116.520 0.0001

P (M3(γ)|.)/P (M4(β,γ)|.) 267.313 34.168 378.321 0.622

Table 11: Model Comparison for the Monte Carlo analysis, T = 150: Macro Bayes Factors. Notes: The true

DGP is indicated by the column labels.
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The Models’ Performance in other Dimensions: Tables 12 and 13 report the overlap between the 5-th

and 95-th percentiles of the prior (model-generated) and posterior (BVAR-generated) densities of the three

macro moments. Table 14 reports the overlap between the 5-th and 95-th percentiles of the prior (model-

generated) and posterior densities of the wealth Gini index. The results are similar to what is found on the

basis of the overall posteriors (joint, for the macro moments).
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Moment Area (Case 1) Area (Case 2) Area (Case 3) Area (Case 4)

ρCY

M0 (CM) - CM and No Heterogeneity 0.267 0.271 0.273 0.271

M1 (IM) - No Preference Heterogeneity 0.306 0.306 0.309 0.306

M2 (β) - β Heterogeneity 0.805 0.783 0.789 0.745

M3 (γ) - γ Heterogeneity 0.455 0.441 0.496 0.496

M4 (β,γ) - β and γ Heterogeneity 0.282 0.300 0.275 0.354

ρC

M0 (CM) - CM and No Heterogeneity 0.798 0.795 0.796 0.795

M1 (IM) - No Preference Heterogeneity 0.756 0.752 0.755 0.752

M2 (β) - β Heterogeneity 0.608 0.613 0.625 0.630

M3 (γ) - γ Heterogeneity 0.190 0.209 0.371 0.282

M4 (β,γ) - β and γ Heterogeneity 0.032 0.037 0.022 0.059

sdC/sdY

M0 (CM) - CM and No Heterogeneity 0.000 0.001 0.000 0.001

M1 (IM) - No Preference Heterogeneity 0.000 0.000 0.000 0.000

M2 (β) - β Heterogeneity 0.001 0.001 0.000 0.002

M3 (γ) - γ Heterogeneity 0.244 0.248 0.111 0.193

M4 (β,γ) - β and γ Heterogeneity 0.455 0.394 0.229 0.313

Table 12: Overlap between the 5-th and 95-th percentiles of the prior (model-generated) and posterior (BVAR-

generated) densities of the three macro moments. One-sided HP Filter. A fixed bandwidth equal to 0.003 is

used for all density approximations.
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Moment Area (Case 1) Area (Case 2) Area (Case 3) Area (Case 4)

ρCY

M0 (CM) - CM and No Heterogeneity 0.000 0.000 0.000 0.000

M1 (IM) - No Preference Heterogeneity 0.000 0.000 0.000 0.000

M2 (β) - β Heterogeneity 0.039 0.049 0.017 0.043

M3 (γ) - γ Heterogeneity 0.447 0.409 0.347 0.373

M4 (β,γ) - β and γ Heterogeneity 0.410 0.416 0.428 0.442

ρC

M0 (CM) - CM and No Heterogeneity 0.897 0.894 0.899 0.894

M1 (IM) - No Preference Heterogeneity 0.888 0.882 0.893 0.882

M2 (β) - β Heterogeneity 0.838 0.838 0.849 0.845

M3 (γ) - γ Heterogeneity 0.268 0.283 0.479 0.384

M4 (β,γ) - β and γ Heterogeneity 0.051 0.060 0.029 0.095

sdC/sdY

M0 (CM) - CM and No Heterogeneity 0.009 0.014 0.003 0.014

M1 (IM) - No Preference Heterogeneity 0.009 0.013 0.003 0.013

M2 (β) - β Heterogeneity 0.039 0.045 0.013 0.043

M3 (γ) - γ Heterogeneity 0.364 0.346 0.174 0.309

M4 (β,γ) - β and γ Heterogeneity 0.545 0.496 0.385 0.428

Table 13: Overlap between the 5-th and 95-th percentiles of the prior (model-generated) and posterior (BVAR-

generated) densities of the three macro moments. BN Filter. A fixed bandwidth equal to 0.003 is used for all

density approximations.
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Moment Area (Case 1) Area (Case 2) Area (Case 3) Area (Case 4)

Wealth Gini

M1 (IM) - No Preference Heterogeneity 0.014 0.001 0.001 0.001

M2 (β) - β Heterogeneity 0.648 0.624 0.679 0.549

M3 (γ) - γ Heterogeneity 0.548 0.492 0.265 0.420

M4 (β,γ) - β and γ Heterogeneity 0.758 0.740 0.644 0.625

Table 14: Overlap between the 5-th and 95-th percentiles of the prior (model-generated) and posterior densities

of the wealth Gini index. A fixed bandwidth equal to 0.003 is used for all density approximations.
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