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Abstract

Synthetic control methods are widely-used for estimating counterfactuals and treatment effects of policy
interventions. allsynth adds greatly-enhanced functionality to the user-written synth module for Stata,
which is widely used by practitioners to implement the “classic” synthetic control estimation strategy.
allsynth automates implementation of several extensions to the classic approach while retaining the syn-
tax of synth. The enhanced functionality includes automation of a bias-correction procedure that adjusts
for differences in the predictor variable values between a treated unit and its synthetic control donors, au-
tomation of in-space placebo treatment estimation for randomization inference, and automated synthetic
control estimation in environments with many treated units and treatment periods (“stacked” synthetic
control estimation). allsynth also provides enhanced automated graphing capability and thorough diag-
nostics to help users with implementation. allsynth version 1.2 can be installed by typing ssc install

allsynth, replace all in Stata’s command line.

Keywords: allsynth, stacked synthetic control, bias-correction, randomization inference

1 Introduction

Synthetic control methods (SCMs) (Abadie and Gardeazabal, 2003; Abadie, Diamond, and Hainmueller,

2010, 2015; Abadie, 2021) have gained widespread popularity across the social sciences as an empirical

strategy for estimating counterfactuals and treatment effects of policy interventions. For any unit that re-

ceives an intervention (or “treatment”), and given an outcome variable of interest observed for several time
†University of Victoria Department of Economics, 3800 Finnerty Road, Victoria, British Columbia, Canada. Email:

wiltshire@uvic.ca. This project benefited greatly from discussions with participants of the UC Davis Econometrics Reading
Group and Applied Micro brown bag, as well as participants at the 2021 Stata Conference. I am particularly grateful to numerous
members of the research community who beta-tested the package and communicated with me about issues and potential areas of
improvement, and to Jared Greathouse, Guido Imbens, Carl McPherson, Michael Reich, and Denis Sosinskiy for various comments.
All errors remain my own.
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periods pre- and post-treatment in the “treated” unit and several similar “untreated” units, SCMs forecast the

trajectory of the outcome variable in the absence of treatment. A “synthetic control” is a weighted average

of the untreated “donor pool” units, constructed so that the pre-treatment characteristics of the synthetic

control resemble those of the treated unit—including and especially the (generally non-linear) trajectory of

the outcome variable. Under fairly general conditions, the dynamic path of synthetic control estimates of

the outcome variable are a plausible estimate of the counterfactual trajectory of the outcome variable absent

treatment, allowing straightforward calculation of estimated treatment effects. In any given post-treatment

period, the estimated treatment effect on a treated unit is the difference between a treated unit’s outcome

value and that of its estimated synthetic control.

Synthetic controls are widely estimated by practitioners using the user-written synth command for Stata

(Abadie, Diamond, and Hainmueller, 2010). synth is highly effective for this purpose but offers no auto-

mated way to conduct inference, to create post-estimation figures, or to implement many of the extensions

that have been proposed in the synthetic control literature since synth was last updated in 2014. As a result,

the process of implementing these steps can be quite time-consuming for practitioners and opens up possi-

bilities for output to be affected by coding errors. The synth runner utilities package for Stata (Galiani and

Quistorff, 2017) greatly extends the functionality of synth and automates a number of additional procedures;

however, synth runner can often frustrate practitioners with errors that are difficult to diagnose. Moreover,

there are several more-recent synthetic control innovations which the package does not automate.

The allsynth package for Stata is a wrapper for synth that greatly extends the functionality of synth in

several ways, and offers thorough diagnostics to help diagnose errors that arise. The primary extensions are:

i) Automated estimation of “bias-corrected” synthetic control gaps (Abadie and L’Hour, 2021; Ben-

Michael, Feller, and Rothstein, 2021; Abadie, 2021), using regression-based adjustments to mitigate

bias in “classic” synthetic control estimates that results from discrepancies in predictor values between

a treated unit and its donor pool units

ii) Automated estimation of RMSPE-ranked p-values based on in-space placebo treatments (Abadie,

Diamond, and Hainmueller, 2015) for “classic” and “bias-corrected” specifications

iii) Automated estimation of (classic and bias-corrected) synthetic control average treatment effects,
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RMSPE-ranked p-values, and placebo-variance-based 95% confidence intervals and p-values (fol-

lowing the placebo variance estimation algorithm in Arkhangelsky et al. (2021)) from many treated

units and potentially staggered treatment timing—variously referred to as a “separate” or “stacked”

synthetic control estimating strategy (Ben-Michael, Feller, and Rothstein, 2022; Wiltshire, 2023)

iv) Greatly expanded automated graphing capability

Section 2 of this paper briefly reviews the formal setup and practical considerations when implementing

SCMs and conducting inference. Section 3 reviews the capabilities and syntax of allsynth v1.2. Section 4

walks through 13 illustrative examples that demonstrate the use of allsynth. It should be noted that allsynth

has been greatly expanded since the release of version 0.0.8 BETA, and some older syntax is deprecated and

occasionally even non-functional.

2 Synthetic Control Estimators

2.1 Setup and Practical Considerations

Synthetic control methods (SCMs) were originally developed for use with a single treated unit (Abadie

and Gardeazabal, 2003; Abadie, Diamond, and Hainmueller, 2010, 2015). More recently, they have been

extended to situations with many treated units and staggered treatment timing (Cavallo et al., 2013; Dube

and Zipperer, 2015; Acemoglu et al., 2016; Kreif et al., 2016; Galiani and Quistorff, 2017; Abadie and

L’Hour, 2021; Abadie, 2021; Ben-Michael, Feller, and Rothstein, 2022; Peri, Rury, and Wiltshire, 2024;

Powell, 2021; Wiltshire, 2023; Wiltshire et al., Forthcoming).

There are several flavors of this latter type of SCM. I here expound the “stacked” (or “separate”) approach

(Ben-Michael, Feller, and Rothstein, 2022; Wiltshire, 2023; Wiltshire et al., Forthcoming), which estimates

average treatment effects as (possibly weighted) means over many treated units. The “stacked” approach

nests the case with a single treated unit and highlights important considerations which may easily be ad-

dressed with allsynth. The end of Section 2.2 walks through a visual example of the steps of the synthetic

control estimation procedure.1

1Practitioners should see Abadie (2021) for a comprehensive review of the synthetic control literature.
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Suppose we observe data for I + J units over t calendar periods, where units j = 1, ..., I are “treated” and

j = I + 1, ..., I + J are untreated “donor pool” units. Each of the donor pool units is otherwise similar to

at least one treated county, and selection into treatment or non-treatment was as good as random—that is,

selection into treatment or the donor pool was plausibly not due to unobserved variables that are correlated

with any outcome of interest. Moreover, there are plausibly no spillover effects of treatment onto the donor

pool units–that is, the Stable Unit Treatment Value Assumption (SUTVA) is plausibly satisfied.2

For each treated unit i = j≤ I and for at least some donor pool units, an outcome of interest, Yjt , is observed

for a sufficiently large number of pre-treatment periods before i received treatment in calendar period T0i+1,

and for a strictly positive number of post-treatment periods through calendar period Ti ≥ T0i+1. In addition,

we observe k specified predictors of that outcome for all treated and donor pool units. These can include

linear combinations (in time) of the outcome variable as well as selected covariates, each in some subset of

pre-treatment periods. The vector X j = (X1, j, ...,Xk, j)
′ contains j’s values of these predictors, and the matrix

X0 = [XI+1, ...,XI+J] contains these vectors for the donor pool.

Define Y N
jt as j’s potential outcome in t with {N}o intervention, and Y Int

jt as j’s potential outcome in t with

an {Int}ervention. The estimated marginal treatment effect (or “gap”) of interest for j in t is:

τ jt = Y Int
jt −Y N

jt (1)

As we observe Y Int
it = Yit in t > T0i for each treated unit i, estimation of τit only requires an estimate of Y N

it

(that is, of the counterfactual value of Yi in t). The synthetic control estimator for Y N
it is a weighted average

of the outcome values of the donor pool units:

Ŷ N
it =

I+J

∑
j=I+1

ŵi
jYjt ∀ t (2)

Given a set of weights on the k predictors which determine their relative importance, vi
1, ...,v

i
k,3 the weights

Ŵi = (ŵi
I+1..., ŵ

i
I+J)

′ minimize the distance between i and its donor pool for some norm—typically, the

Euclidian norm:
2Abadie (2021) discusses a complete set of contextual considerations for synthetic controls.
3Practitioners should note there are several methods of estimating these vi

h weights, including the regression based method
which is the default of synth and allsynth (Kaul et al., 2022) minimizing the mean squared prediction error (MSPE) over the entire
pre-treatment period or the cross-validation approach adopted in Abadie, Diamond, and Hainmueller (2015).
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(
k

∑
h=1

vi
h(Xhi−wi

I+1XhI+1− ...−wi
I+JXhI+J)

2

)1/2

(3)

subject to
I+J

∑ j=I+1wi
j = 1 and to wi

j ≥ 0 ∀ j ∈ {I+1, ..., I+J}, where the non-negativity constraint prevents

against extrapolation bias.4

In cases where treatment is simultaneous in calendar time, T0i + 1 = T0 + 1 ∀ i, the trajectory of average

treatment effects on the treated units (ATTs) can be estimated in calendar time or event time, where all i are

treated in event time e(T0 + 1) = 0. The ATTs, τ = (τ0, ...,τE), can only be estimated in event time when

treatment adoption is staggered, where i is treated in event year e(T0i + 1) = 0 and e ≤ E, and each τe is a

weighted average of the marginal treatment effects in e. Then the ATT on an outcome of interest in e is:

τe =
I

∑
i=1

γiτie

=
I

∑
i=1

γi(Yie−Y N
ie )

(4)

with some weights γi ≥ 0 ∀ i and ∑
I
i γi = 1 on the treated units.

It is generally good practice to estimate τe for a panel balanced across e ∈ [E,E]—that is, to restrict the

treated units to those i ∈ I′ that are observed for at least −E event periods before treatment and at least

E +1 event periods after treatment including the treatment period e = 0 (where E < 0 and E > 0). It is also

generally good practice to specify a common set of predictors for all treated units. When treatment adoption

is staggered, users should consider whether the commonality of the predictors is best-specified in calendar

time or event time. For various reasons, it may additionally be desirable to uniquely restrict the donor pool

for each i to those j ∈ Ji.

It may also be appropriate to transform the outcome variable prior to estimation, whether e.g. to time

differences (Y ′jt = ∆Yjt = Yjt −Yjt−1) or growth rates (Y ′jt = 100×∆Yjt/Yjt−1) to ensure that for each i the

pre-treatment trajectory of the outcome can be approximated by a convex combination of donor pool units

4Some extensions allow negative weights to gain certain benefits at the cost of permitting extrapolation bias—for example,
Doudchenko and Imbens (2016); Abadie and L’Hour (2021); Ben-Michael, Feller, and Rothstein (2021).
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(Abadie, 2021); by demeaning (Y ′jt
i =Yjt−Y j, where Y j =∑

T0i
t Yjt is the pre-treatment average of Yjt over all

of i’s pre-treatment periods) to attenuate bias resulting from unit-level, time-variant unobserved confounds

when the pre-treatment fit is imperfect (Ferman and Pinto, 2021); or by normalizing for each i and all

its donor pool units to the final pre-treatment period for i (Y ′jt
i = 100×Yjt/YjT 0i) to ensure the estimated

marginal treatment effects, τ̂ie, are measured in deviations from a common null just prior to treatment, in

units that are meaningfully comparable such that their average, τ̂e, retains maximum interpretability

2.2 Bias Correction

Another important consideration is that bias may be present in the synthetic control estimated marginal

treatment effects (and thus the estimated average treatment effect estimates) because of discrepancies be-

tween the predictor variable values in each treated unit and its synthetic control donors. Abadie and L’Hour

(2021) and Ben-Michael, Feller, and Rothstein (2021) propose a bias-correction procedure to address this,

analogous to the approach proposed in (Abadie and Imbens, 2011) to address inexact matching on predictor

variables with matching methods. Note that this will not necessarily improve the pre-treatment fit of the

outcome variable, but rather addresses discrepancies between a treated unit and its donor pool in the values

of all specified linear combinations of predictor variables, including the covariates.

This synthetic control bias correction procedure is implemented as follows: for each i, the Ŵi are first ob-

tained from synthetic control estimation on the uncorrected outcome values, Yjt (or Y ′jt or Y ′jt
i if the outcome

variable has been transformed). Let µ̂ i
0t(x) be a predictor of Yit given Xi = x, estimated by first using only

i’s donor pool to (possibly nonparametrically) regress Yt on the complete set of predictor variables (includ-

ing all specified linear combinations of the outcome in the pre-treatment period). Then Ỹit = Yit − µ̂ i
0t(Xi)

and ˜̂Y N
it = ∑

I+J
j=I+1 ŵi

j
(
Yjt − µ̂ i

0t(X j)
)

can be calculated, admitting (1’), the bias-corrected version of (1),

τ̂BCit = Ỹit− ˜̂Y N
it . These can be converted to event time (if appropriate) and combined to inform the estimator

of the bias-corrected average treatment effects on the treated for each e:

τ̂BCe =
I

∑
i=1

γiτ̂BCie

=
I

∑
i=1

γi(Ỹie− ˜̂Y N
ie )

(5)
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Note that this nests the “classic” synthetic control estimator for (1) with a single unit, I = 1, when the

estimated bias from predictor variable discrepancies is or is presumed zero.

This synthetic control estimation procedure with a single treated unit is visually demonstrated in Panels

A–F of Figure 1, recreating the classic example from Abadie, Diamond, and Hainmueller (2010) looking at

the effect of California’s 1989 excise tax increase on per-capita cigarette sales. Panel A shows per-capita

cigarette sales in California over time, while Panel B shows the same also for the 38 states in the donor

pool for California. The SCM selects a subset of these donor pool states to receive strictly positive weights

in the construction of the synthetic California; Panel C shows per-capita cigarette sales for only California

and these donor pool states the synthetic California. Panel D shows the same again for only California and

its synthetic control, which is a convex combination of those positively-weighted donor pool units given

the weights (Panel D re-creates Figure 2 from Abadie, Diamond, and Hainmueller (2010)). Panel E shows

the classic synthetic control estimated gap in each year (re-creating Figure 3 from Abadie, Diamond, and

Hainmueller (2010). These are not from exactly the same specification used in Abadie, Diamond, and

Hainmueller (2010), so the plot is highly-similar but not identical. Panel F shows both the classic and the

bias-corrected estimated gaps.

2.3 Inference

Large-sample inferential approaches are generally not appropriate with synthetic control methods when

I and J are small, though this restriction relaxes as I grows. For the classic case with I = 1, Abadie,

Diamond, and Hainmueller (2010, 2015) propose an exact inferential procedure for SCMs based on “in-

time” or “in-space” “placebo” (or “falsification”) tests in which treatment status is randomly permuted

across, respectively, pre-treatment time periods or untreated units in a sample. Calculation of p-values based

on in-space placebo tests remains the most widely adopted inferential approach and has spawned several

extensions (Cavallo et al., 2013; Ferman and Pinto, 2017; Firpo and Possebom, 2018; Abadie and L’Hour,

2021), though it should be noted that the approach may lead to size distortions (Hahn and Shi, 2017; Ferman

and Pinto, 2017) and in the “stacked” case (with I > 1) may also be under-powered (Zhang, 2019).5

5Alternative inferential procedures continue to be proposed by the growing SCM literature (for example, (Dube and Zipperer,
2015; Doudchenko and Imbens, 2016; Hahn and Shi, 2017; Chernozhukov, Wuthrich, and Zhu, 2019), but the literature has not
converged on a preferred alternative.
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For cases with I ≥ 1, allsynth can calculate two-sided RMSPE-ranked p-values based on in-space placebo

tests using classic and bias-corrected synthetic control estimators. When I > 1 allsynth can also calcu-

late 95% confidence intervals and two-sided p-values from the sample permutation distribution of average

placebo gaps, again based on in-space placebo tests using classic and bias-corrected synthetic control es-

timators. Both procedures involve several steps, and I here expound the stacked, bias-corrected case for

maximum generality and for its relevance to allsynth.

2.3.1 Calculation of in-space placebo (and placebo average) gaps

For each treated unit i, treatment must be permuted across all untreated units in i’s donor pool, j ∈ Ji, with

i and the remaining untreated units collectively constituting the donor pool for each j ∈ Ji. (1) or (1’) must

then be estimated possibly many times for each j > I—once for each i for which j is part of i’s donor pool

Ji. This admits the the set of dynamic paths of (here, bias-corrected) estimated placebo gaps, τ̂ i
BC j

, for all

j > I, one for each i such that j ∈ Ji.

With many treated units, the next step is to calculate the estimated placebo average gaps, with each con-

structed as a weighted mean in each period (event or calendar time) using the τ̂ i
BC j

of exactly one j from

each Ji, weighted by the same γi used to estimated (5). The averaging is across i, but as there are many j ∈ Ji

for each i there are consequently very many placebo average gaps, with the number ballooning rapidly in J

and especially in I: the number of average placebo gaps is NG = ∏
I
i=1 Ji. With even modestly-sized Ji and I,

it is clear that it quickly becomes infeasible to estimate every placebo average gap.

Consequently, when I > 1 it is much more practical to randomly sample some subset of placebo averages,

S < NG. We can plot the estimated actual average treatment effect, τ̂
0
BCe

, and each placebo average gap, τ̂
s
BCe

with s = 1,2, ...,S, to visually compare τ̂
0
BCe

to the (sample) permutation distribution of placebo gaps.

2.3.2 Calculation of RMSPE p-values

Using the distribution of placebo gaps, we can then calculate the ratio of the mean squared prediction error

(RMSPE) as the post-treatment MSPE through each E ∈ {0,1, ...,E} (if in event time, given e = E, ...,E)

over the pre-treatment MSPE for each s = 0,1, ...,S:
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RMSPEsE =
∑

E
e=0 τ̂

s
BCe

2/(E +1)

∑
E
e=−1 τ̂

s
BCe

2/(−E)
(6)

which normalizes the size of the average (squared) post-treatment gaps by a measure of pre-treatment fit,

discounting those estimated averages with noisy pre-treatment trajectories. We can then use the empirical

distribution of these RMSPEs test statistics to calculate a two-sided p-value for each E based on the share of

RMSPEsE ≥ RMSPE0 in E:

ptwo−sided
RMSPEE

=
∑

S
s=11[RMSPEsE ≥ RMSPE0E ]

S+1
(7)

Again, note that this setup nests the more restrictive “classic” setup wherein I = 1 and the estimated bias

from predictor variable discrepancies is or is presumed zero for all units.6

2.3.3 Calculation of placebo-variance-based 95% confidence intervals and p-values

With many treated units, we can also estimate 95% confidence intervals and p-values based on the variance

of the permutation distribution of placebo average gaps (e.g. Wiltshire 2023; Wiltshire et al. Forthcoming)

using the algorithm proposed in Arkhangelsky et al. (2021).7 This assumes homoskedasticity across units

and asymptotic normality of the estimand.8

Using the sample permutation distribution of S placebo average gaps τ̂
s

BCe
and following Algorithm 4 of

Arkhangelsky et al. (2021), for each e ∈ {E, ...,E} the placebo variance estimator is

ˆVarplacebo
τe

=
1
S

S

∑
s=1

(τ̂
s
BCe
− 1

S

S

∑
s=1

τ̂
s
BCe

)2 (9)

6While allsynth does not automate the procedure, practitioners may also wish to calculate one-sided p-values using the empirical
distribution of the subset of these RMSPEs that are associated with the τ̂

s
BCe

that have the same sign as τ̂
0
BCe

. Call these RMSPE(s),
with (s) = 1,2, ...,(S)≤ S. Then the one-sided p-value for each E based on the share of RMSPE(s)E

≥ RMSPE0 in E:

pone−sided
RMSPEE

=
∑
(S)
(s)=11[RMSPE(s)E

≥ RMSPE0E ]

(S)+1
(8)

7Arkhangelsky et al. (2021) argue this approach (intended for synthetic difference-in-differences estimation) is valid with I = 1.
8With many (I > 1) treated units, each placebo average will be the result of I random draws of donor pool units and the

distribution will be approximately normal by a central limit theorem. I am grateful to Guido Imbens for a helpful observation on
this point.
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Provided (9) is a consistent estimator, valid inference can be conducted using conventional confidence in-

tervals:

τe ∈ τ̂BCe± zα/2

√
ˆVarplacebo

τe
(10)

See section IV of Arkhangelsky et al. 2021 for further details.

2.4 Uniqueness of the Ŵi Matrices

Another consideration of note for all practitioners of SCMs is whether the Ŵi weighting matrices are unique,

which in most cases is effectively equivalent to asking whether the values of the predictor variables for any

Yi lie outside the convex hull of those values among the donor pool units. If they do not (that is, if any Ŵi is

not unique), then the corresponding estimated synthetic control is not unique and in fact there are generally

infinitely many solutions to (3). The practical consequence of non-uniqueness can be large interpolation

biases.

Abadie and L’Hour (2021) observe that, when I is small, non-uniqueness of Ŵi is rare as a result of the curse

of dimensionality. If non-uniqueness is known to be an issue when I is small, it can generally be addressed

by further restricting the donor pool to those untreated units that have predictor values most similar to those

of the treated unit (provided each Ji ≥ k + 2 is retained if the estimates are to be bias-corrected) or by

adjusting the number of covariates k;9 thus it is valuable for practitioners to know if Ŵi is unique when I is

small. When I is large, non-uniqueness is more likely. When this obtains, ad-hoc fixes may be impractical

and practitioners may prefer to simply drop all i without a unique solution—though it should be noted that

this may have consequences for the interpretation of the estimated parameters. Practitioners may prefer to

address such an issue through e.g. the introduction of a penalty on pairwise matching discrepancies (Abadie

and L’Hour, 2021), though such measures are beyond the scope of allsynth.

2.4.1 General contextual requirements for synthetic control methods to be appropriate

Abadie (2021) and Abadie and Vives-i Bastida (2022) together provide a set of conditions for synthetic

control methods to be a viable means of estimating causal treatment effects. These conditions boil down to:

9Abadie and L’Hour (2021) specifically suggest increasing k as a solution in such cases, though in practice a unique solution
may occasionally also be successfully sought by decreasing k or adjusting the pre-treatment period over which MSPE is minimized.
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1. Low volatility of the outcome variable

2. A group of untreated units that are similar to the treated unit (donor pool)

3. No confounds from anticipation

4. No interference across units (effectively, SUTVA)

5. Convex hull condition (small discrepancies in predictors between treated unit and SC)

6. A long enough post-treatment time horizon for treatment effects to be realized

7. A good fit over extended pre-treatment period (ideally assessed against left-out pre-treatment periods)

8. A judiciously selected donor pool that isn’t too large (reduce interpolation bias, prevent overfitting)

9. A sparse matrix of estimated donor pool weights (allows meaningful interpretation of SCs)

10. Relevant covariates are included as predictors

While certain nuances inhabit each of these conditions, researchers would do well to address each in turn,

noting that most are also relevant for non-SCM comparative case study research designs (Abadie, 2021).

3 Using allsynth

allsynth allows practitioners to easily implement most of the processes described above. To use allsynth,

the Stata packages synth, distinct, and elasticregress must be installed on the same system.

As with synth, users must specify tsset panelvar timevar prior to calling allsynth, with the panelvar

and timevar variables both containing only integer values.

3.1 allsynth Syntax

allsynth depvar predictorvars, trunit(# ) trperiod(# ) [synth options

pvalues(string ) bcorrect(string ) gapfigure(string ) transform(string ) stacked(string )

]
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The syntax allows for allsynth to be used in the exact same way as synth. That is, synth and allsynth can

be used interchangeably when none of the additional options of allsynth are specified. See help synth

for more on synth and its options. In addition, allsynth allows the options pvalues(), bcorrect(),

gapfigure(), transform(), and stacked(), which accept required or optional inputs.10,11 depvar,

predictorvars, trunit(# ) and trperiod(# ) are generally required—though if stacked() is speci-

fied (see Section 3.2.5), then trunit() and trperiod() may be omitted.

Note that [...] indicates optional specifications, while A|B indicates at least one (sometimes exactly one)

of A or B must be specified. Users should not include the symbols [ , ] , or |.12

• depvar is the outcome variable, which must be observed for all units in all periods if mspeperiod()

is not specified, or in all periods in mspeperiod() if mspeperiod() is specified.

• predictorvars is the list of predictor variables including desired linear combinations thereof.

• trunit() identifies the treated unit from the specified panelvar .

• trperiod() identifies the treatment period from the specified timevar .

3.2 allsynth Options

3.2.1 pvalues()

pvalues(string ) automates estimation of in-space placebo gaps across the donor pool units, for the

purpose of calculating p-values and/or confidence intervals. pvalues() must be specified for the placebo

gaps to be plotted (see the entry on gapfigure() in Section 3.2.3, and pvalues(variance) must be

specified for 95% confidence intervals to be plotted. Specifying pvalues() will greatly extend the run-

time, and so it is assumed that the results should be saved. Accordingly, keep() must be specified.

pvalues() has its own syntax:

10allsynth version 0.0.8 BETA also had the option placeboskeep, which allowed users to specify that the estimated placebo
gaps and associated data should be saved if the synth option keep() were specified. The current version of allsynth automatically
saves these data if the pvalues() option is specified, though this requires that keep() also be specified.

11allsynth version 0.0.9 BETA permitted specification of pvalues without accompanying parentheses and inputs. The current
version of allsynth requires pvalues() be specified with parentheses (if at all), with at least one of rmspe or variance as inputs.

12Except if desired when specifying allsynth ..., stacked(..., ... donorcond() donorcond2() donorif()).
See Section 3.2.5.
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pvalues(rmspe|variance)

• At least one of rmspe or variance is required, and both are permitted, though variance may only

be specified when the stacked() option is also specified. rmspe will calculate RMSPE-ranked p-values

for each post-treatment period. variance will calculate p-values and 95% confidence intervals for each

post treatment period based on the variance of the sample distribution of placebo average gaps, but

may only be specified if the stacked() option is also specified.

• If the bcorrect() option is specified, then the bias-corrected placebo gaps and p-values will also be

calculated. pvalues() must be specified for the placebos to be estimated and for the placebo gaps to

be plotted (see Section 3.2.3).

• Specifying the pvalues() option will greatly extend the run-time of allsynth, and so it is assumed that

the results should be saved. Accordingly, the keep(file) option must be specified if pvalues()

is specified. The variables RMSPE, RMSPE rank, and p (and their bias-corrected equivalents, if

bcorrect() is also specified) will be merged into file if pvalues(rmspe) is specified. The variables

Se, Tstat, Pval, LB 95, and UB 95 (and their bias-corrected equivalents, if bcorrect() is also

specified) will be merged into file if pvalues(variance) is specified. In both cases the variable S

will be saved as the number of sampled placebo averages.

3.2.2 bcorrect()

bcorrect(string ) can be used to specify that the bias-corrected synthetic control estimates should be

calculated. Note the classic synthetic control estimates are always retained. There must be at least k+ 2

donor pool units if bcorrect() is specified, where k is the number of specified predictors.

bcorrect() has its own syntax:

bcorrect(nosave|merge [ridge|lasso|elastic|posonly figure])

• Exactly one of nosave or merge must be specified if bcorrect() is specified. merge merges and

saves the bias-corrected estimates to the specified keep() file, and requires that keep() be specified.

nosave should be used if the bias-corrected estimates should not be merged with the specified keep()
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file, or if keep() is not specified. In general, merge should be specified.

bcorrect() options:

• Exactly one of ridge, lasso, elastic and posonly may be specified if the bias is to be estimated

using (respectively) ridge regression, lasso regression, elastic net regression, or ordinary least squares

(OLS) regression with only those donor pool units for which ŵi
j > 0. The default setting is to use OLS

regression with all j ∈ Ji to estimate the bias.

• figure specifies that the trajectories of the bias-corrected values of the outcome for the treated unit

and its synthetic control (Ỹit and ˜̂Y N
it ) should be plotted. Most practitioners will have an interest only

in the difference between these rather than these variables individually; however, visual examination

of this plot may be instructive.

3.2.3

gapfigure(string ) can be used to automatically generate a plot of the trajectories of (at most two of)

the estimated gaps, bias-corrected gaps, the set of placebo gaps, or the set of bias-corrected placebo gaps.

The bias-corrected gaps can only be plotted if the allsynth option bcorrect() is specified, and the placebo

gaps can only be plotted if the allsynth option pvalues is specified. If bcorrect() is specified, only the

bias-corrected gaps and placebo gaps can be plotted. The plot can also be customized and saved.

gapfigure() has its own syntax:

gapfigure(classic|bcorrect [placebos lineback, save(file [, replace]) twoway options ])

• At least one of classic and bcorrect must be specified if gapfigure() is specified, but bcorrect

may only be specified if the allsynth option bcorrect() has been specified. classic plots the

classic estimated gaps for the treated unit, and bcorrect plots the bias-corrected estimated gaps for

the treated unit. They can also be plotted together.

gapfigure() options:

• placebos may only be specified if exactly one of classic and bcorrect is specified, and will plot

the corresponding placebo gaps alongside the specified estimated gaps.
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• lineback places a vertical dotted line on the plot in the final pre-treatment period. The default setting

places a vertical dotted line on the plot in the treatment period.

• save() specifies that the plot should be saved to the indicated file, which may include a filepath and

a filename. The default file extension is .pdf but another extension may be specified. replace may

be specified after a comma if any identically-named file should be overwritten, as in save(file,

replace).

• twoway options may be specified to modify the plot as desired (see help twoway options), but

note that titles of any kind must not be contained in quotations and will not display a comma if one is

indicated.

3.2.4 transform()

transform(string ) can be used to automatically transform specified variables in exactly one of two ways

prior to synthetic control estimation: the variables can be demeaned over the pre-treatment period, or can be

normalized to 100 in the final pre-treatment period. Only one transformation type may be specified.

transform() has its own syntax:

transform(varlist, demean|normalize)

• varlist indicates the variables that will be transformed. At least one variable must be specified.

• Exactly one of demean or normalize must be specified if transform() is specified. demean will

(by unit, j) in each period remove from the specified variables their pre-treatment mean value in j

calculated over the entire pre-treatment period. normalize will (by unit, j) normalize all specified

variables in each j to 100 × the value in t divided by the value in j’s final pre-treatment period:

X ′jt
i = 100×X jt/X jT 0i, where the final ‘pre-treatment period’ for each donor pool unit that of the

relevant treated unit i. Note this necessitates that no variable in varlist have its value in the final

pre-treatment period alone be specified as a predictor;13 e.g. if the treatment period is 1989, then

transform(cigsale, normalize) may not be specified if cigsale(1988) is specified as a pre-

13This is because the normalized value of that predictor in the final pre-treatment period will be constant across all units.
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dictor variable.

3.2.5 stacked()

stacked(string ) can be used to automatically estimate the average treatment effect on the treated units

using a stacked synthetic control estimating strategy. It allows users to specify if the estimates should be

calculated in event time or calendar time (where either are possible), to specify whether estimates should be

balanced in the specified time-type periods, to specify unit-specific weights for calculation of the averages,

and to specify whether the averages should include only unit-estimates associated with unique Ŵi matrices.

It also allows users to specify conditions for selecting treated-unit-specific donor pools.

stacked() can also automatically generate a distribution of sampled average placebo gaps and calculate

RMSPE-ranked p-values from that distribution, and allows users to specify the number of placebo average

gaps included in the sample permutation distribution.

Similarly to gapfigure() (see Section 3.2.3), stacked() can automatically generate a (customizable)

plot of the trajectories of the estimated average gaps, bias-corrected average gaps, 95% confidence intervals

around either, the set of placebo average gaps, or the set of bias-corrected placebo average gaps, all in event

time, or in calendar time when units are treated simultaneously.

The allsynth option keep(filename ) must be specified if stacked() is specified, and the treated-unit-

specific results for each i will be saved in filename panelvar i.dta , while the estimated average gaps by

time period will be saved in filename ate.dta . If the allsynth option pvalues is specified, then the esti-

mated average gaps, placebo gaps, RMPSE, and RMSPE-ranked p-values will be saved in filename ate distn.dta .

stacked() has its own syntax:

stacked(trunits(varname ) trperiods(varname ), clear [eventtime(numlist )

avgweights(varname ) balanced donorcond(string [, string ]) [

donorcond2(string [, string ]) donorcond3(string [, string ])

donorcond4(string [, string ]) ] donorif(string ) unique w sampleavgs(real )

figure(classic|bcorrect [placebos lineback, save(file [, replace]) twoway options ])

])
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Users should note that use of stacked() can dramatically increase run-time, especially if the allsynth

option pvalues() is specified (see Section 3.2.1), and increasingly as the number of treated units, I, and/or

donor pool units, Ji for each i ∈ I, grows large.

• trunits(varname ) is required, and varname must identify a dummy variable that, in all periods,

identifies the treated units with a 1 and the donor pool units with a 0.

• trperiods(varname ) is required, and varname must identify an integer variable that, in all periods,

contains the timevar period of treatment (assumed to be in calendar time) for every treated unit. If

the treatment is simultaneous in timevar for all treated units, results will be displayed and saved in

timevar periods (assumed to be calendar periods); otherwise, results will be displayed and saved in

event time, with each treatment period converted to event period e = 0.

• clear is required and must be specified after a comma. clear is required because stacked() will

clear all files with the file name specified in keep() from the specified directory or from the working

directory if no directory is specified in keep().

• The allsynth option keep(file, replace) is required (in synth options ) when stacked() is

specified.

stacked() options:

• eventtime(numlist ) must specify exactly two integers—one strictly negative, the other strictly

positive—which identify the event-time window over which the final results should be displayed and

saved. No other symbols are allowed. Note that eventtime() will not restrict the period over

which the pre-treatment MSPE is minimized. stacked() will use the smallest event window out of

that specified and that observed in any treated unit (or in a balanced sample across all treated units if

the stacked() option balanced is specified). The default setting is the smaller of eventtime(-5

5) and the (possibly balanced) window observed over the treated units. If (a) treatment is not simulta-

neous in timevar or (b) treatment is simultaneous in timevar and eventtime() is specified, then

results will be displayed and saved in event time. If treatment is simultaneous in timevar across

17



all treated units and eventtime() is not specified, results will be displayed and saved in timevar

periods (assumed to be calendar time).

• avgweights(varname )) specifies a numeric variable that identifies the treated-unit weights, γi, to

be used to calculated the (weighted) average treatment effects. For each treated unit i the weights

must be non-missing and constant across all timevar periods.

• balanced specifies that the estimated average treatment effects (gaps) should be displayed and saved

only for those event periods in which every treated unit is observed. This ensures common inter-

pretability of the estimated average gap across retained event periods (this is true even if the results

are displayed and saved in calendar time).

• donorcond(string [, string ])), donorcond2(string [, string ])), donorcond3(string

[, string ])), and donorcond4(string [, string ])) permit users to temporarily modify the

data while estimating all parameters associated with each treated unit i. This allows the user to set

i-specific restrictions on the data for the purpose of restricting the donor pool for i to only those j ∈ Ji.

donorcond(), ..., donorcond4() each permit a comma to separate two unique lines of code, such

that up to eight total commands may be executed to set up the restriction of each Ji. These are in

addition to the keep if... restriction which must be specified using donorif() if donorcond(),

..., donorcond4() are specified

• donorif(string ) permits users to specify a condition under which the untreated units j ∈ J should

be kept in i’s donor pool, Ji. donorif(string ) imposes keep if... before the string entry, so

users should not include “keep if...]] in string . donorif() only applies to untreated units, and

treated unit i is always retained, so users should not specify donorif(string ) to condition on being

an untreated unit.

• unique w specifies that only treated units i with unique Ŵi matrices should be included in the esti-

mated average treatment effect.

• sampleavgs(real ) specifies an integer ≥ 30 which is the number of placebo average gaps that

should be sampled from the population of possibilities. The default setting is 100. Note: if the
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allsynth option pvalues(variance) is specified, sampleavgs() will be ignored and allsynth will

automatically sample 1000 placebo average gaps.

• figure(classic|bcorrect [placebos lineback, save(file [, replace]) twoway options ])

can be used to automatically generate a plot of the trajectories of (at most two of) the estimated average

gaps, average bias-corrected gaps, the set of placebo average gaps, or the set of average bias-corrected

placebo gaps. It will plot these in the time type (calendar time or event time) of the estimates (see

the entry for eventtime(), above). The bias-corrected gaps and placebo gaps can only be plotted if

the allsynth option bcorrect() is specified, and the placebo gaps can only be plotted if the allsynth

option pvalues() is specified. figure() uses the same syntax as the allsynth option gapfigure(),

but unlike gapfigure() it is possible to specify figure(classic placebos) even if the allsynth

option bcorrect() is specified. As with gapfigure(), the plot can also be customized and saved.

See the syntax for gapfigure() in Section 3.2.3 for further explanation of the syntax for figure().

3.3 Displayed, Saved, and Stored Results

3.3.1 Displayed Results

When allsynth is specified using only the options available using synth, the displayed output is the same

except for a note that no bias correction or p-value calculations have been specified or provided, in case the

users misunderstood that allsynth requires additional specifications to return those results. Note that when

bcorrect() is specified, the variable names are temporarily changed by allsynth, and indicate either the

outcome variable Y or a linear combination thereof, or one of the r covariates, Xm, where m = 1,2, ...,r. Up

to the first eight characters of the variable name are also retained.

When allsynth is specified with its unique options, the displayed output for a treated unit i includes an

observation, for each value t in timevar of: the panelvar ID for i, the value of t, the estimated gap,

and a dummy variable indicating whether the Ŵi matrix is (likely) unique. Depending on the specifica-

tion, the displayed output may also include the estimated bias-corrected gaps, or the number of units ob-

served in panelvar , N. Additionally, for each t > T0i the displayed output may include (i) the ratio of the

post-treatment over the pre-treatment MSPE (the RMPSE) through t, (ii) each unit’s RMSPE rank in the
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empirical distribution of placebo RMSPE, (iii) the p-value through t, (iv) the equivalent of (i)–(iii) for the

bias-corrected estimates.

3.3.2 Saved Results

When stacked() is not specified but keep(file ) is specified, results are saved to file.dta , which may

include a filepath before the filename. When stacked() is specified, keep(filename ) must be specified,

and the treated-unit-specific results for each i will be saved in filename panelvar i.dta . Depending

on the allsynth options specified, several additional variables beyond those generated by synth will be

saved. The set of possible additional variables include: gap, gap bc, rmspe, rmspe rank, rmspe bc,

rmspe bc rank, p, p bc, N, unique W, trunit, trperiod, and stAvgweights. All variables

ending in bc refer to the result from bias-corrected synthetic control estimation.

When stacked() is specified, the average estimated gaps or bias-corrected gaps will be saved to filename ate.dta

for each (calendar or event) time period contained in the variable tm. If the allsynth option pvalues() is

also specified, then the estimated average gaps, placebo gaps, RMPSE, and RMSPE-ranked p-values will be

saved in filename ate distn.dta . In this case, the sampled placebo averages are assigned an ID number

≥ 1 in the variable placeboID, while the estimated average gap (or estimated average treatment effect) is

assigned the placeboID value of 0.

3.3.3 Stored Results

Beyond the stored results generated by synth, allsynth stores several estimation results depending on the

options specified. Type ereturn list to see the full set of stored results. The set of possible additional

stored matrices include e(results), e(gaps), e(pvalues) e(unique W). The e(results) matrix

contains all additional stored results available. It should be noted that stored results for each treated unit

except i = I will be over-written if stacked() is specified, in which case users can find these results saved

in filename panelvar i.dta for each treated unit i.
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4 Examples

The allsynth help file (type help allsynth after installation) contains interactive (clickable on a Windows

system) versions of these examples. For Stata to run these examples, ensure synth (Abadie, Diamond, and

Hainmueller, 2010) has been installed with the ancillary files (i.e. type ssc install synth, replace

all, then type help synth for details about synth), and ensure that distinct and elasticregress have been

installed (i.e. type ssc install distinct and ssc install elasticregress).

Examples 1–10 make use of the panel data made available with the synth package and illustrate the use of

allsynth when the stacked() option is not specified. Examples 11–13 make use of the panel data made

available with the allsynth package and illustrate the use of allsynth with the stacked() options specified.

4.1 allsynth without the stacked() option

Examples 1–10 make use of the synth smoking data included with the synth package (Abadie, Diamond,

and Hainmueller, 2010)). Begin by loading these data and declare the dataset as a panel:

Example 1

Use allsynth exactly as you would use synth to reconstruct the estimate from the synth help file (note: this

is not the exact specification used in Abadie, Diamond, and Hainmueller (2010)):

This produces the same output as would have been produced if the synth command had been used in

place of allsynth, as well as additional stored results in e(results), e(unique W), and e(gaps). If
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keep(file ) had been specified, additional variables would also have been saved to file . allsynth addi-

tionally cautions that no bias correction or p-value calculations have been specified or provided.

The synthetic control estimation procedure is visually demonstrated in Panels A–E of Figure 1. Panel A

shows per-capita cigarette sales in California over time, while Panel B shows the same also for the 38 states

in the donor pool for California. The SCM selects a subset of these donor pool states to receive strictly

positive weights in the construction of the synthetic California; Panel C shows per-capita cigarette sales

for only California and these donor pool states the synthetic California. Panel D shows the same again for

only California and its synthetic control, which is a convex combination of those positively-weighted donor

pool units given the weights (Panel D re-creates Figure 2 from Abadie, Diamond, and Hainmueller (2010)).

Panel E shows the classic synthetic control estimated gap in each year (re-creating Figure 3 from Abadie,

Diamond, and Hainmueller (2010). Again, note that these are not from exactly the same specification used

in Abadie, Diamond, and Hainmueller (2010), so the plots is nearly-but-not-quite identical.

Example 2

Use allsynth exactly as you would use synth:

These results could also have been realized using the synth command in place of allsynth, but the reduction

in dimensionality of the predictor variables (relative to Example 1) has resulted in the synthetic control

optimization estimating a estimated Ŵi with more non-zero weights than predictor variables, which is likely

not unique. The produced output still includes what would have been produced if the synth command had

been used in place of allsynth, as well as additional stored results in e(results), e(unique W), and e(gaps).

Unlike synth, however, allsynth cautions that the Ŵi is likely not unique and suggests some ad hoc fixes

(Figure 2).
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Figure 1:
Step-by-step visual example of synthetic control estimation
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Figure 2:
allsynth warns users when the Ŵi matrix is likely not unique

Example 3

Calculate, display, and save the classic and the bias-corrected “gaps” between the treated unit outcome and

the synthetic control outcome, and plot the bias-corrected outcome paths of the treated unit and its synthetic

control:

This example reproduces the estimation in Example 1, but as bcorrect() and its own figure option

are specified, it also calculates the classic and the (OLS regression estimated) bias-corrected gaps for

each period (for the treated unit, 3, which is California), while plotting the bias-corrected outcome paths

of the treated unit and its synthetic control. The classic results are saved in the working directory as

smokingresults.dta as the keep() command is specified, and because bcorrect(merge ) is also spec-

ified those results are merged and saved to the same file, and the variables Y treated and Y synthetic are

replaced in this saved file by their bias-corrected values (meaningful only for calculating the bias-corrected

gap). If bcorrect(merge) had instead been specified, Y treated and Y synthetic would have been left

as their uncorrected values, and the bias-corrected values would have been saved as Y treated bc and

Y synthetic bc. The replace option is specified so smokingresults.dta can be saved even if the file

already exists (it will be overwritten). As bcorrect() was also specified with figure, allsynth plots

Y treated bc and Y synthetic bc (Figure 3). allsynth also displays the key results after estimation (Figure

4).
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Figure 3:
Specifying figure in bcorrect() plots the trajectories of the bias-corrected outcome values
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Figure 4:
allsynth displays the key results after estimation
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Example 4

Calculate, display, and save the classic and the bias-corrected gaps between the treated unit outcome and the

synthetic control outcome, and additionally plot the paths of the classic and bias-corrected gaps:

This example reproduces the estimation in Example 3, but as gapfigure() and its own classic and

bcorrect options are specified, it also plots the dynamic paths of the classic and the (OLS regression

estimated) bias-corrected gaps against each other (Figure 2). Note how, in this case, the post-treatment

bias-corrected gaps are smaller than those produced by classic synthetic control estimation. Also note that

a variable with the bias-corrected gaps, gaps bc, is now displayed after estimation and saved in the stored

results and the keep() file.

Figure 5:
Specifying gapfigure(classic bcorrect) plots the classic and bias-corrected gaps
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Example 5

Calculate, display, and save the classic and the bias-corrected gaps between the treated unit outcome and

the synthetic control outcome, and additionally plot the paths of the classic and bias-corrected gaps with the

dotted vertical line now indicating the treatment period immediately preceding treatment:

This example reproduces the estimation in Example 4, but as the gapfigure() option lineback is also

specified, the dotted vertical line which by default indicates the specified treatment period (here, 1989) has

now been moved to the period immediately preceding the specified treatment period. This plots Figure 6

(which is also found in Panel F of Figure 1), analogous to Figure 3 in Abadie, Diamond, and Hainmueller

(2010), but with the bias-corrected outcome path also added (note: this is not the exact specification used

in Abadie, Diamond, and Hainmueller (2010), which is why the classic outcome path differs slightly from

Figure 3 in that paper).

Figure 6:
Specifying gapfigure(lineback) shifts the vertical dotted line to the final pre-treatment period
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Example 6

Calculate, display, and save the classic and the bias-corrected gaps between the treated unit outcome and

the synthetic control outcome. Plot the paths of the classic and bias-corrected gaps with the dotted vertical

line now indicating the treatment period immediately preceding treatment. Estimate the bias using elastic

net regression:

This example reproduces the estimation in Example 5, but as the bcorrect() option elastic is also

specified, the bias is estimated using elastic net regression instead of OLS. Figure 7 is produced, visualizing

the difference.

Figure 7:
Specifying bcorrect(elastic) estimates the bias using elastic net regression
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Example 7

Calculate, display, and save the classic RMSPE-ranked p-values from in-space placebo runs, and plot the

dynamic paths of classic gaps for the treated unit and for each of the donor pool units (placebo treated units),
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with the dotted vertical line indicating the period immediately preceding treatment:

This example reproduces the estimation in Example 1, also calculating and displaying, storing, and saving

the RMSPE, RMPSE rank, and the p-values for the classic estimates (and saving the placebo estimates),

and additionally plots the dynamic paths of the classic gaps for the treated unit and each donor pool unit,

with the dotted vertical line indicating the period immediately preceding treatment. This produces Figure 8,

analogous to Figure 4 in Abadie, Diamond, and Hainmueller (2010). Note that pvalues() and keep() must

be specified as gapfigure(classic placebos) is specified.

Figure 8:
Specifying pvalues(rmspe) and gapfigure(classic placebos) plots the estimated gap and
placebo gaps
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Example 8

Calculate, display, and save the classic RMSPE-ranked p-values from in-space placebo runs, and plot the

dynamic paths of classic gaps for the treated unit and for each of the donor pool units (placebo treated
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units), with the dotted vertical line indicating the period immediately preceding treatment, and with the pre-

treatment mean of cigsale and retprice for each unit subtracted from those variable values in each period:

This example reproduces the estimation in Example 7 but with cigsale and retprice demeaned (adjusted

given the pre-treatment mean of each variable for each unit) as transform(cigsale retprice, demean)

is specified, and plotting the classic results. Figure 9 is also produced.

Figure 9:
Specifying transform(cigsale retprice, demean) subtracts (by unit) the pre-treatment means
of those variables from their values
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Example 9

Calculate, display, and save and the bias-corrected gaps between the treated unit outcome and the synthetic

control outcome, for the treated unit and also for each donor pool unit (placebo treatments), and calculate

the RMSPE-ranked p-values. Plot the dynamic paths of bias-corrected gaps for the treated unit and for

each of the donor pool units (placebo treated units), with the dotted vertical line now indicating the period
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immediately preceding treatment:

This example reproduces the estimation in Example 3, but as pvalues(rmspe) is specified, it additionally

estimates, saves, and stores the values for each unit in the donor pool (placebo runs) to calculate the RMSPE-

ranked p-values. Note that while the classic gaps (the estimated marginal treatment effects from Abadie,

Diamond, and Hainmueller 2010) are all highly statistically significant in all post-treatment periods (for

each post-treatment year the RMSPE is larger than that of all the donor pool units), the bias-corrected gaps

are not significant at the 10% level before 1994, and after that the p-values are only 0.077 (the RMSPEs are

ranked third among 39 total runs rather than first). As gapfigure() and its own bcorrect, placebos,

and lineback options are specified along with bcorrect(), this example also plots the dynamic paths of

the the (bias-corrected) gaps for the treated unit against those for each donor pool unit against each other in

a figure, with the dotted vertical line indicating the period immediately preceding treatment. Note that all

the option abbreviations are used. This plot (Figure 10) is the bias-corrected analogue of Figure 4 in Abadie,

Diamond, and Hainmueller (2010).
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Figure 10:
Specifying gapfigure(bcorrect placebos) plots the bias-corrected gaps and placebo gaps
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Example 10

Calculate, display, and save and the bias-corrected gaps between the treated unit outcome and the synthetic

control outcome, for the treated unit and also for each donor pool unit (placebo treatments), and calculate

the RMSPE-ranked p-values. Plot the bias-corrected gaps for the treated unit and for each of the donor pool

units (placebo treated units) with the title “Ex10”, saving the graph as “ex10.pdf” with replacement:

This example reproduces the estimation and plot from Example 9, but with the gapfigure() option

lineback dropped. Specifying the gapfigure() options title(Ex10) save(ex10, replace) after

the comma adds the title “Ex10” and saves the graph as “ex10.pdf”, replacing any existing file with the

same name.
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Figure 11:
Specifying gapfigure(bcorrect placebos, title(Ex10) save(ex10, replace)) adds the title
“Ex10” to the figure and saves it as “ex10.pdf”
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Ex10

4.2 allsynth with the stacked() option

Examples 11–13 make use of the allsynth walmart data included with allsynth, and are a subset of the

data from Wiltshire (2023) (for use in estimation of the average treatment effect of Walmart Supercenter

entry on aggregate county employment. See Wiltshire (2023) for details).

Note that the stacked() commands are too long for Stata’s help file languge (SMCL) to allow to be inter-

active (clickable on a Windows system) on their own, so the help file (type help allsynth) defines several

macros to allow the examples to run interactively on a Windows system. Here I do not define or call those

macros, but instead treat the full commands as if they worked interactively in the help file on their own.

Begin by loading the allsynth walmart data and declaring the dataset as a panel:
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Next define a new directory to store the output:

Example 11

Calculate the “stacked” average treatment effects of Supercenter entry on aggregate county employment in

Indiana only. Note that trunit() and trperiod() need not be defined because the stacked() option

already requires variables that define these.

First preserve the data so we can restrict it to only treated counties in Indiana and all donor pool counties, to

speed up the run-time, then restrict the data to only the untreated counties and treated counties in Indiana:

Estimate, display, and save the classic and bias-corrected average treatment effects (gaps) of Walmart Super-

center entry on employment in treated counties in Indiana, in percentage terms of the employment in each

county’s final pre-treatment year:

As stacked() is specified, this example estimates and plots the classic and bias-corrected average treatment

effects of Walmart Supercenter entry on county employment in Indiana. The supercenter variable identifies
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with a 1 all the counties in Indiana which got their first Walmart Supercenter over this period, and identifies

with a 0 all of the donor pool counties in the sample where Walmart tried to build a Supercenter during

this period but was blocked by local efforts. The super year variable identifies (in every year) the year of

Supercenter entry into the treated counties. Note that “, clear” is also specified within stacked(), as it

is required (because all existing identically-named files are erased when stacked() is specified). The es-

timated average effects are in percentage terms as transform(employment, normalize) was specified,

which normalizes employment in in each treated county and its donor pool counties to the final pre-treatment

period for that treated county. The results are displayed, stored, and saved in event time (Figure 12), as In-

diana’s counties were treated over several years. The classic and bias-corrected estimated average treatment

effects are plotted, as the stacked() option figure(classic bcorrect) is specified (Figure 13).

Figure 12:
Specifying stacked() displays the estimated average gaps (here, in event time)
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Figure 13:
Specifying the stacked() option figure(classic bcorrect) plots the classic and bias-corrected
estimated average gaps
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Example 12

Calculate the stacked average treatment effects of Supercenter entry on aggregate county employment across

the U.S. as in Wiltshire (2021), but without p-values. Note that the run-time for this example is 35 minutes

using Stata MP on a Unix server.

First restore the data to include all treated and all donor pool counties:

Do as in Example 11, but for all U.S. counties which received their first Supercenter over this period.

Weight the estimated effects by 1990 county population, and restrict to those event years in which all treated

counties are observed. Restrict the donor pool for each treated county to those donor pool counties in

different commuting zones. Set the x-axis title to “Event year”, and save the graph as “att.pdf ” in the

“allsynth walmart ” directory:
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This example does as Example 11, but for all treated counties in the U.S. As avgweights(pop90) is

specified, the estimated average treatment effects will be calculated by weighting the estimated marginal

treatment effects of each treated county by their 1990 populations. As balanced is specified, the dis-

played, saved, and plotted estimates will be restricted to those event years in which all treated units are ob-

served (in this case, balanced does nothing as the sample is already balanced over event years e = [−5,5]).

As donorcond(sum czone if supercenter == 1, gen cz = r(mean)) donorif(czone != cz)

is specified, the donor pool for each treated unit will be restricted to only those donor pool counties in other

commuting zones. As , save(allsynth walmart/att, replace) is specified, the generated plot of

classic and bias-corrected estimated average treatment effects will be saved to allsynth walmart/att.pdf

and will replace any existing file of the same name (Figure 14). As xtitle(Event year) is specified, the

x-axis title will be changed to “Event year”.
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Figure 14:
Specifying the avgweights() option, the balanced option, the donorcond() option, and the
xtitle() option for stacked(), and adding the save() option to the figure() option for
stacked()
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Example 13

Do as Example 12, but estimate RMSPE-ranked and placebo-variance p-values (along with 95% confidence

intervals for the latter), and generate the plot for the bias-corrected estimated ATE, 1000 sampled placebo

average gaps, and the 95% confidence intervals as in Wiltshire (2023). Note that this example takes over 24

hours to run using Stata MP on a Unix server.

This example does as Example 12, but also calculates the RMSPE-ranked p-values, the placebo-variance-

based p-values, and the placebo-variance 95% confidence intervals, as pvalues(rmspe variance) is
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specified. As sampleavgs(1000) is specified, these will be based on 1000 randomly sampled placebo aver-

age gaps, but regardless allsynth will always sample exactly 1000 placebo averages when pvalues(variance)

is specified. figure(bcorrect placebos ci) is specified, so the generated plot (Figure 15) will show

the bias-corrected estimated average treatment effect, the sampled placebo average gaps, and the placebo-

variance 95% confidence intervals. The default placement of x-labels at a 90 degree angle has been over-

ridden using the twoway option xlabel(), and the y-axis range and labels have been restricted to between

-10 and 10 using the twoway options yscale() and ylabel().

Figure 15:
Specifying the stacked() option figure(bcorrect placebos ci) plots the bias-corrected
estimated average gaps and bias-corrected average placebo gaps
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Kaul, A., S. Klößner, G. Pfeifer, and M. Schieler. 2022. “Standard synthetic control methods: The case of

using all preintervention outcomes together with covariates.” Journal of Business & Economic Statistics

40 (3):1362–1376.

Kreif, N., R. Grieve, D. Hangartner, A. J. Turner, S. Nikolova, and M. Sutton. 2016. “Examination of the

synthetic control method for evaluating health policies with multiple treated units.” Health economics

25 (12):1514–1528.

Peri, G., D. Rury, and J. C. Wiltshire. 2024. “The Economic Impact of Migrants from Hurricane Maria.”

Journal of Human Resources 59:1795–1829.

41



Powell, D. 2021. “Synthetic Control Estimation Beyond Comparative Case Studies: Does the Minimum

Wage Reduce Employment?” Journal of Business & Economic Statistics :1–13.

Wiltshire, J. C. 2023. “Walmart Supercenters and Monopsony Power: How a Large, Low-Wage Employer

Impacts Local Labor Markets.” Working paper .

Wiltshire, J.C., C. McPherson, M. Reich, and D. Sosinskiy. Forthcoming. “Minimum Wage Effects and

Monopsony Explanations.” Journal of Labor Economics .

Zhang, Z. 2019. “Inference for Synthetic Control Methods with Multiple Treated Units.” arXiv preprint

arXiv:1912.00568 .

42


	WP Cover Page - allsynth
	allsynth_Wiltshire
	Introduction
	Synthetic Control Estimators
	Setup and Practical Considerations
	Bias Correction
	Inference
	Calculation of in-space placebo (and placebo average) gaps
	Calculation of RMSPE p-values
	Calculation of placebo-variance-based 95% confidence intervals and p-values

	Uniqueness of the i Matrices
	General contextual requirements for synthetic control methods to be appropriate


	Using allsynth
	allsynth Syntax
	allsynth Options
	pvalues()
	bcorrect()
	
	transform()
	stacked()

	Displayed, Saved, and Stored Results
	Displayed Results
	Saved Results
	Stored Results


	Examples
	allsynth without the stacked() option
	allsynth with the stacked() option



