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Motivation

Experimental limits for WIMP-Nucleon cross section
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[XENON Collaboration 2012, arXiv:1207.5988 [astro-ph]]




A Low Mass Dark Matter Scenario

The primary constraint on low mass thermal relic model building is
the effect on cosmology of a new particle produced copiously in the
early universe.
» If annihilation to SM states in the early universe is too weak,
too much dark matter is produced in the early universe.

» Introducing a light particle to mediate interactions between
dark sector and SM can enhance the annihilation rate.

Light Mediator
Hidden Sector Standard Model

» Too large an annihilation rate at later times would have been
observed through annihilation signals or its effect on the
cosmological history of the universe.

» Choosing a scalar dark matter candidate and a vector
mediator particle results in a velocity suppressed annihilation
rate, reducing these signals.



Kinetic Mixing

Dark sector containing scalar DM x and vector mediator V/, with
my > 2m,.
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V interacts with SM through kinetic mixing with the photon.
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Four free parameters: m,, my, k, and €.
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» Set &~ = o/ = 0.1 for convenience.

» Scenario is weakly constrained by direct and indirect dark
matter searches, but constraints from collider physics are
improving.



Scenario Parameter Space - Kinetic Mixing
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Baryonic Coupling Scenario

Dark sector containing scalar DM x and vector mediator V/, with
my >2m,.
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Dark vector mediator interacts with SM through kinetic mixing
with the photon, coupling to the baryonic current, or some
combination of the two.

LDV, (gsls — relty,)
Five free parameters: m,, my, k, gg and e

> We will consider the regime where baryonic coupling

dominates, and set k = 0.

> e = 4mag when we add coupling to baryons.



Scenario Parameter Space - Baryonic Vector
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Fixed Target Neutrino Experiments
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Proton Beam Target Charged Mesons Neutrino Beam Detector
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» Experiments impact a target with ~ 10%° — 10?2 protons to
produce a high intensity neutrino beam.
» Neutrinos produced from decays of charged mesons
propagating through subsequent decay volume.
» Can select for neutrino or antineutrino beams through the use
of magnetic focusing horns.
» Non-neutrinos are removed from the beam before it reaches
the detector to reduce background.

» Several fixed target neutrino experiments were investigated,
including: LSND, MiniBooNE, T2K.



Dark Matter Beams

Production of a dark matter beam through:
» Radiative decays of pseudoscalar mesons: 7%, 1, 7/’
» Coupling to vector mesons: p, w, ¢.

» Direct parton-level production: p+ N — V* — xx
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Detection through NCE scattering off electrons or nucleons. Very
similar to neutrino NCE scattering.
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Detecting Dark Matter with Neutrino Detectors
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> In the most straightforward analyses, without special timing or
energy cuts, dark matter signal manifests as
neutral-current-like elastic scattering events in excess of those
expected from neutrinos.

» For our analyses, neutrino events are the background. Need to
generate a significant number of excess events to obtain useful
sensitivity.

> Interaction channel chosen for analysis of each experiment
dependent on backgrounds and the neutral-current elastic
scattering analyses published.



Reducing the Neutrino Background

» Sensitivity can be improved by either reducing the number of
neutrinos reaching the detector, or by differentiating between
likely neutrino and dark matter events.

» Timing Cuts - DM beam takes longer to reach the detector
than neutrino beam.

» Energy Cuts - DM energy distribution peaks at a higher energy
than the neutrino distribution.

» Off-Target/Beam Dump runs

» Can dramatically decrease the neutrino flux by sending a
proton beam directly into the beam dump, while leaving DM
flux largely unchanged.

» MiniBooNE has been running in beam dump mode for much of
the last year. [arXiv:1211.2258v1, with Richard Van de Water|

25m Deployable Beam Dump ~ 50m Fixed Beam Dump

Proton Beam WIMP beam travels ~ 515m

Be Target T
50m decay pipe




The MiniBooNE Experiment

> Located at Fermilab. MiniBooNE Detector

» Operated in neutrino mode
from 2002 to 2012, delivering
nearly 2x10%! protons delivered
to its beryllium target.

> Target is followed by a 50
meter decay region and iron
beam dump.

» Uses an 800 ton mineral oil
Cerenkov detector, located 541
meters from the target.

» Operated in beam dump mode
from November 8, 2013 to ﬁ
September 5, 2014, collecting
2 x 10%° POT.



MiniBooNE Kinetic Mixing - YN — yN
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MiniBooNE Kinetic Mixing - ye — ye
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MiniBooNE Baryonic Vector

Nx->Nx POT=2x10%
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T2K

» Long baseline fixed-target neutrino experiment .

» Expects to deliver > 5 x 10%! 30 GeV protons on target.
» Utilizes a multi-component near detector, ND280, and a 50
ton water Cerenkov far detector, Super-K.
» Both detectors are 2.5 degrees off-axis to better select for
specific neutrino energies.
» ND280 is 280 m from the target, while Super-K is 295 km
from the target.



T2K POD Kinetic Mixing
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T2K Super-K Baryonic Vector
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Summary

> Thermal relic WIMP with a sub-GeV mass and interactions
mediated by a light U(1)" vector boson provides a viable dark
matter candidate.

» This candidate escapes many of the best limits imposed by standard
direct, indirect and collider searches.

» While new limits are being placed on the parameter space, a
great deal of viable parameter space remains unconstrained.
Electron fixed target experiments could reduce this further.
[see i.e. arXiv:1307.6554 [hep-ph], arXiv:1403.6826 [hep-ph], arXiv:1406.3028]

» Variants on this model, such as a baryonically coupled U(1)g
vector boson, can escape many of these new constraints.

> Fixed Target Neutrino Facilities possess good sensitivity to these
hidden-sector scenarios.

» Capable of probing regions of the hidden-sector parameter
space currently inaccessible to other techniques.

» Running a Fixed Target Neutrino Experiment in an off target mode
could provide new sensitivity, while requiring far fewer POT.

» A test of this approach is being conducted by the MiniBooNE
experiment.
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Choosing a Portal

For my > 2m,
» U(1)’ Mediator - Vector Portal

» Fermionic DM - s-wave annihilation and an increased dark
matter number density due to the low dark matter mass results
in a visible distortion of the CMB. Also leads to a more visible
signal from galactic center. [Padmanabhan & Finkbeiner et al
'05; Slatyer et al '08]

» Scalar DM - p-wave annihilation allows this scenario to be
viable for small k, as the annihilation rate is suppressed by an
additional factor of v. A small v heavily suppresses the dark
matter annihilation rate.

» Scalar Mediator - Higgs Portal

» Scalar DM - s-wave annihilation excludes this scenario for the
reasons given previously.

» Fermionic DM - p-wave annihilation renders this model
viable. However, fermionic DM requires a large mixing, which
could affect B decays. [Bird, Kowalewski & Pospelov 2006]



Dark Matter Beams - Production Channel Cross Sections
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