NOT-SO-STERILE NEUTRINOS AND NEW LEPTONIC FORCES

Brian Shuve

Perimeter Institute for Theoretical Physics

In collaboration with Itay Yavin (arXiv:1403.2727)

Theoretical Perspectives on New Physics at the Intensity Frontier University of Victoria 11 September 2014

Why sterile neutrinos?

- Sterile (right-handed) neutrinos are a well-motivated extension of the SM
 - All other fermions come in pairs of LH and RH fermions
 - Simplest way of accounting for neutrino masses and mixings
 - Sterile neutrinos are viable dark matter candidates!

Taken from Lujan-Peschard et al., 1301.4577

$$\mathcal{L}_{\text{see-saw}} = F L \Phi N + \frac{M_N}{2} N^2$$

- Sterile neutrinos are singlets which mix with the SM neutrinos
 - Only allowed interactions with the SM are through the mixing
 - Very predictive!

Too-sterile neutrinos

$$\mathcal{L}_{\text{see-saw}} = F L \Phi N + \frac{M_N}{2} N^2$$

- But....sterile neutrinos have a problem
 - No symmetry stabilizes the sterile neutrino: can decay to SM neutrinos
 - If sterile neutrinos are sufficiently stable, then they are **too sterile**
 - The production of *N* through the SM mixing is too slow and there is **insufficient abundance of** *N* **to account for dark matter!**
- For sterile neutrinos to be viable, we them to be **not-so-sterile**
 - There could be new interactions in the sterile sector, but these are almost impossible to probe (exception: Petraki, Kusenko 2007)
- <u>Our proposal</u>: A new interaction among **SM neutrinos** also increases the sterile neutrino production rate through mixing
 - We find a new **leptonic force** in the MeV-GeV mass range can enhance the *N* production while preserving constraints on the decay
 - Very predictive, different couplings than dark photon searches

Outline

- 1. Sterile neutrino production & decay in minimal model
- 2. Not-so-sterile neutrinos and new leptonic forces
- 3. Intensity frontier as a probe of not-so-sterile neutrinos

Minimal Sterile Neutrinos

$$\mathcal{L}_{\text{see-saw}} = F L \Phi N + \frac{M_N}{2} N^2$$

- Consider a simple scenario with one generation of N mixing with one generation of L_{α}
- After electroweak symmetry breaking, the sterile and LH neutrinos mix

$$\mathcal{M} = \begin{pmatrix} 0 & F\langle\Phi\rangle \\ F\langle\Phi\rangle & M_N \end{pmatrix} \qquad \qquad \sin\theta_{\alpha} = \frac{F\langle\Phi\rangle}{M_N}$$

- The **key question**: is *N* a viable dark matter candidate?
 - Does it have the correct abundance?
 - Is it sufficiently long-lived?

Sterile Neutrino Production

- Assume vanishing initial abundance of *N*
- Sterile neutrinos are produced through the **electroweak gauge interactions** in the early universe

- This is called the **Dodelson-Widrow mechanism** (Dodelson, Widrow 1993)
- In order to calculate the rate, we need to know the mixing angle at **finite temperature**

Sterile Neutrino Production

- The propagation of neutrinos is affected by the hot, dense medium of the early universe
 - Interactions with the background plasma give rise to a thermal mass to the SM neutrinos
 - This modifies the mass matrix (background potential) and **suppresses the mixing with sterile neutrinos** (Nötzold, Raffelt 1988)

Sterile Neutrino Production

- DM is predominantly created at *T* ~ few hundred MeV
- Abundance is completely determined by mass and mixing angle

• DM abundance (\checkmark)

Sterile Neutrino Decay

9

• DM abundance (\checkmark)

$$\Omega_N \approx 0.27 \left(\frac{\sin^2 2\theta}{2 \times 10^{-9}}\right) \left(\frac{M_N}{9 \text{ keV}}\right)^{1.8}$$

 Is it sufficiently long-lived? The same mixing for production leads to DM decay:

- This leads to the strongest constraint: bounds on photon line in stacked galaxy clusters
- Absence of signal $\rightarrow M_N \leq 2 \text{ keV}$

$$E_{\gamma} = \frac{M_N}{2}$$

Small-Scale Structure

- $M_N \leq 2 \text{ keV} \rightarrow \text{warm dark matter}$
- Suppresses growth of structure on small scales
- Most conservative constraints come from counting the # Andromeda subhalos
- Production of *N* through SM gauge interactions + mixing is **completely ruled out!**
- Sterile neutrinos are too sterile

Taken from Horiuchi et al., 1311.0282

- The minimal model can only work with a **resonant enhancement** of the mixing between SM and sterile neutrinos (Shi, Fuller 1999)
- Requires very large late-time lepton asymmetry (>10⁶ times bigger than baryon asymmetry)

$$V_{\nu} \approx 2\sqrt{2}G_{\rm F}(N_{\nu} - N_{\bar{\nu}}) - \frac{7\pi}{90\alpha}\sin^2(2\theta_{\rm W})G_{\rm F}^2 T^4 E_{\nu}$$
$$\sin^2(2\theta_{\rm m,\alpha 1}) = \frac{\sin^2(2\theta_{\alpha 1})}{\sin^2(2\theta_{\alpha 1}) + \left(\cos 2\theta_{\alpha 1} - \frac{2V_{\nu,\alpha}E}{M_{\star}^2}\right)^2}$$

 $M_{N_1}^2$

Not-so-sterile neutrinos and new leptonic forces

Not-so-sterile neutrinos

- To incorporate a natural model of sterile neutrino dark matter, we need to make them less sterile
 - Mixing ensures that any new interaction coupled to SM neutrinos also couples to sterile neutrinos

• But does any new contribution to *N* production also lead to its decay into a photon line?

- A neutral current interaction contributes to production but not the decay to photons
 - Sterile neutrino production is enhanced with new leptonic interactions

New Leptonic Interactions

- A neutral current interaction contributes to production but not the decay to photons
 - Reasonable choice: new U(1)' gauge interaction, Z' force mediator
 - Anomaly-free: B L, $L_i L_j$
 - The cosmology only really cares that Z' couples to leptons (but phenomenology depends on other charged states)
- What is the mass & coupling of this new force?

- Production of N strongly suppressed above ~ few hundred MeV
- Consider separately the limits $M_{Z'} \gg \text{GeV}$, and $M_{Z'} \lesssim \text{GeV}$

New Leptonic Interactions

- $M_{Z'} \gg \text{GeV}$
 - Production of *N* only occurs below a few hundred MeV
 - *N* production mediated by off-shell Z'

- This is exactly analogous to production of *N* through electroweak gauge interactions, but with *G*_F replaced with *G*'
- Since the electroweak interactions are **too weak** to produce enough *N*, this means that $G' \gg G_F$
- This is **ruled out** from excessive contributions to the lepton magnetic dipole moments, LEP, etc.

New Leptonic Interactions

- $M_{Z'} \approx \text{GeV}$
 - Z' still present in thermal bath at time of largest *N* mixing
 - $1 \rightarrow 2$ processes dominate
 - Similar dynamics to direct *N* production from singlet decays (Shaposhnikov,

Tkachev 200

This new force is precisel
"window" at the intensity

Taken from Adrian et al. 2013

Not-so-sterile Neutrinos & U(I)'

• When are most *N* produced?

$$\Gamma_{Z'} \sim g'^2 \sin^2 2\theta M_{Z'} \qquad \qquad H \sim \frac{T^2}{M_{\rm Pl}}$$

$$\frac{\Gamma}{H} \sim \frac{g^{\prime 2} \sin^2 2\theta M_{Z^\prime} M_{\rm Pl}}{T^2}$$

$$Z'$$
 N_1

- The number of *N* produced per Hubble time **grows** as the universe **cools**
- Most N are produced at the lowest temperature where Z' is still in the thermal bath (T ~ M_{Z'})

$$Y_N \equiv \frac{n_N}{s} \sim \frac{g^{\prime 2} \sin^2 2\theta M_{\rm Pl}}{M_{Z^\prime}}$$

- Our calculations include all finite-*T* effects from SM gauge and Z' interactions
- Thermal effects of Z' computed in non-equilibrium QFT without assumptions on $M_{Z'}$

c.f. Wu, Ho, Boyanovsky 2009

• Include damping of neutrino mixing induced by new force (quantum Zeno effect)

Not-so-sterile Neutrinos & U(I)'

• For each *M_N*, use mixing angle at limit allowed by X-ray constraints

7 keV, $\sin^2(2\theta) = 6 \times 10^{-11}$ 30 keV, $\sin^2(2\theta) = 5 \times 10^{-12}$ 50 keV, $\sin^2(2\theta) = 1.25 \times 10^{-15}$ 100 keV, $\sin^2(2\theta) = 2.5 \times 10^{-17}$

Not-so-sterile Neutrinos & U(I)'

- Dependence on mixing angle for fixed mass (7 keV sterile neutrino shown)
- Complementarity between direct and astrophysical probes

Not-so-sterile neutrinos and the intensity frontier

Z' constraints

• Mass:

 Since the Z' decays into neutrinos, constraints on the effective number of neutrino species imply M_{Z'} ≥ 2 MeV

• Mass + Coupling:

- Muon *g* 2
- *N* lifetime (by mediating *N* to 3 neutrino decay)
- Neutrino-electron scattering
- Neutrino-nucleon interactions (beam dumps)
- Meson/onium decays
- Neutrino trident (new since our paper) Altmannshofer *et al.*, 1406.2332
- Final constraints depend strongly on fields coupled to Z'

Z' constraints

adapted from Williams et al., 1103.4556

Z' constraints

adapted from Williams et al., 1103.4556

A possible hint of N?

• **Possible detection** of 3.57 keV X-ray line in stacked galaxy clusters! (4σ stat.)

Taken from **Boyarsky** *et al.*, **1402.4119**

- 7.15 keV *N* is below small-scale structure bounds for thermal production
- Our mechanism produces somewhat colder *N* than thermal (✓)
- If true, very challenging to probe additional Z'

Conclusions

- Sterile neutrinos are well-motivated dark matter candidates, but new interactions are needed to account for the observed abundance
- Our models make a robust prediction for new **leptonic forces** in the MeV-GeV mass range, couplings 10⁻⁶ 10⁻³
- Intensity frontier can serve as a complementary window into physics related to cosmology very clear target parameter space
- New search strategies needed to close remaining gaps, particularly when the new force does not interact with baryons or first-generation leptons

Back-up slides

3.6 keV X-ray line

Taken from Abazajian 2014

Results

- Sterile neutrinos can be hot, warm, or cold (Abazajian, Fuller, Patel 2001)
- Sterile neutrino spectrum from Z' is often colder than thermal
- Sensitivity to QCD phase transition and thermal effects

(solid) $M_N = 7.1$ keV, $M_{Z'} = 300$ MeV (dashed) thermal distribution

Model building

- New gauge interaction must be consistent with see-saw Yukawa couplings
 - Depending on charges of Higgs, sterile neutrinos, not all entries of $L\Phi N$ are allowed \Box
 - Constrain model-building possibilities: baryogenesis, neutrino mixings should still be OK
- One possible example for $U(1)_{\mu-\tau}$:
 - Introduce new scalar Σ carrying U(1)_{μ - τ}; new doublet Dirac fermions X₂, X₃

 $\mathcal{L} = \lambda_2 L_2 \Sigma X_2 + \lambda_3 L_3 \Sigma^* X_3 + f_1 L_1 H N_I + f_2 \bar{X}_2 H N_I + f_3 \bar{X}_3 H N_I \qquad f \ll \lambda$

- Low-energy effective theory can give same neutrino Yukawa couplings after Σ breaks U(1)_{μ - τ}
- New fields can be at/above weak scale