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Why sterile neutrinos!?

e Sterile (right-handed) neutrinos are a well-motivated extension of the SM
e All other fermions come in pairs of LH and RH fermions
* Simplest way of accounting for neutrino masses and mixings

e Sterile neutrinos are viable dark matter candidates!
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Taken from Lujan-Peschard et al., 1301.4577
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e Sterile neutrinos are singlets which mix with the SM neutrinos
* Only allowed interactions with the SM are through the mixing
* Very predictive!



Too=sterile neutrinos

M
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But....sterile neutrinos have a problem
* No symmetry stabilizes the sterile neutrino: can decay to SM neutrinos
e If sterile neutrinos are sufficiently stable, then they are too sterile

e The production of N through the SM mixing is too slow and there is
insufficient abundance of N to account for dark matter!

For sterile neutrinos to be viable, we them to be not-so-sterile

e There could be new interactions in the sterile sector, but these are almost
impossible to probe (exception: Petraki, Kusenko 2007)

Our proposal: A new interaction among SM neutrinos also increases the
sterile neutrino production rate through mixing

e We find a new leptonic force in the MeV-GeV mass range can enhance the
N production while preserving constraints on the decay

e Very predictive, different couplings than dark photon searches



Outline

1. Sterile neutrino production & decay in minimal model

2. Not-so-sterile neutrinos and new leptonic forces

3. Intensity frontier as a probe of not-so-sterile neutrinos



Minimal Sterile Neutrinos
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* Consider a simple scenario with one generation of N mixing with one generation of L,

e After electroweak symmetry breaking, the sterile and LH neutrinos mix
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e The key question: is N a viable dark matter candidate?
 Does it have the correct abundance?

« Isitsutficiently long-lived?



Sterile Neutrino Production
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e Assume vanishing initial abundance of N

e Sterile neutrinos are produced through the electroweak gauge interactions in the early
universe

Iy ~ E:Sin2 20 (TG

e Thisis called the Dodelson-Widrow mechanism (Dodelson, Widrow 1993)

e Inorder to calculate the rate, we need to know the mixing angle at finite temperature



Sterile Neutrino Production

e The propagation of neutrinos is affected by the hot, dense medium of the early universe

e Interactions with the background plasma give rise to a thermal mass to the
SM neutrinos

e This modifies the mass matrix (background potential) and suppresses the
mixing with sterile neutrinos (N6tzold, Raffelt 1988)
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Sterile Neutrino Production

DM is predominantly created at T ~ few hundred MeV

Abundance is completely determined by mass and mixing angle
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Sterile Neutrino Decay

DM abundance (V')

Is it sufficiently long-lived?

The same mixing for production leads to DM decay:

This leads to the strongest constraint: bounds on
photon line in stacked galaxy clusters

Absence of signal — My = 2 keV
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Small-Scale Structure

My = 2 keV — warm dark matter

UMIN X-ray

Suppresses growth of structure on small scales

Most conservative constraints come from counting
the # Andromeda subhalos

Production of N through SM gauge interactions +
mixing is completely ruled out!

Sterile neutrinos are too sterile m_ [keV]
Taken from Horiuchi et al., 1311.0282

The minimal model can only work with a resonant enhancement of the mixing between
SM and sterile neutrinos (Shi, Fuller 1999)

Requires very large late-time lepton asymmetry (>10° times bigger than baryon

asymmetry)
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Not-so-sterile neutrinos and
new leptonic forces
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Not-so-sterile neutrinos

 To incorporate a natural model of sterile neutrino dark matter, we need to make them
less sterile

e Mixing ensures that any new interaction coupled to SM neutrinos also
couples to sterile neutrinos
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* But does any new contribution to N production also lead to its decay into a photon line?
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* A neutral current interaction contributes to production but not the decay to photons

e Sterile neutrino production is enhanced with new leptonic interactions
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New Leptonic Interactions

A neutral current interaction contributes to production but not the decay to photons
e Reasonable choice: new U(1)" gauge interaction, Z’ force mediator
* Anomaly-free:B-L, L;-L;

* The cosmology only really cares that Z’ couples to leptons (but
phenomenology depends on other charged states)

What is the mass & coupling of this new force?
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New Leptonic Interactions

e Mz »GeV

* Production of N only occurs below a
few hundred MeV

N production mediated by off-shell Z’

e This is exactly analogous to production of N through electroweak gauge interactions,
but with Gr replaced with G’

e Since the electroweak interactions are too weak to produce enough N, this means that
G’ >» GrF

e This is ruled out from excessive contributions to the lepton magnetic dipole moments,
LEP, etc.
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New Leptonic Interactions

. Mz = GeV

e Z still present in thermal bath at time of
largest N mixing A

* 1 — 2 processes dominate

<

* Similar dynamics to direct N production
from singlet decays (Shaposhnikov,
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e This new force is precisely in the light force -
“window” at the intensity frontier |
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Not-so-sterile Neutrinos & U(1)’

e  When are most N produced? N,
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e The number of N produced per Hubble time grows as the universe cools

* Most N are produced at the lowest temperature where Z’ is still in the thermal
bath (T ~ Mz)
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* Our calculations include all finite-T effects from SM gauge and Z’ interactions

e Thermal effects of Z' computed in non-equilibrium QFT without assumptions on Mz’

c.f. Wu, Ho, Boyanovsky 2009

* Include damping of neutrino mixing induced by new force (quantum Zeno effect)
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Not-so-sterile Neutrinos & U(1)’

 For each My, use mixing angle at limit allowed by X-ray constraints
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Not-so-sterile Neutrinos & U(1)’

* Dependence on mixing angle for fixed mass (7 keV sterile neutrino shown)

* Complementarity between direct and astrophysical probes




Not-so-sterile neutrinos and
the intensity frontier
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4’ constraints

Mass:

e Since the Z’ decays into neutrinos, constraints on the effective number of
neutrino species imply Mz = 2 MeV

Mass + Coupling:
* Muong-2
e N lifetime (by mediating N to 3 neutrino decay)
 Neutrino-electron scattering
e Neutrino-nucleon interactions (beam dumps)
e Meson/onium decays

e Neutrino trident (new since our paper) Altmannshofer et al., 1406.2332

Final constraints depend strongly on fields coupled to Z’
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4’ constraints

adapted from Williams et al., 1103.4556
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4’ constraints

adapted from Williams et al., 1103.4556
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A possible hint of N?

* Possible detection of 3.57 keV X-ray line in stacked galaxy clusters! (40 stat.)
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Conclusions

Sterile neutrinos are well-motivated dark matter candidates, but new interactions are
needed to account for the observed abundance

Our models make a robust prediction for new leptonic forces in the MeV-GeV mass
range, couplings 10-¢ - 103

Intensity frontier can serve as a complementary window into physics related to
cosmology - very clear target parameter space

New search strategies needed to close remaining gaps, particularly when the new force
does not interact with baryons or first-generation leptons
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Back-up slides
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Line Flux (photons cm™s™)

3.6 keV X-ray line
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Sterile neutrinos can be hot,

Results

, or cold (Abazajian, Fuller, Patel 2001)

Sterile neutrino spectrum from Z’ is often colder than thermal

Sensitivity to QCD phase transition and thermal effects
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Model building

New gauge interaction must be consistent with see-saw Yukawa couplings

e Depending on charges of Higgs, sterile neutrinos, not all entries of L&N
are allowed [

 Constrain model-building possibilities: baryogenesis, neutrino mixings
should still be OK

One possible example for U(1)y-r:

e Introduce new scalar X carrying U(1)..; new doublet Dirac fermions X, X3

=)oY Xo - A3l3Y* X5+ f1l1 HN; + 2 XoHN; + fs X3 HNy f <A

e Low-energy effective theory can give same neutrino Yukawa couplings
after ¥ breaks U(1),«

e New fields can be at/above weak scale
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