Fixed-Target Signals of Multi-Component Light Hidden Sectors David E. Morrissey **TRIUMF** with Andrew Spray

hep-ph/1402.4817

September 12, 2014

UVic DarkStuff Mini-Workshop

Searching for New Phenomena

Portals to Hidden Physics

- Two nice ways for new hidden physics to couple:
 - Vector Portal: (A' = "hidden photon")

 $\epsilon F'_{\mu
u}F^{\mu
u}$

 Higgs Portal: (H' = "hidden Higgs")

 $\lambda |H'|^2 |H|^2$

Minimal Vector Portal

• Hidden photon A' with mass $m_{A'}$, A' \rightarrow SM+SM:

[Bjorken, Essig, Schuster, Toro 2009; ...; BaBar 2014]

Minimal Dark Vector Portal

• Hidden photon A' with mass $m_{A'}$, A' \rightarrow DM+DM:

[Batell, Pospelov, Ritz 2009; ...; Essig et al. 2013]

Minimal Higgs Portal

• Hidden Higgs h' with mass $m_{h'}$, h' \rightarrow SM+SM:

[...; Batell, Pospelov, Ritz 2009; Bezrukov+Gorbunov 2013; Clarke, Foot, Volkas 2013]

Beyond Minimal

- Hidden sectors can be more complicated than minimal. These can produce new and interesting signatures.
- How does the dark photon get a mass?
 → Higgsing, Strong Coupling, Stueckelberg, ...
- What keeps the hidden sector light?
 → Supersymmetry, Compositeness/Warping, ...
- Are there experimental signals we are missing?
- Can we learn about the visible sector by discovering a hidden sector?

Beyond Minimal #1: SUSY Dark Vector

- Why Supersymmetry (SUSY)?
 - Some people are quite fond of it.
 - Can explain why the hidden sector is so light.
 - Gives a concrete non-minimal vector portal theory.
 - Studying new theories can motivate new exp. searches.

SUSY Hidden Sector Setup

- Hidden U(1)' gauge symmetry kinetically mixes with U(1)_Y.
- Hidden Higgs fields spontaneously break the U(1)'.

- Physical states:
 - I A' massive hidden photon
 - 3 $\chi^{x}_{1,2,3}$ hidden fermion "neutralinos" (lightest is stable)
 - 2 $h_{1,2}^x$ hidden scalar Higgs bosons
 - I a^x hidden pseudoscalar Higgs boson

Experimental Signals of the Theory

- Depend mainly on how the hidden photon decays. This is determined mostly by the mass spectrum.
- Four main cases:
 - A: $A' \rightarrow SM + SM$, similar to minimal vector portal
 - B: $A'
 ightarrow \chi_1^x + \chi_1^x$, similar to dark vector portal
 - C: $A'
 ightarrow h_1^x + a^x$, not much attention [Schuster, Toro, Yavin 2009]
 - D: $A'
 ightarrow \chi_1^x + \chi_2^x$, new!
- I will focus on cases C and D.

Case C: $A' \rightarrow h_1^x + a^x$

Case C: $A' \to h_1^x + a^x$

• Decays of a^x :

• Lifetime depends on relative a^x and A' masses.

Case C: Precision and Meson Factories

Case C: Electron-Fixed-Target Signals

• Signal Sources:

- A' is produced relatively efficiently, mostly along the beam.
- Two sources of signals:
 - I. decay products of h_1^x or a^x are seen in the detector.

2. h_1^x or a^x scatters quasi-elastically in the detector.

Case C: Electron Fixed Target Limits

- Set all parameters as fixed ratios of $m_{A'}$, $\alpha' = \alpha$.
- Best limits come from EI37.

Case C: Hadronic Fixed Target Signals

• Signal Sources:

- A' production from parton collisions or meson decay.
- Two sources of signals:
 - I. decay products of h_1^x or a^x are seen in the detector.

2. h_1^x or a^x scatters quasi-elastically in the detector.

Case C: Hadronic Fixed Target Limits

- Set all parameters as fixed ratios of $m_{A'}$, $\alpha' = \alpha$.
- Best limits come from CHARM, LSND, and v-Cal I.

Case D: $A' \rightarrow \chi_1^x + \chi_2^x$

• Decays of χ_2^x :

• Lifetime depends on relative χ_2^x and A' masses.

Case D: Precision and Meson Factories

Case D: Electron Fixed Target Limits

- Set all parameters as fixed ratios of $m_{A'}$, $\alpha' = \alpha$.
- Best limits come EI37 and others.

Case D: Hadronic Fixed Target Limits

- Set all parameters as fixed ratios of $m_{A'}$, $\alpha' = \alpha$.
- Best limits come from CHARM, LSND, and v-Cal I.

Beyond Minimal #2: Warped Dark Vector

- Why a warped extra dimension?
 - Some people are quite fond of it.
 - Can explain why the hidden sector is so light.
 - Gives a concrete non-minimal vector portal theory.
 - Studying new theories can motivate new exp. searches.

Beyond Minimal #2: Warped Dark Vector

• We live on a 4-D slice of a warped 5D spacetime. A dark $U(1)_x$ vector (and gravity) probes the full 5D.

Predicts a dark photon (n=0) and KK excitations (n > 0):

 $m_n \simeq (n \sqrt{\text{Log}}) \times m_0$ $\epsilon_n = (1/\sqrt{n \text{Log}}) \times \epsilon_0$ n = 1, 2, 3...

Beyond Minimal #2: Warped Dark Vector

• Higher vector modes can decay to lower vector modes, or to KK graviton excitations.

• This is a toy model for hidden strong dynamics, or certain string theory scenarios with "warped throats".

Summary

- New hidden states can produce new signals.
- e.g. SUSY hidden sector with Cases A, B, C, D:
 - Cases A ($A' \rightarrow SM + SM$) and B ($A' \rightarrow \chi_1^x + \chi_1^x$) are similar to what has been studied previously.
 - Cases C and D have not received much attention, but are particularly well-suited to fixed target searches.
- Many other possibilities...

Extra Slides: SUSY

Electron Fixed-Target Experiments

Expt	Target	E (GeV)	Log ₁₀ N _e	L _{sh}	L_{dec}
EI37	AI	20	20	179	204
EI4I	W	9	15	0.12	35
E774	W	275	9	0.3	2
KEK	W	2.5	17	2.4	2.2
Orsay	\mathbf{W}	1.6	16		2
JLab 💦	AI	12	20	10	

[Izaguirre, Krnjaic, Schuster, Toro 2013]

Hadronic Fixed-Target Experiments

Expt	Target	E (GeV)	Log ₁₀ N _P	L _{sh}	L_{dec}
CHARM	Cu	400	18	480	35
MINOS	C	120	21	1040	1.3
v-Cal I	Fe	70	18	64	23
INGRID	С	30	21	280	0.585
LSND	•••	0.798	•••	30	8.3

Case A - Fixed Target

Case A - Summary

Case B - Fixed Target

E Beam

H Beam

Case B - Summary

Case C - Summary

Case D - Summary

Extra Slides: Warped

Stringy Warped Throats

[Baumann,Dymarsky,Kachru,Klebanov,McAllister '10]

