Search for dark sectors at BABAR

Bertrand Echenard Caltech

On behalf of the BABAR Collaboration

Mini-workshop at Victoria Victoria – September 2014

A new possibility - dark sectors

- Recent anomalies observed by satellite and terrestrial experiments have motivated dark matter models introducing a new sector with a 'dark' force.
- Dark sector = new particles that do not couple directly to the SM content, but...
- There are "portals" between the dark sector and the SM.
- Implications for astrophysics, cosmology and particle physics.
- In particular, low-energy colliders and fixed target experiments offer an ideal environment to probe these new ideas.

A new possibility - dark sectors

- Recent anomalies observed by satellite and terrestrial experiments have motivated dark matter models introducing a new sector with a 'dark' force.
- Dark sector = new particles that do not couple directly to the SM content, but...
- There are "portals" between the dark sector and the SM.
- Implications for astrophysics, cosmology and particle physics.
- In particular, low-energy colliders and fixed target experiments offer an ideal environment to probe these new ideas.

Lowest dimensional operators connection hidden sectors to the SM (higher dimensional operators are mass suppressed)

Vector	ε F ^Y ,μν F' _{μν}	Hidden photon
Axion	$f_a^{-1} F^{\mu\nu} F_{\mu\nu} a$	Axion / ALP
Scalar	$\lambda H^2 S^2 + \mu H^2 S$	Hidden scalar / exotic Higgs decays
Neutrino	к(HL)N	Sterile neutrino

At low-energy scale, light vector portal is the most accessible, but the scalar portal can also be probed

The BABAR experiment @ SLAC (1999 - 2008)

BABAR collected around 500 fb^{-1} of data around the Y(4S) resonance

B-factories offer an ideal environment to search for dark sector particles

Search for dark photon

 $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$, $\mu^+\mu^-$, $\pi^+\pi^$ $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow invisible$

Search for dark photon in meson decays $\pi^0 \rightarrow \gamma | + |^2, \eta \rightarrow \gamma | + |^2, \phi \rightarrow \eta | + |^2, ...$

Search for dark Higgs boson

 $e^+e^- \rightarrow h' A'$, $h' \rightarrow A' A'$ $e^+e^- \rightarrow h' A'$, $h' \rightarrow invisible$ Search for dark boson(s) $e^+e^- \rightarrow A'^* \rightarrow W'W'_{,}$ $e^+e^- \rightarrow \gamma A' \rightarrow W'W''$

Search for dark hadrons $e^+e^- \rightarrow \pi_D + X, \quad \pi_D \rightarrow e^+e^-, \ \mu^+\mu^-$

Search for dark scalar (s)

 $B \rightarrow K^{(*)}s \rightarrow K^{(*)} l^{+}l^{-}$ $B \rightarrow Ks \rightarrow Kvv$ $Y \rightarrow \gamma + invisible$ $B \rightarrow ss \rightarrow 2(l^{+}l^{-})$

Possibility to explore the dark sector structure !

Vector portal

Dark photon and particle physics

- Can produce dark photons. In fact, photons in any process can be replaced by dark photons (with an extra factor of ε).
- Decays back to lepton/quark pairs → search for resonances. Lepton contribution dominates at low masses, and is still ~30% at high masses!
- Dark photon width is small (~ mε) and could be short or long-lived → prompt or displaced decay vertex.
- Potential to probe displaced vertex at Belle II for low masses with enough luminosity?

Particle physics implications

Dark photon and particle physics

- Can produce dark photons. In fact, photons in any process can be replaced by dark photons (with an extra factor of ε).
- Decays back to lepton/quark pairs → search for resonances. Lepton contribution dominates at low masses, and is still ~30% at high masses!
- Dark photon width is small (~ m ϵ) and could be short or long-lived \rightarrow prompt or displaced decay vertex.
- Potential to probe displaced vertex at Belle II for low masses?
- Recent constraints still leave a lot of space to explore

Constraints on ϵ vs. m_{A^\prime}

Bjorken, Essig, Schuster, Toro Andreas, Niebuhr, Ringwald Batell, Pospelov, Ritz; Essig, Harnik, Kaplan, Toro Blumlein, Brunner;

Dent, Ferrer, Krauss Essig Schuster, Toro, Wojtsekhowski KLOE, APEX, MAMI/A1 Collab. Davoudiasl, Lee, Marciano; Endo, Hamaguchi, Mishima

Low-energy high-luminosity e⁺e⁻ colliders offer a low-background environment to search for MeV/GeV-scale hidden sector (in particular GeV scale) and probe their structure

Direct dark photon production

A dark photon can be produced in

 $e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$

Event selection

- 2 tracks + 1 photon
- Constrained fit to the beam energy and beam spot
- Particle identification (e/mu)
- Kinematic cuts to improve purity
- Quality cuts on tracks and photons

Direct dark photon production

submitted to PRL arXiv:1406.2980

Di-electron mass spectrum

- Globally well reproduced by BHWIDE above 1 GeV, cut-off in the MC (colinear tracks) affects low mass region. Madgraph reproduces well the low mass region.
- Background from photon conversions suppressed by neural network

Di-muon mass spectrum

- Plot the reduced mass (smoother near threshold): $m_{red} = (m_{\mu\mu}^2 4 m_{\mu}^2)^{1/2}$
- Globally well reproduced by KK2F, correct for differences in efficiencies

Good data-MC agreement at the J/ ψ , Ψ (2S), Y(1S) resonances

submitted to PRL arXiv:1406.2980

Results on $\sigma(e^+e^- \rightarrow \gamma A', A' \rightarrow I^+I^-)$ for combined Y(25,35,45) datasets

Largest significances:

3.4 σ for electrons @ 7.02 GeV \rightarrow 0.6 σ with trial factors 2.9 σ for muons @ 6.09 GeV \rightarrow 0.1 σ with trial factors

Results - dark sector mixing

- Exclude a substantial fraction of the remaining region favored by the "g-2" measurement and improve the existing constraints over a wide range of masses.
- An analysis of the e⁺e⁻ $\rightarrow \gamma A'$, $A' \rightarrow \pi^+\pi^-$ final state (not included yet) can further probe the region near the ρ meson.

Bertrand Echenard - Mini wor

Mini workshop Victoria - Sep 2014 - p.12

Results - dark sector mixing

Comparison with expected sensitivity of future experiments

Dedicated experiments will be more sensitive in the low mass region, but B-factories can set the stringent limits above ~500 MeV

Invisible dark photon decays

arxiv:0808.0017

Invisible dark photon decays

- Several scenarios where dark photons decay to invisible final states, e.g lighter dark sector particles (sub-GeV),...
- At e^+e^- colliders, we can search for

 $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow invisible$

by tagging the recoil photon in "single photon" events.

• Currently only a measurement of $Y(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$ at BABAR with A^0 a light CP-odd Higgs

Y(3S) $\rightarrow \gamma A^0, A^0 \rightarrow \text{invisible},$ new analysis in progress + extension to A'

Invisible dark sector

- Several scenarios where dark photons \bullet decay to invisible final states, e.g lighter dark sector particles (sub-GeV),...
- At e⁺e⁻ colliders, we can search for \bullet

 $e^+e^- \rightarrow \gamma A'$. $A' \rightarrow invisible$

by tagging the recoil photon in "single photon" events.

- Currently only a measurement of \bullet $Y(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$ at BABAR with A^o a light CP-odd Higgs
- Analysis extended to full dataset and the \bullet dark photon case, expect limits on ε at the level of 10⁻³.
- Also constraints from (g-2)e, $(g-2)\mu$, $K \rightarrow \pi \nu \nu$ decays

10^{-2} BaBar K→πA E787. E949 BaBa 10^{-3} Improved Belle II DarkLight Converted Mono-photon (a,b) ω K→πA ORKA Belle II VEPP-3 Standard 10^{-4} Belle II Low-E LSND $\alpha_{\rm D}=0.1$ 10^{-5} 0.01 0.001 01 10 m_{A'} [GeV]

Major improvement possible with future experiments (e.g. Belle II)

Dark Higgs boson

- Dark photon mass is generated via the Higgs mechanism, adding a dark Higgs boson (h')
- A minimal scenario has a single dark photon and a single dark Higgs boson.
- The Higgsstrahlung process

 $e^+e^- \rightarrow A^{\prime \star} \rightarrow h^{\prime} A^{\prime}$

is only suppressed by ϵ^2 and has low bkg.

• Also sensitive to the dark sector coupling constant $\alpha_{\rm D}$ = $g_{\rm D}^2$ / 4π

Search for prompt h' decays : $e^+e^- \rightarrow A'^* \rightarrow h' A', h' \rightarrow A' A'$

See 6 events, all with hadrons (each event is plotted 3 times)

Dark Higgs boson

BABAR: PRL 108 (2012) 211801

- Assume $\alpha_D = 1/137$, constraints on ϵ down to a few 10⁻⁴ (light dark Higgs must exist)
- Almost background free environment, Belle II could improve by factor 100!

Scalar portal

Various scenarios of new scalar (ϕ) that mixes with the SM Higgs, sometimes adding new fermions (χ) as well (e.g. JHEP 1402, 123 (2014); PLB 727, 506 (2013))

Scalar can be produced in Upsilon or B decays, and decay back to SM fermions or dark sector particles

Signature similar to light CP-odd higgs decays or $B \rightarrow K^{(*)}II$ and $B \rightarrow K^{(*)}vv$ decays

Light CP-odd higgs A⁰

Search for light CP-odd Higgs A⁰ predicted in some NMSSM scenarios in Y decays

- Search for fully/partially reconstructed A⁰ or monochromatic photon in recoil mass
 - Y(2S,3S) \rightarrow Y A⁰, A⁰ \rightarrow $\mu^{+}\mu^{-}$ PRL103 (2009) 081803
 - $\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$ PRL103 (2009) 181801
 - Y(2S,3S) \rightarrow y A⁰, A⁰ \rightarrow hadrons PRL107 (2011) 221803
 - $\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$ arXiv: 0808.0017 + new analysis in progress

- Select Y(1S) from dipion transition $\Upsilon(2S,3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$
- Search for fully/partially reconstructed A^0 or monochromatic photon in $\Upsilon(1S)$ frame
 - $\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$ PRL107 (2011) 021804
 - $\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$ PRD 87 (2013) 031102
 - $\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$ PRD 88 (2013) 071102
 - $\Upsilon(1S) \rightarrow A^0, A^0 \rightarrow gg \text{ or } s\overline{s}$ PRD 88 (2013) 031701
- Bertrand Echenard
- Mini workshop Victoria Sep 2014 p.19

Light CP-odd higgs A⁰

$A^0 \rightarrow \mu^+ \mu^-$ CMS (PRL 109 (2012) 121801)

 $A^0 \rightarrow s\overline{s}$

No sign of light CP-odd higgs

Dark matter model with new Majorana fermion (χ) and scalar (ϕ) mediating the DM-SM interaction (PLB 727, 506 (2013)) to explain the CDMS-SI excess.

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{y m_f}{v} \phi \bar{f} f - \frac{1}{2} \kappa \phi \bar{\chi} \chi$$

Fix the value of κ to get the correct relic density

Exclude the 1-5 GeV region, expect further improvement at LHC/Belle II

Weinberg's Higgs portal model with new dark scalar and dark Majorana fermion (PRD 89, 083513 (2014))

 Φ = SM Higgs field

$$\mathscr{L} = \partial_{\mu}S^{\dagger} \ \partial^{\mu}S + \mu^{2} \ S^{\dagger} \ S - \lambda(S^{\dagger} \ S)^{2} - g_{\theta} \ (S^{\dagger} \ S)(\Phi^{\dagger} \ \Phi) + \mathscr{L}_{SM}$$

$$S = \frac{1}{\sqrt{2}} \left(\langle r \rangle + r(x) \right) e^{i 2\alpha(x)}$$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} r \\ \phi \end{pmatrix}$$

$$\tan 2\theta = \frac{g_\theta \langle r \rangle \langle \phi \rangle}{\lambda_{\rm SM} \langle \phi \rangle^2 - \lambda \langle r \rangle^2} \,.$$

+ constraints on the relativistic number of d.o.f.

Stringent constraints from B-factories

Weinberg's Higgs portal model with new dark scalar and dark Majorana fermion (PRD 89, 083513 (2014))

 $\Phi = SM$ Higgs field

$$\mathscr{L} = \partial_{\mu}S^{\dagger} \ \partial^{\mu}S + \mu^{2} \ S^{\dagger} \ S - \lambda(S^{\dagger} \ S)^{2} - g_{\theta} \ (S^{\dagger} \ S)(\Phi^{\dagger} \ \Phi) + \mathscr{L}_{SM}$$

$$S = \frac{1}{\sqrt{2}} \left(\langle r \rangle + r(x) \right) e^{i 2\alpha(x)}$$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} r \\ \phi \end{pmatrix}$$

$$\tan 2\theta = \frac{g_\theta \langle r \rangle \langle \phi \rangle}{\lambda_{\rm SM} \langle \phi \rangle^2 - \lambda \langle r \rangle^2} \,.$$

+ constraints on the relativistic number of d.o.f.

LHC can set stringent constraint for large values of λ

Summary

- B-factories offer an ideal environment to search for dark sector: dark photon (visible + invisible), dark Higgs, darkboson,...
- Can probe the structure of dark sector
- Belle II could improve these searches by a factor ~3 two orders of magnitude, depending on the final state.
- Let me know if you have any interesting idea that could be probed at B-factories...
- Wish list:
 - get once for all a single notation for kinetic mixing, dark photon, dark Higgs,...
 - repository with all the available results (standard plot)
 - Standard tools (MC,...)

.Extra material

Rare decays $B \rightarrow KII$ and $B \rightarrow K \nu \nu$

B→KII

Mode	Belle	BABAR	
$\overline{B^+ \to K^+ \nu \bar{\nu}}$	$< 5.5 \times 10^{-5}$	$< 1.6 \times 10^{-5}$	
$B^0 \to K^0_s \nu \bar{\nu}$	$< 9.7 \times 10^{-5}$	$< 4.9 \times 10^{-5}$	
$B^+ \to K^{*+} \nu \bar{\nu}$	$< 4.0 \times 10^{-5}$	$< 6.4 \times 10^{-5}$	
$B^0 \to K^{*0} \nu \bar{\nu}$	$<$ 5.5 \times 10 ⁻⁵	$< 12 \times 10^{-5}$	
BABAR PRD 87 112005 (2013)			

Belle PRD 87, 111103 (2013)

BABAR (*I*+*I*): PRD 86, 032012 (2012) Belle (*I*+*I*): PRL 103, 171801 (2009) CDF (*µ*+*µ*-): PRL 107, 201802 (2011)

Batell et al., PRD 83 (2010) 054005

Another model with a single light scalar (S) or pseudo-scalar (a)

Higgs portalH⁺H (AS +
$$\lambda$$
S²)Axion portal $f_{l,q}^{-1} \psi_{l,q} \gamma_{\mu} \gamma_{5} \psi_{l,q} \partial_{\mu} a$

Expected limits for BABAR on scalar-Higgs mixing angle (θ) and pseudo-scalar couplings ($f_{1,q}$) assuming limits on BF(B \rightarrow K^(*) I⁺I⁻) for a narrow I⁺I⁻ (pseudo-)scalar at the level of ~10⁻⁸

Scalar - Higgs mixing angle

$$\begin{array}{lll} \operatorname{Br}_{B\to KS} &\simeq & 4 \times 10^{-7} \times \left(\frac{\theta}{10^{-3}}\right)^2 \mathcal{F}_K^2(m_S) \lambda_{KS}^{1/2} & \operatorname{Form} \\ \operatorname{Br}_{B\to K^*S} &\simeq & 5 \times 10^{-7} \times \left(\frac{\theta}{10^{-3}}\right)^2 \mathcal{F}_{K^*}^2(m_S) \lambda_{K^*S}^{3/2} & \operatorname{Form} \\ \operatorname{Br}_{B\to Ka} &\simeq & 5 \times 10^{-6} \times \left(\frac{100 \text{ TeV}}{f_q} \ln \left(\frac{\Lambda_{\mathrm{UV}}}{m_t}\right)\right)^2 \mathcal{F}_K^2(m_a) \lambda_{Ka}^{1/2} \\ \operatorname{Br}_{B\to K^*a} &\simeq & 6 \times 10^{-6} \times \left(\frac{100 \text{ TeV}}{f_q} \ln \left(\frac{\Lambda_{\mathrm{UV}}}{m_t}\right)\right)^2 \mathcal{F}_{K^*}^2(m_a) \lambda_{Ka}^{3/2}. \end{array}$$

Pseudoscalar - lepton(quark) coupling

Limits on pseudo-scalar coupling could be set at O(thousands of TeV)

