

A new chart of the particle universe

Lake Louise Winter Institute 20

Isabel TRIGGER | TRIUMF for the ATLAS Collaboration

celerating Science for Canada accélérateur de la démarche scient

Owned and operated as a joint venture by Propriété d'un consortium d'universités canadiennes, géré e

Overview

- Brief intro to LHC & ATLAS
- The Standard Model in the post-Higgs world
- What do we still (reasonably) hope to find?
- Selected highlights from past year (or so)

The Terascale: a Special Place

LHC is designed to probe EWSB scale around 100 GeV – few TeV

The Large Hadron Collider

"hadrons" = p-p, p-Pb, Pb-Pb

 $\sqrt{s(pp)}$: (main physics runs) 7 TeV in 2010-11 8 TeV in 2012 13 TeV+ from 2015

 $\sqrt{s_{NN}}$ =2.76 TeV Pb-Pb in 2011 $\sqrt{s_{NN}}$ =5 TeV p-Pb in 2013

Integrating luminosity in 2010-2013

- $\mathcal{L}(pp): 7 \ge 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- ~1400 bunches
- 50 ns separation
 - (tested 25 ns)
- >90% "good data" efficiency
 - (delivered data used for analysis)

The ATLAS Detector

The ATLAS Detector

Triggers & Physics Objects

Lowest Unprescaled Trigger	2012 Threshold (GeV)	•
Inclusive µ	24	•
Inclusive e	24	
2μ	13,13 or 18,8	
2 e	12,12	
2τ	29,20	
2γ	20,20	
E_{T}^{miss}	80	
Inclusive jet	360 (170 for 3j, 80 for 4j, 45 for 6j)	
hundreds more with combos & prescales		

- Stable trigger menu in 2012
 o rather constant peak lumi
- Avg 2012 rate ~550 Hz
 - Prompt physics ~400 Hz
 - "Delayed" streams ~150 Hz
 - Peak Level-1 rate ~70kHz
 - Peak Output ~1 kHz

ATLAS Physics Results

- Publications:
 - Full ATLAS publication list available at: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications</u>
 - Last few months: working to complete analyses with full Run 1 dataset ASAP and prepare for Run 2!
- A† LLWI14:
 - o 11 more talks and 3 posters

Heavy Ion Results

Phys. Rev. Lett 111, 152301 (2013)

Azimuthal angle dependence of inclusive jet yields in Pb-Pb for 6 centrality ranges (curves are fits); v_2^{jet} measures single jet suppression as function of $\Delta \phi$

pPb: jet suppression enhanced in central collisions Mechanism seems E_{jet}-dependent

2014/2/17 • 10

The Final Piece in the Standard Model

Standard Model Highlights

- LHC allows wealth of precision measurements on W,
 Z, top that have never been possible before
 o after selections: 100M W → (ν, 10M Z → (l, 400k tt → (X, hundreds of H(125))
- Probe perturbative QCD at electroweak scale
- Measure electroweak processes at electroweak scale
- <u>Standard Model / QCD results at LLWI14:</u>
 - Zdenek Hubacek Recent QCD results from ATLAS
 - Rodger Mantifel Measurements of vector bosons plus jet productions with the ATLAS detector
 - Stefano Camarda ATLAS tunes of Pythia8 and Powheg and PDF sensitivity of prompt photon and di-jet measurements (Poster)

ATLAS Standard Model Results

I. Trigger - LLWI 2014 - ATLAS

Vector bosons in association with jets: example Z+jets

Electroweak production of dijets in association with a Z boson

 Challenging measurement, calculation also challenging (interference)

New!

- Closely related to Higgs VBF production
- Sensitive to TGCs (time-like momentum transfer, completely different form factors from the diboson space-like measurements)
- Inclusive Zjj production in "search" region fit to extract 5 σ observation of electroweak Zjj fiducial cross section:
 - $\sigma = 54.7 \pm 4.6 (stat) + 9.8_{-10.4} (syst) \pm 1.5 (lumi)$ fb
 - $\sigma_{\text{theory}} = 46.1 \pm 0.2 (\text{stat})^{+0.3} 0.2 (\text{scale}) \pm 0.8 (\text{PDF})$ +0.4 -0.5 (model) fb

• I. Trigger - LLWI 2014 - ATLAS

See R.Mantifel talk for details

Diboson and TGC measurements: Wy and Zy production

Phys. Rev. D 87, 112003 (2013)

2014/2/17 • 16

Dijet, inclusive jets and inclusive photons

- Double-differential dijet and inclusive photon measurements (dijet mass and rapidity separation) compared to NLO MC predictions
- Sensitive to different PDFs
 I. Trigger LLWI 2014 ATLAS

See Z.Hubacek talk for details

Flavour Physics Highlights

arXiv:1401.2831

- Production of charmonium with W probes QCD at perturbative / nonperturbative boundary
- Can distinguish colour-octet, colour-singlet production
- Sensitive to double-parton scattering (W, J/ψ from different interactions)
- Complementary to LHCb, B-factories
- <u>B-physics talks at LLWI14:</u>

Dongliang Zhang Study of the Λ_b decay properties with the ATLAS experiment

Top results

Top quarks at LLWI14:

• Tom McCarthy Precision measurements of the top quark with the ATLAS detector

Top pair production

ATLAS-CONF-2013-097

New dilepton (e μ) result with 20.3 fb⁻¹ at 8 TeV has 4.8% uncertainty

- Dominated by luminosity & beam energy
- Consistent with QCD @ NNLO

Top Quark Mass

ATLAS-CONF-2013-102 (ATLAS/CMS combo)

Total uncertainty of 0.95 GeV – or 0.5% – most precisely measured quark mass

2014/2/17 • 21

Single Top (electroweak top production)

I. Trigger - LLWI 2014 - ATLAS

2014/2/17 • 22

Higgs Boson Measurements (and searches)!

• Higgs Results at LLWI14:

- Lidia Dell'Asta Search for the Higgs boson in fermionic channels using the ATLAS detector (including $\mu \mu$ decay)
- Fangzhou Zhang Combined Measurements of the Mass and Coupling Properties of the Higgs boson using the ATLAS Detector
- Haifeng Li Measurement of Properties of the Higgs boson in bosonic channels using the ATLAS detector (including Z γ decay)
- Nathan Readioff Search for Higgs boson decays to a photon and a Z boson in pp collisions at sqrt(s) = 7 and 8 TeV with the ATLAS detector – Poster
- BSM Higgs Results at LLWI14:
 - Haleh Hadavand Beyond-the-Standard Model Higgs and invisible Higgs decays using the ATLAS Experiment

I. Trigger - LLWI 2014 - ATLAS

Higgs Couplings, Spin and Parity

 Enough γ γ, ZZ and WW Higgs candidates to measure properties!

I. Trigger - LLWI 2014 - ATLAS

Much more detail in talks from F. Zhang, H. Li 2014/2/17 • 24

Higgs decay to fermions

- Strong evidence for H to ττ (multi-channel, BDTs):
 o direct coupling to ("down-type") fermions, to leptons
- Limits on H to $\mu \mu$, bb (associated production)...

Details in talk from L. Dell'Asta

I. Trigger - LLWI 2014 - ATLAS

New! Search for Higgs decay to $Z\gamma$

• Loop decay, similar to $\gamma \gamma$

arXiv:1402.3051

- But requiring ee or $\mu \mu$ final state, σ x BR only 5% of $\gamma \gamma$
- No expectation of being able to see SM signal with this dataset
- Search done in broader mass range, look for anomalies

I. Trigger - LLWI 2014 - ATLAS

Search for Invisible Higgs Decays

- Look for ZH associated production
- In SM: ZH to Z(ZZ*) to Z+4 ν (too small to see)
- BSM models with WIMPs coupling to Higgs

 E_{T}^{miss} after full selection

See talk from H. Hadavand

I. Trigger - LLWI 2014 - ATLAS

New!

2014/2/17 • 27

arXiv:1402.3244

Implications of a 125-GeV Higgs Boson

- Quantum theory of Gravity
- Quark/Lepton generations, masses

 → Compositeness? Substructure? Strings?
 - $\circ \Rightarrow$ Common sub-elements quarks/leptons?
- Matter-Antimatter asymmetry
 - CPV in SM (K,B) + Big bang:
 - Not enough to explain observations
 - Neutrinos last "SM" hope (given v mass≠0)
- Cosmological constant (dark energy ...)

 Higgs energy density ≈ 10⁵⁰ GeV/cm³ (could finesse)
 Observationally: < 10⁻⁴ GeV/cm³
- Fine-Tuning of Higgs mass
 - Particle loop corrections to $M^2_H \sim \Lambda^2$
 - If theory cut-off $\Lambda \sim O(10^6 \text{ TeV})$ e.g. for $m_H \sim 125 \text{ GeV}$:
 - Fine tuning of m_t , $m_H \sim 1 : 10^6$ (or more) needed
- Dark Matter
 - Seems to be O(few 100 GeV)

 Slide adapted from Rob McPherson UVic/IPP LLWI 2011

- Quantum theory of Gravity
- Matter-Antimatter asymmetry
 - CPV in SM (K,B) + Big bang:
 - Not enough to explain observations
 - Neutrinos last "SM" hope (given v mass≠0)
- Cosmological constant (dark energy ...)

 Higgs energy density ≈ 10⁵⁰ GeV/cm³ (could finesse)
 Observationally: < 10⁻⁴ GeV/cm³
- Fine-Tuning of Higgs mass
 - \circ Particle loop corrections to $M^2_H \sim \Lambda^2$
 - If theory cut-off $\Lambda \sim O(10^6 \text{ TeV})$ e.g. for $m_H \sim 125 \text{ GeV}$:
 - Fine tuning of m_t , $m_H \sim 1 : 10^6$ (or more) needed
- Dark Matter
 - Seems to be O(few 100 GeV)

 Slide adapted from Rob McPherson UVic/IPP LLWI 2011 Case strong
 Planck scale
 Physics ??

 Quantum theory of Gravity Quark/Lepton generations, masses $\circ \Rightarrow$ Compositeness? Substructure? Strings? $\circ \Rightarrow$ Common sub-elements quarks/leptons? Matter-Antimatter asymmetry • CPV in SM (K,B) + Big bang: Not enough to explain observations • Neutrinos last "SM" hope (given v mass $\neq 0$) • Cosmological constant (dark energy ...) • Higgs energy density $\approx 10^{50}$ GeV/cm³ (could finesse) • Observationally: < 10-4 GeV/cm³ Fine-Tuning of Higgs mass • Particle loop corrections to $M^2_H \sim \Lambda^2$ • If theory cut-off $\Lambda \sim O(10^6 \text{ TeV})$ e.g. for $m_{H} \sim 125 \text{ GeV}$: • Fine tuning of m_{t} , $m_{H} \sim 1 : 10^{6}$ (or more) needed Dark Matter \circ Seems to be O(few 100 GeV)

 Slide adapted from Rob McPherson UVic/IPP LLWI 2011 Case strong

Physics ??

Scale?

Case strong

Planck scale

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$
$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix} \begin{pmatrix} v_\tau \\ \tau \end{pmatrix}$$

 $\left(\begin{array}{c} u \\ d \end{array}\right) \left(\begin{array}{c} c \\ s \end{array}\right) \left(\begin{array}{c} t \\ b \end{array}\right)$ * qb' ν_L $\left(egin{array}{c} {m v}_e \ e \end{array}
ight) \left(egin{array}{c} {m v}_\mu \ \mu \end{array}
ight) \left(egin{array}{c} {m v}_\pi \ \mu \end{array}
ight) \left(egin{array}{c} {m v}_ au \ au \end{array}
ight)$ * Z'

 W_1 W_2 W_3 $\left(\begin{array}{c} u \\ d \end{array}\right) \left(\begin{array}{c} c \\ s \end{array}\right) \left(\begin{array}{c} t \\ b \end{array}\right)$ * qb' ν_L $\left(egin{array}{c} {m v}_e \ e \end{array}
ight) \left(egin{array}{c} {m v}_\mu \ \mu \end{array}
ight) \left(egin{array}{c} {m v}_\mu \ \mu \end{array}
ight) \left(egin{array}{c} {m v}_ au \ au \end{array}
ight)$ $Z \gamma$ * Z'Fine Ĩ $\left(\begin{array}{c} \tilde{u} \\ \tilde{d} \end{array}\right) \left(\begin{array}{c} \tilde{c} \\ \tilde{s} \end{array}\right) \left(\begin{array}{c} \tilde{t} \\ \tilde{b} \end{array}\right)$ $ilde{W}^{\pm}$ tuning SUSY \tilde{h} \tilde{H} $\left(egin{array}{c} ilde{m{v}}_e \ ilde{e} \end{array}
ight) \left(egin{array}{c} ilde{m{v}}_\mu \ ilde{m{\mu}} \end{array}
ight) \left(egin{array}{c} ilde{m{v}}_ au \ ilde{m{ au}} \end{array}
ight)$ 2HDM HA h H^{\pm}

• I. Trigger - LLWI 2014 – ATLAS – adapted from R. McPherson LLWI2011

Extended Higgs Sector Searches

- Invisible Higgs & Higgs to Z γ , μ μ
 SM too small; if we actually saw a signal, BSM
- H[±]→cs (in top pairs)
- WW cascades (2HDM+)

Multi-Higgs Cascades with WWbb

Search for light charged Higgs decaying to cs in top-pair decays

- "Light": m_{H+}<m_t
- Assume all-hadronic decays of H⁺
 - BR depends on $\tan\beta$ and m_{H+}
 - Plugs small $\tan\beta$ hole
- LEP limits: >75-91 GeV in all Type-II 2HDM (depends on BR assumption)

ppt $W^ \bar{b}$ \bar{b}

Eur. Phys. J. C, 73 6 (2013) 2465

Supersymmetry Searches

- LHC Dream new partner for every known one
- Squarks & Gluinos strongly produced, huge cross-section if light enough
- LSP as Dark Matter Candidate (if R-parity conserved)
- Rich Higgs sector (2HDM or more)
- BUT ... 125.5 GeV Higgs discovery and non-discovery of squarks / gluinos so far strongly constrains, suggesting:
 - "Natural" Supersymmetry (only light stop, χ^{\pm}, χ^{0} , gluino)
 - ... "Higgs-aware" benchmarks of old favourites (e.g. mSUGRA)
 - Or sneaky scenarios (split SUSY, RPV, long-lived (N)LSP,...)
- <u>Supersymmetry talks at LLWI14:</u>
 - Pawel Klimek Recent results on searches for R-parity conserving supersymmetry at the ATLAS experiment
 - Adrian Chitan Searches for R-parity violating supersymmetry and long-lived particles at the ATLAS experiment

Strong-production Supersymmetry Searches

• LHC was really hoping for:

- Light squarks / gluinos, copiously produced
- Searches for jets

 + E_T^{miss} (possibly with leptons and b-jets) set powerful constraints

etc.

2014/2/17 • 45

Benchmark for "conventional" SUSY

I. Trigger - LLWI 2014 - ATLAS

"Natural" SUSY: 3rd generation focus Summary of stop exclusion from various scenarios

Electroweak SUSY production

- Difficult situation where only EW partners are light...
 ο LHC σ_{EW} generally small
- Search for 2,3,4 leptons + E_T^{miss} (or lepton + $h^0 \rightarrow bb$ + E_T^{miss})
- Exclusions for specific (simplified)
 models

Much more in talk from P.Klimek

• I. Trigger - LLWI 2014 - ATLAS

Long-lived LSP and R-Parity Violation

Phys. Rev. D 88, 112006 (2013)

Contemplating possibility SUSY exists but does not solve all our problems: RPV (weak couplings not yet constrained by FCNC), split-SUSY, compressed scenarios

Or does, but is well hidden: AMSB (near-degeneracy), GMSB (with long-lived NLSP)...

"Exotic" Beyond-Standard-Model Searches

- Consider non-SUSY-specific extensions to SM
 - o e.g. extra dimensions, compositeness
 - Generic signatures

• Exotics talks at LLWI14:

- Wendy Taylor Searches for new phenomena with the ATLAS detector
- Camille Bélanger- Champagne Search for new phenomena in photon+jet events collected in proton-proton collisions at sqrt(s) = 8 TeV with the ATLAS detector – Poster

dijet event with m_{ii}=4040 GeV

Dilepton resonance search

ATLAS-CONF-2013-017

- Simple search, many interpretations
- Sequential SM Z', E6 Z'
- Kaluza-Klein Graviton

See talk from W. Taylor for limits in several models

Inclusive multilepton search

- Look for events with more than 2 energetic, isolated leptons
- Classify:
 - Consistent with Z?
 - Presence of τ_{had} ?
- Compare to SM background, measured from control regions
- Set 95% CL limits on visible cross-section and on specific models

2014/2/17 • 51

Search for Magnetic Monopoles

- Electrically neutral, magnetically charged!
 - Bend in r-z (not r- Φ) in the Inner Detector
 - Highly ionizing
 - Drell-Yan-style production, $e \rightarrow g \beta$, assume no Z-coupling
 - Look like electrons (stop in LAr calorimeter)

Cluster dispersion in ECal

Simulated TRT track in R-Φ plane Green=low threshold Black=high threshold

Fiducial: $|\eta| < 1.37$, $(E_T^{kin})_{min} < E^{kin} \sin\theta < 1400 \text{ GeV}$ Where $(E_T^{kin})_{min} = 600 \text{ GeV}$ for monopoles of mass 500-1500 GeV

Searches for vector-like quarks

Vector-like quarks decaying to

Z+b/t, H+t, W+b, same-sign dileptons+b+E_T^{miss}

ATLAS-CONF-2013-056 ATLAS-CONF-2013-051

ATLAS-CONF-2013-060

ATLAS-CONF-2013-018

I. Trigger - LLWI 2014 - ATLAS

- Run 1: 25 fb⁻¹ at 7-8 TeV, up to 7x10³³ /cm²/s
- Run 2: 2015-17 75-100 fb⁻¹ at 13 TeV, 10³⁴ /cm²/s
- Run 3: 2020-2022 ~300 fb⁻¹ at 13-14 TeV, 2x10³⁴ /cm²/s
- HL-LHC ~3000 fb⁻¹ at 13-14 TeV, 5x10³⁴ /cm²/s... 3-year runs with ~1-yr stops

I. Trigger - LLWI 2014 - ATLAS

What the future may bring...

I. Trigger - LLWI 2014 - ATLAS

2014/2/17 • 55

Summary and Conclusions

- LHC Run 1 resoundingly accomplished primary mission:
 - Higgs boson found!
- Detector and accelerator performance excellent!
- LHC also provided unprecedented wealth of data:
 - electroweak interaction at EWSB scale, perturbative QCD, top & heavy flavour physics
- Unfortunately, so far, no real smoking guns...
- Still much to learn from this run, but great motivation to look forward to ~13 TeV in 2015!

Run: 204769 Event: 71902630 D2014/2/17 560 T2014/2/17 560

Backups

2014/2/17 • 57

Dark matter search in mono-W/Z

- Tag "invisible" particles by producing them with something else
- Complementary to underground and astronomical DM searches

I. Trigger - LLWI 2014 - ATLAS

2014/2/17 • 58

arXiv:1309.4017

Manna M+

Top mass stability tests

