CAP Congress June 13, 2018

Dalhousie University Halifax, NS

Search for dark matter candidates produced in Z(ll) + E^{miss} events in 13 TeV pp collisions with the ATLAS detector at the LHC

Kayla McLean

University of Victoria

Dark matter

- The **Standard Model** is a successful theory but fails to explain the existence of **dark matter**, for which there is much evidence from astronomical measurements
- Dark matter makes up > 80% of all matter in the universe •
- It is commonly described as a weakly interacting massive particle (**WIMP**), Dirac fermion; interacts gravitationally and potentially through other forces; mass from 1 GeV - 100 TeV
- Three categories of DM search experiments: •
 - 1. Direct detection measure the recoil of Standard Model particles scattering with dark matter
 - 2. Indirect detection measure decay products from dark matter self-annihilation
 - 3. Collider production produce dark matter by colliding Standard Model particles (protons at the LHC)

The ATLAS detector and luminosity

Kayla McLean (UVic)

Integrated luminosity:

$$N = \sigma \int L \mathrm{d}t = \sigma \mathcal{L}$$

Cumulative datasets:

- 2015: 3.2 fb⁻¹
- 2016: 36.1 fb⁻¹
- 2017: 79.8 fb⁻¹
- 2018: 140 fb⁻¹ projected

This talk will cover 2015+2016 results and discuss prospects for the full 2015-2018 (Run 2) dataset.

- Two searches carried out in the $Z(\ell \ell) + E_T^{miss}$ final state:
 - 1. Search for invisible Higgs decays
 - Consider $m_H = 125$ GeV and 110-400 GeV
 - 2. Search for **dark matter candidates** produced through a **mediator** particle (s-channel, axial-vector and vector mediators)
- Discriminating variable: E^{miss}

 Study events with Z(ll) recoiling against E_T^{miss}, look for excess of events in the E_T^{miss} spectrum

Event selection

- Goal to isolate events with large E_T^{miss} recoiling against $Z \rightarrow \ell \ell$, and reduce backgrounds •
- **Two signal regions:** $Z \rightarrow ee, Z \rightarrow \mu\mu$ •

	Background reduced
osite charge	
:h p⊤ > 7 GeV	WZ
6 GeV	WW/Wt/tτ̄/Ζ(ττ)
	Z+jets
	Z+jets, WW/Wt/tτ̄/Ζ(ττ)
	Z+jets, WW/Wt/tτ̄/Ζ(ττ)
< 0.2	Z+jets
+ p _T (ℓ ₂))	Z+jets
	tī

Backgrounds

Background	Source	Estimation
ZZ	ZZ → ℓℓvv, irreducible	MC
WZ	$WZ \rightarrow \ell v \ell^+ \ell^-$ ℓ from W not reconstructed	Data (yield), MC (shape)
Z+jets	Z(ee) / Z(μμ) + jets jets mis-measured as fake E _T ^{miss}	Data (yield), MC (shape)
W/top	WW / Wt / tτ̄ / Ζ(ττ) → ℓ+vℓ⁻v ℓℓ do not come from a Z	Data
W+jets	W(lv) + jets l mis-identified from a jet	Data
tīV/tīVV/VVV (V=Z,W)	e.g. tīW → (ℓ+vb)(q₁q₂b)(ℓ⁻v)	MC

Results (I): Signal region E^{miss} distributions

- Perform statistical analysis on E^{Tmiss} in signal regions
 - Inputs: observed data, signal and background estimates, systematic errors
- Assuming the null hypothesis (no signal), there is a small excess of 2.2σ significance observed in the µµ signal region
- Combined significance (ee + $\mu\mu$ channels) of 1.5 σ

As no significant excess is observed, we set limits on the $H \rightarrow inv$ branching • ratio and dark matter masses

arXiv:1708.09624 [hep-ex]

Results (II): Invisible Higgs limits

- Upper limit on $\sigma(pp \rightarrow ZH \rightarrow \ell\ell + inv) = 40$ (23) fb at 95% CL

Kayla McLean (UVic)

arXiv:1708.09624 [hep-ex]

Results (III): Simplified model 2D mass limits

- Similar reach for both models in m_{med} for low m_{χ} ; vector models exclude more phase space

• For vector and axial-vector simplified models, exclusion limits set for a grid of samples with different m_x , m_{med} PLB 776 (2017) 318

arXiv:1708.09624 [hep-ex]

Results (IV): Comparison with direct detection experiments

- •
- Axial-vector limits are **best at low m_x** where direct detection experiments lose sensitivity

Limits also set on **DM-nucleon scattering cross section** for comparison with **direct detection** experiments PLB 776 (2017) 318 arXiv:1708.09624 [hep-ex]

Some outlooks for the full 2015-2018 analysis

New signal models •

- Simplified models to be simulated at NLO in QCD, some to include mediator-lepton couplings
- t-channel simplified models with mediator-Z couplings •
- Two-Higgs-doublet + pseudo-scalar models are becoming a new standard; well-motived, mature, and theoretically complete

New background estimation techniques •

- Data-driven estimates of the ZZ background using Zy and • $ZZ \rightarrow 4\ell$ events
- Technique to estimate Z+jets background using γ +jets events

140 fb⁻¹ expected, more statistical power •

from 36.1 fb⁻¹ to 140 fb⁻¹ (next slide)

For example, expected reach in m_{med} for low m_{χ} expected to extend from 640 \rightarrow ~900 GeV when moving

Projected expected sensitivity

- Prospective expected limits with 140 fb⁻¹ for vector mediator simplified model
- Simple scaling of published result (background estimates + systematic errors) up to projected luminosity

Conclusions

- Paper published for result on 2015+2016 dataset (<u>https://arxiv.org/abs/1708.09624</u>)
- Similar sensitivity seen by CMS (<u>https://arxiv.org/abs/1711.00431</u>) •
- In process of analyzing 2017 dataset
- Preparing analysis for the **full 2015-2018 dataset**, with focus on:
 - Expanding the types of **dark matter models** we study •
 - Signal detection **optimization** •
 - Improving data-driven background estimates •

Thank you!

Backup

Two-Higgs-doublet + pseudo-scalar model

- Introduction of a second Higgs doublet is well-motivated theoretically
 - e.g. Supersymmetry, CP violation (baryogensis, axions) •
- Model has a total of 6 bosons:
 - $\mathbf{h} = \text{light scalar, identified as SM Higgs}$
 - $\mathbf{H} =$ heavy scalar
 - $H^{\pm} = 2$ heavy charged scalars
 - **A** = heavy pseudo-scalar
 - $\mathbf{a} =$ light pseudo-scalar, couples to SM and DM particles •

Free parameters: •

- m_a , m_H , m_A , sin θ (θ = mixing angle of A, a), tan β (β = ratio of Higgs vevs), m_{χ}
- Mono-Z signature enhanced by resonant production of H (or A)

•

