Search for Dark Matter Produced in Association with a Dark Higgs Boson with the ATLAS Detector

WNPPC Conference

Danika MacDonell Supervisor: Bob Kowalewski February 9, 2021

Dark Matter Detection

Direct detection searches:

- Dark matter scatters off particle (nucleon, photon, etc.) in detector material
 - Measure recoil energy
- Search target: galactic dark matter

Collider searches:

- Dark matter produced in high-energy collision along with detectable particle(s)
- Search target: dark matter produced by collision

Dark Matter Detection

Direct detection searches:

- Dark matter scatters off particle (nucleon, photon, etc.) in detector material
 - Measure recoil energy
- Search target: galactic dark matter

Collider searches:

- Dark matter produced in high-energy collision along with detectable particle(s)
- Search target: dark matter produced by collision

- General-purpose detector for studying particles produced by high-energy beam collisions at the LHC
- Used both for precision standard model measurements and to search for new physics

- Showers initiated by quarks and gluons referred to as "jets"
- Jets reconstructed in cone of angular radius R
- "small-radius" jet: R=0.2→0.4
- "large-radius" jet: R=0.8→1.0

$$R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

- Neutrinos (ν) and dark matter particles (χ) pass through undetected
 - \rightarrow Presence inferred from imbalance of momentum transverse to the beam line, a.k.a. $E_{T}^{\mbox{ miss}}$

$$E_T^{\rm miss} = - \left| \sum \vec{p_T} \right|$$

Dark Matter Production Models for Collider Searches

Effective Field Theories (EFT)

• Dark matter production mechanism unspecified

Simplified Models

- First-order description of new physics
- Bridge gap between EFT and complete models

Complete Models

- Dark matter predicted as part of a complete unified theory
- Eg. Supersymmetry

Dark Matter Production Models for Collider Searches

Effective Field Theories (EFT)

• Dark matter production mechanism unspecified

Simplified Models

- First-order description of new physics
- Bridge gap between EFT and complete models

V

Complete Models

- Dark matter predicted as part of a complete unified theory
- Eg. Supersymmetry

"Dark Higgs" Signal Model

- χ: Dark Matter
 - Mass fixed to 200 GeV for consistency with other LHC searches
- Z': Vector boson in dark sector
 - Mass not fixed in model
 - \circ Search region explores $m_{Z'}$ > $2m_{\chi},$ thus allowing for $Z' \to \chi \chi$ decay
- s: Higgs boson in dark sector (a.k.a. "dark Higgs")
 - Mass not fixed in model
 - \circ Search region explores $m_{_S} < 2m_{_\chi},$ thus forbidding s $\rightarrow \chi \chi$ decay

Search with Dark Higgs Decay to WW

- Search for dark Higgs model in s → bb channel was completed in 2019 (<u>ATL-PHYS-PUB-2019-032</u>)
- s \rightarrow bb decay has highest cross section for $m_s \lesssim 135 \text{ GeV}$
- $s \rightarrow WW$ dominates for high-mass dark higgs

 \Rightarrow Motivates dedicated dark matter search in s \rightarrow WW channel

10

Inner Tracker

Hadronic Calorimeter

Search in Hadronic Channel (WW \rightarrow qqqq)

Completed in late 2020

- https://arxiv.org/pdf/2010.06548.pdf
- Used full ATLAS Run 2 data

Signature in ATLAS detector:

- Hadronic jets in calorimeter recoiling against missing transverse momentum from $\chi\chi$
- WW pair boosted due to high-mass Z' mediator

https://arxiv.org/pdf/2010.06548.pdf

 Constrained dark Higgs model parameters m_s and m_z, in the appx. range:

> 160 GeV < m_s < 240 GeV (s \rightarrow bb coverage: 50 GeV < m_s < 150 GeV)

Search in Semileptonic Channel (WW $\rightarrow qq\ell v$)

 $\label{eq:ongoing} \textbf{Ongoing} \rightarrow \textbf{search began last February}$

Using full ATLAS Run 2 data

Signature in ATLAS detector:

- Hadronic jets + lepton in calorimeter recoiling against E_T^{miss} from $\chi\chi$
- E_T^{miss} includes contributions from $\chi\chi$ and ν

Inner Tracker

EM Calorimeter

Semileptonic vs. Hadronic Channel

Pros

- 1-lepton requirement reduces some backgrounds compared with hadronic channel (eg. Z+jets)
- Ability to reconstruct hadronically-decaying
 W boson → can select for mass window
 near on-shell W mass (80.4 GeV)

Cons

- *v* in final state:
 - adds additional (non-dark-matter) source of E_T^{miss}
 - prevents direct reconstruction of dark higgs candidate
 - Developed a minimization strategy for approximate dark higgs mass reco (see backup)

Semileptonic Channel: Transverse Mass

$$m_T(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{2p_{T,\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos\theta_{\ell, E_{\mathrm{T}}^{\mathrm{miss}}})}$$

• Expectation for standard model background (for on-shell W):

 $m_T(\ell, E_T^{miss}) \leq m_W$

- Dark matter in signal model adds E_T^{miss} with different $\cos\theta_{\ell, ETmiss}$ distribution
- Selecting m_T(l, E_T^{miss}) > 200 GeV substantially reduces standard model backgrounds, especially W+jets
- Interesting feature: Remaining W+jets background is mainly events with very off-shell W mass (>> 80.4 GeV)

Semileptonic Channel: Analysis Regions

Merged Category

- More-boosted
- Hadronized quarks reconstructed as large-radius jet

Semileptonic Channel: Analysis Regions

17

Summary

- Ongoing search for dark matter production with WW+ E_{τ}^{miss} in final state
- Motivated and optimized with "dark Higgs" simplified model
- Exclusion limits have been set in WW \rightarrow qqqq final state
- Search in WW $\rightarrow qq\ell v$ final state ongoing

Backup Slides

Definitions

Transverse Mass

- Reconstructed mass of two final-state objects in the plane transverse to the LHC beam line
- Transverse mass between lepton and E_T^{miss} is defined assuming lepton and E_T^{miss} -producing object(s) are appx. massless:

$$m_T(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{2p_{T,\ell}E_{\mathrm{T}}^{\mathrm{miss}}(1 - \cos\theta_{\ell, E_{\mathrm{T}}^{\mathrm{miss}}})}$$

Missing Transverse Energy (E_T^{miss})

- Total momentum of undetected final-state objects in the plane transverse to the beam line
- Two-dimensional vectorial sum over all visible final-state objects in the transverse

$$ec{E}_{\mathrm{T}}^{\mathrm{miss}} = -\sum_i ec{p}_{x,i} + ec{p}_{y,i}$$

LHC Run 2

• Data collected at the LHC from 2015-2018 at a proton-proton collision energy of 13 TeV

Definitions, cont.

Pseudorapidity

- Describes angle of particle relative to beam axis (z-axis)
- Changes $\Delta \eta$ in pseudorapidity are Lorentz invariant under boosts along the longitudinal axis

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

- $\Delta N/\Delta \eta$ is approximately constant for $|\eta| \le 5$
 - N: number of charged tracks in pileup events

Dark Matter Detection

Direct detection searches:

- Low energy (~keV)
- Low background

Collider searches:

- High energy (~TeV)
- High background

Dark Matter Detection

Direct detection searches:

- Low energy (~keV)
- Low background

Collider searches:

- High energy (~TeV)
- High background

 None of the jets can be resolved into individual small-radius jets → all reconstructed within a single large-radius jet

https://arxiv.org/pdf/2010.06548.pdf

Merged Category

- Most boosted regime
- None of the jets can be resolved into individual small-radius jets → all reconstructed within a single large-radius jet

Intermediate Category

- Less-boosted regime
- Some of the jets can be resolved into individual small-radius jets

 None of the jets can be resolved into individual small-radius jets → all reconstructed within a single large-radius jet

https://arxiv.org/pdf/2010.06548.pdf

Analytical Solution of m_s in $s \rightarrow WW \rightarrow qq\ell v$ System

- Idea: Find the minimum m_s consistent with observed W_H and *l* momenta and W mass constraint m_w=80.4 GeV.
- 1. In frame where ℓ travels along the z axis and W_H is in the xz frame:

$$m_{S}^{2} = (p_{W_{H}} + p_{l} + p_{\nu})^{2}$$
$$m_{S}^{2} = (E_{W_{H}} + E_{l} + E_{\nu})^{2} - (p_{W_{Hx}} + E_{\nu}\sin\theta_{l\nu}\cos\phi_{\nu})^{2}$$
$$-(E_{\nu}\sin\theta_{l\nu}\sin\phi_{\nu})^{2} - (E_{l} + p_{W_{Hz}} + E_{\nu}\cos\theta_{l\nu})^{2}$$

- 2. Determine ϕ_{v} and θ_{lv} that minimize m_{s.}
 - $\phi_{v}=0$, and θ_{tv} can be solved for numerically.
- 3. Eliminate E_v using W mass constraint for $W \rightarrow \ell v$ system, then rotate back to lab frame.

The TAR Algorithm

Asimov Signal Significance

Expected Asimov signal significance Z used in optimizing selection cuts. Defined as:

$$Z = \sqrt{2\left[\ln\left(\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right) - \frac{b^2}{\sigma_b^2}\ln\left(1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)}\right)\right]}$$

s: expected number of signal events (based on simulation)

b: expected number of background events (based on simulation)

 $\sigma_{\rm b}$: uncertainty associated with expected number of background events

Search with Dark Higgs Decay to bb

- Search completed in 2019
 - <u>ATL-PHYS-PUB-2019-032</u>
 - Used partial ATLAS Run 2 data

 Placed upper limits on m_Z in dark Higgs model for 50 GeV < m_s < 150 GeV

Search with Dark Higgs Decay to WW

- s \rightarrow bb decay has highest cross section for $m_s \lesssim 135 \text{ GeV}$
- $s \rightarrow WW$ dominates for high-mass dark higgs
 - \Rightarrow Motivates dedicated dark matter search in s \rightarrow WW channel

- General-purpose detector for studying particles produced by high-energy beam collisions at the LHC
- Used both for precision standard model measurements and to search for new physics

- General-purpose detector for studying particles produced by high-energy beam collisions at the LHC
- Used both for precision standard model measurements and to search for new physics

Inner tracker detects charged particles (leptons and hadrons)

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (γ) via EM showers

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (y) via EM showers
- Hadronic calorimeter detects hadrons which pass through the EM calorimeter via hadronic showers
- Showers initiated by quarks and gluons are referred to as "jets"

Jets reconstructed in cone of angular radius R

$$R = \sqrt{\Delta\phi^2 + \Delta\eta^2}$$

- "small-radius" jet: R=0.2→0.4
- "large-radius" jet: R=0.8→1.0

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (y) via EM showers
- Hadronic calorimeter detects hadrons which pass through the EM calorimeter via hadronic showers
- Muon spectrometer detects muons, which pass through the calorimeters

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (γ) via EM showers
- Hadronic calorimeter detects hadrons which pass through the EM calorimeter via hadronic showers
- Muon spectrometer detects muons, which pass through the calorimeters
- Neutrinos (ν) and dark matter particles (χ) pass through undetected

 \rightarrow Presence inferred from imbalance of momentum transverse to the beam line, a.k.a. $E_{T}^{\mbox{ miss}}$

