

Accelerator Searches for Dark Matter

Ellis Kay - The University of Victoria (ATLAS)

Hints at Dark Matter

- → A range of astrophysical measurements point to the existence of a non-baryonic form of matter (Phys.Rept.405:279-390,2005)
 - Galaxy rotation curves, gravitational lensing, colliding galaxy clusters...
- Weakly Interacting Massive Particles (<u>WIMPs</u>) are an attractive Dark Matter (DM) candidate, especially for the LHC
 - Lead to the correct relic density of non-relativistic matter
 - Non-gravitational interactions with the SM ... could be seen at colliders!!

Methods for Detecting Dark Matter

Various methods exist for detecting DM, covering different ranges of DM mass, $m_{_{\mathcal{V}}}$

Direct Detection (DD): Collider Nuclear recoil from elastic scattering SM Universe 05 00073 **Direct Detection** LZ sensitivity (1000 live days) Projected limit (90% CL one-side XENON1T (2017) **Indirect Detection (ID):** 10^{-} SI WIMP-nucleon cross section [cm²] +1σ expected PandaX-II (2017) $+2\sigma$ expected -44 DM annihilation 10 10⁻⁴⁵ pMSSM11 10-46 (MasterCode, 2017 **Collider Searches:** DM production in high energy 10 SM DM particle interactions Indirect Detection

10

100

WIMP mass [GeV/c²]

All three complementary methods continue to put mounting pressure on the WIMP hypothesis...

1000

The Large Hadron Collider

Dark Matter Detectors at the LHC

muon system umi counters

Three of the four main LHC experiments exploit distinct technologies to conduct complementary searches for DM

ATLAS & CMS

- Independently designed hermetic general-purpose detectors
 - Investigate largest range of physics possible
 - Can reconstruct missing transverse momentum (E_T^{miss}) using all measured decay products

<u>LHCb</u>

ATLAS -10 -8 -6 -4 -2 0 2 4 6 8 CMS+TOTEM -10 -8 -6 -4 -2 0 2 4 6 8 LHCb -10 -8 -6 -4 -2 0 2 4 6 8

- → Single arm forward spectrometer
 - Probes the forward rapidity region & triggers on particles with low p_T
 - Can explore relatively small boson masses

Types of LHC DM Searches

See <u>Phys. Dark Univ. 26 (2019) 100371</u> & <u>LHC DM Working Group</u>

Dark matter is invisible to our detectors \rightarrow look for associated production of <u>visible</u> (SM) particles

- → Sizeable cross-sections
- → Fewer assumptions on specific model parameters
- More reliant on model assumptions
- E.g. supersymmetry, UV complete models

ellis.kay@cern.ch

Simplified Models - 'Mono-X'

- The most general models involve contact interaction operators in Effective Field Theories (EFTs)
- These become invalid at large momentum transfer, Q^2 , which is problematic for Run-II Visible particles

Favour 'simplified' models with a mediator, introducing m_{γ} , $m_{\rm med}$, g_{a} and g_{γ}

- Look for 'mono-X' signatures
 - Select events with 'X' (jet/ $\gamma/W/Z/t/H$), veto other objects, precisely model backgrounds, check E_{τ}^{miss}

CERN-TH-2017-102

- → Fix g_q , g_{γ} and exclude m_{γ} , $m_{\text{med}} \rightarrow \underline{\text{CERN-LPCC-2016-001}}$
- → Also look for visible decays of the mediator to complement these searches → <u>CERN-LPCC-2017-01</u>
 - Re-interpret other analyses as mediator searches

Mono-X Signatures

There is a wealth of mono-X final states to be investigated at the LHC... W/Z0000 Z' Z'/A^0 med med med mono-V mono-jet \sqrt{q} /mono-photon [/]mono-Higgs b/tgموموموموم With various production mechanisms $(q\bar{q}, qg \text{ etc.})$... ϕ/a Via (axial-)vector or (pseudo-)scalar mediators... **Contract** 0000000 mono-t/b 000000000 ϕ_b mono-bb/tt b/t And with different couplings, $\bar{\chi}$ depending on the benchmark Heavy Flavour (HF)

ellis.kay@cern.ch

8

Mono-jet

[GeV]

- → m_{med} < 1.6 TeV (ATLAS) 1.8 TeV (CMS) excluded at 95% CL for (axial-)vector mediators
- ➡ Pseudoscalar m_{med} < 0.4 TeV excluded for CMS</p>
- Re-interpretations for a series of scenarios
 - ► CMS: fermion portal, nonthermal, H→inv, ADD
 - ATLAS: coloured scalar, squark pair production (compressed-mass), ADD

Dominant backgrounds = Z/W+jets

Constrained using enriched V+jet CRs

Perform simultaneous bg-only likelihood fit to E_T^{miss} distributions

Mono Z(LL)

ATLAS: <u>Phys. Lett. B 776 (2017) 318</u> CMS: <u>Eur. Phys. J. C. 78 (2018) 291</u>

- → WIMP production with Z' mediator or H→inv decays
- → ATLAS: $B(H \rightarrow inv) = 0.67$ (obs, 95% CL)
- → CMS: B($H \rightarrow inv$) = 0.4 (obs, 95% CL, $ZH \rightarrow \ell\ell + inv$)

CMS: For *H→inv* interpretation, perform multivariate boosted decision tree (BDT) to increase sensitivity (12 variables)

Mono Higgs

ATLAS: <u>ATLAS-CONF-2018-039</u> (bb) ATLAS: <u>Phys. Rev. D 96 (2017) 112004</u> (γγ)

Higgs ISR is strongly suppressed ... target interactions in which H is a direct participant

Visibly Decaying Mediator Searches

- → DM cannot be produced on-shell if $2m_{_{DM}}$ > $m_{_{med}}$
 - Mediator decays back to SM
 - Need to probe visible signatures to see DM interactions off-shell
- ➡ The LHC is a "mediator machine"!
- ➡ Probe high masses in search of BSM mediators.
- Look for bumps on the smoothly falling di-object distribution, which is modeled by a parameterized function.
- → In absence of bump, set limits for different physics scenarios.

Dijet

→ ATLAS: <u>CERN-EP-2019-1</u>

→ CMS: <u>CERN-EP-2019-222</u>

ellis.kay@cern.ch

Low Mass Di-jet Searches

ATLAS: <u>PHYS. LETT. B 795 (2019) 56</u> CMS: <u>JHEP 01 (2018) 097</u>

- Data collection rates for inclusive single-jet triggers << SM multijet production rate
- → "Data-scouting" / "Trigger-object Level Analysis" (TLA)
 - Use reduced data format to allow high trigger rate with low bandwidth

- → Introduce hard Initial-State Radiation (ISR) requirement
 - Require \ge 1 high p_{τ} ISR jet in association with the qq resonance
 - Provides enough energy to satisfy trigger
 - Min p_{τ} high enough that hadroisation from qq gives a large-R jet
 - Achieve sensitivity to even lower mediator masses
 - ➡ ATLAS: 225 1100 GeV, CMS: < 100 GeV!</p>

Combined Results

ATLAS: <u>JHEP 05 (2019) 142</u> CMS: <u>ICHEP 2018</u>

Vector mediator, Dirac DM, $g_{\gamma} = 1, g_{q} = 0.25, g_{l} = 0$

 m_{med} ~ 2.5 TeV reach from mediator searches

Combined Results

ATLAS: <u>JHEP 05 (2019) 142</u> CMS: <u>ICHEP 2018</u>

Dark Sector Searches

- → What if DM exists in a hidden sector, composed of particles which don't undergo SM gauge interactions?
- Dark mediators could couple to SM via portal interactions
 - Coupling to SM encoded in a mixing term in the Lagrangian
 - Look for SM particles from DM decays via these portals
 - Set limits on coupling strength to SM... ε^2 (dark γ), f_a (ALPs)...
 - Small mixing → long lifetime

HLSP f_{d_2} HLSP = Hidden Lightest Stable Particle f_{d_2} HLSP f_{d_2} HLSP f_{d_2} f_{d_2} f_{d_2} f_{d_2} f_{d_3} f_{d_4} f_{d_5} f_{d_6} f_{d_7} f_{d_8} f_{d_8} f_{d_8}

- ➡ LHC detectors can extend to high masses and low couplings
 - Complementary to fixed target/beam-dump experiments (JHEP02(2016)062)

C.BICKEL/SCIENCE

LHCb Dark Photon Search

LHCb-PAPER-2019-031

 $n_{\rm ob}^{\prime}[m(A')]$

 A'/γ^* detection eff. ratio

≈1 for PL

 $\mathcal{F}[m(A')] \epsilon_{\gamma^*}^{A'}[m(A'), \tau(A')]$

Phase-space

→ Search for dark photons, A'

Coupling to EM current suppressed relative to that of SM γ

Off-shell $\gamma^* \rightarrow \mu^+ \mu^-$ yield

 $n_{\rm ex}^{A'}[m(A'),\varepsilon^2] = \varepsilon^2$

- ⇒ In $A' \rightarrow \mu^+ \mu^-$
- Prompt-like (PL): $2(m_{\mu}) < m_{A'} < 70 \text{ GeV}$
- Long-lived (LL): 214 < m_{A'} < 350 MeV</p>
- Coupling arises via kinetic mixing between SM hypercharge & A' field strength tensors
- → PL: most stringent limit to date for $\mu\mu$ production in 214 < $m_{A'}$ < 740 MeV & 10.6 < $m_{A'}$ < 30 GeV
 - Comparable to best existing limits for $m_{A'}$ < 0.5 GeV
- ➡ LL: first to achieve sensitivity using a displaced-vertex signature, world leading constraints for low mass A' with lifetimes O(1) ps

LHCb Dark Boson Searches

u

J u, c, t

$pp \rightarrow \phi \rightarrow \mu^+ \mu^- \ln gg$ fusion <u>JHEP 09 (2018) 147</u>

- ➡ Narrow resonance search in Y mass region
- Analysis designed is model-independent
 - Independent of production mech, spin
- → First limits set in previously unexplored 8.7 < m(ϕ) < 11.5 GeV

$\ln \mathcal{L}^{+} \rightarrow p \mu^{+} \mu^{-} \underline{\mathsf{PRL}} \ 120, \ 221803 \ (2018)$

- → Narrow range of $\mu\mu$ masses from 3 candidates observed at <u>HyperCP</u> indicate possible intermediate particle X^0
- \rightarrow LHCb observes the \mathcal{L}^* decay Σ^*

ellis.kay@cern.ch

20

Antiproton Production σ

- → Large uncertainties due to limited knowledge of p
 production cross-section in 10-100 GeV p
 range cannot cover observed excess of p
 yields over current prediction
- → System for Measuring Overlap with Gas (SMOG) <u>CERN-LHCC-2019-005</u> allows injection of He in THE LHCb interaction region

PRL 121, 222001 (2018)

Conclusion & Outlook

- → The LHC has an extensive DM search program
 - ➡ Three different detectors exploit different technologies to conduct complementary searches
- Mono-X searches in many complementary channels covering a broad range of benchmarks
- Mediator searches extending to the TeV scale to hunt of-shell DM interactions
 - Lower masses also probed thanks to TLA and boost from ISR
- → Also producing constraints in EW SUSY & *H*→*inv* interpretations
- These searches complement results from other detection methods
 - Strong limits for SD DM-nucleon cross section and model-dependent limits for m_y < 10 GeV!</p>
- → Now delving into the dark sector
 - ► With distinct and complementary coverage of mass & lifetimes from hermetic & forward detectors
- → Ongoing analysis of full Run 2 dataset!