

Exploring the Dark Sector with the ATLAS Detector

Ellis Kay - The University of Victoria On Behalf of the ATLAS Collaboration

PASCOS 2021

The Dark/Hidden Sector

- → What if new physics, such as Dark Matter (DM), exists in a hidden sector, composed of particles which don't undergo SM gauge interactions?
 - Coupling to SM encoded in a mixing term in the Lagrangian
 - May communicate with the SM via mediators, which could be DM candidates OR provide 'portals' to them

- Limited ways in which the hidden sector and SM can communicate, many leading to unconventional signatures at the LHC
 - Focus on such signatures in this talk, though many other DM searches out there (e.g. MET+X, SUSY...)

The ATLAS Detector

- General purpose, hermetic detector
- Inner detector (ID), electromagnetic & hadronic calorimeters (ECAL & HCAL), muon spectrometers (MS) 25m⁻²
- ➡ Two-level trigger system (hardware & software) to record data at 1 kHz (from 40 MHz bunch crossing rate)

Unconventional Signatures

- → Weak coupling to the SM leads to long-lived-particles (LLPs)
- Many possible unconventional signatures
- Detecting these can come with experimental challenges
 - Non-standard trigger requirements
 - Decays far from the primary vertex (PV), requiring special tracking
 - Unusual shower shapes in calorimeters, unique fractions of ECal/HCal energy
 - Need for timing information, which is not available in all subdetectors...

J. Phys. G: Nucl. Part. Phys. 47 090501 (2020)

Dark Photons, A'

- U(1) extension of the SM, introducing a hidden gauge boson γ_d , kinetic mixing with SM
 - Benchmark FRVZ model, with Higgs boson decaying to dark fermion pair
- Low mass A' could be produced via cascade decays of heavier states $\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim$
 - Leptonic decays of A' are prominent in the low-mass range
 - Decay to highly collimated groups of leptons, or 'lepton-jets' (LJ)
 - A distinct LHC signature!

Prompt & Displaced Lepton Jets

- Produce limits on the kinetic mixing parameter and m_{A'}
 - ► Limits shown for $10\% \leq B(H \rightarrow 2\gamma_d + X) \leq 20\%$

Complementary to fixed target/beam-dump experiments

Exotic Higgs Decays

JHEP 06 (2018) 166

Exotic Higgs Decays

JHEP 06 (2018) 166

Displaced Vertices / Hadronic Jets

Phys. Rev. D 99, 052005 (2019) Eur. Phys. J. C 79 (2019) 481 Phys. Rev. D 101, 052013 (2020)

- Long-lived particles (LLP) may decay to jets far from the interaction point (IP)
 - Standard jet reconstruction assumes ID tracks, common primary vertex...

Many possible scenarios:

- → Particle decays in the ID, but far from the IP / decays in the MS
 - MS-ID: ≥ 2 jets in the ID and/or MS
 - Dedicated tracking algorithms for MS-only vertexing available (JINST 9 (2014) P02001)
- Particle decays in the middle of the calorimeters
 - CalRatio (CR): jet pair decaying in the HCal with no associated ID tracks
 - Large energy deposit in the HCal, small deposit in the ECal
 - Dedicated CalRatio triggers available (<u>JINST 8 (2013) P07015</u>)

Displaced Vertices/Hadronic Jets

Phys. Rev. D 99, 052005 (2019) Eur. Phys. J. C 79 (2019) 481 Phys. Rev. D 101, 052013 (2020)

- Search for pair-produced long-lived particles (LLP) produced by a Higgs boson / heavy scalar
 - Set limits on σ x B vs lifetime (cτ)

[m] 11

Displaced Vertices/Hadronic Jets

- → Many BSM models predict exotic Higgs decays
- Can be difficult to trigger on decay products ... helps to look at associated production e.g. ZH mode
- Benchmark model: pseudoscalar with 15 < m₃ < 55 GeV & 10 mm < cτ₃ < 1 m</p>
- → Signature: 2 leptons & 2 displaced vertices (DV) in the ID
- → Dedicated Large Radius Tracking (LRT) <u>ATL-PHYS-PUB-2017-014</u> & secondary vertex reconstruction optimised for LLPs <u>ATL-PHYS-PUB-2019-013</u>

- → Zero events observed in signal region
- Limits set on BR(H→aa→bbbb)
 - Most stringent limits in this lifetime regime for m_a < 40 GeV

ATLAS-CONF-2021-005

ellis.kay@cern.ch

12

Heavy Neutral Leptons

- Postulate new right-handed neutrinos with Majorana masses below the EW scale
 - Explain neutrino masses, matter-antimatter asymmetry, DM...
 - Decays may be lepton number violating (LNV) or conserving (LNC), depending on nature of neutrinos
- Both prompt & displaced leptonic decay signatures studied
 - Displaced vertex reconstruction algorithm (<u>Phys. Rev. D 97 (2018) 052012</u>)

- Set limits on mass and coupling strength for prompt & displaced
- Displaced limit contour oblique
 ellipse approximately corresponds 10⁻⁴
 to HNL proper decay lengths in the range 1-30 mm

JHEP 10 (2019) 265

Axion-Like-Particles

- Photon flux associated with each nucleus scales with Z²
 - Light-by-light scattering cross-section strongly enhanced w.r.t pp collisions
 - This scattering may arise from SM QED box diagram OR an ALP
 - Look for narrow diphoton resonances in EM calo, little ID activity

JHEP 03 (2021) 243

Existing constraints from JHEP 12 (2017) 044

Conclusion & Outlook

- → The Dark Sector search programme at ATLAS covers a diverse range of unconventional signatures
- → These analyses hone our experimental techniques in the face of complicated final states
 - Using our detector in ways that were not considered in its design
 - Requiring non-standard triggers and reconstruction
 - Involving complex backgrounds, often requiring data-driven methods
 - Often left with small statistics to work with
- Still lots of potential to improve and cover more phase-space and models
 - Analyse existing data or re-interpret other studies (e.g. <u>ATL-PHYS-PUB-2020-007</u>)
 - Run-3 data taking starting next year, with an upgraded detector

https://www.symmetrymagazine.org/article/voyage-into-the-dark-sector

Backup Slides

Hints at Dark Matter

- → A range of astrophysical measurements point to the existence of a non-baryonic form of matter (<u>Phys.Rept.405:279-390,2005</u>)
 - Galaxy rotation curves, gravitational lensing, colliding galaxy clusters...
- Weakly Interacting Massive Particles (<u>WIMPs</u>) are an attractive Dark Matter (DM) candidate, especially for the LHC
 - Lead to the correct relic density of non-relativistic matter
 - Non-gravitational interactions with the SM ... could be seen at colliders!!

The Large Hadron Collider

17

Methods for Detecting Dark Matter

Various methods exist for detecting DM, covering different ranges of DM mass, $m_{_{\mathcal{V}}}$

All three complementary methods continue to put mounting pressure on the WIMP hypothesis...

WIMP mass [GeV/c²]

Dark Sector Searches

- → What if DM exists in a hidden sector, composed of particles which don't undergo SM gauge interactions?
- Dark mediators could couple to SM via portal interactions
 - Coupling to SM encoded in a mixing term in the Lagrangian
 - Look for SM particles from DM decays via these portals
 - Set limits on coupling strength to SM... ε^2 (dark γ), f_a (ALPs)...
 - Small mixing → long lifetime

HLSP f_{dz} f_{dz} f_{dz}

- ➡ LHC detectors can extend to high masses and low couplings
 - Complementary to fixed target/beam-dump experiments (JHEP02(2016)062)

C.BICKEL/SCIENCE

LHC Coordinate System

Recorded Integrated Luminosity

Theoretical Landscape of Dark Matter

Prompt & Displaced Lepton Jets

Displaced Muons

- → Long-lived dark bosons produced from Higgs decay
 - Low mass search for OS di-muon not originating from IP
 - **Exclude** $\epsilon < 10^{-8}$ for 20 GeV $< m^{ZD} < 60$ GeV

Re-Interpretations

ATL-PHYS-PUB-2021-020

→ Re-interpretation of full run-2 mono-jet search (<u>Phys. Rev. D 103 (2021) 112006</u>) using RECAST (<u>JHEP04(2011)038</u>)

Exotic Higgs Decays to Pseudoscalars

→ H → aa → XXYY could be a promising window to the dark sector

Type I

Phys. Rev. D 90, 075004 (2014)

Multi-Charged Particles

Eur. Phys. J. C (2015) 75:362

Eur. Phys. J. C 76(4) , 1-26 (2016)

Multi-Photon Signatures

Summary of ATLAS Displaced Searches

Dark Energy

Introduce DM scalar, creating MET signature in colliders , sand a second

JHEP 05 (2019) 142

- Limits set on suppression scale (M) for least suppressed operators:
 - \clubsuit \mathscr{L}_1 : coupling proportional to fermion mass, tt+MET
 - $\mathcal{L}_{\mathcal{L}}$: coupling scales with momentum transfer, jet+MET
 - g_{*} = effective coupling, UV completion

CERN-EP-2020-238

Dark Energy

- New mono-jet results with full run-2 data
- ➡ Set 95% CL limits on suppression scale
 - → Horndeski DE with $m_{\phi} = 0.1$ GeV, $c_i \neq 2 = 0$, $c_2 = 1$
 - Suppression scales $M_2 \lesssim 1.5$ TeV excluded

