ATLAS RARE AND BSM DECAYS

K. Hamano (University of Victoria) for the ATLAS collaboration.

of Victoria

Motivation for rare and BSM decays of 125 GeV Higgs boson

- Higgs couplings to 1st and 2nd generation need to be measured to confirm the Standard Model (SM).
 - Only observations so far are with 3rd generation.
- Rare and invisible decay SM BR are tiny.

 \rightarrow any significant deviation from SM could indicate new physics.

- Decay to two pseudoscalar bosons (a) is the simplest BSM decay mode.
- Decay to two vector bosons (Z/Z_d) is also a possibility.
 - Z_d = dark sector vector boson
- \rightarrow More details in Zhen Liu's talk.

Rare decays

• $\mu\mu$ (BR = 0.022 %) [\rightarrow Jana Faltova's talk]

Mode	CM energy	Luminosity	σ*BR/σ _{sm}	Reference
μμ	13 TeV	79.8 fb ⁻¹	< 2.1	ATLAS-CONF-2018-026

• Ζγ, Qγ

Mode	CM energy	Luminosity	σ*BR/σ _{sm}	Reference	
Zγ	13 TeV	36.1 fb ⁻¹	< 6.6	JHEP 10 (2017) 112	
ργ	13 TeV	35.6 fb ⁻¹	< 52	arXiv:1712.02758	
φγ	13 TeV	35.6 fb ⁻¹	< 209	arXiV:1712.02758	
J/ψ γ	13 TeV	36.1 fb ⁻¹	< 117	arXiv:1807.00802 *	New
Υγ	13 TeV	36.1 fb ⁻¹	< 10 ⁵	arXiv:1807.00802 *	2

Search for enhanced Higgs couplings to 1st and 2nd generation quarks

* Details in following slides

Direct

Indirect

$H \rightarrow J/\psi\gamma, \psi(2S)\gamma, Y(nS)\gamma$

- $\psi, Y \rightarrow \mu^+ \mu^-$;
- photon+muon trigger.
- Selection:
 - Good quality muons.
 - Mass window cut on m(µµ).
 - Good quality photon.
- Backgrounds:
 - Non resonant: data-driven.
 - Zγ: MC shape, fit to data.
- Statistically limited.
- SM BR
 - J/ψγ: 3.0e-6
 - Y(1S)γ: 5.2e-9

BSM decays: $H \rightarrow aa/VV$

• aa

Mode	CM energy	Luminosity	σ*BR/σ _{sm}	Reference
2μ2τ	8 TeV	20.3 fb ⁻¹	< 10 ⁻¹ - 1	PRD92 (2015) 052002
4b	13 TeV	36.1 fb ⁻¹	< 1 - 3	arXiv:1806.07355*
4γ	8 TeV	20.3 fb ⁻¹	< 10 ⁻³	EPJC 76(4),1-26(2016)
2γ2j	13 TeV	36.7 fb ⁻¹	< 0.03 - 0.16	PLB 782 (2018) 750
2b2µ	13 TeV	36.1 fb ⁻¹	< 2*10 ⁻³ - 10 ⁻⁴	arXiv:1807.00539*
4μ	13 TeV	36.1 fb ⁻¹	< 2*10 ⁻⁴ - 1	arXiv:1802.03388*

• ZZ_d/Z_dZ_d

Mode	CM energy	Luminosity	σ*BR/σ _{sm}	Reference
4e, 4µ, 2e2µ	13 TeV	36.1 fb ⁻¹	< 10 ⁻⁴ - 10 ⁻³	arXiv:1802.03388*

* Details in following slides

arXiv:1806.07355

Selection:

nJets >= 3

 m_{T} cut or

nBJets >= 2

Z mass cut

$H \rightarrow aa \rightarrow 4b$ analysis

• WH/ZH production \rightarrow lepton trigger

7

arXiv:1807.00539

$H \rightarrow aa \rightarrow 2b2\mu$ analysis

Higgs

- Single muon triggers.
- Selection:
 - Exactly 2 b-jets.
 - Exactly 2 muons.
 - Higgs mass window cut.
 - Missing Et < 60 GeV to suppress ttbar events.
- Background:
 - Drell-Yan dimuon events.
 → data template method.
 - ttbar \rightarrow simulation.
 - Normalized in control regions.
- Statistically limited.

arXiv:1802.03388

$H \rightarrow aa/ZZ_d/Z_dZ_d \rightarrow 4I$ analysis

- Vector boson model:
 - Z_d = vector boson of dark sector U(1)_d
- Pseudo-scalar model:
 - 2HDM + pseudo-scalar (a)
 - H \rightarrow aa is allowed.
- Combinations of lepton triggers.
- Selection:
 - Two pairs of same-flavor oppositesign leptons.
 - Higgs mass window cut.

Total Backgroun

 $Z + (t\bar{t}/J/\Psi/Y)$

mzd=15 GeV

mzd=55 GeV

VVV/VBS

ATLAS

13 TeV, 36.1 fb

Fails Z Veto

$H \rightarrow aa/ZZ_d/Z_dZ_d \rightarrow 4I$ analysis Data Reducible bkg

- Background: $H \rightarrow ZZ^* \rightarrow 4I$ and $ZZ^* \rightarrow 4I$
 - Simulations were used.
 - Validated in background enriched regions.
- Statistically limited.
- Systematic errors:
 - Lepton related: 10 %
 - MC modeling: 3 9 %

25 30 45 50 60 65 35 (m,) [GeV] 10^{2} Events / GeV Total Background Data ATLAS $Z+(t\bar{t}/J/\Psi/Y)$ Reducible bkg 10 Data VVV/VBS H→ZZ*→4I VVV/VRS ZZ*→4I ---- m_{zd}=15 GeV 10 ---- m_{zd}=55 GeV 10^{-1} Average mass of 2 pairs. 10⁻² 10^{-3} 20 40 50 60 10 30 $\langle m_{_{\!\!H}} \rangle$ [GeV]

m_{Z_d}[GeV]

Higgs Hunting 2018, Orsay/I

BSM decays: H \rightarrow invisible/LFV

• Invisible (SM BR(ZZ \rightarrow 4v) = 0.1 %)

Mode	CM energy	Luminosity	BR (expected)	Reference
VBFHinv	8 TeV	20.3 fb ⁻¹	< 28 (31) %	JHEP 01 (2016) 172
Z(II)Hinv	13 TeV	36.1 fb ⁻¹	< 67 (39) %	PLB 776(2017)318
V(had)Hinv	13 TeV	36.1 fb ⁻¹	< 83 (58) %	ATLAS-CONF-2018-005*
Combined	7TeV + 8TeV	4.7+20.3 fb ⁻¹	< 25 %	JHEP11(2015)206

• Lepton flavor violation (\rightarrow Jana Faltova's talk)

Mode	CM energy	Luminosity	BR	Reference
тμ	8 TeV	20.3 fb ⁻¹	< 1.43 %	EPJC 77 (2017) 70
те	8 TeV	20.3 fb ⁻¹	< 1.04 %	EPJC 77 (2017) 70

q

ATLAS-CONF-2018-005

VH -> jet(s) + invisible analysis

W, Z

 χ_2

- Selection:
 - 2 jets or 1 large-R jet + mass cut/for W or Z candidate.
 - Large missing $E_{\tau} = in\sqrt{4}$ sible.
 - 0 lepton.
- Backgrounds:
 - V + jets and ttbar:
 - 1 and 2 lepton control region
 - Multijet: enriched control region.
- Systematic errors:
 - Signal modeling 5-10%
 - Mulitijet 100%
 - Experimental 10%.

Conclusion

- Rare Higgs boson decays to 1st and/or 2nd generation of quarks and leptons are searched.
 - Still statistically limited \rightarrow limits were set.
- BSM Higgs decays were searched in 4 modes:
 - 2 new pseudo scalar bosons.
 - 2 new vector bosons.
 - Invisible particles (possibly dark matter particles).
 - Lepton flavor violating decays.
 - No observation beyond SM background.
 - Limits were set.
- Overall no evidence of BSM physics (yet).

Back up

24 July 2018

Journal	arXiv	Part of the title			
ATLAS-CONF-2018-026	n/a	Higgs boson to dimuons			
JHEP 10 (2017) 112	1708.00212	Zγ decay mode of the Higgs			
Accepted by JHEP	1712.02758	Higgs decays to φγ and ργ			
Submitted to PLB	1807.00802	J/ ψ Y, ψ (2 <i>S</i>)Y and Y(<i>nS</i>)Y			
Eur. Phys. J. C 77 (2017) 70	1604.07730	lepton-flavour-violating decays			
PRD92 (2015) 052002	1505.01609	aa in the µµтт final state			
Submitted to JHEP	1806.07355	$H \rightarrow aa \rightarrow 4b$ channel			
Eur.Phys.J.C76(4),1-26(2016)	1509.05051	events with at least three photons			
PLB 782 (2018) 750	1803.11145	the γγ <i>jj</i> final state			
Submitted to PLB	1807.00539	the <i>bb</i> µµ final state			
Accepted by JHEP	1802.03388	light bosons in four-lepton events			
JHEP 01 (2016) 172	1508.07869	invisible vector-boson fusion			
PLB 776 (2017) 318	1708.09624	invisibly decaying Higgs with a Z			
ATLAS-CONF-2018-005	n/a	hadronically decaying vector boson			
JHEP11(2015)206	1509.00672	invisible decays			
PRD 90, 075004 (2014); arXiv:1312.4992[hep-ph]; Exotic Decays of the 125 GeV Higgs Boson					

Rare decays

Main decay modes

Channel	BR [%]
bb	58
WW	21
gg	8.2
TT	6.3
СС	2.9
ZZ	2.6
γγ	0.23
Sum	99.23

Rare decays

Channel	BR [%]
μμ	0.022
Z(II)γ	0.15*0.067
ZZ(4v)	0.1

GeV **AS** Preliminary 🗕 Data = 13 TeV. 79.8 fb⁻¹ **Ζ/γ*** Events / $\rightarrow \mu\mu$ analysis Diboson 10⁸ 76 < m,... < 160 GeV Top ggF [x50] 10 VBF [x50] 10^t VH [x50] ttH [x50] 10⁵ 10⁴ 10^{3} 10² 10 1.2 Data/MC 1.1 0.9 0.8 80 90 130 140 160 100 110 120 150 Dimuon Invariant Mass [GeV] Entries / GeV ATLAS Preliminary 50 VBF tight $\sqrt{s} = 13 \text{ TeV}, 79.8 \text{ fb}^{-1}$ χ^2 /ndof = 31.2/48 $H \rightarrow \mu \mu$ analysis 40 Data Background Signal × 20 30 20 10 <u>Data - fit</u> σ (data) 115 120 125 130 135 140 145 150 155 160 m_{uu} [GeV]

ATLAS-CONF-2018-026

- $H \rightarrow \mu\mu$
- Single muon trigger.
- Selection:
 - Two opposite-charge muons.
 - Higgs mass window cut. Small missing $\mathsf{E}_{\mathsf{T}}.$
 - VBF category: two forward iets
 - ggF categor
- Background
 - Constrained bands.
- Statistically
- Results: sig +1.0/-1.1.

Higgs Hunting 2018, Orsay/Paris 19

24 July 2018

arXiv:1712.02758

$H \rightarrow \phi(K^+K^-)\gamma, \rho(\pi^+\pi^-)\gamma$

- Special trigger:
- Special trigger:
 2 "track + jet" + photon
- Backgrounds:
 - Photon+jet and Multijet
 - Data driven method using templates.
- Statistically limited.
- Expected SM BR
 - φγ: 2.3e-6
 - ργ: 1.7e-5

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}\left(Z\to\phi\gamma\right)\left[\ 10^{-6}\ \right]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}\left(H\to\rho\gamma\right)\left[\ 10^{-4}\ \right]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z\to\rho\gamma\right)\left[\ 10^{-6} \ \right]$	33^{+13}_{-9}	25

$H \rightarrow aa \rightarrow jj\gamma\gamma$ analysis

- Diphoton triggers.
- Selections:
 - 2 photons + 2 jets
 - Higgs mass window cut.
 - VBF mode: H(jjγγ) + 2 jets
- Background: γγ+mulitijets
 - Estimated from looser photon ID and |m(γγ) – m(jj)| control regions.
- Statistically limited.

