Search for Higgs boson decays to BSM light bosons in fourlepton events with the ATLAS detector

> Lepton Photon 2019 August 6th, 2019

Justin Chiu on behalf of the ATLAS Collaboration

- Current measurements allow Higgs to BSM branching ratio to be as large as $\mathcal{O}(30-50\%)$ [1, 2]
- 125 GeV Higgs has a narrow width: $\Gamma_h/m_h \sim {\cal O}(10^{-5})$ vs. $\Gamma_Z/m_Z \sim {\cal O}(10^{-2})$
 - $Br(H \to X_{BSM} X_{BSM}) \propto (\Gamma_{BSM}) / (\Gamma_{BSM} + \Gamma_{SM})$
 - ➔ Small BSM coupling could open up sizeable decay modes
- New particles could couple to the Higgs and provide a portal to a hidden dark sector or extended Higgs sector
- Addition of U(1) dark gauge symmetry to the SM introduces a new dark vector boson \mathbb{Z}_d

Objective: Search for 125 GeV Higgs decays to four leptons (e, μ) via one or two intermediate U(1) dark sector particles Z_d

 $\ell = e, \mu$

- Two channels:
- $H \to Z_d Z_d \to 4\ell \ (15 \text{ GeV} < m_{Z_d} < 60 \text{ GeV}) \\ H \to Z Z_d \to 4\ell \ (15 \text{ GeV} < m_{Z_d} < 55 \text{ GeV})$
- $H \to Z_d Z_d \to 4\ell$:
 - Look for four prompt leptons that form two same-flavour (e, μ) opposite-charge pairs
 - with $m_{4\ell}$ compatible with 125 GeV Higgs
 - with $m_{2\ell}$ of both pairs incompatible with Z
- $H \to ZZ_d \to 4\ell$:
 - with one pair compatible with Z (labelled m_{12})

 $H \to Z_d Z_d \to 4\ell \ m_{\ell\ell}$ distribution

(two entries per event corresponding to two lepton pairs in final state)

5

two lepton pairs in final state)

ATLAS 8 TeV [1505.07645]

- Highly constrained signal region dominated by Higgs and ZZ background
- Simulation-driven background estimates
- Event at $\langle m_{\ell\ell} \rangle \approx 20~{
 m GeV}$ corresponds to a local (global) significance of $3.2~(1.9)~\sigma$

13 TeV 36.1 ${ m fb}^{-1}$ limit on kinetic mixing ϵ

[1802.0338]

set using $Br(H \rightarrow ZZ_d \rightarrow 4\ell)$ (slide 9) and $Br(Z_d \rightarrow \ell\ell)$ from theory [1312.0018]

- Search for 125 GeV Higgs decays to BSM light bosons in four-lepton final states
 - Three channels: $H \to XX \to 4\ell \ (15 \text{ GeV} < m_X < 60 \text{ GeV})$ $\ell = e, \mu$ $H \to ZX \to 4\ell \ (15 \text{ GeV} < m_X < 55 \text{ GeV})$ $X = Z_d, a$ $H \to XX \to 4\mu \ (1 \text{ GeV} < m_X < 15 \text{ GeV})$
 - No statistically significant excesses in 8 TeV (20.1 ${\rm fb^{-1}}$) and 2015-6 13 TeV (36.1 ${\rm fb^{-1}}$) results
- Working towards a result encompassing the full 2015-8 dataset (~140 ${\rm fb}^{-1}$)
- Two new channels:
 - Four tau leptons in final state: $H \to aa \to 4\tau$
 - Scalar progenitor (S < 115 GeV and S > 130 GeV): $S \rightarrow Z_d Z_d \rightarrow 4\ell$
- Data-driven fake background estimate
- Search for Z_d of different mass: $H \to Z_{d1} Z_{d2} \to 4\ell$
- Possibility of broader Z_d width under consideration

ATLAS detector

[ATLAS]

[ATLAS]

Look for a light resonance in a channel similar to the "golden" channel of the Higgs (H \rightarrow ZZ^{*} \rightarrow 4*l*)

 $(m_{J/\Psi} - 0.25 \text{ GeV}) < m_{12,34,14,32} < (m_{\Psi(2S)} + 0.30 \text{ GeV}) \mid\mid (m_{\Upsilon(1S)} - 0.70 \text{ GeV}) < m_{12,34,14,32} < (m_{\Upsilon(3S)} + 0.75 \text{ GeV})$

UPLET - Require at least one quadruplet of leptons consisting of two pairs of same-flavour opposite-sign leptons ION - Three leading- p_T leptons satisfying $p_T > 20$ GeV, 15 GeV, 10 GeV - At least three muons are required to be reconstructed by combining ID and MS tracks in the 4μ channel - Select best quadruplet (per channel) to be the one with the (sub)leading dilepton mass Leptons in the quadruplet are responsible for firing at least one trigger must match to leptons in the quadruplet - 50 GeV < $m_{12} < 106$ GeV - 12 GeV < $m_{34} < 115$ GeV - $m_{12,34,14,32} > 5$ GeV - $m_{12,34,14,32} > 5$ GeV UPLET Select first surviving quadruplet from channels, in the order: 4μ , $2e2\mu$, $2\mu 2e$, $4e$ Select quadruplet with smallest $\Delta m_{\ell \ell} = m_{12} - m_{34} $
$\begin{array}{ c c c c c c } \hline \text{VPLET} & \text{Select first surviving quadruplet} \\ \hline \text{VPLET} \\ \hline \text{C} \\ $
$\begin{array}{ c c c c c }\hline - & At least three muons are required to be reconstructed by combining ID and MS tracks in the 4\mu channel - & Select best quadruplet (per channel) to be the one with the (sub)leading dilepton mass (second) closest to the Z mass - & 50 & GeV < m_{12} < 106 & GeV - & 12 & GeV < m_{34} < 115 & GeV - & m_{12,34,14,32} > 5 & GeV \\ \hline & \Delta R(\ell,\ell') > 0.10 & (0.20) & for same-flavour (different-flavour) leptons in the quadruplet \\ \hline & Get first surviving quadruplet \\ \hline & $
$\begin{array}{ c c c c c c }\hline & - & \text{Select best quadruplet (per channel) to be the one with the (sub)leading dilepton mass (second) closest to the Z mass -50 \text{ GeV} < m_{12} < 106 \text{ GeV} \\ -12 \text{ GeV} < m_{34} < 115 \text{ GeV} \\ -m_{12,34,14,32} > 5 \text{ GeV} \end{array}$
$\begin{array}{ c c c c c c } \hline channel) to be the one with the (sub)leading dilepton mass (second) closest to the Z mass - 50 GeV < m_{12} < 106 GeV - 12 GeV < m_{34} < 115 GeV - m_{12,34,14,32} > 5 GeV \\ \hline \Delta R(\ell, \ell') > 0.10 (0.20) \text{ for same-flavour (different-flavour) leptons in the quadruplet}} \\ \hline Delta T Select first surviving quadruplet from channels, in the order: 4\mu, 2e2\mu, 2\mu2e, 4e \\ \hline Delta T Select first Surviving T Select first Surviving quadruplet form channels, in the order: 4\mu, 2e2\mu, 2\mu2e, 4e \\ \hline Delta T Select first Surviving T Select T Select T Select first Surviving T Select T Sele$
$ \begin{array}{ c c c c c } \hline (sub) leading dilepton mass & match to leptons in the quadruplet \\ \hline (second) closest to the Z mass & -50 GeV < m_{12} < 106 GeV & -12 GeV < m_{34} < 115 GeV & -12 GeV < m_{34} < 115 GeV & -m_{12,34,14,32} > 5 GeV & \hline & \Delta R(\ell,\ell') > 0.10 (0.20) \ for same-flavour (different-flavour) leptons in & - & & & & & & & & & & & & & & & & & $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\Delta R(\ell, \ell') > 0.10 (0.20) \text{ for same-flavour (different-flavour) leptons in} \qquad - \qquad $
the quadrupletUPLETSelect first surviving quadrupletSelect quadruplet with smallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $ IGfrom channels, in the order: 4μ , $2e2\mu$, $2\mu2e$, $4e$ 100 G W
UPLET Select first surviving quadruplet from channels, in the order: 4μ , $2e2\mu$, $2\mu2e$, $4e$ Select quadruplet with smallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $
ag from channels, in the order: 4μ , $2e2\mu$, $2\mu2e$, $4e$
$2e2\mu$, $2\mu2e$, $4e$
115 GeV $< m_{4\ell} < 130$ GeV 120 GeV $< m_{4\ell} < 130$ GeV
ION $m_{34}/m_{12} > 0.85$
Reject event if:
$(m_{J/\Psi} - 0.25 \text{ GeV}) < m_{12,34,14,32} < (m_{\Psi(2S)} + 0.30 \text{ GeV}), \text{ or}$
$(m_{\Upsilon(1S)} - 0.70 \text{ GeV}) < m_{12,34,14,32} < (m_{\Upsilon(3S)} + 0.75 \text{ GeV})$
$10 \text{ GeV} < m_{12,34} < 64 \text{ GeV}$ $0.88 \text{ GeV} < m_{12,34} < 20 \text{ GeV}$
$4e$ and 4μ channels: No restriction on alternative

- All background predictions from simulation
- Dominant backgrounds are $H \rightarrow ZZ^*$ and non-resonant ZZ^* :
 - $H \rightarrow ZZ^* \rightarrow 4l: 63\%$
 - ZZ* → 4*l*: 19%
 - Triboson production (VVV): 17%
 - $Z + t\bar{t}$, J/Ψ , or $\Upsilon \rightarrow 4l$: ~1%
 - Reducible backgrounds (Z + jets, $t\bar{t}$): ~1%

Process	Yield
$\overline{ZZ^* \to 4\ell}$	0.8 ± 0.1
$H \to ZZ^* \to 4\ell$	2.6 ± 0.3
VVV/VBS	0.51 ± 0.18
$Z + (t\bar{t}/J/\Psi) \to 4\ell$	0.004 ± 0.004
Reducible Background	Negligible
Total	3.9 ± 0.3
Data	6

(a) Signal region $\langle m_{\ell\ell} \rangle$ distribution

[1802.0338]

(a) Signal region $\langle m_{\ell\ell} \rangle$ distribution

(b) m_{34} vs m_{12} distribution

Figure 4: Distribution of (a) $\langle m_{\ell\ell} \rangle = \frac{1}{2}(m_{12}+m_{34})$ and (b) m_{34} vs m_{12} , for events selected in the $H \to XX \to 4\ell$ (15 < $m_X < 60$ GeV) analysis. The example signal distributions in (a) correspond to the expected yield normalized with $\sigma(pp \to H \to Z_d Z_d \to 4\ell) = \frac{1}{10}\sigma_{\rm SM}(pp \to H \to ZZ^* \to 4\ell)$. The crossed-through points in (b) fail the *Z Veto*. The events outside the (shaded green) signal region in figure (b) are events that fail the $m_{34}/m_{12} > 0.85$ requirement. The diagonal dashed line marks where $m_{12} = m_{34}$, and in this range of dilepton masses all events will have $m_{34} < m_{12}$.

ATLAS 8 TeV result

Figure 14: The 95% confidence level upper bound on the signal strength $\mu_d = \frac{\sigma \times BR(H \to Z_d Z_d \to 4\ell)}{[\sigma \times BR(H \to ZZ^* \to 4\ell)]_{SM}}$ of $H \to Z_d Z_d \to 4\ell$ in the combined $4e + 2e2\mu + 4\mu$ final state, for $m_H = 125$ GeV. The $\pm 1\sigma$ and $\pm 2\sigma$ expected exclusion regions are indicated in green and yellow, respectively.

[1505.07645]