## Clouds in High Energy Physics

## **Randall Sobie**

University of Victoria



## Overview

- Clouds are integral part of our HEP computing infrastructure
  - Primarily Infrastructure-as-a-Service (IAAS)

- Our use is wide ranging and diverse
  - CERN Agile Infrastructure
  - Tier-1 computing at centres such as BNL, FNAL and RAL
  - Tier-2 computing around the world

• Expanding use of HEP-clouds, private clouds and commercial clouds

## Motivation

### A wide range of reasons for using clouds

- Ease management of existing infrastructure
- Separation of application and system administration
- Simplifies allocation of resources
- Leverage software development
- Opportunistic computing
  - Non-HEP computing centres
  - Commercial cloud resources



## Types of cloud resources



## Cloud deployments



Traditional bare-metal



Static cloud (e.g.. LTDA BaBar, HLT clouds)



Standalone/private cloud (e.g. PNNL, NorduGrid)



Distributed clouds (e.g. UK, Canada, Australia, INFN Clouds)



Bare-metal or in-house cloud with external cloud (e.g., CERN, BNL)

## **OpenStack Clouds at CERN**



In production:

 4 clouds
>230K cores
>8,000 hypervisors

>90% of CERN compute resources are virtualized

Up to 42K cores to be installed in the next few months subject to funding



D. Giordano

WLCG Workshop



## Clouds at RAL



- 892 cores utilizing a Ceph storage backend.
- 3 alternating racks of CPU and Storage nodes.
- Tier 1 services now running on Cloud VMs.
- Engaging with various European Cloud projects (e.g DataCloud).

### S3 and Swift Storage

 Storing Docker images for Container Orchestration via Swift.



Openstack service under development. Available to LHC VOs next year.



### Batch Work on the Cloud

- For ~1.5 years the RAL HTCondor batch system has made opportunistic use of unused cloud resources.
- HTCondor rooster daemon used to provision VMs.
- Running jobs from all 4 LHC experiments & many non-LHC experiments.





### Tier-1 Cloud bursting onto EC2

**BNL/ATLAS AWS September 2015** 



9

## Special purpose clouds BaBar Long Term Data Access (LTDA) System

Ability to preserve data and analysis capability for BaBar (stopped data taking in 2008)



Randall Sobie IPP/Victoria

### High level trigger farms of the LHC Experiments (large multi-10K core systems)

Virtual machines are booted during no-beam periods



## Examples of Tier-2 cloud deployments



#### SWITCHengines – Swiss NREN commercial cloud



### NorduGrid Secure hybrid cloud



# Why private cloud? Chosen for flexibility, efficient use of compute resources for services Provides easy load-balancing and availability features Provides templating features Easy re-use of templates to test and instantiate new server instances Non-systems staff can provision their own instances of services

- Software Defined Networking is more malleable than physical
- networking, encourages better networking practices, including security

### UK / GridPP

- Clouds at HEP institutions (Oxford/Imperial).
- ECDF cloud in Edinburgh has recently made available to the HEP
- UK Vacuum deployment
- Commercial cloud DataCentred Openstack cloud

### Italy / INFN

- PrivateOpenStack Cloud (Padova-Legnaro) called CLOUD AREA PADOVANA
- ~ 25 user groups/project
- CMS production

### PNNL / Washington

Private OpenStack cloud for Belle II project (KEK) and other local users

## Canada

Distributed cloud system for ATLAS and Belle II

10-15 clouds HTCondor/CloudScheduler 4000-5000 cores





ATLAS jobs on cloud for CA-system 10 clouds 4300 cores

## Job scheduling/VM provisioning

- Variety of methods for running HEP workloads on clouds
  - VM-DIRAC (LHCb and Belle II)
  - VAC/Vcycle (UK)
  - HTCondor/CloudScheduler (Canada)
  - HTC/GlideinWMS (FNAL), HTC/VM (PNNL), HTC/APF (BNL)
  - Dynamic-Torque (Australia)
  - Cloud Area Padovana (INFN)
  - ARC (NorduGrid)
- Each method has its own merits and often was designed to integrated clouds into an existing infrastructure (e.g. local, WLCG and experiment)

## **Commercial clouds**

- Amazon EC2 and Microsoft Azure
  - Short-term multi-10K tests
  - Long-term 1K-scale production

• GCE evaluation but no production

- Other commercial OpenStack clouds
  - DataCentred (UK), SWITCHengines (Switzerland)

• CERN commercial cloud procurement

## Network connectivity

• Amazon and Microsoft clouds are connected to the research networks in North America (probably GCE as well)

- Trans-border or trans-ocean traffic can be an issue
  - Become an important discussion topic in the LHCONE meetings

- Private opportunistic clouds
  - traffic flows over research network but not LHCONE network

### **CPU Benchmarks**

### New suite of "fast" benchmarks

- HEPiX Benchmark Working Group
- Suite available includes "fast HS" (LHCb) and Whetstone benchmarks
  - Write to ElasticSearch DB
- Run benchmarks in the pilot job or during the boot of the VM

### Data storage

- Data written to local storage on node and then transferred to selected SE
- UK group has done some work integrating their object store with ATLAS
- BNL using S3 storage on EC2 for T2-SE

## Monitoring





### Cloud or site monitor



| ATLAS-Cerr         | 22:43:14 03-Oct          |              |            |          |            |      |                |        |    |    |   |   |   |   |               |      |       |       |      |         |           |      |
|--------------------|--------------------------|--------------|------------|----------|------------|------|----------------|--------|----|----|---|---|---|---|---------------|------|-------|-------|------|---------|-----------|------|
| cern-atlas 125     | cern-preservation 🚺 cerr | n-victoria 🜀 | datacentre | d 🚯 grid | pp-imperia | grid | pp-oxford 10   | nectar | 10 |    |   |   |   |   |               |      |       |       |      |         |           |      |
| CloudScheduler VMs |                          |              |            |          |            |      | HTCondor Slots |        |    |    |   |   |   |   | HTCondor Jobs |      |       |       |      |         |           |      |
| Cloud              |                          | Starting     | Running    | Retiring | Error      | Idle | Lost           | 1      | 2  | 3  | 4 | 5 | 6 | 7 | 8             | Held | Jobs  | Total | Idle | Running | Completed | Held |
| cern-atlas         | cern-worker              | 0            | 49         | 0        | 0          | 0    |                | 49     | 49 | 49 | 5 | 0 | 0 | 0 | 0             | 0    | All   | 403   | 200  | 203     | 0         | 0    |
|                    | cern-mcore-worker        | 0            | 51         | 0        | 0          | 0    |                | 51     | 0  | 0  | 0 | 0 | 0 | 0 | 0             | 0    | Analy | 5     | 0    | 5       | 0         | 0    |
|                    |                          |              |            |          |            |      |                |        |    |    |   |   |   |   |               |      | Himem | 247   | 100  | 147     | 0         | 0    |
|                    |                          |              |            |          |            |      |                |        |    |    |   |   |   |   |               |      | MCore | 151   | 100  | 51      | 0         | 0    |
|                    |                          |              |            |          |            |      |                |        |    |    |   |   |   |   |               |      |       |       |      |         |           |      |

### Cloud System monitor Sensu, Munin, RabbitMQ, Mongo-DB



Application monitor Panda

| MONTH      |         |         |        |        |
|------------|---------|---------|--------|--------|
| Cloud      | #       | Bmk     |        | Total  |
|            |         |         | User   | Total  |
| beaver     | 18      | 15.6    | 49.5   | 60.5   |
| cc-west    | 1610    | 19.0    | 3228.4 | 4205.4 |
| cc-east    | 296     | 14.5    | 931.1  | 1129.1 |
| chameleon  | 136     | 21.1    | 976.1  | 1269.5 |
| dair-ab    | 2       | 12.7    | 30.6   | 32.9   |
| dair-qc    | 7       | 12.3    | 85.3   | 92.2   |
| azure      | 126     | 21.4    | 1518.2 | 1800.3 |
| ec2        | 106     | 9.8     | 36.4   | 184.3  |
| Total      |         |         | 6855.6 | 8774.2 |
| Monday Oct | ober 03 | 3 15:00 | :01    |        |

Benchmarks and accounting ElasticSearch DB

## Summary

- Clouds in HEP
  - Growing, diverse use of clouds
  - Typically integrated into an existing infrastructure
  - Seen as a way to better manage multi-user resources
- Opportunistic research clouds
  - Easy way to utilize clouds at non-HEP research computing facilities
  - No requirement for on-site application specialists or complex software
- Commercial clouds
  - EC2/Azure as well as other OpenStack clouds
  - Trans-border network connectivity challenges