INVESTIGATIONS OF CALORIMETER CLUSTERING AT ATLAS USING MACHINE LEARNING

Graeme Niedermayer graemen@uvic.ca

Outline

- A quick overview of calorimeter clustering
 - \circ ~ Quick discussion of the topological clustering algorithm at ATLAS ~
 - $\circ \quad \ \ {\rm Effects \ of \ high \ luminosity \ and \ pile-up}$
- Quick introduction to neural nets
- Problem/Solution to neural nets on calorimeters
 - Discuss Objective function (or loss function)
 - Discuss Geometry
- Current Implementations

Context

- We are looking at the formation of clusters which will further be refined into jets and particles.
- Currently this is done with the topological clustering algorithm (topocluster algorithm)
 - There are some concerns about it's abilities in higher pile-up situations

The goal of this algorithm is to turn a group of cells into a list of clusters. This algorithm is usually split into four steps.

- 1. Seed clusters
- 2. Grow protoclusters
- 3. Merge protoclusters
- 4. Split into final clusters

Topocluster paper can be found at: https://arxiv.org/pdf/1603.02934.pdf

The goal of this algorithm is to turn a group of cells into a list of clusters. This algorithm is usually split into four steps.

- Seed clusters 1.
- Grow protoclusters 2.
- Merge protoclusters 3.
- Split into final clusters 4.

The goal of this algorithm is to turn a group of cells into a list of clusters. This algorithm is usually split into four steps.

- Seed clusters 1.
- Grow protoclusters 2.
- 3. Merge protoclusters
- Split into final clusters 4.

The goal of this algorithm is to turn a group of cells into a list of clusters. This algorithm is usually split into four steps.

- 1. Seed clusters
- 2. Grow protoclusters
- 3. Merge protoclusters
- 4. Split into final clusters

Impact of higher luminosity

With higher luminosity comes a higher average number of simultaneous proton-proton collisions per bunch cross.

This excess of particles can lead to a ambiguity of energy depositions that originate from distinct particles

The topocluster algorithm's ability to operate in these environments has been called into question.

Impact of higher luminosity

With higher luminosity comes a higher average number of simultaneous proton-proton collisions per bunch cross.

This excess of particles can lead to a ambiguity of energy depositions that originate from distinct particles

The topocluster algorithm's ability to operate in these environments has been called into question.

This is a clustering problem

- Clustering problems are a very common problem in many areas.
- Which machine learning techniques should we use?
- Looking at other classification / clustering problems such as the handwriting dataset, MNIST, give some idea of accuracy
- Goal is to classify handwritten digits into digital categories
- 60000 Training examples, 10000 Test examples
- Convolutional Neural Nets are among the top contenders

Neural Nets Overview

Basic set-up is similar to scientific method

Training Outputs

"Truth"

Convolutional Neural Networks Structure

CNNs Train the Convolutional Kernels

Toy Model

ATLAS work-in-progress

CNN Algorithm

Toy Topocluster

Problem 1. The Objective

With y_i as solution and z_i as output. Because both lists are unordered the connection between output and "truth" is ambiguous.

The Assignment Problem

Problem 2. Geometry

Getting calorimeter cells into a form that convolutional neural nets can understand. The calorimeter has 33 calorimeter cell granularities.

Problem 2. Geometry

Look at one specific granularity to start with.

Truth Objects

- For now use topological clusters as "truth" information to ensure that algorithm works
 - \circ It should at least be able to replicate current results
- Eventual make use of simulations of ATLAS to create truth information

Preliminary results

19

Preliminary results

Software used

Python Libraries

- Keras with Theano as the backend
 - $\circ \quad \ \ Only used \ CPU \ for \ this \ work$
- Numpy and matplotlib
- numpyroot

ROOT

Thanks for your time!

Any question or comments?

Also email: graemen@uvic.ca

Extra Material

Neural Nets Structure

Leaky ReLu Activation Function

Slope = a

Number of Clusters

- Neural Nets have fixed dimensional outputs
- Ghost Clusters
- Only assign error based on energy

 $(z_1)y_3$ y_2 z_4 y z_{2}

The Training Phase

