Searches for the Higgs Boson with ATLAS PHENO2012: 7-9th May, University of Pittsburgh

Alex Martyniuk, University of Victoria On behalf of the ATLAS collaboration

07/05/2012

The Higgs ATLAS

The Higgs Boson

- Higgs mechanism is a proposed method for electroweak symmetry breaking
- Provides mass to the vector bosons
- The Higgs boson is a physical manifestation of the scalar field
- The Higgs is the missing piece of the SM
- Many production and decay channels to explore

Alex Martyniuk Searches for the Higgs Boson with ATLAS

The Higgs ATLAS

ATLAS

- ATLAS is a general purpose detector
- Almost full 4π layered coverage
- 2011 data taking efficiency at \approx 93.5%
- Good quality data $\approx 90 96\%$
- Peak $\mathcal{L} = 10^{33} \text{cm}^{-2} \text{s}^{-1}$

The SM channels The combination

The pieces of the puzzle

Higgs Decay	Subsequent Decay	Additional Sub-Channels	m _H Range	L [fb ⁻¹]
$H \rightarrow \gamma \gamma$	-	9 sub-channels ($p_{T_i} \otimes \eta_{\gamma} \otimes \text{conversion}$)	110-150	4.9
$H \rightarrow ZZ$	eee'e'	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	4.8
	llvv	$\{ee, \mu\mu\} \otimes \{low pile-up, high pile-up\}$	200-280-600	4.7
	llgg	{b-tagged, untagged}	200-300-600	4.7
$H \rightarrow WW$	lvlv	$\{ee, e\mu, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, VBF\}$	110-300-600	4.7
	lvqq'	$\{e,\mu\}\otimes\{0\text{-jet},1\text{-jet}\}$	300-600	4.7
$H \rightarrow \tau^+ \tau^-$	ll4v	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{1\text{-jet}, VBF, VH\}$	110-150	4.7
	$\ell \tau_{\rm had} 3 v$	$ \{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_T^{\text{miss}} \gtrless 20 \text{ GeV} \} \\ \oplus \{e, \mu\} \otimes \{1\text{-jet}, \text{VBF} \} $	110-150	4.7
	$\tau_{had}\tau_{had}2v$	{1-jet}	110-150	4.7
$VH \rightarrow b\overline{b}$	$Z \rightarrow V\overline{V}$	$E_T^{\text{miss}} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6
	$W \rightarrow \ell v$	$p_T^W \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7
	$Z \rightarrow \ell \ell$	$p_T^Z \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7

• LHC Higgs x-sec pages

- ATLAS analyses make use of the various Higgs production and decay modes
- Combined they form a complete search in the range $m_H = 110 600 \text{ GeV}$

The SM channels The combination

$H \to \gamma \gamma$

- Analysis uses 9 separate photon categories
- Categories distinguished by the photons η, (un)converted status and the momentum component of the diphoton system transverse to the thrust axis
- $m_{\gamma\gamma}$ spectrum fitted with an exponential per category
- Mass resolution $\approx 1.7\%$ for $m_H = 120$ GeV
- Maximum deviation from the background expectation is observed at 126 GeV
- Local significance of 2.8σ (1.5σ with look-elsewhere effect)

Alex Martyniuk Sear

The SM channels The combination

$H \rightarrow ZZ \rightarrow IIII$

- Analysis uses m₄₁ distribution as the discriminating variable
- Three separate channels combined: 4μ, 2e2μ, 4e
- Clean signature with a low background
- Provides good sensitivity over large mass range
- Mass resolution $\approx 1.5\%(2\%)$ in $4\mu(e)$ channel at $m_H = 120 \text{ GeV}$
- Deviations from the background expectation are observed at 125 GeV, 244 GeV and 500 GeV
- Local significances of 2.1σ, 2.3σ and 2.2σ respectively
- None remain significant when the look-elsewhere effect is taken into account

Phys. Lett. B710 383-402 (2012)

The SM channels

$H \rightarrow ZZ \rightarrow I I \nu \bar{\nu}$

Events / 50 GeV

- Analysis uses m_T distribution as the discriminating variable
- Two channels are combined: $2\mu 2\nu_{\mu}$, $2e 2\nu_{e}$
- Provides significant decay branching fraction combined with distinct signature of a high pT lepton pair with large E^{miss}
- Separate selections are made in the low $(m_H < 280 \text{ GeV})$ and high $(m_H > 280 \text{ GeV})$ mass regions
- Data sample of 4.7fb⁻¹ split into low (2.3fb⁻¹) and high (2.4fb⁻¹) pileup regions
- No significant excesses are seen in the full mass range
- The channel by itself excludes a SM Higgs ۰ mass in the range $320 < m_H < 560 \text{ GeV}$

ATLAS-CONF-2012-016

Searches for the Higgs Boson with ATLAS

intries / 20 GeV

The SM channels The combination

H ightarrow ZZ ightarrow Ilqar q

- Analysis uses m_{Iljj} distribution as the discriminating variable
- Two channels are combined: 2µqq̄, 2eqq̄
- Separate selections are made in the low (m_H < 300 GeV) and high (m_H > 300 GeV) mass regions
- Analysis is further split into tagged (2 b-tags) and untagged selections (< 2 b-tags)
- The tagged selection offers greater rejection of the dominant Z+jets background
- No significant excesses are seen in the full mass range
- The channel by itself excludes a SM Higgs mass in the ranges $300 < m_H < 310$ GeV and $360 < m_H < 400$

ATLAS-CONF-2012-017

The SM channels The combination

$H \rightarrow WW \rightarrow I \nu I \nu$

- Analysis uses m_T distribution as the discriminating variable
- Three channels are combined: $2\mu 2\nu_{\mu}$, $e\mu\nu_{e}\nu_{\mu}$, $2e2\nu_{e}$
- Channel covers the full mass range but suffers from poor mass resolution
- Analysis is split into 0, 1 and ≥2 jet categories
- W+jets background is derived from data, WW, top and D-Y backgrounds are normalised in control regions
- No significant excesses are seen in the full mass range
- The channel by itself excludes a SM Higgs mass in the ranges 130 < m_H < 260 GeV</p>
- The expected exclusion was 127 < m_H < 234</p>

ATLAS-CONF-2012-012

The SM channels The combination

$H \rightarrow WW \rightarrow I \nu q \bar{q'}$

- Analysis uses m_{WW} distribution as the discriminating variable
- Two channels are combined: $\mu \nu_{\mu} q \bar{q}$, $e \nu_{e} q \bar{q}$
- Analysis is split into 0, 1 and 2 additional jet categories
- Monte Carlo studies performed to provide a background parameterisation
- No significant excesses are seen in the full mass range
- The best sensitivity in this channel occurs at 400 GeV
- Here an upper limit on the H → WW cross section of 2.6pb is set
- This corresponds to 2.2 times the SM prediction

ATLAS-CONF-2012-018

Alex Martyniuk

Searches for the Higgs Boson with ATLAS

The SM channels The combination

$H \rightarrow \tau \tau$

- Analysis of three separate channels which use various methods to reconstruct the mass of the system
- $\bigcirc H \rightarrow \tau \tau \rightarrow II4\nu$
 - An effective mass distribution is used in the 0-jet channel
- A collinear mass approximation is used in the 1 and 2 jet channels
- $\bullet H \to \tau \tau \to I \tau_{had} 3\nu$
- Uses a missing mass calculator to reconstruct the m_{ττ}
- Reconstructs with 99% efficiency and 13 – 20% m_{ττ} resolution
- $H \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} 2\nu$
- A collinear mass approximation is again used
- No significant excesses are seen in the combined full mass range
- Upper limits are set on the H → ττ cross section between 2.5 and 11.9 times the SM prediction
- ATLAS-CONF-2012-014

Alex Martyniuk

Searches for the Higgs Boson with ATLAS

The SM channels The combination

$VH ightarrow bar{b}$

- Again three separate channels
 - $ZH \rightarrow I^+I^-_b\bar{b}$
 - $ZH \rightarrow \nu \bar{\nu} b\bar{b}$
 - $WH \rightarrow l\nu b\bar{b}$
- Higgs production channel in association with a leptonically decaying vector boson used
- Provides a high p_T lepton or large E^{miss}_T to trigger on and reduces QCD backgrounds
- $m_{b\bar{b}}$ used as the discriminating variable
- No excess seen over the background expectation in any channel
- The combined upper limits are between 2.7 and 5.3 times the SM $H \rightarrow b\bar{b}$ cross section
- ATLAS-CONF-2012-015

The SM channels The combination

Combination result

- The channels shown have been combined to give the overall ATLAS Higgs search result
- Systematics in the combination are taken to be either 100% correlated or 100% uncorrelated between channels
- In the absence of a signal expect to exclude the Standard Model Higgs boson at 95% C.L. between: 120 < m_H < 555 GeV</p>
- Observed exclusion at 95% C.L.: 110 $< m_H <$ 117.5, 118.5 $< m_H <$ 122.5, 129 $< m_H <$ 539 GeV
- Observed exclusion at 99% C.L.: 130 < m_H < 486 GeV</p>
- Observe an excess in the low mass region at $m_H \approx 126 \text{ GeV}$
- ATLAS-CONF-2012-019

The SM channels The combination

A closer look

- The excess at \approx 126 GeV is dominated by the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow IIII$ contributions
- H → WW → lνlν contribution shows a weaker than expected limit but no significant excess
- The $m_H \approx$ 126 GeV excess has a combined local significance of 2.5 σ (2.9 σ expected in the presence of a SM signal)
- Within errors the strength of the combined $m_H = 126$ GeV excess is compatible with a SM Higgs boson ($\mu = \sigma/\sigma_{SM} = 0.9^{+0.3}_{-0.4}$)
- Global probability of a fluctuation of this magnitude occurring across the full mass range of 110 < m_H < 600 GeV is 30% or 10% in the range 110 < m_H < 146 GeV</p>

Searches for the Higgs Boson with ATLAS

Summary and Outlook

- Searches for the Higgs boson have been undertaken in a wide range of channels using the full ATLAS 2011 dataset of up to 4.9fb⁻¹
- The allowed SM Higgs mass range has been severely restricted by the limits set by ATLAS
- The remaining allowed regions are 117.5 $< m_{H} <$ 118.5 GeV, 122.5 $< m_{H} <$ 129GeV or $m_{H} >$ 539 GeV
- In the low mass region an excess of events over the background expectation has been observed at a $m_H \approx 126~{\rm GeV}$
- The excess has a local significance of 2.5σ
- Signal strength is compatible with a SM Higgs boson
- Global probability of a fluctuation of this magnitude occurring across the full mass range is 30% or 10% in the range 110 < m_H < 146 GeV
- More data is required to comment further on the nature of this excess
- The LHC is back up and running well at 8 TeV
- Expect in the region of 15-20 fb⁻¹ of data delivered this year
- The Higgs has run out of places to hide
- Will this excess turn to a 5σ discovery with more data?

BACKUP

$H^+ \to \tau \nu$

- In models containing two Higgs doublets, e.g. the MSSM, five Higgs Bosons are present h, H, A, H[±]
- If light enough the H[±] can replace a W boson in a top decay
- Searches made in $t\bar{t}$ decays with the dominant MSSM decay channel $H^+ \rightarrow \tau \nu$
- Search performed in three channels defined
 - by the decays $t\overline{t}
 ightarrow b\overline{b}W\!H^+
 ightarrow$
 - $b\bar{b}(q\bar{q})(\tau_{\rm lep}\nu)$
 - $b\bar{b}(l\nu)(\tau_{had}\nu)$
 - $b\bar{b}(q\bar{q})(\tau_{\text{had}}\nu)$
- No excess is seen in any channel
- Upper limits set on the branching ratio of $t \rightarrow H^+ b$ assuming 100% $Br(H^+ \rightarrow \tau \nu)$
- Limits also set on the possible values of tan β as a function of m_{H+}

arXiv e-print

Typical Systematics

 Systematics in the combination are taken to be either 100% correlated or 100% uncorrelated between channels

Object	Source	Uncertainty on signal yield	Channel(s) most affected
	Luminosity	3.9%	All
Photons	Efficiency	11%	$H \rightarrow \gamma \gamma$
Electrons	Efficiency	< 3%	$H \rightarrow ZZ \rightarrow 4\ell$
	Energy scale	< 1%	
	Energy resolution	< 0.5%	
Muons	Efficiency	< 1%	$H \rightarrow ZZ \rightarrow 4\ell$
	Momentum resolution	< 1%	
Jets	Energy scale	Up to 12%	$H \rightarrow \tau \tau, b\bar{b}, ZZ \rightarrow \ell \ell q q, WW \rightarrow \ell \nu q q$
	Resolution	Up to 20%	$H \rightarrow WW \rightarrow \ell \nu q q$
<i>b</i> -jets	Efficiency	Up to 15%	$H \rightarrow b\overline{b}$
τ -jets	Efficiency	Up to 8%	$H \rightarrow \tau \tau$

Selected theoretical uncertainties

	ggF	VBF	WH/ZH	
QCD scale	±12% +8%	$\pm 1\%$	$\pm 1\%$	
$PDF + \alpha_s$	$\pm 8\%$	$\pm 4\%$	$\pm 4\%$	
Mass lineshape	$150\% imes (rac{m_H}{\mathrm{TeV}})^3$			

Breaking down the combination

Breaking down the combination

•
$$CL_S(\mu) = \frac{p_{\mu}}{1-p_b}$$

Breaking down the combination

 Investigate local p₀ - the probability for the background to fluctuate and give an excess of events as large or larger than that observed

Breaking down the combination

 Investigate local p₀ - the probability for the background to fluctuate and give an excess of events as large or larger than that observed

