SEARCHES FOR NON-SUSY EXOTICS IN ATLAS

CHRISTOPHER MARINO SUSY 2014, MANCHESTER 21-26 JULY 2014

MOTIVATION

- Standard Model (SM) has generally given excellent agreement with experimental observation
- Discovery of Higgs boson provides an important missing piece
- Questions remain...
 - Dark matter, naturalness, unification with gravity...
- SUSY is one route to answering many questions
- But we can look for much with ATLAS data that is not SUSY...

OVERVIEW OF EXOTIC RESULTS

- New Heavy Bosons
 - > Z', W', 🚱
- Searches at High Energy Scales
 - Contact Interactions •
 - Black Holes
 - Excited electrons
 - Dijet resonances
- Unique Signatures
 - Long-lived particles

- Some recent searches for non-SUSY new physics
 - No significance evidence for new physics
 - 2012 data using ~20 fb-1
 - Limits set on a wide set of predictions for Exotics extensions

SEARCHES FOR NEW HEAVY BOSONS

- Searches for new strong dynamics or for extra dimensions
- Provide non-SUSY explanation for electroweak symmetry breaking
- Signature based searches provide more model independence, but various benchmark models used

HIGH-MASS DILEPTON RESONANCES

- Invariant mass isolated muon or electron pairs
- Dominant background is Z/γ* → II
- Data-driven estimation of di-jet and W+jet backgrounds
- Limits set of various models with no excess above SM background:
 - SSM Z', E6 Z', Z*
 - Minimal models, Walking Technicolor
 - RS-Graviton, Quantum Black Holes

LEPTON + ETMISS HIGH-MASS

ATLAS-CONF-2014-017

- W' / W* → Iυ
- Isolated high-P_T lepton + missing transverse energy are selected
- W is main background
- Combined limit (~3.2 TeV) from muon and electron channels
 - Also dark matter interpretation

WZ RESONANCES TO LEPTONS

σ(pp→X)×B(X→WZ) [bb]

- $W' \rightarrow WZ \rightarrow 3I + v$
- **Exactly 3 charged leptons are** selected
 - evee, μυ**έ**e, eυμμ, μυμμ
- Dominant background is SM WZ production, consistent with data
- 95% C.L. limits are set combining 4 decay channels
 - Extended gauge model W'
 - **Heavy Vector Triplet**

arXiv:1406.4456

RESONANT DIBOSON PRODUCTION TO LEPTONS AND QUARKS

- ZZ or ZW → IIqq
- Mass of dijet, dilepton system reconstructed in 3 regions
 - High and low P_T regions where jets are resolved and merged-jet regions
- Z+jet dominant background is corrected with data from sidebands
- Upper limits set on σ x BR of Kaluza–Klein gravitons predicted by Randall–Sundrum and EGM W'

RESONANT HIGGS-PAIR PRODUCTION > 4B

- Search for Kaluza-Klein excitation of RS graviton
 - $G^* \rightarrow HH \rightarrow 4b (\sim 3\% BR)$
- Invariant mass of 4 b-jets with $P_T > 40$ **GeV**
- Two pair of b-tagged jets with dijet invariant mass ~ M_H
- No excess observed
 - Observed upper limits on σxBR ranges from 100 fb at 500 GeV to 7 fb at 1 TeV
 - Limits on KK G* in warped (RS) ED 590 to 710 GeV

SEARCHES AT HIGH ENERGY SCALES

Not reviewed, for internal

DIJET MASS RESONANCES

- Dijet masses up to about 4.5 TeV are probed (down to 250 GeV using prescaled/delayed stream triggers)
- No resonance-like features are observed in the dijet mass spectrum
- Limits on $\sigma \times A$ for a simple Gaussian resonance or a **Breit-Wigner narrow resonance decaying to dijets**
- Specific models: excited quarks, color-octet scalars, W', W*, BH, and ED

SEARCH FOR CONTACT INTERACTIONS AND LARGE EXTRA DIMENSIONS

- Complementary search to dilepton resonance search (non-resonant)
- Contact interactions (CI) and Arkani-Hamed, Dimopoulos and Dvali model (ADD) with large extra dimensions
- Limits are set on
 - CI scale, Λ, 15.4 26.3 TeV
 - ED string scale, M_s, 4.1 6.1 TeV

MICROSCOPIC BLACK HOLES

Search for high-P_T leptons + jets

- At least one isolated muon or electron
- At least two additional leptons or jets

ADD 2, 4, and 6 ED models:

- Scale in extra dim.: M_D
- Production threshold: M_{th}

arXiv:1405.4254

QUANTUM BLACK-HOLE PRODUCTION

arXiv:1311.2006

Lepton+jet and Photon+jet final states

Photon+jet also limits excited quarks

Phys. Lett. B 728C (2014) 562-578

EXCITED LEPTONS

- II* → IIγ
- Strong or weak production
- Model-independent searches

UNIQUE SIGNATURES

Long-lived Particles utilize special signatures that may require custom triggers or reliance on associated production

- **Examples:**
 - Lepton Jets
 - Lepton Jets | g | Multi-charge particles
 - Monopoles
- One brand new result with 20 fb^-1
- More updates coming very soon!

Expected 95 % C.L.

LIGHT HIGGS BOSON DECAYING TO LONG-LIVED WEAKLY-INTERACTING PARTICLES

- Higgs boson decays to two long-lived neutral particles (π_v)
- Events are selected using the specialized Cal-ratio trigger
 - > Jet with high Bad/EM calorimeter energy rationand E_⊤ > 60 GeV
- Jets must have
 - ightharpoonup log10(E_H/E_{EM}) > 1.2
 - No good tracks in ID with P_T>1GeV
- Main background SM QCD jets

ATLAS-CONF-2014-041

CONCLUSIONS

- Exotic searches provide an alternative to SUSY in answering remaining questions in particle physics
- Many searches for non-SUSY new physics performed with 2012 ATLAS data
- No evidence for new phenomena, but strong limits placed on many theoretical models of new physics in Run I
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublic Results
- Looking forward to Run II
 - More energy, larger dataset
 - Tools developed and lessons learned from Run I
 - Improved triggering for unique signatures

Status: ICHEP 2014

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	ℓ, γ	Jets	E _T miss	∫£ dt[fl:	o ⁻¹] Mass limit	12.01 - (1.0 - 20.3) 15	Reference
Extra dimensions	ADD $G_{KK}+g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\to \ell q$ ADD QBH ADD BH high N_{trk} ADD BH high Σ p_T RS1 $G_{KK} \to \ell\ell$ RS1 $G_{KK} \to WW \to \ell \nu \ell \nu$ Bulk RS $G_{KK} \to ZZ \to \ell\ell qq$ Bulk RS $G_{KK} \to HH \to b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \to t\bar{t}$ S^1/Z_2 ED UED	-	1-2 j - 1 j 2 j - ≥ 2 j - 2 j / 1 J 4 b . b, ≥ 1 J/2	Yes Yes Yes Yes	4.7 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 19.5 14.3 5.0 4.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} n=2 \\ n=3 \text{ HLZ} \\ n=6 \\ n=6, M_D=1.5 \text{ TeV, non-rot BH} \\ n=6, M_D=1.5 \text{ TeV, non-rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ BR=0.925 \end{array}$	1210.4491 ATLAS-CONF-2014-030 1311.2006 to be submitted to PRD 1308.4075 1405.4254 1405.4123 1208.2880 ATLAS-CONF-2014-039 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052 1209.2535 ATLAS-CONF-2012-072
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{EGM} W' \to WZ \to \ell\nu \ell' \ell' \\ \operatorname{EGM} W' \to WZ \to qq\ell\ell \\ \operatorname{LRSM} W'_R \to t\bar{b} \\ \operatorname{LRSM} W'_R \to t\bar{b} \end{array}$	1 e, µ 2	- - - 2 j / 1 J 2 b, 0-1 j : 1 b, 1 J	- Yes Yes - Yes	20.3 19.5 20.3 20.3 20.3 14.3 20.3	Z' mass 2.9 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.84 TeV W' mass 1.77 TeV		1405.4123 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 1406.4456 ATLAS-CONF-2014-039 ATLAS-CONF-2013-050 to be submitted to EPJC
CI	CI qqqq CI qqℓℓ CI uutt	$\begin{array}{c} -\\ 2\ e, \mu\\ 2\ e, \mu\ (SS)\ \geq \end{array}$	2 j - 1 b, ≥ 1 j	- - Yes	4.8 20.3 14.3	Λ 7.6 TeV Λ 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{LL} = -1$ $ C = 1$	1210.1718 ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ 1	1-2 j J, ≤ 1 j	Yes Yes	10.5 20.3	M, 731 GeV 2.4 TeV	at 90% CL for $m(\chi) <$ 80 GeV at 90% CL for $m(\chi) <$ 100 GeV	ATLAS-CONF-2012-147 1309.4017
77	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$eta=1 \ eta=1 \ eta=1 \ eta=1$	1112.4828 1203.3172 1303.0526
Heavy	Vector-like quark $TT \to Ht + X$ Vector-like quark $TT \to Wb + X$ Vector-like quark $TT \to Zt + X$ Vector-like quark $BB \to Zb + X$ Vector-like quark $BB \to Wt + X$	(1 e, μ ≥ 2/≥3 e, μ ≥ 2/≥3 e, μ ≥	2 b, \geq 4 j 1 b, \geq 3 j \geq 2/ \geq 1 b \geq 2/ \geq 1 b 1 b, \geq 1 j	Yes - -	14.3 14.3 20.3 20.3 14.3	T mass 790 GeV T mass 670 GeV T mass 735 GeV B mass 755 GeV B mass 720 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2014-036 ATLAS-CONF-2014-036 ATLAS-CONF-2013-051
Excited	Excited quark $q^* \to q\gamma$ Excited quark $q^* \to qg$ Excited quark $b^* \to Wt$ Excited lepton $\ell^* \to \ell\gamma$	1 γ – 1 or 2 e, μ 1 b 2 e, μ, 1 γ	1 j 2 j o, 2 j or 1 j –	- - Yes -	20.3 20.3 4.7 13.0	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV l* mass 2.2 TeV	only u^* and d^* , $\Lambda=m(q^*)$ only u^* and d^* , $\Lambda=m(q^*)$ left-handed coupling $\Lambda=2.2~{\rm TeV}$	1309.3230 to be submitted to PRD 1301.1583 1308.1364
Other	LSTC $a_T \to W\gamma$ LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \to \ell\ell$ Multi-charged particles Magnetic monopoles	1 $e, \mu, 1 \gamma$ 2 e, μ 2 e, μ 2 e, μ (SS) - $\sqrt{s} = 71$	- 2 j - - - -	Yes	20.3 2.1 5.8 4.7 4.4 2.0	a _T mass 960 GeV N ⁰ mass 1.5 TeV N [±] mass 245 GeV H ^{±±} mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ V_e &= 0.055, V_{\mu} = 0.063, V_{\tau} = 0 \\ \text{DY production, } BR(H^{\pm\pm} \rightarrow \ell\ell) = 1 \\ \text{DY production, } q &= 4e \\ \text{DY production, } g &= 1g_D \\ \end{bmatrix} \end{split}$	to be submitted to PLB 1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
* 0						1	Mass scale [TeV]	

^{*}Only a selection of the available mass limits on new states or phenomena is shown.