

Performance of Jets and Missing Transverse Energy with the ATLAS detector in pp Collisions at $\sqrt{s} = 7$ TeV

Michel Lefebvre University of Victoria, Canada and LAPP, France on behalf of the ATLAS Collaboration

Outline

- Jet performance
 - Inputs to jet reconstruction
 - shapes and internal structure
 - calibration
 - energy scale and uncertainty
 - energy resolution
- Missing transverse energy performance
 - reconstruction
 - resolution

Motivation

- Understanding and measuring the performance of jets and missing transverse energy is crucial for the understanding of physics at the LHC
 - jet energy scale is an input to many physics analyses
 - jet energy scale uncertainty is the dominant experimental uncertainty for many measurements including
 - di-jet cross section
 - top quark mass
 - new physics searches with jets in the final state
- events with large missing transverse energy are expected to be the key signature for new physics such as
 - supersymmetry
 - extra dimensions
- for example, good missing transverse energy is also important in the mass reconstruction
 - the top quark in ttbar events with one top decaying semileptonically
 - to Higgs boson mass when the Higgs decays into a tau pair

The ATLAS Calorimeter System

Over 98% of all cells used for event reconstruction

04/10/2010 M. Lefebvre - U. of Victoria, Canada - LAPP, France I

Topological clusters

- Dynamically formed calorimeters cell clusters optimized to follow the shower development
- High calorimeter granularity requires
 noise suppression

Noise suppressed towers

 Calorimeter cells belonging to topological clusters projected on a fixed geometry grid Δη x Δφ = 0.1 x 0.1 of 6,400 towers

Tracks

- Independent from calorimeter measurements
- Vertex information (also for pileup effects control)
- Jets are reconstructed using the antik_T algorithm with size parameter R set at 0.4 or 0.6
 - M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006)

■ 3D clusters use 4-2-0 suppression:

- cells with |E| > 4σ_{noise} seed the cluster
- neighbouring cells with |E| > 2σ_{noise} added iteratively
- single layer of neighbouring cells added
- Noisy cells (~0.1%) are masked and not used

- Mean number of clusters per jet is about 1/4 of the mean number of towers for central jets; in both cases a shift is observed leading to a deficiency of 4.0% and 6.4% in the simulation
- Difference between MC and data probably connected to deficiencies in the physics description in the MC

- Charged particle tracks matched to jets provide information on the fraction of neutral and charged energy contained in the jet.
- For softer tracks, there is indication that the treatment of fragmentation and underlying event in MC generators may need tuning (MC underestimates the number of tracks in a jet by ~5% for p_T^{track} > 0.5 GeV)

- The total scalar sum of track transverse momenta associated with a jet is used to further study the calorimeter response to jets
- ~3-4% higher mean predicted by MC, primarily localized to low jet p⊤ and forward regions

Jet Reconstruction Efficiency

Calorimeter jet reconstruction an identification efficiency relative to track-jets

• tag and probe method, valid for $|\eta| < 2.3$

Jet Shapes and Properties

- Measurement of jet shapes and properties are used to test how well the simulation models physics and detector effects
 - Jet fragmentation, detector response to low energy particles, inputs to jet reconstruction, soft underlying event, pileup
 - Calorimeter and track measurements are independent and can be used to disentangle physics and detector effects
- Example of quantities studied
 - Longitudinal and transverse jet profiles
 - Jet internal structure (annuli)
 - Effects of close-by jets
 - Total tracks momentum compared to jet momentum

Jets are observed to be broader in data than in Monte Carlo simulation

Jet Longitudinal Profile

- Mean energy deposited longitudinally in cluster jets as a function of the calorimeter depth of each layer in the barrel region for two different jet p_T ranges
- Indication that, in the barrel region, hadronic showers are deeper in data compared to MC simulation

Jet Transverse Profile

Jet Internal Structure

- Differential transverse jet energy distribution provides a more detailed study of the jet transverse structure
- Less energy observed in the core of the jet and more in the periphery in data compared to Monte Carlo
- Similar results for clusters, towers, tracks, and all rapidity regions
- Difference between MC and data probably connected to deficiencies in the physics description in the MC

$$\left\langle \frac{1}{r} \frac{dp_T}{dr} \right\rangle_{\text{jets}} = \frac{1}{A N_{\text{jets}}} \sum_{\text{jets}} p_T \left(r - \frac{\Delta r}{2}, r + \frac{\Delta r}{2} \right)$$

width $\Delta r = 0.1$ for $0 \le r \le R = 0.6$

04/10/2010 M. Lefebvre - U. of Victoria, Canada - LAPP, France

Jet Energy Calibration

- The energy of jets needs to be corrected for calorimeter noncompensation, energy losses in dead material, shower leakage, "out of cone" energy, and pileup
- Jets are calibrated using Monte Carlo particle-level truth jets as reference
- Three calibration schemes are being explored by ATLAS
 - EM+JES
 - simple p_T and η-dependent correction to jet energy scale (JES) applied to jets measured at EM scale
 - Global cell weighting: GCW+JES
 - use cell weights based on cell energy density to compensate for the different calorimeter response to hadronic (low E-density) and electromagnetic depositions.
 - Local cluster weighting: LCW+JES
 - use properties of topological clusters (including energy density and position) to classify them and calibrate them individually

- cluster calibration derived from Monte Carlo simulations of single charged and neutral pions
- For all three schemes, global sequential calibration can be used to improve jet-by-jet fluctuations by correcting for the dependence on jet shapes and other properties. Correction done such that the mean energy does not change

Jet Calibration Schemes

- Mean ratio of calibrated over un-calibrated jet energies as a function of calibrated jet p_T (here shown for central region)
 - same average correction for all three calibration schemes
 - the agreement between the correction factors applied to data and Monte Carlo is better than 2%
 - similar agreement in the whole rapidity range

Jet Energy Scale Uncertainty

0.1 Uncertainty Jet energy scale uncertainty evaluated by comparing Monte Carlo using various detector configurations, hadronic shower models and physics models AntiK, R=0.6, JES Calibration, 0.3</hl> Monte Carlo QCD jets 0.16 Underlying event (PYTHIA, Perugia0) Fragmentation (PYTHIA, Profess 0.14 ALPGEN, Herwig, dditional Dead Mate adronic Shower Mode Systematic Noise Thresholds LAr/Tile Absolute EM Scale 0.12 Total JES Uncertainty JES calibration non-closure Dominant sources of uncertainty are due 0.1 to ATLAS Preliminary 0.08 JES dead material (5%) 0.06 noise description (3%) **Relative** 0.04 0.02 hadronic shower model (5%) 0 LAr/Tile absolute EM scale (3%) 10^{2} 30 40 2×10 20 p_fet [GeV] n inter-calibration (3%) 0.22 Uncertainty AntiK, R=0.6, JES Calibration, 2.1<ml<2.8 Jet energy scale uncertainty smaller that 7% for jets with $p_T > 100$ GeV 0.2 Monte Carlo QCD jets, Data 2010 Underlying event (PYTHIA, Perugia0) Fragmentation (PYTHIA, Professor 0.18ALPGEN, Herwig, Jim Shifted Beam Spot 0.16 Uncertainty assessed to $|\eta| < 4.5$ using insitu di-jet balance measurements Additional Dead Materia Hadronic Shower Model Systematic ⋗ 0.14 Noise Thresholds Ar/Tile Absolute EM Scale Ś n Relative Intercalibration Intercalibration Data/MC 0.12C Total JES Uncertainty JES calibration non-closure The uncertainty is cross-checked with E/p \bigcirc 0.1 Ž ATLAS Preliminary measurements **Relative JES** 0.08 20 Expect reduction of the systematic uncertainty in the near future 0.06 0 0.04 6 0.02 ŨΊ for example by propagating single particle response measurements in data to jets တ 0 10^{2} 2×10 30 40 20 p_T^{jet} [GeV]

Jet Energy Scale Uncertainty

- Energy scale uncertainty cross-checked with calorimeter response to single isolated hadrons measured in data
 - E/p with p obtained from isolated tracks
 - correlate a particle jet to a reconstructed jet using Monte Carlo
 - propagate the response and uncertainty of the single particles (as measured in data) in the jet (using Monte Carlo)
- Jet energy scale uncertainty of 3-4% is expected for jets in |η| < 0.8 and 20 GeV < p_T < 1 TeV

Jet Energy Resolution

- Jet energy resolution measured in-situ using di-jet balance and bisector techniques
- The Monte Carlo simulation describes the jet energy resolution measured from data within 14% for jets with 20 < p_T < 80 GeV and |y| < 2.8

Missing E_T Reconstruction

- Missing transverse energy (Missing E_T) is reconstructed from
 - cells belonging to topological clusters
 - use of clusters ensures noise suppression (required by high granularity of calorimeter)
 - reconstructed muons
 - barrel cryostat term (only for GCW calibration)
 - important only for high p_T jet events

$$\begin{split} E_{x(y)}^{\text{miss}} &= E_{x(y)}^{\text{miss,calo}} + E_{x(y)}^{\text{miss,cryo}} + E_{x(y)}^{\text{miss,muon}} \\ E_{x}^{\text{miss,calo}} &= -\sum_{i=1}^{N_{\text{cell}}} E_{i} \sin \theta_{i} \cos \phi_{i} \\ E_{y}^{\text{miss,calo}} &= -\sum_{i=1}^{N_{\text{cell}}} E_{i} \sin \theta_{i} \sin \phi_{i} \\ E_{T}^{\text{miss}} &= \sqrt{(E_{x}^{\text{miss}})^{2} + (E_{y}^{\text{miss}})^{2}} \end{split}$$

04/10/2010 M. Lefebvre - U. of Victoria, Canada - LAPP, France

Missing E_T: Calorimeter Term

- Cells used can either be
 - at EM scale (no compensation!)
 - calibrated with GCW
 - calibrated with LCW (which includes dead material corrections)
- The calorimeter term can be further improved using energy corrections of physics objects
 - apply overlap removal between objects at cell level
 - objects calibrated independently, then use cells from objects

04/10/2010 M. Lefebvre - U. of Victoria, Canada - LAPP, France LHC Days in Split 2010

Missing E_T Performance

04/10/2010

Missing E_T Performance

Dependence on event topology

- in events with large hadronic activity, for example with high p_T jets, the missing E_T resolution degrades
- applying calibration (LCW shown here) restores some of the lost resolution

Conclusions and Outlook

- ATLAS has developed several jet and missing E_T reconstruction and calibration schemes, with different level of complexity and sensitivity to systematic effects
 - inputs to jet and missing E_T reconstruction and calibration are well described by the simulation within 10%
 - in data slightly higher soft activity is found around jets
 - in data hadronic showers appear to go deeper in the barrel region
 - an initial ATLAS jet energy scale has been determined with an uncertainty smaller that 7% for jets with $p_T > 100$ GeV
 - the Monte Carlo simulation describes the jet energy resolution within 14% for jets with 20 < p_T < 80 GeV
 - Improvements expected very soon
 - more complex calibration schemes
 - the use of tracks and single particle response measurements
 - objects-based missing E_T reconstruction

Extra Slides

Material Budget

Electromagnetic Energy Scale

- Calorimeters measure energy at the electromagnetic (EM) scale
 - EM scale established using beam tests for electrons and muons
 - Z->ee and E/p studied and soon to be used also
- This energy scale accounts correctly for the energy of electrons and photons, but for jets it does not correct for detector effects including:
 - calorimeter non-compensation
 - energy losses in dead material
 - shower leakage
 - energy not collected in the jet reconstruction ("out if cone")
 - inefficiencies in calorimeter clustering and jet reconstruction
 - pile-up

Jet Reconstruction

Jets are reconstructed using the anti-k_T algorithm¹

- Clusters and towers form massless 4 vectors
- Use clusters or towers or tracks as proto-jets and define a distance measure:

$$d_{ij} = \min\left(\frac{1}{p_{T_i^2}}, \frac{1}{p_{T_j^2}}\right) \frac{\Delta_{ij}^2}{R^2}$$
(1)
$$d_{ii} = \frac{1}{p_{T_i^2}}$$
(2)

where:

•
$$\Delta_{ij} = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$$

- p_{T_i}, y_i, and φ_i are the transverse momentum, rapidity and azimuth of proto-jet i
- R = 0.6 (0.4) in ATLAS reconstruction

• Until no proto-jet are left compute all d_{ij} and take smallest d_{ij} :

- $i \neq j$ Remove proto-jet i and j and add 4-vector sum as new proto-jet
- i = j Remove proto-jet i and call it a final jet

¹M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006)

Event selection

- at least one hit in the minimum bias trigger scintillators
 - located 2.09 < |η| < 3.84
- in coincidence with a proton bunch passing through ATLAS
 - using the electrostatic beam sensor
- calorimeters, inner detector and solenoid fully operational
- require at least one good event vertex
 - with at least 5 tracks with $p_T^{track} > 150 \text{ MeV}$
 - |z_{vertex}| < 100 mm
- Monte Carlo Simulation
 - non-diffractive pp collisions describing hard 2->2 processes using a matrix-element plus parton-shower modelin a leading log approximation generated with the PYTHIA event generator at 7 TeV center of mass energy
 - the transverse momentum of outgoing partons (in the hard scatter rest frame) is restricted to 7 GeV

- Mean number of clusters per jet is about 1/4 of the mean number of towers for central jets; in both cases a shift is observed leading to a deficiency of 4.0% and 6.4% in the simulation
- Difference between MC and data probably connected to deficiencies in the physics description in the MC

Jet Longitudinal Profile

- Distribution of energy deposited longitudinally in cluster jets
- Good agreement with MC observed in the barrel and in the endcap region, and over the whole p_T range probed

Jet Longitudinal Profile

- Mean energy deposited longitudinally in cluster jets as a function of pT^{jet}
- With other measurements, this seems to indicate that, in the barrel region, hadronic showers are deeper in data compared to MC simulation

Local Cluster Weighting

- Local cluster weighting calibration allows to improve the jet energy resolution by calibrating clusters individually before jet reconstruction
 - uses a discriminant to classify clusters as EM or hadronic, based on cluster η, depth, and cell energy density
 - cluster weights obtained for each of these effects separately:
 - hadronic response (based on cell E-density and cluster energy)
 - out-of-cluster energy (based on depth and energy around the cluster)
 - dead material (based on cluster energy and fractional energy deposited in each calorimeter layer)
- 2% agreement between data and Monte Carlo simulation for the ratio of calibrated over the un-calibrated cluster energy after each calibration step
- Very good agreement between data and simulation for all inputs to LCW

Global Cell Weighting

- Global cell weighting applies cell weights according to the energy density of the cells
- This method compensates for lower calorimeter response to hadrons and energy loss in dead material
- Jet energy scale correction in data and simulation agrees within 2%

Jet Energy Scale Correction

Jet Energy Scale Uncertainty

- Uncertainties due to material description and experimental conditions
 - material budget and distorted geometry
 - topological cluster noise thresholds
 - 10% noise threshold uncertainty from the stability of the noise spread in dedicated noise runs and the comparison of the noise distribution in data and Monte Carlo
 - shifted beam spot

Jet Energy Scale Uncertainty

- Other jet energy scale uncertainties
 - hadronic shower model
 - beam test single pion response measurement lie within QGSP and FTFP_BERT model (nominal hadronic shower model is QGSP_BERT)
 - uncertainty assessed to |η| < 4.5 using in-situ di-jet balance measurements
 - in $|\eta| < 1.8$, MC and data agree to better than 2%
 - in 1.8 < $|\eta|$ < 2.8, the agreement is within 2.8%, larger un forward region

Pile-up Jet Response Offset

• multiple pp interactions in the same bunch crossing (in-time pile-up) add extra energy to jets

• event by event and jet by jet corrections techniques are also being commissioned

- measure the mean tower energy as a function of η and of the number of primary vertices
- estimate the additional tower energy as a function of the number of interactions by subtracting the average tower energy for events with one vertex from the average tower energy for events with N additional interactions
- estimate the average number of towers in jets as a function of η
- estimate the average number of additional interactions as

$$\langle N^{\text{pile-up}} \rangle = \langle N \rangle + \sigma_N$$

 then, for a run, estimate the pile-up extra contribution to the transverse energy of jets as a function of η from the additional energy per tower per additional interactions, the average number of towers in jets and the average number of additional interactions

Jet Energy Scale Uncertainty

The jet energy scale was derived using a simulated sample of QCD jets

- particular mixture of quark and gluon initiated jets
- particular fraction of isolated and non-isolated jets

- the response of non-isolated jets in lower than that of isolated jets; all η regions
- gluon initiated jets have a lower response than quark jets (gluon jets fragment into more and softer particles than quark initiated jets)
- corrections and systematic uncertainty must be evaluated for each physics analysis

Jet Energy Resolution (di-jet balance)

■ p⊤ asymmetry measured in back-to-back di-jet events as a function of the third jet p⊤ threshold values p⊤3^{cut}
 ■ Resolution obtained from different p⊤3^{cut} is fitted and extrapolated to p⊤3=0 for each p⊤ bin

 $p_{T3}=0$ for each p_T bin

$$A \equiv \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}} \qquad \frac{\sigma_{p_T}}{p_T} = \sqrt{2} \,\sigma_A$$

$$K(p_T) = \frac{\left(\frac{\sigma_{p_T}}{p_T}\right)_{p_{T3} \to 0}}{\left(\frac{\sigma_{p_T}}{p_T}\right)_{p_{T3} < 10 \text{ GeV}}}$$

$$\left(\frac{\sigma_{p_T}}{p_T}\right)_{\text{corrected}} = K(p_T) \times \left(\frac{\sigma_{p_T}}{p_T}\right)_{p_{T3} < 10 \text{ GeV}}$$

04/10/2010 M. Lefebvre - U. of Victoria, Canada - LAPP, France

LHC Days in Split 2010

Jet Energy Resolution (bisector)

 $\vec{p}_T = \vec{p}_{T1} + \vec{p}_{T2}$

- The imbalance transverse momentum vector is projected along an orthogonal coordinate system in the transverse plane
 - the η -axis is chosen to bisect the two leading jet directions
- Basic asumption of the method: the variances of $p_{T\psi}$ and $p_{T\eta}$ both contain identical isotropic contributions
- An estimate of the jet p_T resolution is given by

$$\sigma_{p_T}^2 = \frac{\sigma_\psi^2 - \sigma_\eta^2}{-2\cos\left(\Delta\phi\right)}$$

Missing E_T Performance

