

Michel Lefebvre University of Victoria, Canada on behalf of the CMS and ATLAS Collaborations

Related presentations (experimental)

- Keynote talks, in particular
 - Kostas Kousouris: QCD from LHC experiments
- 12:00 Wed 4 Sep: Plenary
 - Anne-Marie Magnan: W/Z, heavy flavor, exp.(ATLAS+LHC)
 - W/Z+HF processes: W+c, W+b(b) and Z+b(b).
- 14:00 Tue 3 Sep: Hard QCD + PDF
 - François Corriveau: Jet cross sections (ATLAS)
 - Giannis Flouris: Jet cross section (CMS)
- 14:00 Wed 4 Sep: Hard QCD: NLO, NNLO, EW
 - Masaki Ishitsuka: Z,W+jets, ttbar+jets and W+heavy flavours (ATLAS)
 - 14:25 Wed 4 Sep: Hard QCD: NLO, NNLO, EW
 - Matteo Marone: Z,W+jets, ttbar+jets and W+heavy flavours (CMS)

W/Z + jets: motivation

- Test pQCD calculations to high precision
 - study of topological properties
 - study of jet multiplicity and kinematic properties
 - LHC energies and large data sets open huge phase-space
- Study and constrain parton density functions
- Important for searches
 - many heavy exotic particles are expected to decay to W/Z
 - searches require the exploration of high p_T
- Important background for
 - Higgs studies
 - BSM searches
- High production rate
- Simple decay signature

$$Z \to \ell^+ \ell^- W \to \ell \nu \qquad \qquad \ell = e, \ \mu$$

Outline

- W,Z analyses with jet reconstruction Probe high order pQCD Constrain parton densities
 - Z+jets
 - W+jets
 - (W+jets)/(Z+jets)
- Double parton interactions (DPI) in W + 2 jets
- Boosted W,Z analyses Test of high order pQCD Test of resummation techniques
 - Z p_T, W p_T, Z phi*

Z + jets

- LHC dataset allows measurement of
 - high jet multiplicities: up to 7 jets
 - up to high jet p_T : leading jet p_T up to 700 GeV at \sqrt{s} 7 TeV

Z + jets - inclusive jet multiplicities

- cross section for dressed electrons and particle jets in fiducial acceptance region
- normalized to inclusive cross section
 - cancel uncertainties on electron reco and integrated luminosity
- Jet energy scale is the dominant uncertainty
 - 20-30% effect in forward region
- BLACKHAT+SHERPA + CT10
- ALPGEN 2.13 + HERWIG +JIMMY + CTEQ6L1
- SHERPA 1.4.1 + MEnloPS + CT10

- Good description by fixed order NLO calculations and multi-leg MC + PS
 - MC@NLO agrees only for at most ≥ 1 jet (one parton from NLO real emission), otherwise HERWIG PS fails to model jet multiplicities

Gerwick et al., JHEP 1210 (2012) 162 **Z + jets - jet multiplicities ratio scaling**

- Jet multiplicity ratios are expected to follow one of two benchmark patterns
- Scaling can be used to extrapolate the jet rate to higher multiplicities
 - useful in analyses using jet vetoes to separate signal from W/Z+jets background

"Staircase" scaling

- Ratio R_{(n+1)/n} constant
- Jet rate $\sigma_n \sim e^{-bn}$
- Inclusive and exclusive ratios scale the same way
- Expected in the absence of major kinematic cuts
- low multiplicities: combined effect of Poisson-distributed multiplicity distributions and parton density suppression
 - emission of the first parton suppressed more strongly: $R_{1/0}$, by 60%
- high multiplicities: effect of non-abelian nature of QCD FSR

"Poisson" scaling

- Exclusive Ratio $R_{(n+1)/n} \sim \mu_n/(n+1)$
- Jet rate $\sigma_n \sim \text{Poisson}(n \mid \mu_n)$
- Emerges when large difference between Z+1jet and other jets energy scales
 - expected when jet acceptance cut much larger than hard process scale

Z + jets - inclusive jet multiplicities

- For n > 1, scaling is compatible with a constant
- MadGraph (multi-leg MC) agrees well with data (both UE tunes Z2 and D6T)
 - PYTHIA parton shower fails to describe the data for $N_{jets} \ge 2$

JHEP01(2012)010

Z + jets - exclusive jet multiplicities

Michel Lefebvre, University of Victoria, Canada

Z + jets - jet transverse momentum

- Test of limitations of ME+PS generators and fixed order pQCD in regions where large logarithmic corrections and EW NLO corrections are expected to become important
 - pT jets, jet pT ratios, Z pT
- For leading jet, experimental precision exceeds theory precision
- Data consistent with fixed order NLO predictions of **BLACKHAT+SHERPA**
- ALPGEN predicts too hard a spectrum for large jet p_T
 - missing NLO EW+QCD corrections
- SHERPA prediction is 5-15% too low
- MC@NLO predicts too soft a spectrum
 - next to leading jets modeled via parton shower
 - since fraction of events with > 1 jet increases with leading jet p_T , soft p_T spectrum from parton shower leads to increase discrepancy with data

Z + jets - jet transverse momentum

- Data consistent with fixed order NLO predictions of BLACKHAT+SHERPA for all multiplicities
- ALPGEN predictions consistent with data
- SHERPA predictions are too low by 5-15%

Z + jets - jet transverse momentum

Michel Lefebvre, University of Victoria, Canada

JHEP07(2013)032

Z + jets - z transverse momentum

- Complementary approach to p_T differential cross section measurement
- Higher-order electroweak corrections expected to reduce the cross section by 5-20% for Z p_T > 100 GeV
- BLACKHAT+SHERPA fixed order calculation too soft for the inclusive ≥ 1 jet final state (but in agreement for the exclusive 1 jet final state)
 - attributed to missing higher-order jet multiplicities in the fixed-order calculation: use exclusive sums of NLO calculations to have better agreement
 - no indication for missing higher-order electroweak corrections in the large Z p_T region
 - BLACKHAT calculation corrected for nonperturbative effects
- Both ALPGEN and SHERPA predict too hard a spectrum
 - discrepancy comparable to the expected higherorder electroweak corrections, but higher-order QCD corrections are also a possible cause
- MC@NLO describes the exclusive 1 jet final state better than the inclusive ≥ 1 jet final state

- NLO fixed order QCD and SHERPA overestimate cross section in the forward region
- ALPGEN predictions are in agreement with the data
- MC@NLO predicts too wide a rapidity distribution

$Z + jets - jet and Z rapidities for N_{jet} = 1 (central)$

All predictions agree with data within 5%

- NLO predictions from MCFM
- MadGraph 5.1.1.0 + MLM scheme
- SHERPA 1.3.1 + CKKW scheme

Michel Lefebvre, University of Victoria, Canada

CMS-PAS-SMP-12-004 Z + jets - ~ uncorrelated rapidities for N_{jet} = 1

- Good agreement between data and NLO calculations from MCFM
- SHERPA reproduces data better than MadGraph
 - difference introduced in matching ME to PS
 - large difference for more forward distributions

Z + jets - two leading jets $\Delta \Phi$ and ΔR

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg 7

Z + jets - H_T

H_T is the scalar sum of jets and leptons p_T

800

900

H_T [GeV]

Phys. Lett. B722 (2013) 238 **Z+jets - azimuthal correlations** $\Delta \Phi(Z, j_1)$

- ΔΦ(Z, j₁): ΔΦ between the Z and the leading jet for the inclusive multiplicities
 - $N_{jets} \ge 1, \ge 2, \ge 3$
 - normalized to unity
- ΔΦ observable with largest systematics
 - 5-6% near 0, to 2% near π

- Agreement with POWHEG and SHERPA improve for larger multiplicities
- Multi-parton LO + PS do better than LO + PS !!
- PS important for NLO 1 jet in multijet environment

Phys. Lett. B722 (2013) 238 Z+jets - azimuthal correlations $\Delta \Phi(Z, j_i)$

- $N_{jets} \ge 3$
 - ΔΦ(Ζ, j_i)
 - normalized to unity
- Good agreement with POWHEG, MadGraph and SHERPA
- For $\Delta \Phi(Z, j_3)$, PYTHIA LO + PS agrees with data
 - PS contribution

Z+jets - azimuthal correlations $\Delta \Phi(j_i, j_k)$

- ΔΦ(j1, j2)
 ΔΦ(j1, j3)
- ΔΦ(j₂, j₃)
- normalized to unity

• improved agreement with **PYTHIA** consistent with increased phase space available for parton emission

Phys. Lett. B722 (2013) 238 Z+jets - event shape: transverse thrust

Z+jets - EW Z+2 forward jets

CMS-FSQ-12-019 arXiv:1305.7389

- Z production in association with two jets at order α⁴_{EW}
 - includes TGC vertex (VBF), suppressed by a factor ~2.5 by interference terms
 - high p_T jets with large rapidity distance
- σ(EW lljj)_{NLO} = 166 fb (DY ~ 29.3 pb!)
 - M_{jj} > 120 GeV, M_{ℓℓ} > 50 GeV
 - p_{Tj} > 25 GeV, |η_j| < 4
 - CT10 and $\mu_R = \mu_F = 90 \text{ GeV}$
- Optimized event selection (S/B ~ 11%)
 - leptons: $\ell\ell$ with $p_{T\ell} > 20$ GeV, $|\eta_{\ell}| < 2.4$
 - Z: $|M_{ee}-M_Z| < 20 \text{ GeV} (15 \text{ GeV for } \mu\mu)$
 - two leading p_T jets in $|\eta| < 3.6$
 - p_T(1) > 65 GeV; p_T(2) > 40 GeV
 - M_{jj} > 600 GeV
 - central Z in jj rest frame
 - $|y^*| = |y_Z (y_{j1} y_{j2})/2| < 1.2$
- Signal extraction with MVA —

Boosted decision tree, including tagged jets and Z kinematics

 $\sigma_{\text{meas, }\mu\mu+\text{ee}}^{\text{EWK}} = 154 \pm 24(\text{stat}) \pm 46(\text{exp.syst.}) \pm 27(\text{th.syst}) \pm 3(\text{lumi}) \text{ fb}$

Jet activity profiles: MadGraph-based predictions in agreement with data (reco level)
 σ(EW lljj) extracted (~2.6σ), compatible with prediction (NLO QCD corrections)

5 10⁵

10⁴

10

10²

10

Important benchmark processes in search for VBF H!!

W + jets

- W+jets complementary to Z+jets
 - larger statistics
 - larger systematics

CMS Experiment at LHC, CERN Run 133874, Event 21466935 Lumi section: 301 Sat Apr 24 2010, 05:19:21 CEST

Electron $p_T = 35.6 \text{ GeV/c}$ ME_T = 36.9 GeV M_T = 71.1 GeV/c²

W + jets - first and second jet p^T

Michel Lefebvre, University of Victoria, Canada

W + jets - HT

Phys. Rev. D85 (2012) 092002

 H_T is the scalar sum over p_T of jets, the lepton, the neutrino (E_T^{miss})

Michel Lefebvre, University of Victoria, Canada

(W + jets)/(Z + jets)

- Cancellation of many systematics
 - powerful test of pQCD

$(W + \ge n jets)/(Z + \ge n jets)$

- Many important systematic uncertainties cancel in the ratio
 - most important remaining from the selection efficiency (possible bin correlations due to M_T cut)
- difference in expected value in the e and μ channel due to larger electron acceptance in $|\eta|$

Both MadGraph and PYTHIA agree with data within 1 σ_{exp}

JHEP01(2012)010

(W + 1 jet)/(Z + 1 jet) Phys. Lett. B708 (2012) 221-240

Double Parton Interaction

- Use W + 2 jets to probe DPI
 - Higher \sqrt{s} and luminosity imply bigger impact of DPI, and at higher p_T
 - Relevant contribution for analyses such as
 - W+b cross section
 - W+j/ ψ cross section
 - final states with same sign WW

CMS-FSQ-12-028 W + 2 jets - double parton interaction

Wew J. Phys. 15 (2013) 033038 Wew J. Phys. 15 (2013) 033038

DPI is characterized by the effective area parameter σ_{eff}

assumed to be independent of phase space an process. Naively expect ~ 50 mb

$$\hat{\sigma}_{W+2j}^{(\text{tot})}(s) = \hat{\sigma}_{W+2j}^{(\text{SPI})}(s) + \hat{\sigma}_{W+2j}^{(\text{DPI})}(s) = \hat{\sigma}_{W+2j}^{(\text{SPI})}(s) + \frac{\hat{\sigma}_{W0j}(s) \cdot \hat{\sigma}_{2j}(s)}{\sigma_{\text{eff}}(s)} \qquad \sigma_{\text{eff}}(s) = \frac{\sigma_{W0j}(s) \cdot \sigma_{2j}(s)}{f_{\text{DP}}^{(\text{D})} \hat{\sigma}_{W+2j}^{(\text{tot})}(s)}$$

Fraction of DPI events in W+2 jets data events extracted from template fit to the normalized distribution of transverse momentum balance

Inclusive Z and W p_T

Tests of high order pQCD and resummation techniques

Phys. Lett. B705 (2011) 415-434

Z pr - at 7 TeV

- Total background: 0.4% (mu) 1.5% (e), up to 3.5% at high Z p_T
- Dominant exp uncertainties:
- lepton ID and reconstruction: 1-3%
- lepton energy scale and resolution: 0.7-4.4% (smaller for mu-channel)
- unfolding (mainly Z p_T modeling used in efficiency correction): 1.3-4.7%

RESBOS: NNLL resummation + $O(\alpha_s)$ + $O(\alpha_s^2)$ pQCD: describes the spectrum well over the entire range

Z p_T - at 8 TeV

CMS-PAS-SMP-12-025

- Overall best agreement with MadGraph + PYTHIA + Z2star tune
- Low p_T region affected by underlying event
 - PYTHIA + Z2star tune gives best result
 - results validate POWHEG + PYTHIA + Z2star tune (obtained from low scales processes...)
- High p_T region good agreement with POWHEG + PYTHIA + Z2star tune, and with FEWZ 3.1
- Comparison with 7 TeV data as expected
W p_T and Z p_T

Phys. Rev. D85 (2012) 012005 Phys. Lett. B705 (2011) 415-434

- \blacksquare p_T^W unfolded to particle level
 - by default it is defined from the Born level **W** propagator

Michel Lefebvre, University of Victoria, Canada

300

$Z \, \Phi_{\eta} {}^{*} \, \text{-} \, \text{definition}$

Phys. Lett. B720 (2013) 32-51

Higher accuracy achieved by measuring cross section as a function of Φ_{η}^*

p^z_T [GeV]

• D0 PRL 106, 122001 (2011)

$$\phi_{\eta}^* \equiv \tan\left(\phi_{\mathrm{acop}}/2\right) \cdot \sin\left(\theta_{\eta}^*\right)$$

$$\phi_{\rm acop} \equiv \pi - \Delta \phi$$

$$\cos\left(\theta_{\eta}^{*}\right) \equiv \tanh\left[\left(\eta^{-}-\eta^{+}\right)/2\right]$$

- This quantity only depends on direction of the leptons
- Extremely precise experimentally
- Correlates with Z p_T

$Z \Phi_{\eta}^*$ - distribution

 $1/\sigma^{fid}$. $d\sigma^{fid}/d \phi_{\eta}^{*}$ ATLAS 10 $L dt = 4.6 \text{ fb}^{-1}$ e⁺e⁻ Data 2011 μ⁺μ⁻ Data 2011 RESBOS 10-1 $\sqrt{s} = 7 \text{ TeV}$ $|m^{\ell}| < 2.4$ 10-2 $p_{\tau}^{\ell} > 20 \text{ GeV}$ 66 GeV < m_{PP} < 116 GeV Data / RESBOS 1.05 0.95 0.9 10-3 10-2 10-1 ϕ_{η}^{*}

Phys. Lett. B720 (2013) 32-51

Calculations using RESBOS provide the best description of the data

- NNLL resummation (scale M_Z) matched to O(α_s), corrected to O(α_s²) using kfactors depending on Z p_T and y.
- but unable to reproduce the detailed shape to better than 4%
 - $\sim 3 \times 10^6$ di-lepton candidates
 - angular resolution:
 - 0.4-0.6 mrad in φ
 - 0.0010-0.0012 in η
 - 0.6% background, half from multi-jet, dominating at low Φη*
 - dominant experimental systematics
 - background 0.3%
 - angular resolution: 0.2%
 - Total uncertainties:
 - 0.5% (low Φη*), stat ≈ sys
 - 0.8% (high Φη*), stat dominating

$Z \Phi_{\eta}^*$ - comparison with theory Phys. Lett. B720 (2013) 32-51

Difference between RESBOS and data smaller than PDF uncertainty (4-6%)
 Experimental uncertainty an order of magnitude more precise than predictions

- Banfi et al:
 - NNLL matched to NLO from MCFM
 - Phys. Lett. B 715 (2012) 152
- Uncertainty includes:
 - Resummation, μ_R , μ_F : × 2 around M_Z
 - PDF CTEQ6m error eigenvectors

- Fixed order calculations not expected to be adequate in low Z p_T region
 - FEWZ not shown for $\Phi_{\eta}^* < 0.1$
- FEWZ uncertainty include
 - μ_R , μ_F : × 2 around M_Z
 - PDF CT10 error eigenvectors
 - vary α_s within range (90%CL)

Conclusions W/Z + jets

- ATLAS and CMS have performed a wide range of W/Z + (light) jets measurements at the LHC
 - stringent tests of pQCD
- In general, good agreement between data and predictions
 - but discrepancies observed in several regions
 - fixed order NLO + PS fails to describe the data: missing higher order effects
 - challenges for certain types of observables, such as $H_{\rm T}$
 - tension with very precise Z $\Phi_{\eta}{}^{*}$ distribution
 - LO ME or NLO, interfaces with parton shower models, provide input for generator tuning
 - needed for background predictions
- W + 2 jets study of double parton interactions
 - successful measurement of σ_{eff} and of DPI sensitive observables
- Stay tuned: more data being analyzed!

Backup Slides

JHEP07(2013)032

Z+jets - analysis strategy

JHEP07(2013)032

Z+jets - cross section

- Main backgrounds
 - multi-jets in situ (0.4 1.5%)
 - ttbar in situ (0.2 26%)
 - diboson (0.2 1.2%)
- Iterative Bayesian unfolding method
 - NIM A362 (1995) 487
- Differential measurements on dressed level, separately for e and µ channels
- Results from each channel extrapolated to common phase space region:
 - e, μ : $p_T > 20$ GeV, $|\eta| < 2.5$ dressed: add photon in $\Delta R < 0.1$
 - Z: opposite sign leptons $66 < M_{\ell \ell} < 116 \text{ GeV}$
 - jets: anti-kt, R=0.4, p_T > 30 GeV
 |y| < 4.4, ΔR(j, ℓ) > 0.5

Z + jets - MC signal events and NLO calculations

- MC signal event samples: Z (→ee or →µµ) + jets (VBF production neglected)
 - ALPGEN 2.13 ($0 \le Npartons \le 5$)
 - HERWIG v6.520 (PS) + JIMMY v4.31 (UE AUET2-CTEQ6L1 tune)
 - PDF: CTEQ6L1 (LO)
 - QED FSR: PHOTOS
 - ALPGEN 2.14 ($0 \le Npartons \le 5$)
 - PYTHIA v6.425 (PERUGIA2011C tune)
 - PDF: CTEQ6L1 (LO)
 - QED FSR: PHOTOS
 - SHERPA 1.4.1 ($0 \le Npartons \le 5$)
 - PDF: CT10
 - MEnloPS approach
 - QED FSR: YFS method
 - MC@NLO v4.01
 - HERWIG
 - normalized to NNLO inclusive W production
 - Pileup events: minimum bias event from PYTHIA with AMBT1 tune
 - events reweighted to ensure the same distribution on the number of primary vertices as for data, average number of nine interactions per bunch crossing

- NLO pQCD predictions
 - BLACKHAT-SHERPA fixed order
 - Z+≥0j, Z+≥1j, Z+≥2j, Z+≥3j, Z+≥4j,
 - PDF: CT10
 - renormalization and factorization scales set to $H_T/2$
 - anti-kt R=0.4 at parton level
 - corrected for fragmentation, QED-FSR, UE
 - (distributions for particle-level jets)/ (distribution for parton-level jets with no UE)

JHEP07(2013)032

Z+jets - systematic uncertainties

$Z (\rightarrow ee)$	≥ 1 jet	≥ 2 jets	≥ 3 jets	≥ 4 jets	$p_{\mathrm{T}}^{\mathrm{jet}}$ in [30–500 GeV]
electron reconstruction	2.8%	2.8%	2.8%	2.8%	2.6 – 2.9%
jet energy scale, resol.	7.4%	10.1%	13%	17%	4.3 - 9.0%
backgrounds	0.26%	0.34%	0.44%	0.50%	0.2 – 3.2%
unfolding	0.22%	0.94%	1.2%	1.9%	1.4 - 6.8%
total	7.9%	10.5%	13%	17%	5.5 - 12.0%
$Z (\rightarrow \mu \mu)$	≥ 1 jet	≥ 2 jets	≥ 3 jets	≥ 4 jets	$p_{\mathrm{T}}^{\mathrm{jet}}$ in [30–500 GeV]
muon reconstruction	0.86%	0.87%	0.87%	0.88%	0.8–1.0%
jet energy scale, resol.	7.5%	9.9%	13%	16%	3.2 - 8.7%
backgrounds	0.093%	0.20%	0.41%	0.66%	0.1 - 1.9%
unfolding	0.30%	0.68%	0.52%	1.3%	0.5 - 6.2%
total	7.6%	10.0%	13%	16%	4.4-10.2%

Jet energy scale dominant component of the total uncertainty
 in particular in the forward region: 20 - 30%

QCD Scaling

E. Gerwick, T. Plehn, S. Schumann and P. Schichtel, Scaling Patterns for QCD Jets , JHEP 10 (2012) 162

Figure 1. Simplest primary (left) and secondary contributions (right) assuming a core process with a hard quark line.

x. For hadron collider processes involving two parton densities f(x, Q) we define the PDF correction factor to the ratio of successive jet ratios $R_{(n+1)/n}/R_{(n+2)/(n+1)}$

$$B_n = \left| \frac{\frac{f(x^{(n+1)}, Q)}{f(x^{(n)}, Q)}}{\frac{f(x^{(n+2)}, Q)}{f(x^{(n+1)}, Q)}} \right|^2 .$$
(3.9)

The square in the definition of B_n reflects the two PDFs in hadron collisions. If for example the partonic ratio of two successive jet ratios is $R_{(n+1)/n}/R_{(n+2)/(n+1)} \sim c$ then the proper hadronic ratio becomes $B_n c$. We fix Q for simplicity, but this only mildly affects our results.

QCD Scaling

E. Gerwick, T. Plehn, S. Schumann and P. Schichtel, Scaling Patterns for QCD Jets , JHEP 10 (2012) 162

Figure 5. Left panel: estimated PDF suppression for inclusive (solid) and jet-associated (dashed, $p_T^{\text{lead}} \ge 100 \text{ GeV}$) Drell-Yan kinematics. We assume an initial state with *d*-quarks only. Right panel: same for Higgs production in gluon fusion with $m_H = 125 \text{ GeV}$. The uncertainty encompasses two representative kinematical limits of the multi-jet final state, described in the text.

Z + jets - exclusive jet multiplicities

Exclusive jet multiplicities for VBF pre-selection

Scaling properties useful in analyses using jet vetoes

- data consistent with BLACKHAT+SHERPA, and SHERPA
- ALPGEN overestimates R_{3/2}

JHEP07(2013)032

Z + jets - average jet multiplicities

JHEP07(2013)032

exclusive sum: $Z + \ge 1 = (Z + 1) + (Z + \ge 2)$

no scale uncertainty (dark shaded)

50

0

correlated between multiplicity bins (medium shaded)

100

• uncorrelated (light shaded), as prescribed in Phys.Rev.D85 (2012) 034011

150

250

300

200

350

400

450

p_T [GeV]

Michel Lefebvre, University of Victoria, Canada

Z + jets - two leading jets Δy and invariant mass

Z + jets - VBF preselection 3rd jet veto efficiency

- W/Z + jets are irreducible backgrounds to Higgs analyses, in particular through VBF production
- VBF signature
 - two forward jets (large $|\Delta y|$)
 - high dijet mass
 - central jet gap
- Study of Z+jets events with a VBF preselection
 - test Z+jets modeling
 - test of ME and PS matching
- 3rd jet veto efficiency
 - fraction of events passing veto requirement on 3rd jet in central region |η| < 2.4 as function of veto scale

BLACKHAT+SHERPA and SHERPA predictions are in agreement with the data
 ALPGEN underestimate the veto efficiency (due to overestimate of R_{3/2})

Phys. Lett. B722 (2013) 238 Z+jets - event shapes and azimuthal correlations

Leptons

- p_T > 20 GeV
- |η| < 2.4
- isolated
- 71 < m_{ℓℓ} < 111 GeV
- Jets from particle flow
 - p_T > 50 GeV
 - |η| < 2.5
 - $\Delta R_{j\ell} > 0.4$
- Analysis procedure
 - select $Z \rightarrow \ell \ell$
 - subtract background
 - unfold to particle level
 - combined channels

Dominant systematics

- jet energy scale
- jet pT resolution
- background subtraction
- unfolding procedure
- ttbar dominant background
 - 1.1% for $N_{jets} \ge 1$
 - 8 % for $N_{jets} \ge 3$

- Z+jets signal generators considered
 - MadGraph 5.1.1.0 + PYTHIA 6.4.2.4 + Z2 tune + CTEQ6L1 LO up to 4 final state partons
 - SHERPA 1.3.1 + default tune + CTEQ6m LO up to 4 final state partons
 - POWHEG + PYTHIA 6.4.2.4 + Z2 tune + CT10 NLO Z+1 jet
 - PYTHIA 6.4.2.4 + Z2 tune

Michel Lefebvre, University of Victoria, Canada

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg

Phys. Lett. B722 (2013) 238 Z+jets - azimuthal correlations $\Delta \Phi(j_i, j_k)$

Michel Lefebvre, University of Victoria, Canada

Z+jets - EW Z+2 forward jets

- Correlation between soft hadronic activity (H_T) and dijet rapidity span and M_{jj} (reco level)
 - H_T = scalar sum of jet p_T 's for $|\eta_j| > 4.7$
 - reco level: no background subtraction, no unfolding
 - tagged jets: $p_{T1} > 65 \text{ GeV}$; $p_{T2} > 40 \text{ GeV}$ in $|\eta_j| < 3.6$

Z+jets - EW Z+2 forward jets

- Radiation pattern as a function of the dijet rapidity span
 - reco level: no background subtraction, no unfolding
 - p_{Tj} > 40 GeV

W + jets

Phys. Rev. D85 (2012) 092002

- Probe NLO pQCD properties by studying H_T
- Missing transverse momentum
 - E_T^{miss} calculated from the energy deposits in calorimeter cells inside 3D clusters with $|\eta| < 4.5$ The clusters are calibrated to hadronic scale including corrections to account for dead material and out-of-cluster energy losses. It is also corrected for the muon momentum and its energy deposited in the calorimeter

• m_T(W) is given by
$$\sqrt{2p_T^\ell p_T^\nu (1 - \cos(\phi^\ell - \phi^\nu))}$$

where the neutrino momentum components are the corresponding $E_{\text{T}}^{\text{miss}}$ components

- Unfolding of efficiency and resolution effects
 - iterative Bayesian method

Phys. Rev. D85 (2012) 092002

W + jets - systematics

- W+jets complementary to Z+jets
- Large background contamination
 - multi-jets at low N_{jets}: 5-10% (e); 5% (μ)
 - ttbar at $N_{jets} \ge 3$: ~4-60% for $N_{jets} = 1$ to 4
- Systematic dominated
 - 10% stat and 40% sys for N_{jets} = 4
- Main systematic uncertainties
 - Jet energy scale (2.5%-14%, p_T, η dependent)
 - 10% on cross section for N_{jets} = 1
 - 40% on cross section for N_{jets} = 4
 - Jet energy resolution (10%)
 - 1-6% on cross section
 - top background
 - 20% on cross section for N_{jets} = 4
 - QCD background
 - 11-20% on cross section for $N_{jets} = 4$
- NLO theoretical uncertainties (BLACKHAT)
 - μ_R and μ_F: 4-15%
 - PDF + α_S: 2-6%
 - Hadronization and underlying event model: 2-5%

W + jets - MC signal events and NLO calculations

- MC signal event samples: W + jets ($0 \le N_{partons} \le 5$)
 - ALPGEN 2.13
 - HERWIG (PS) + JIMMY v4.31 (UE AUET1)
 - PDF: CTEQ6L1 (LO)
 - factorization scale set to $Q^2 = M_W^2$ + sum of all partons p_T^2
 - MLM parton-jet matching scheme performed at $p_T^{jet} = 20 \text{ GeV}$ (cone R = 0.7)
 - SHERPA 1.3.1
 - CTEQ6.6M (NLO)
 - CKKW parton-jet matching scheme
 - default μ_R and μ_F and UE tune
 - normalized to NNLO inclusive W production
 - Pileup events: minimum bias event from PYTHIA with AMBT1 tune
 - events reweighted to ensure the same distribution on the number of primary vertices as for data
- NLO QCD predictions
 - BLACKHAT-SHERPA (for $N_{jet} \le 4$)
 - PDF: CTEQ6.6M (used for both LO and NLO calculations)
 - MCFM v5.8 (for $N_{jet} \le 2$)
 - PDF: CTEQ6L1 (LO) and CTEQ6.6M (NLO)
 - renormalization and factorization scales set to $H_T/2$
 - corrected for non-pQCD effects, hadronization, UE
 - (distributions for particle-level jets)/(distribution for parton-level jets with no UE)

W + jets - first jet y and Δy to lepton

Distributions sensitive to the PDFs used for the LO and NLO ME.

W + jets - distances between first two jets

- Test of hard parton radiation at large angles and of matrix element to parton shower matching schemes
 - $\Delta R \sim \Delta \Phi \sim \pi$: most jets modeled via ME calculation
 - ΔR small (collinear radiation): most jets modeled via the parton shower

ALPGEN and BLACKHAT+SHERPA agree well with data
 SHERPA worse agreement (attributed to differences in PDFs, α_s and factorization scales)

W + jets - k_T splitting

R = 0.6

- k_T clustering sequence mimics the reverse QCD evolution
 - measurement probes QCD evolution
 - test of LO and NLO MC generators and analytical calculations
- k_T distance measure
 - distance between two particle momenta p_i, p_j
 - distance pi to beam
- Clustering sequence
 - 1. Calculate all d_{ij} and d_{iB}
 - 2. Find their minimum, d_{\min}
 - (a) If d_{\min} is a d_{ij} , combine *i* and *j*: $p_{ij} = p_i + p_j$
 - (b) If d_{\min} is a d_{iB} , remove *i* from the list and declare it a jet

 $d_{iB} = p_{\mathrm{T}i}^2$

 $d_{ij} = \min\left(p_{\mathrm{T}i}^2, p_{\mathrm{T}j}^2\right) \frac{\Delta R_{ij}^2}{R^2}$

3. Return to step 1 or stop if no particle remains

Define d_k as d_{min} found when clustering k+1 to k particles

• $\sqrt{d_0}$ corresponds to p_T of highest p_T jet (last step)

example

W + jets - k_T splitting

- LO multi-leg predictions (ALPGEN, SHERPA) perform better than NLO+PS generators (MC@NLO, POWHEG) in hard region
- Significant differences also in soft region, probing QCD resummation
- Largest experimental uncertainty: cluster energy scale and pileup
 - Statistical uncertainty dominating only in hard region

Eur. Phys. J. C, 73 5 (2013) 2432

W + jets - k_T splitting

- d_{k+1}/d_k ratio: most generators just outside experimental uncertainty band
- Best description with HERWIG-based generators (ALPGEN, MC@NLO)
- Largest experimental uncertainty: cluster energy scale and unfolding
 - Systematics dominated

Eur. Phys. J. C, 73 5 (2013) 2432

Z рт

Phys. Lett. B705 (2011) 415-434

- LO + PS
- SHERPA v1.2.3 using CTEQ6.6 and
 - LO with up to 5 additional hard partons + PS
- ALPGEN v2.13 using CTEQ6L1 and
 - LO with up to 5 additional hard partons
 - interfaced to HERWIG v6.510 (PS) and Jimmy (UE)
- MC@NLO using CTEQ6.6
 - NLO
 - HERWIG v6.510 (PS) and Jimmy (UE)
- POWHEG v1.0 using CTEQ6.6
 - NLO
 - PYTHIA 6.4 (PS + UE)

- MC Generators
 - All interfaced to PHOTOS (QED FSR)
 - Pileup: overlay of simulated minimum bias events
 - GEANT4 simulation of ATLAS
 - Pileup and resolution corrected to data
- FEWZ v2.0 using MSTW2008
 - $O(\alpha_s) + O(\alpha_s^2)$
- RESBOS using CTEQ6.6
 - NNLL resummation (scale MZ) (Collins-Soper-Sterman)
 - + $O(\alpha_s)$ + $O(\alpha_s^2)$ corrections

Phys. Rev. D85 (2012) 012005

W p_T - MC generators

- Pythia 6.421 using MRST2007LO*
 - LO + PS
- MC@NLO v3.41 using CTEQ6.6
 - NLO
 - Herwig v6.510 (PS) and Jimmy v4.1 (UE)
- Powheg v1.0 using CTEQ6.6
 - NLO
 - Pythia 6.4 (PS + UE)
- Alpgen v2.13 using CTEQ6L1
 - LO with up to 5 additional hard partons
 - interfaced to Herwig v6.510 (PS) and Jimmy v4.31 (UE)
- Sherpa v1.3.0 using CTEQ6L1
 - LO with up to 5 additional hard partons + PS
 - Catani-Seymour subtraction based parton shower model
 - matrix element merging withtruncated showers
 - high multiplicity matrix elements generated by COMIX
- MC Generators
 - All interfaced to Photos v2.15.4 (QED FSR)
 - taus decayed by TAUOLA v1.0.2
 - Pileup: overlay of simulated minimum bias events (ATLAS MC09 tunes)
 - GEANT4 simulation of ATLAS
 - Pileup and resolution corrected to data

- RESBOS using CTEQ6.6
 - NNLL resummation (scale MZ) + $O(\alpha_s) + O(\alpha_s^2)$ correction
 - renormalization and factorization scale set to MW
- DYNNLO v1.1 and MCFM v5.8 for W + 1 parton
 - LO $O(\alpha_s)$ uses MSTW2008 NLO
 - NLO O(α_s^2) uses MSTW2008 NNLO
 - renormalization and factorization scale set to MW
 - do not include resummation effects: not expected to do well at very low W p_{T}
- FEWZ v2.0 using MSTW2008
 - Ο(α_s)

W pT - reconstructed pT

 p_T^R is the reconstructed p_T^W from the hadronic recoil

Phys. Rev. D85 (2012) 012005

Phys. Rev. D85 (2012) 012005

W pT - unfolded true pT

 p_T^W is the true p_T^W unfolded from p_T^R

• by default it is defined from the Born level W propagator

Phys. Rev. D85 (2012) 012005

W pT - unfolded true pT

RESBOS, DYNNLO and MCFM at O(α_s^2), Sherpa, Alpgen, Pythia describes the spectrum well (within 10-20%) over the entire range O(α_s) approximation insufficient to describe the data
$Z \, \Phi_{\eta} ^{*} \text{- comparison with MC generators}^{\text{Phys. Lett. B720 (2013) 32-51}}$

Useful information for MC tuning