W and Z bosons + jets
with CMS and ATLAS

Michel Lefebvre
University of Victoria, Canada
on behalf of the CMS and ATLAS Collaborations

QCD@LHC2013
2-6 September 2013
DESY, Hamburg
Related presentations (experimental)

- **Keynote talks, in particular**
 - **Kostas Kousouris**: QCD from LHC experiments

- **12:00 Wed 4 Sep: Plenary**
 - **Anne-Marie Magnan**: W/Z, heavy flavor, exp. (ATLAS+LHC)
 - W/Z+HF processes: $W+c$, $W+b(b)$ and $Z+b(b)$.

- **14:00 Tue 3 Sep: Hard QCD + PDF**
 - **François Corriveau**: Jet cross sections (ATLAS)
 - **Giannis Flouris**: Jet cross section (CMS)

- **14:00 Wed 4 Sep: Hard QCD: NLO, NNLO, EW**
 - **Masaki Ishitsuka**: Z,W+jets, $t\bar{t}$+jets and W+heavy flavours (ATLAS)

- **14:25 Wed 4 Sep: Hard QCD: NLO, NNLO, EW**
 - **Matteo Marone**: Z,W+jets, $t\bar{t}$+jets and W+heavy flavours (CMS)
W/Z + jets: motivation

- Test pQCD calculations to high precision
 - study of topological properties
 - study of jet multiplicity and kinematic properties
 - LHC energies and large data sets open huge phase-space
- Study and constrain parton density functions
- Important for searches
 - many heavy exotic particles are expected to decay to W/Z
 - searches require the exploration of high p_T
- Important background for
 - Higgs studies
 - BSM searches
- High production rate
- Simple decay signature

\[Z \rightarrow \ell^+ \ell^- \]

\[W \rightarrow \ell \nu \quad \ell = e, \mu \]
Outline

- W,Z analyses with jet reconstruction
 Probe high order pQCD
 Constrain parton densities
 - Z+jets
 - W+jets
 - (W+jets)/(Z+jets)

- Double parton interactions (DPI) in W + 2 jets

- Boosted W,Z analyses
 Test of high order pQCD
 Test of resummation techniques
 - Z p_T, W p_T, Z phi*
Z + jets

- LHC dataset allows measurement of
 - high jet multiplicities: up to 7 jets
 - up to high jet p_T: leading jet p_T up to 700 GeV at \sqrt{s} 7 TeV
Z + jets - inclusive jet multiplicities

- cross section for dressed electrons and particle jets in fiducial acceptance region
- normalized to inclusive cross section
 - cancel uncertainties on electron reco and integrated luminosity
- Jet energy scale is the dominant uncertainty
 - 20-30% effect in forward region

- Good description by fixed order NLO calculations and multi-leg MC + PS
 - MC@NLO agrees only for at most \(\geq 1 \) jet (one parton from NLO real emission), otherwise HERWIG PS fails to model jet multiplicities

Michel Lefebvre, University of Victoria, Canada
Jet multiplicity ratios are expected to follow one of two benchmark patterns:
- Scaling can be used to extrapolate the jet rate to higher multiplicities.
 - Useful in analyses using jet vetoes to separate signal from W/Z+jets background.

"Staircase" scaling:
- Ratio R_{n+1}/n constant.
- Jet rate $\sigma_n \sim e^{-bn}$.
- Inclusive and exclusive ratios scale the same way.
- Expected in the absence of major kinematic cuts.
 - Low multiplicities: combined effect of Poisson-distributed multiplicity distributions and parton density suppression.
 - Emission of the first parton suppressed more strongly: $R_{1/0}$ by 60%.
 - High multiplicities: effect of non-abelian nature of QCD FSR.

"Poisson" scaling:
- Exclusive Ratio $R_{n+1}/n \sim \mu_n/(n+1)$.
- Jet rate $\sigma_n \sim \text{Poisson}(n | \mu_n)$.
- Emerges when large difference between Z+1jet and other jets energy scales.
 - Expected when jet acceptance cut much larger than hard process scale.
For $n > 1$, scaling is compatible with a constant

- MadGraph (multi-leg MC) agrees well with data (both UE tunes Z2 and D6T)
 - PYTHIA parton shower fails to describe the data for $N_{jets} \geq 2$
Z + jets - exclusive jet multiplicities

- no scale uncertainty (dark shaded)
- correlated between multiplicity bins (medium shaded)
- uncorrelated (light shaded), as prescribed in Phys.Rev.D85 (2012) 034011

- cross section well modeled by fixed order NLO pQCD
 - Transition between “Staircase” and “Poisson” scaling observed
Z + jets - jet transverse momentum

- Test of limitations of ME+PS generators and fixed order pQCD in regions where large logarithmic corrections and EW NLO corrections are expected to become important
 - p_T jets, jet p_T ratios, Z p_T
- For leading jet, experimental precision exceeds theory precision

- Data consistent with fixed order NLO predictions of BLACKHAT+SHERPA
- ALPGEN predicts too hard a spectrum for large jet p_T
 - missing NLO EW+QCD corrections
- SHERPA prediction is 5-15% too low
- MC@NLO predicts too soft a spectrum
 - next to leading jets modeled via parton shower
 - since fraction of events with > 1 jet increases with leading jet p_T, soft p_T spectrum from parton shower leads to increase discrepancy with data
Data consistent with fixed order NLO predictions of BLACKHAT+SHERPA for all multiplicities
ALPGEN predictions consistent with data
SHERPA predictions are too low by 5-15%
Z + jets - jet transverse momentum

- **Veto on second jet applied:** better agreement

- **No scale uncertainty** (dark shaded)
- **Correlated between multiplicity bins** (medium shaded)
- **Uncorrelated** (light shaded), as prescribed in Phys.Rev.D85 (2012) 034011

- **PT ratio of jet 1 and 2 for N_{jets} > 1**
 - ALPGEN prediction overestimates the data in the region 0.1-0.2
 - SHERPA underestimates the cross section by ~15%

Michel Lefebvre, University of Victoria, Canada
Z + jets - Z transverse momentum

- Complementary approach to p_T differential cross section measurement
- Higher-order electroweak corrections expected to reduce the cross section by 5-20% for $Z p_T > 100$ GeV

- BLACKHAT+SHERPA fixed order calculation too soft for the inclusive ≥ 1 jet final state (but in agreement for the exclusive 1 jet final state)
 - attributed to missing higher-order jet multiplicities in the fixed-order calculation: use exclusive sums of NLO calculations to have better agreement
 - no indication for missing higher-order electroweak corrections in the large $Z p_T$ region
 - BLACKHAT calculation corrected for non-perturbative effects

- Both ALPGEN and SHERPA predict too hard a spectrum
 - discrepancy comparable to the expected higher-order electroweak corrections, but higher-order QCD corrections are also a possible cause

- MC@NLO describes the exclusive 1 jet final state better than the inclusive ≥ 1 jet final state
Many physics signatures involved well separated forward jets

- knowledge of angular distributions can be used to separated signal from background

Experimental challenge: jet energy scale especially in the forward region

- NLO fixed order QCD and SHERPA overestimate cross section in the forward region
- ALPGEN predictions are in agreement with the data
- MC@NLO predicts too wide a rapidity distribution
Z + jets - jet and Z rapidities for $N_{\text{jet}} = 1$ (central)

- NLO predictions from MCFM
- MadGraph 5.1.1.0 + MLM scheme
- SHERPA 1.3.1 + CKKW scheme

All predictions agree with data within 5%
Z + jets - ~ uncorrelated rapidities for N_{jet} = 1

\[Y_{\text{dif}} = \frac{|Y_Z - Y_j|}{2} \]

related to the polar scattering angle in the Z-j center of mass frame

\[\cos \theta^* = \frac{\tanh(Y_{\text{dif}})}{\beta_Z^*} \]

\[Y_{\text{sum}} = \frac{|Y_Z + Y_j|}{2} \]

~rapidity boost from lab to COM frame

\(Y_j \) and \(Y_Z \) highly correlated because there is usually a relatively high momentum quark interacting with a low momentum gluon or anti-quark

- Good agreement between data and NLO calculations from MCFM
- SHERPA reproduces data better than MadGraph
 - difference introduced in matching ME to PS
 - large difference for more forward distributions
Z + jets - two leading jets $\Delta \Phi$ and ΔR

$|\Delta \Phi|$ well modeled by BLACKHAT+SHERPA and ALPGEN

- SHERPA predicts a spectrum that is less pronounced
Z + jets - H_T

- H_T is the scalar sum of jets and leptons p_T

- NLO fixed order $Z \geq 1$ jets deficit at large H_T
 - missing higher order QCD?
- ALPGEN, SHERPA agree with data

Better agreement with data is reached for NLO calculations when using **exclusive sums**

- $H_T > \sim 300$ GeV corresponds to an average jet multiplicity of more than 2 jets
- same outcome for $Z p_T$
Z+jets - azimuthal correlations $\Delta \Phi(Z, j_1)$

- $\Delta \Phi(Z, j_1)$: $\Delta \Phi$ between the Z and the leading jet for the inclusive multiplicities
 - $N_{jets} \geq 1, \geq 2, \geq 3$
 - normalized to unity

- $\Delta \Phi$ observable with largest systematics
 - 5-6% near 0, to 2% near π

- Agreement with POWHEG and SHERPA improve for larger multiplicities
- Multi-parton LO + PS do better than LO + PS !!
- PS important for NLO 1 jet in multijet environment
$N_{\text{jets}} \geq 3$
- $\Delta \Phi(Z, j_i)$
- normalized to unity

- Good agreement with POWHEG, MadGraph and SHERPA
- For $\Delta \Phi(Z, j_3)$, PYTHIA LO + PS agrees with data
 - PS contribution

$Z + \text{jets}$ - azimuthal correlations $\Delta \Phi(Z, j_i)$
Z+jets - azimuthal correlations $\Delta \Phi(j_i, j_k)$

- $N_{\text{jets}} \geq 3$
 - $\Delta \Phi(j_1, j_2)$
 - $\Delta \Phi(j_1, j_3)$
 - $\Delta \Phi(j_2, j_3)$
 - normalized to unity

- Isotropic for $p_T^Z > 150$ GeV
 - improved agreement with PYTHIA consistent with increased phase space available for parton emission

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg
Z+jets - event shape: transverse thrust

\[\tau_T \equiv 1 - \max \sum_i \left| \frac{\vec{p}_{T,i} \cdot \vec{n}_\tau}{\sum i p_{T,i}} \right| \]

sum over Z and jets

\[\tau_T \to 0 \]
\[\ln \tau_T \to -\infty \]

\[\tau_T \to 1 - \frac{2}{\pi} \]
\[\ln \tau_T \to \approx -1 \]

- Transverse thrust, normalized to unity, ratio to MadGraph
 - dominant systematics from energy scale: 2%
 - at \(p_{T,Z} > 150 \text{ GeV} \), many events with spherical component

- POWHEG and MadGraph more consistent with data
- SHERPA and PYTHIA shifted to lower values (dijet-like)
- PYTHIA compares better for \(p_{T,Z} > 150 \text{ GeV} \)
Z+jets - EW Z+2 forward jets

- Z production in association with two jets at order α_4^{EW}
 - includes TGC vertex (VBF), suppressed by a factor ~2.5 by interference terms
 - high p_T jets with large rapidity distance
- $\sigma(\text{EW } \ell\ell jj)_{\text{NLO}} = 166 \text{ fb}$ (DY ~ 29.3 pb!)
 - $M_{jj} > 120 \text{ GeV, } M_{\ell\ell} > 50 \text{ GeV}$
 - $p_T j > 25 \text{ GeV, } |\eta_j| < 4$
 - CT10 and $\mu_R = \mu_F = 90 \text{ GeV}$
- Optimized event selection (S/B ~ 11%)
 - leptons: $\ell\ell$ with $p_T \ell > 20 \text{ GeV, } |\eta_\ell| < 2.4$
 - Z: $|M_{ee} - M_Z| < 20 \text{ GeV}$ (15 GeV for $\mu\mu$)
 - two leading p_T jets in $|\eta| < 3.6$
 - $p_T(1) > 65 \text{ GeV; } p_T(2) > 40 \text{ GeV}$
 - $M_{jj} > 600 \text{ GeV}$
 - central Z in jj rest frame
 - $|y^*| = |y_Z - (y_{j1} - y_{j2})/2| < 1.2$
- Signal extraction with MVA
 - Boosted decision tree, including tagged jets and Z kinematics
 - $\sigma_{\text{meas, } \mu\mu ee}^{\text{EWK}} = 154 \pm 24(\text{stat}) \pm 46(\text{exp.syst.}) \pm 27(\text{th.syst.}) \pm 3(\text{lumi}) \text{ fb}$

- Important benchmark processes in search for VBF H!!
 - Jet activity profiles: MadGraph-based predictions in agreement with data (reco level)
 - $\sigma(\text{EW } \ell\ell jj)$ extracted (~2.6σ), compatible with prediction (NLO QCD corrections)
W + jets

- W+jets complementary to Z+jets
 - larger statistics
 - larger systematics

CMS Experiment at LHC, CERN
Run 133874, Event 21466935
Lumi section: 301
Sat Apr 24 2010, 05:19:21 CEST

Electron $p_T = 35.6$ GeV/c
$M_{E_T} = 36.9$ GeV
$M_T = 71.1$ GeV/c2
$W + \text{jets}$ - jet multiplicities

$\text{Br}(W \rightarrow \ell \nu)$ included in σ

- $\text{BLACKHAT+SHERPA} + \text{CTEQ6.6M} + \mu_{\text{R/F}} = H_T/2$
- ALPGEN 2.13 + CTEQ6L1 + $\mu_{\text{R/F}} = \sqrt{M_W^2 + \sum j p_T^2} + \text{MLM}$
- SHERPA 1.3.1 + CTEQ6.6M + default $\mu_{\text{R/F}} + \text{CKKM}$
- PYTHIA 6.4.21

Fiducial Phase Space

- $p_T > 20$ GeV, $|\eta| < 2.5$
- $E_T^{\text{miss}} > 25$ GeV
- $m_T(W) > 25$ GeV
- $p_T^{\text{jet}} > 40$ GeV
- $|y^{\text{jet}}| < 4.4$
- $\Delta R^{jj} > 0.5$

- BLACKHAT+SHERPA: good agreement
- SHERPA: worse agreement
 - attributed to differences in PDFs, α_s and factorization/renormalization scales
- PYTHIA is LO ME up to 1 jet...

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg
W + jets - first and second jet p_T

Theory/Data

- **ATLAS**
 - $W \rightarrow t\bar{t} + \text{jets}$
 - $W + \geq 2 \text{jets}$
 - $W + \geq 3 \text{jets}$
 - $W + \geq 4 \text{jets}$

Blackhat + Sherpa, Alpgen: good agreement

Sherpa: worse agreement
- attributed to differences in PDFs, α_s and factorization scales

Data 2010, $\sqrt{s}=7$ TeV

- **First Jet p_T [GeV]**
 - $\int L dt = 36 \text{ pb}^{-1}$
 - $W + \geq 1 \text{jets}$
 - $W + \geq 2 \text{jets}$
 - $W + \geq 3 \text{jets}$, $x10^{-1}$
 - $W + \geq 4 \text{jets}$, $x10^{-2}$

- **Second Jet p_T [GeV]**
 - $W + \geq 2 \text{jets}$
 - $W + \geq 3 \text{jets}$, $x10^{-1}$
 - $W + \geq 4 \text{jets}$, $x10^{-2}$

Michel Lefebvre, University of Victoria, Canada
W + jets - H_T

- H_T is the scalar sum over p_T of jets, the lepton, the neutrino ($E_{T\text{miss}}$)

- Probe NLO pQCD properties
- H_T often used for μ_R and μ_F

- **ALPGEN (Multi-leg LO) agrees well with the data**
- discrepancies in $W + \geq 1$ jets with (limited order) NLO calculations for mean $N_{\text{jets}} > 2$ at large H_T

- Agreement improved on H_T with BLACKHAT by replacing NLO $W + \geq 1$ jet with exclusive NLO sums (matched by counting parton jets with $p_T > 30$ GeV):
 - $W + \geq 1 = (W + 1) + (W + 2) + (W + 3) + (W + \geq 4 \text{ jets})$
 - confirmed in Z+jets
\[(W + \text{jets})/(Z + \text{jets})\]

- Cancellation of many systematics
 - powerful test of pQCD
\(\frac{(W + \geq n \text{ jets})}{(Z + \geq n \text{ jets})} \)

- Normalized to the inclusive cross section

- Many important systematic uncertainties cancel in the ratio
 - most important remaining from the selection efficiency (possible bin correlations due to \(M_T \) cut)
 - difference in expected value in the \(e \) and \(\mu \) channel due to larger electron acceptance in \(|\eta|\)

- Both MadGraph and PYTHIA agree with data within 1 \(\sigma_{\text{exp}} \)
(W + 1 jet)/(Z + 1 jet)

- Ratio of production cross section of W and Z with exactly 1 jet as a function of the jet p_T threshold
 - $71 < m_{\ell\ell} < 111$ GeV and $|\eta_{\text{jet}}| < 2.8$
 - Combination of the e and μ channels in the fiducial volume
- At $p_T = 30$ GeV
 - $8.29 \pm 0.18(\text{stat}) \pm 0.28(\text{sys})$
- W and Z production are similar: ratio less sensitive to systematics limitations of $V + \text{jets}$
 - Remaining systematic dominated by the boson reconstruction
 - For jet p_T threshold > 50 GeV, the uncertainty is statistically dominated

- LO and NLO predictions agree with data
- Larger data samples (2011, 2012) will allow a very precise test of pQCD
Double Parton Interaction

- Use $W + 2$ jets to probe DPI
 - Higher \sqrt{s} and luminosity imply bigger impact of DPI, and at higher p_T
 - Relevant contribution for analyses such as:
 - $W+b$ cross section
 - $W+j/\psi$ cross section
 - final states with same sign WW
W + 2 jets - double parton interaction

- One muon with $p_T^{\mu} > 35$ GeV and $|\eta| < 2.1$
- $E_T^{\text{miss}} > 30$ GeV, $M_T > 50$ GeV
- Jets with $p_T > 20$ GeV and $|\eta| < 2.0$

$\Delta S = \Delta \Phi$ between W and dijet system
- ~random for DPI
- ~back-to-back for SPI

MadGraph+PYTHIA 6.4.25+Z2star tune
- with multiple parton interaction: good description of the data
- without multiple parton interaction: rate and shape not reproduced

PYTHIA 8.165+4C tune
- missing higher order diagram: predicts more back-to-back
\[\hat{\sigma}^{(\text{tot})}_{W+2j}(s) = \hat{\sigma}^{(\text{SPI})}_{W+2j}(s) + \hat{\sigma}^{(\text{DPI})}_{W+2j}(s) = \hat{\sigma}^{(\text{SPI})}_{W+2j}(s) + \frac{\hat{\sigma}_{W0j}(s) \cdot \hat{\sigma}_{2j}(s)}{\sigma_{\text{eff}}(s)} \]

\[\sigma_{\text{eff}}(s) = \frac{\hat{\sigma}_{W0j}(s) \cdot \hat{\sigma}_{2j}(s)}{f_{\text{DP}} \hat{\sigma}^{(\text{tot})}_{W+2j}(s)} \]

- DPI is characterized by the effective area parameter \(\sigma_{\text{eff}} \)
 - assumed to be independent of phase space and process. Naively expect \(\sim 50 \text{ mb} \)

\[f_{\text{DP}} \]

Fraction of DPI events in \(W+2j \) data events extracted from template fit to the normalized distribution of transverse momentum balance

\[\Delta_{n_{\text{jets}}} = \frac{| \vec{p}_{T1} + \vec{p}_{T2} |}{| \vec{p}_{T1} | + | \vec{p}_{T2} |} \]

small for DPI

\(p_T > 20 \text{ GeV and } |y| < 2.8 \)

\[f_{\text{DP}}^{(D)} = 0.08 \pm 0.01 \text{ (stat.)} \pm 0.02 \text{ (sys.)} \]

\[\sigma_{\text{eff}}(7 \text{ TeV}) = 15 \pm 3 \text{ (stat.)}^{+5}_{-3} \text{ (syst.)} \text{ mb} \]

Result consistent with previous measurements at lower energies
Inclusive Z and W p_T

- Tests of high order pQCD and resummation techniques
Z p_T - at 7 TeV

- **Total background:** 0.4% (mu) 1.5% (e), up to 3.5% at high Z p_T
- **Dominant exp uncertainties:**
 - lepton ID and reconstruction: 1-3%
 - lepton energy scale and resolution: 0.7-4.4% (smaller for mu-channel)
 - unfolding (mainly Z p_T modeling used in efficiency correction): 1.3-4.7%

FEWZ: $O(\alpha_s^2)$ pQCD:
- in central region, underestimates data by about 10%

RESBOS: NNLL resummation + $O(\alpha_s)$ + $O(\alpha_s^2)$ pQCD:
- describes the spectrum well over the entire range

SHERPA, ALPGEN, PYTHIA
- agree well with data
Data from special 8 TeV LHC configuration with low pileup (average 5, ~ as for 7 TeV data)

Overall best agreement with MadGraph + PYTHIA + Z2star tune

Low p_T region affected by underlying event
- PYTHIA + Z2star tune gives best result
- Results validate POWHEG + PYTHIA + Z2star tune (obtained from low scales processes...)

High p_T region good agreement with POWHEG + PYTHIA + Z2star tune, and with FEWZ 3.1

Comparison with 7 TeV data as expected
Resolution of hadronic recoil to obtain $W p_T$ not as good as the resolution of the lepton momenta to obtain $Z p_T$, but there are ~10 times more W than Z!

- p_T^W unfolded to particle level
 - by default it is defined from the Born level W propagator

Z and W results display similar features
Supports the expected universality of QCD effects in W and Z production
\[Z \Phi_{\eta^*} \] - definition

- Higher accuracy achieved by measuring cross section as a function of \(\Phi_{\eta^*} \)
 - D0 PRL 106, 122001 (2011)

\[\phi_{\eta}^* \equiv \tan \left(\phi_{\text{acop}} / 2 \right) \cdot \sin (\theta_{\eta}^*) \]

\[\phi_{\text{acop}} \equiv \pi - \Delta \phi \]

\[\cos (\theta_{\eta}^*) \equiv \tanh \left[(\eta^- - \eta^+) / 2 \right] \]

- This quantity only depends on direction of the leptons
- Extremely precise experimentally
- Correlates with \(Z p_T \)

\[\phi_{\eta}^* \approx \frac{p_T^{Z}}{M_{\ell\ell}} \]
Calculations using RESBOS provide the best description of the data

- NNLL resummation (scale M_Z) matched to $O(\alpha_s)$, corrected to $O(\alpha_s^2)$ using k-factors depending on $Z p_T$ and y.
- but unable to reproduce the detailed shape to better than 4%

- $\sim 3 \times 10^6$ di-lepton candidates
- angular resolution:
 - 0.4-0.6 mrad in ϕ
 - 0.0010-0.0012 in η
- 0.6% background, half from multi-jet, dominating at low Φ_η^*
- dominant experimental systematics
 - background 0.3%
 - angular resolution: 0.2%
- Total uncertainties:
 - 0.5% (low Φ_η^*), stat \approx sys
 - 0.8% (high Φ_η^*), stat dominating
Z \Phi_{\eta}^* - comparison with theory

- Difference between RESBOS and data smaller than PDF uncertainty (4-6%)
- Experimental uncertainty an order of magnitude more precise than predictions

Banfi et al:
- NNLL matched to NLO from MCFM

Uncertainty includes:
- Resummation, \(\mu_R, \mu_F : \times 2 \) around \(M_Z \)
- PDF CTEQ6m error eigenvectors

Fixed order calculations not expected to be adequate in low Z p_T region
- FEWZ not shown for \(\Phi_{\eta}^* < 0.1 \)

FEWZ uncertainty include
- \(\mu_R, \mu_F : \times 2 \) around \(M_Z \)
- PDF CT10 error eigenvectors
- vary \(\alpha_s \) within range (90%CL)
Conclusions W/Z + jets

- ATLAS and CMS have performed a wide range of W/Z + (light) jets measurements at the LHC
 - stringent tests of pQCD
- In general, good agreement between data and predictions
 - but discrepancies observed in several regions
 - fixed order NLO + PS fails to describe the data: missing higher order effects
 - challenges for certain types of observables, such as H_T
 - tension with very precise $Z \Phi_{\eta}^*$ distribution
 - LO ME or NLO, interfaces with parton shower models, provide input for generator tuning
 - needed for background predictions
- $W + 2$ jets study of double parton interactions
 - successful measurement of σ_{eff} and of DPI sensitive observables
- Stay tuned: more data being analyzed!
Backup Slides
Z+jets - analysis strategy

1. Detector level (data)
 - Unfolding for detector effects

2. Particle level
 - Correction for non-perturbative and QED radiation effects

3. Parton level (BH+SHERPA)
Z+jets - cross section

- Main backgrounds
 - multi-jets in situ (0.4 - 1.5%)
 - ttbar in situ (0.2 - 26%)
 - diboson (0.2 - 1.2%)

- Iterative Bayesian unfolding method

- Differential measurements on dressed level, separately for e and µ channels

- Results from each channel extrapolated to common phase space region:
 - e, µ: $p_T > 20$ GeV, $|\eta| < 2.5$
 - dressed: add photon in $\Delta R < 0.1$
 - Z: opposite sign leptons
 - $66 < M_{\ell\ell} < 116$ GeV
 - jets: anti-kt, R=0.4, $p_T > 30$ GeV
 - $|y| < 4.4$, $\Delta R(j, \ell) > 0.5$
Z + jets - MC signal events and NLO calculations

- **MC signal event samples:** Z (→ee or →μμ) + jets (VBF production neglected)
 - ALPGEN 2.13 (0 ≤ Npartons ≤ 5)
 - HERWIG v6.520 (PS) + JIMMY v4.31 (UE AUET2-CTEQ6L1 tune)
 - PDF: CTEQ6L1 (LO)
 - QED FSR: PHOTOS
 - ALPGEN 2.14 (0 ≤ Npartons ≤ 5)
 - PYTHIA v6.425 (PERUGIA2011C tune)
 - PDF: CTEQ6L1 (LO)
 - QED FSR: PHOTOS
 - SHERPA 1.4.1 (0 ≤ Npartons ≤ 5)
 - PDF: CT10
 - MEnloPS approach
 - QED FSR: YFS method
 - MC@NLO v4.01
 - HERWIG
 - normalized to NNLO inclusive W production
 - Pileup events: minimum bias event from PYTHIA with AMBT1 tune
 - events reweighted to ensure the same distribution on the number of primary vertices as for data, average number of nine interactions per bunch crossing

- **NLO pQCD predictions**
 - BLACKHAT-SHERPA fixed order
 - Z+≥0j, Z+≥1j, Z+≥2j, Z+≥3j, Z+≥4j,
 - PDF: CT10
 - renormalization and factorization scales set to HT/2
 - anti-kt R=0.4 at parton level
 - corrected for fragmentation, QED-FSR, UE
 - (distributions for particle-level jets)/ (distribution for parton-level jets with no UE)
Z+jets - systematic uncertainties

<table>
<thead>
<tr>
<th>$Z (\rightarrow ee)$</th>
<th>≥ 1 jet</th>
<th>≥ 2 jets</th>
<th>≥ 3 jets</th>
<th>≥ 4 jets</th>
<th>p_T^{jet} in [30–500 GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron reconstruction</td>
<td>2.8%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>2.6–2.9%</td>
</tr>
<tr>
<td>jet energy scale, resol.</td>
<td>7.4%</td>
<td>10.1%</td>
<td>13%</td>
<td>17%</td>
<td>4.3–9.0%</td>
</tr>
<tr>
<td>backgrounds</td>
<td>0.26%</td>
<td>0.34%</td>
<td>0.44%</td>
<td>0.50%</td>
<td>0.2–3.2%</td>
</tr>
<tr>
<td>unfolding</td>
<td>0.22%</td>
<td>0.94%</td>
<td>1.2%</td>
<td>1.9%</td>
<td>1.4–6.8%</td>
</tr>
<tr>
<td>total</td>
<td>7.9%</td>
<td>10.5%</td>
<td>13%</td>
<td>17%</td>
<td>5.5–12.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Z (\rightarrow \mu\mu)$</th>
<th>≥ 1 jet</th>
<th>≥ 2 jets</th>
<th>≥ 3 jets</th>
<th>≥ 4 jets</th>
<th>p_T^{jet} in [30–500 GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>muon reconstruction</td>
<td>0.86%</td>
<td>0.87%</td>
<td>0.87%</td>
<td>0.88%</td>
<td>0.8–1.0%</td>
</tr>
<tr>
<td>jet energy scale, resol.</td>
<td>7.5%</td>
<td>9.9%</td>
<td>13%</td>
<td>16%</td>
<td>3.2–8.7%</td>
</tr>
<tr>
<td>backgrounds</td>
<td>0.093%</td>
<td>0.20%</td>
<td>0.41%</td>
<td>0.66%</td>
<td>0.1–1.9%</td>
</tr>
<tr>
<td>unfolding</td>
<td>0.30%</td>
<td>0.68%</td>
<td>0.52%</td>
<td>1.3%</td>
<td>0.5–6.2%</td>
</tr>
<tr>
<td>total</td>
<td>7.6%</td>
<td>10.0%</td>
<td>13%</td>
<td>16%</td>
<td>4.4–10.2%</td>
</tr>
</tbody>
</table>

- Jet energy scale dominant component of the total uncertainty
 - in particular in the forward region: 20 - 30%
Figure 1. Simplest primary (left) and secondary contributions (right) assuming a core process with a hard quark line.

For hadron collider processes involving two parton densities $f(x, Q)$ we define the PDF correction factor to the ratio of successive jet ratios $R_{(n+1)/n}/R_{(n+2)/(n+1)}$

$$B_n = \left| \frac{f(x^{(n+1)}, Q)}{f(x^{(n)}, Q)} \frac{f(x^{(n+2)}, Q)}{f(x^{(n+1)}, Q)} \right|^2. \quad (3.9)$$

The square in the definition of B_n reflects the two PDFs in hadron collisions. If for example the partonic ratio of two successive jet ratios is $R_{(n+1)/n}/R_{(n+2)/(n+1)} \sim c$ then the proper hadronic ratio becomes $B_n c$. We fix Q for simplicity, but this only mildly affects our results.
Figure 5. Left panel: estimated PDF suppression for inclusive (solid) and jet-associated (dashed, $p_T^{lead} \geq 100$ GeV) Drell-Yan kinematics. We assume an initial state with d-quarks only. Right panel: same for Higgs production in gluon fusion with $m_H = 125$ GeV. The uncertainty encompasses two representative kinematical limits of the multi-jet final state, described in the text.
Z + jets - exclusive jet multiplicities

- Exclusive jet multiplicities for VBF pre-selection

- Scaling properties useful in analyses using jet vetoes
- data consistent with BLACKHAT+SHERPA, and SHERPA
- ALPGEN overestimates $R_{3/2}$
Z + jets - average jet multiplicities

ATLAS

\[\frac{N_{\text{jet}}}{\sigma} \]

\[\int L \, dt = 4.6 \, \text{fb}^{-1} \]

Z/\gamma*(\rightarrow \mu^+ \mu^-) + jets

anti-\kappa jets, R = 0.4,

\[p_T^{\text{jet}} > 30 \, \text{GeV}, |y^{\text{jet}}| < 4.4 \]

Data 2011 (\sqrt{s} = 7 \, \text{TeV})

Z+jets(ALPGEN)

Z+jets(SHERPA)

MC / Data

\[p_T^{\mu\mu} \, [\text{GeV}] \]

\[H_T \, [\text{GeV}] \]

ATLAS

\[\frac{N_{\text{jet}}}{\sigma} \]

\[\int L \, dt = 4.6 \, \text{fb}^{-1} \]

Z/\gamma*(\rightarrow e^+ e^-) + \geq 1 \, \text{jet}

anti-\kappa jets, R = 0.4,

\[p_T^{\text{jet}} > 30 \, \text{GeV}, |y^{\text{jet}}| < 4.4 \]

Data 2011 (\sqrt{s} = 7 \, \text{TeV})

Z+jets(ALPGEN)

Z+jets(SHERPA)

MC / Data
Z + jets - Z transverse momentum

exclusive 1 jet

$\int L \, dt = 4.6 \text{ fb}^{-1}$

anti-k_T jets, $R = 0.4$

$P_T > 30 \text{ GeV}, |\eta| < 4.4$

normalized to inclusive cross section

inclusive ≥ 1 jet

$\int L \, dt = 4.6 \text{ fb}^{-1}$

anti-k_T jets, $R = 0.4$

$P_T > 30 \text{ GeV}, |\eta| < 4.4$

Better agreement with data if inclusive final state in calculations is replaced by exclusive sums

exclusive sum: $Z + \geq 1 = (Z + 1) + (Z + \geq 2)$

- no scale uncertainty (dark shaded)
- correlated between multiplicity bins (medium shaded)
- uncorrelated (light shaded), as prescribed in Phys.Rev.D85 (2012) 034011

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg
$Z + \text{jets}$ - two leading jets Δy and invariant mass

- Important for VBF Higgs analysis!

- BLACKHAT+SHERPA and ALPGEN predictions are in agreement with the data
W/Z + jets are irreducible backgrounds to Higgs analyses, in particular through VBF production.

VBF signature
- two forward jets (large $|\Delta y|$)
- high dijet mass
- central jet gap

Study of Z+jets events with a VBF preselection
- test Z+jets modeling
- test of ME and PS matching

3rd jet veto efficiency
- fraction of events passing veto requirement on 3rd jet in central region $|\eta| < 2.4$ as function of veto scale

BLACKHAT+SHERPA and SHERPA predictions are in agreement with the data.
ALPGEN underestimate the veto efficiency (due to overestimate of $R_{3/2}$).
Z+jets - event shapes and azimuthal correlations

- **Leptons**
 - $p_T > 20$ GeV
 - $|\eta| < 2.4$
 - isolated
- **71 < $m_{\ell\ell}$ < 111 GeV**
- **Jets from particle flow**
 - $p_T > 50$ GeV
 - $|\eta| < 2.5$
 - $\Delta R_{j\ell} > 0.4$
- **Analysis procedure**
 - select $Z \rightarrow \ell\ell$
 - subtract background
 - unfold to particle level
 - combined channels
- **Dominant systematics**
 - jet energy scale
 - jet p_T resolution
 - background subtraction
 - unfolding procedure
- **ttbar dominant background**
 - 1.1% for $N_{jets} \geq 1$
 - 8% for $N_{jets} \geq 3$

- **Z+jets signal generators considered**
 - MadGraph 5.1.1.0 + PYTHIA 6.4.2.4 + Z2 tune + CTEQ6L1 LO up to 4 final state partons
 - SHERPA 1.3.1 + default tune + CTEQ6m LO up to 4 final state partons
 - POWHEG + PYTHIA 6.4.2.4 + Z2 tune + CT10 NLO $Z+1$ jet
 - PYTHIA 6.4.2.4 + Z2 tune
$Z+jets$ - azimuthal correlations $\Delta \Phi(Z, j_1)$

- $\Delta \Phi(Z, j_1)$: $\Delta \Phi$ between the Z and the leading jet for the inclusive multiplicities
 - $N_{jets} \geq 1, \geq 2, \geq 3$
 - normalized to unity
 - ratios to MadGraph
- $\Delta \Phi$ observable with largest systematics
 - 5-6% near 0, to 2% near π

- Agreement with POWHEG and SHERPA improve for larger multiplicities
- For $N_{jets} = 1$, $\Delta \Phi(Z, j_1) \approx \pi$
 - large N_{jets}: more isotropic
 - also for $p_T^Z > 150$ GeV
- Multi-parton LO + PS do better than LO + PS!!
 - see $\Delta \Phi(Z, j_1)$
- PS important for NLO 1 jet in multijet environment
Z+jets - azimuthal correlations $\Delta \Phi(Z, j_i)$

- $N_{jets} \geq 3$
 - $\Delta \Phi(Z, j_i)$
 - normalized to unity
 - ratios to MadGraph

- Good agreement with MadGraph, POWHEG and SHERPA

- For $\Delta \Phi(Z, j_3)$, PYTHIA LO + PS agrees with data
 - PS contribution

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg
Z+jets - azimuthal correlations $\Delta\Phi(j_i, j_k)$

- $N_{\text{jets}} \geq 3$
 - $\Delta\Phi(j_1, j_2)$
 - $\Delta\Phi(j_1, j_3)$
 - $\Delta\Phi(j_2, j_3)$
 - normalized to unity
 - ratios to MadGraph

- Isotropic for $p_T^Z > 150$ GeV
 - improved agreement with PYTHIA consistent with increased phase space available for parton emission

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg
Z+jets - EW Z+2 forward jets

- Correlation between soft hadronic activity (H_T) and dijet rapidity span and M_{jj} (reco level)
 - H_T = scalar sum of jet p_T's for |\eta_j| > 4.7
 - reco level: no background subtraction, no unfolding
 - tagged jets: p_T1 > 65 GeV; p_T2 > 40 GeV in |\eta_j| < 3.6

- MadGraph-based predictions in agreement with data
Z+jets - EW Z+2 forward jets

- Radiation pattern as a function of the dijet rapidity span
 - reco level: no background subtraction, no unfolding
 - $p_T^{j} > 40$ GeV

MadGraph-based predictions in agreement with data

Clear correlation between hadronic activity and rapidity span

CMS-FSQ-12-019
arXiv:1305.7389
W + jets

- Probe NLO pQCD properties by studying H_T
- Missing transverse momentum
 - $E_{T\text{miss}}$ calculated from the energy deposits in calorimeter cells inside 3D clusters with $|\eta| < 4.5$. The clusters are calibrated to hadronic scale including corrections to account for dead material and out-of-cluster energy losses. It is also corrected for the muon momentum and its energy deposited in the calorimeter.
 - $m_T(W)$ is given by $\sqrt{2p_T^\ell p_T^{\nu} (1 - \cos(\phi^\ell - \phi^{\nu}))}$
 - where the neutrino momentum components are the corresponding $E_{T\text{miss}}$ components.
- Unfolding of efficiency and resolution effects
 - iterative Bayesian method
W + jets - systematics

- W+jets complementary to Z+jets
- Large background contamination
 - multi-jets at low N_{jets}: 5-10% (e); 5% (µ)
 - ttbar at N_{jets} ≥ 3: ~4-60% for N_{jets} = 1 to 4
- Systematic dominated
 - 10% stat and 40% sys for N_{jets} = 4
- Main systematic uncertainties
 - Jet energy scale (2.5%-14%, p_T, η dependent)
 - 10% on cross section for N_{jets} = 1
 - 40% on cross section for N_{jets} = 4
 - Jet energy resolution (10%)
 - 1-6% on cross section
 - top background
 - 20% on cross section for N_{jets} = 4
 - QCD background
 - 11-20% on cross section for N_{jets} = 4
- NLO theoretical uncertainties (BLACKHAT)
 - μ_R and μ_F: 4-15%
 - PDF + α_S: 2-6%
 - Hadronization and underlying event model: 2-5%

Fiducial Phase Space

- \(p_T > 20 \text{ GeV}, \mid \eta \mid < 2.5 \)
- \(E_T^{\text{miss}} > 25 \text{ GeV} \)
- \(m_T(W) > 40 \text{ GeV} \)
- \(p_T^{\text{jet}} > 30 \text{ GeV} \)
- \(|y^{\text{jet}}| < 4.4 \)
- \(\Delta R^{lj} > 0.5 \)

ATLAS

W→lν + jets

Cross section

Fractional Uncertainty

Sum of Other Uncertainties

Inclusive Jet Multiplicity, N_{jet}
MC signal event samples: W + jets (0 ≤ N_{partons} ≤ 5)
 - ALPGEN 2.13
 - HERWIG (PS) + JIMMY v4.31 (UE AUET1)
 - PDF: CTEQ6L1 (LO)
 - factorization scale set to Q^2 = M_W^2 + sum of all partons p_T^2
 - MLM parton-jet matching scheme performed at p_T^{jet} = 20 GeV (cone R = 0.7)
 - SHERPA 1.3.1
 - CTEQ6.6M (NLO)
 - CKKW parton-jet matching scheme
 - default μ_R and μ_F and UE tune
 - normalized to NNLO inclusive W production
 - Pileup events: minimum bias event from PYTHIA with AMBT1 tune
 - events reweighted to ensure the same distribution on the number of primary vertices as for data

NLO QCD predictions
 - BLACKHAT-SHERPA (for N_{jet} ≤ 4)
 - PDF: CTEQ6.6M (used for both LO and NLO calculations)
 - MCFM v5.8 (for N_{jet} ≤ 2)
 - PDF: CTEQ6L1 (LO) and CTEQ6.6M (NLO)
 - renormalization and factorization scales set to H_T/2
 - corrected for non-pQCD effects, hadronization, UE
 - (distributions for particle-level jets)/(distribution for parton-level jets with no UE)
W + jets - first jet y and Δy to lepton

- Distributions sensitive to the PDFs used for the LO and NLO ME.

- BLACKHAT-SHERPA deviation at high y may be caused by issues with gluon PDF at high x.

- ALPGEN has a different distribution.
Test of hard parton radiation at large angles and of matrix element to parton shower matching schemes
- $\Delta R \sim \Delta \Phi \sim \pi$: most jets modeled via ME calculation
- ΔR small (collinear radiation): most jets modeled via the parton shower

- ALPGEN and BLACKHAT+SHERPA agree well with data
- SHERPA worse agreement (attributed to differences in PDFs, α_s and factorization scales)
W + jets - k_T splitting

- **k_T clustering sequence mimics the reverse QCD evolution**
 - measurement probes QCD evolution
 - test of LO and NLO MC generators and analytical calculations

- **k_T distance measure**
 - distance between two particle momenta p_i, p_j
 - distance p_i to beam
 \[d_{ij} = \min \left(p_{T,i}^2, p_{T,j}^2 \right) \frac{\Delta R_{ij}^2}{R^2} \]
 \[d_{iB} = p_{T,i}^2 \]

- **Clustering sequence**
 1. Calculate all d_{ij} and d_{iB}
 2. Find their minimum, d_{min}
 - (a) If d_{min} is a d_{ij}, combine i and j: $p_{ij} = p_i + p_j$
 - (b) If d_{min} is a d_{iB}, remove i from the list and declare it a jet
 3. Return to step 1 or stop if no particle remains

- **Define d_k as d_{min} found when clustering $k+1$ to k particles**
 - $\sqrt{d_0}$ corresponds to p_T of highest p_T jet (last step)
$W + \text{jets}$ - k_T splitting

- LO multi-leg predictions (ALPGEN, SHERPA) perform better than NLO+PS generators (MC@NLO, POWHEG) in hard region
- Significant differences also in soft region, probing QCD resummation
- Largest experimental uncertainty: cluster energy scale and pileup
 - Statistical uncertainty dominating only in hard region

W + jets - k_T splitting

- d_{k+1}/d_k ratio: most generators just outside experimental uncertainty band
- Best description with HERWIG-based generators (**ALPGEN, MC@NLO**)
- Largest experimental uncertainty: cluster energy scale and unfolding
 - Systematics dominated

Michel Lefebvre, University of Victoria, Canada

QCD@LHC2013, Hamburg
Z \ p_T

- **Total background:** 0.4% (mu) 1.5% (e), up to 3.5% at high \(Z p_T \)
- **Dominant exp uncertainties:**
 - lepton ID and reconstruction: 1-3%
 - lepton energy scale and resolution: 0.7-4.4% (smaller for mu-channel)
 - unfolding (mainly \(Z p_T \) modeling used in efficiency correction): 1.3-4.7%

- **PYTHIA 6.4 using MRST2007LO***
 - LO + PS
- **SHERPA v1.2.3 using CTEQ6.6 and**
 - LO with up to 5 additional hard partons + PS
- **ALPGEN v2.13 using CTEQ6L1 and**
 - LO with up to 5 additional hard partons
 - interfaced to HERWIG v6.510 (PS) and Jimmy (UE)
- **MC@NLO using CTEQ6.6**
 - NLO
 - HERWIG v6.510 (PS) and Jimmy (UE)
- **POWHEG v1.0 using CTEQ6.6**
 - NLO
 - PYTHIA 6.4 (PS + UE)

MC Generators
- All interfaced to PHOTOS (QED FSR)
- Pileup: overlay of simulated minimum bias events
- GEANT4 simulation of ATLAS
- Pileup and resolution corrected to data

FEWZ v2.0 using MSTW2008
- \(O(\alpha_s) + O(\alpha_s^2) \)

RESBOS using CTEQ6.6
- NNLL resummation (scale MZ) (Collins-Soper-Sterman)
- \(+ O(\alpha_s) + O(\alpha_s^2) \) corrections

Michel Lefebvre, University of Victoria, Canada
W p_T - MC generators

- Pythia 6.421 using MRST2007LO*
 - LO + PS
- MC@NLO v3.41 using CTEQ6.6
 - NLO
 - Herwig v6.510 (PS) and Jimmy v4.1 (UE)
- Powheg v1.0 using CTEQ6.6
 - NLO
 - Pythia 6.4 (PS + UE)
- Alpgen v2.13 using CTEQ6L1
 - LO with up to 5 additional hard partons
 - interfaced to Herwig v6.510 (PS) and Jimmy v4.31 (UE)
- Sherpa v1.3.0 using CTEQ6L1
 - LO with up to 5 additional hard partons + PS
 - Catani-Seymour subtraction based parton shower model
 - matrix element merging with truncated showers
 - high multiplicity matrix elements generated by COMIX
- MC Generators
 - All interfaced to Photos v2.15.4 (QED FSR)
 - tauts decayed by TAUOLA v1.0.2
 - Pileup: overlay of simulated minimum bias events (ATLAS MC09 tunes)
 - GEANT4 simulation of ATLAS
 - Pileup and resolution corrected to data

- RESBOS using CTEQ6.6
 - NNLL resummation (scale MZ) + $O(\alpha_s) + O(\alpha_s^2)$ correction
 - renormalization and factorization scale set to MW
- DYNNLO v1.1 and MCFM v5.8 for $W + 1$ parton
 - LO $O(\alpha_s)$ uses MSTW2008 NLO
 - NLO $O(\alpha_s^2)$ uses MSTW2008 NNLO
 - renormalization and factorization scale set to MW
 - do not include resummation effects: not expected to do well at very low $W p_T$
- FEWZ v2.0 using MSTW2008
 - $O(\alpha_s)$
W p_T - reconstructed p_T

- p_T^R is the reconstructed p_T^W from the hadronic recoil
\(W \ p_T - \text{unfolded true } p_T \)

- \(p_T^W \) is the true \(p_T^W \) unfolded from \(p_T^R \)
 - by default it is defined from the Born level \(W \) propagator
W p_T - unfolded true p_T

RESBOS, DYNLO and MCFM at $O(\alpha_s^2)$, Sherpa, Alpgen, Pythia describes the spectrum well (within 10-20%) over the entire range $O(\alpha_s)$ approximation insufficient to describe the data.
Z Φ_η^* - comparison with MC generators

MC Generators
- at $\Phi_\eta^* < 0.1$ best description from **SHERPA** and **ALPGEN**
- at low Φ_η^*, best description from **RESBOS**
- Pythia8 best parton shower description when interfaced to **POWHEG**

Useful information for MC tuning

- $\sqrt{s} = 7$ TeV
- $|\eta| < 2.4$
- $p_T > 20$ GeV
- 66 GeV $< m_{\ell\ell} < 116$ GeV
- $\int L \, dt = 4.6$ fb$^{-1}$