Tagging Boosted Top Quarks and Higgs Bosons in ATLAS

BOOST 2015, University of Chicago

Matt LeBlanc. on behalf of the ATLAS Collaboration 10th-14th August 2015

Overview

Run-I Top Tagging: ATLAS-CONF-2015-36

- Tagging Techniques
- Data/MC Comparisons
- Efficiency and Fake Rate Measurements in Data
- Performance Comparison in MC
- **Run-II** $H \rightarrow b\bar{b}$ Tagging: ATL-PHYS-PUB-2015-035
 - Developing the tagger
 - Systematics
- W tagging and W/Z discrimination covered by Julien!

Top Tagging Methods

- Comparison of different ATLAS Run I top taggers:
 - Substructure Cut-Based¹
 - HEPTopTagger²
 - Shower Deconstruction³
 - HTT04

tagger	jet algorithm	grooming	radius parameter	p _T range	$ \eta $ range
Tagger I–V			P 10	. 250 C M	
w top tagger	anti- κ_t	trimming	R = 1.0	> 350 Gev	< 2
Shower Deconstruction					
Shower Deconstruction	C/A	none	R = 1.2	> 350 GeV	< 2
HEPTopTagger	C/A	none	R = 1.5	> 200 GeV	< 2

- 1. N-Subjettiness; Thaler & Van Tilberg
- 2. Plehn, Salam, Spannowsky, Takeuchi et al.
- 3. Soper & Spannowsky

Selection

- Lepton+jets tt
 t
 is selection.
 - 2 b-tagged jets.
- Try tagging large-R jet away from lepton.
- Decompose tt into truth-matched (signal) and non-matched (background) components.

Substructure-Based Top Tagging

tagger	top tagging criterion
Substructure tagger I	$\sqrt{d_{12}} > 40 \text{ GeV}$
Substructure tagger II	m > 100 GeV
Substructure tagger III	$m > 100 \text{ GeV}$ and $\sqrt{d_{12}} > 40 \text{ GeV}$
Substructure tagger IV	$m > 100$ GeV and $\sqrt{d_{12}} > 40$ GeV and $\sqrt{d_{23}} > 10$ GeV
Substructure tagger V	$m > 100$ GeV and $\sqrt{d_{12}} > 40$ GeV and $\sqrt{d_{23}} > 20$ GeV
W' top tagger	$\sqrt{d_{12}}$ > 40 GeV and 0.4 < τ_{21} < 0.9 and τ_{32} < 0.65

HEPTopTagger

- HTT explained elsewhere (cf. Torben's talk later today, and the CMS talk by Justin from yesterday.).
- Parameters used here: $m_{\text{cut}} = 50$ GeV, $N_{\text{filt}} = 5$, $R_{\text{max}^{\text{filt}}} = 0.25$, $f_W = m_W \times (1 \pm 0.15)$.
- Operates at lower p_T than other taggers (C/A $p_T > 200$ GeV).

Shower Deconstruction

- Calculate, for each subjet of the input, the probability that the subjet is associated with a certain source of radiation (ISR, light quark, etc.).
 - ... for signal (top) and background (QCD).
 - ... for all possible combinations of radiation sources and subjets.
- Discriminant χ is ratio of sum of signal probabilities to sum of background probabilities.

Shower Deconstruction

Performance Comparison in Simulation

- Characterising different taggers in terms of their tagging efficiency & background rejection.
- **ROC** curves made in many p_T bins.
- Which one is best?
 - ... this depends on what you want to do, of course!

Performance Comparison in Simulation

Performance Comparison in Simulation

HEPTopTagger04

Also studied here: HTT04, a modified approach to the HTT method which uses anti- $k_T R = 0.4$ jets as inputs, rather than C/A R = 1.5.

Designed for busy environments, e.g.

$$pp \to H^+ \bar{t}b \to tb\bar{t}\bar{b}$$

HEPTopTagger04

Also studied here: HTT04, a modified approach to the HTT method which uses anti- $k_T R = 0.4$ jets as inputs, rather than C/A R = 1.5.

Designed for busy environments, e.g.

$$pp \to H^+ \bar{t}b \to t b \bar{t} \bar{b}$$

Top Tagging Efficiency Measurement

- Efficiency calculated as the fraction of tagged to preselected large-*R* jets.
- For measurement in data, backgrounds are statistically subtracted.
- For measurement in simulation, only truth-matched $t\bar{t}$ is considered.

$$f_{\text{data}} = \left(\frac{N_{\text{data}}^{\text{tag}} - N_{t\bar{t} \text{ unmatched}}^{\text{tag}} - N_{\text{non-}t\bar{t}}^{\text{tag}}}{N_{\text{data}} - N_{t\bar{t} \text{ unmatched}} - N_{\text{non-}t\bar{t}}}\right)$$
(1)
$$f_{\text{MC}} = \left(\frac{N_{\text{MC}}^{\text{tag}}}{N_{\text{MC}}}\right)$$
(2)

Unfortunately, systematic uncertainties do not fully cancel in this ratio!

Top Tagging Efficiencies in Data

Top Tagging Fake Rates in Data.

Fake rates measured in QCD-enriched sample 'with small top contamination.'

Tagging Boosted $H \rightarrow b\bar{b}$

- Want to identify boosted $H \rightarrow b\bar{b}$ reconstructed as trimmed anti- $k_t \ R = 1.0$ jet.
- Backgrounds considered:
 - Multi-jet events.
 - Boosted, hadronically decaying top quarks.
- Three handles for S/B discrimination:
 - Heavy flavour content of large-R jet.
 - Large-*R* jet mass.
 - Large-R jet substructure.

Fruth Higgs Acceptance

$b\operatorname{-Tagging}$ in $\operatorname{Large-} R$ Jets

- Find leading pair of anti- $k_t R = 0.2$ track jets ghost-associated with a large-R jet (recall Michael's talk from yesterday).
- Attempt to tag track jets with MV2c20 algorithm. Study single, double and one-tight-one-loose scenarios.

Mass Window and Muon-in-b-Jet Correction

Before setting mass window, can increase mass resolution by correcting for semi-leptonic b hadron decays to muons.

Including Substructure Information

- Examined performance of tagger with 68% mass window and *b*-tagging WP fixed at 70% efficiency, when scanning additionally on one of three jet substructure variables: $D_2^{\beta=1}$, $C_2^{\beta=1}$ and τ_{21}^{wta} .
 - Performance similar for all variables considered, D₂^{β=1} provides slightly better improvement overall.

Benchmark $H \rightarrow b\bar{b}$ Selections

Selection	double <i>b</i> -tagging	large-R jet Mass	$D_2^{(\beta=1)}$
Loose	70% WP	90% window, <i>m</i> ∈ [76, 148] GeV	-
Medium	70% WP	68% window, $m \in [95, 137]$ GeV	-
Tight	70% WP	68% window, $m \in [95, 137]$ GeV	$p_{\rm T}$ -dependent cut

Table 1: Criteria used for the different Higgs-jet tagging selections.

Systematic Uncertainty Estimates on $H \rightarrow b\bar{b}$ Tagging

	Loose	Medium	Tight				
efficiency	0.41 ± 0.07	0.32 ± 0.06	0.25 ± 0.05				
Multi-jet rejection							
Inclusive	260 ± 50	460 ± 90	800 ± 210				
Light-flavor	$O(10^{5})$	$O(10^5)$	$O(10^{6})$				
cl	$O(10^{3})$	$O(10^3)$	$O(10^4)$				
bl	$O(10^2)$	$O(10^2)$	$O(10^3)$				
bc	$\mathcal{O}(10)$	$\mathcal{O}(10)$	$O(10^2)$				
cc	250 ± 150	480 ± 310	1200 ± 900				
bb	11 ± 2	19 ± 4	31 ± 9				
Hadronic top rejection							
Inclusive	67 ± 17	110 ± 30	160 ± 50				
bl	360 ± 230	660 ± 460	810 ± 600				
bc	24 ± 6	39 ± 11	53 ± 16				

- For loose working point, *b*-tagging uncertainties largest.
- With tigher working points, jet scale & resolution uncertainties increase.

Concluding Remarks

- Thorough performance comparisons for several different methods of top-tagging utilized by ATLAS in run I.
 - New in-situ efficiency and fake rate measurements in data for different taggers: substructure-based, HTT and SD.
 - Performance of HTT04 studied in the context of a high jet multiplicity final state (charged Higgs search).
 - ROC curve sets comparing tagger performance in simulation produced in many p_{T} bins.
- $H \rightarrow b\bar{b}$ tagger developed for use in run-II analyses.
 - Tagging efficiency and background rejection for QCD multijet and $t\bar{t}$ backgrounds evaluated in simulation.
 - Expected performance studied in terms of three benchmark selections.
 - Estimates of systematics based on extrapolations from Run I.

Supplemental Material

Performance Comparison

Performance Comparison

Substructure-Based Top Tagging: Forward Tagging Efficiency in Data.

Substructure-Based Top Tagging: Forward Tagging Efficiency in Data.

HEPTopTagger & SD: Forward Tagging Efficiencies in Data

