SUSY searches with ATLAS

Ewan Hill
on behalf of the ATLAS Collaboration

University of Victoria / TRIUMF, Canada

June 29 2015

QFTHEP - Samara
ATLAS and the LHC are zooming in on the world to understand the unknown.

- Supersymmetry (SUSY) = theory that can explain some of the holes in the Standard Model
- Summarise status of ATLAS searches for SUSY:
 - Bulk and small corners of phase space
 - Variety of different combinations of objects in final states
 - Statistical exclusion limits on some models
 - Searches with hints of new physics
Supersymmetry

- SM particles \rightarrow 1/2 spin \rightarrow SUSY particles
- R-Parity conservation: SUSY particles come in pairs
 - Lightest supersymmetric particle (LSP) is a dark matter candidate \rightarrow missing energy
- Scalar top \rightarrow hierarchy problem / fine tuning
Supersymmetry with ATLAS

Classify searches based on:

- Production cross-section
- Final states after decays
- Decay chain
- Lifetime
- R-parity conservation/breaking

- Simplified models
- LSP = $\tilde{\chi}_1^0$ or \tilde{G} or ...
- Assume prompt decays unless specified otherwise

- Frequently main backgrounds: $t\bar{t}$ & single top, W+jets, Z+jets, and multijets

- Discriminating variables: p_T of objects, number of leptons, number of jets, scalar sums of p_T (e.g. m_{eff}, E_T^{miss}, $E_T^{\text{miss}}/m_{\text{eff}}$, m_T, m_{T2})
Many searches performed but SUSY not (yet?) discovered
Strong Direct Production

\[\sigma_{tot}[pb]: pp \rightarrow \text{SUSY} \]

\[\sqrt{s} = 8 \text{ TeV} \]

\[m_{\text{average}} \text{ [GeV]} \]

\[\tilde{H}_u \tilde{H}_d \tilde{W}^0 \tilde{B}^0 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2 \tilde{\chi}^0_3 \tilde{\chi}^0_4 \]

neutralinos

\[\tilde{H}_u \tilde{H}_d \tilde{W}^+ \tilde{W}^- \rightarrow \tilde{\chi}^{\pm}_1 \tilde{\chi}^{\pm}_2 \]

charginos
Strong Production: Search for gluinos (\tilde{g}) and 1st, 2nd generation scalar quarks (\tilde{q}) - 0ℓ and $\geq 1\ell$ analyses

- Searches cover a wide range of signal models
- Important discriminating variables: m_{eff}, $E_{\text{T}}^{\text{miss}}$, number of leptons, number of jets, lepton p_T

Strong Production: Search for \tilde{g} and 1st, 2nd generation \tilde{q} - recently combined 0ℓ and $\geq 1\ell$ analyses

Combination extends exclusion reach
Z+MET+jets has 3σ excess

- Of the many strong production searches, this one saw an excess of 3σ
- Gauge Mediated model above = example signal model that can produce this excess
- $Z \rightarrow \ell^+\ell^- : 81 < m_{\ell\ell} < 101$ GeV
- Main backgrounds estimated using data. E.g. Z+jets: produce E_T^{miss} by smearing jets in p_T, ϕ
Third Generation Direct Production

\[\sigma_{\text{tot}} \text{[pb]}: pp \rightarrow \text{SUSY} \]
\[\sqrt{s} = 8 \text{ TeV} \]

SUSY particles

- \(\tilde{u} \), \(\tilde{c} \), \(\tilde{t} \)
- \(\tilde{d} \), \(\tilde{s} \), \(\tilde{b} \)
- \(\tilde{\nu}_e \), \(\tilde{\nu}_\mu \), \(\tilde{\nu}_\tau \)
- \(\tilde{\nu}_\tau \), \(\tilde{\nu}_\mu \), \(\tilde{\nu}_e \)
- \(\tilde{\tau} \), \(\tilde{\mu} \), \(\tilde{\tau} \)

\[\tilde{H}_u \tilde{H}_d \tilde{W}^0 \tilde{B}^0 \rightarrow \tilde{\chi}_1 \tilde{\chi}_2 \tilde{\chi}_3 \tilde{\chi}_4 \]

neutralinos

\[\tilde{H}_u \tilde{H}_d \tilde{W}^+ \tilde{W}^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^\pm \]

charginos
3rd Generation: Search for scalar tops summary

- 0 – 2ℓ searches
- Some important discriminating variables:
 \(m_T, m_{T2}, E_T^{\text{miss}} \)
 b-quark jet tagging
- 2-4 body decays
3rd Generation: Search for scalar tops summary structure

Diagonal lines
\[= \text{kinematic boundaries:} \]
\[m(\tilde{t}) = \sum_i m(\text{child } i) \]

ATLAS Preliminary
L_{int} = 20 \text{ fb}^{-1} | s = 8 \text{ TeV}

0L [1406.1122]
1L [1407.0583]
2L [1403.4853], 2L [1412.4742]
1L [1407.0583], 2L [1403.4853]
0L [1407.0608]
0L [1407.0608], 1L [1407.0583]
3rd Generation: Scalar tops - Specialised Tools for Specific Features

Boosted parent particles

- Large sized jets
 (top figure: heavy \tilde{t}, light $\tilde{\chi}_1^0$)
 (doi: JHEP11(2014)118)

Scalar top masses just above top quark mass

- Spin correlation
 (top figure inset)
 (doi: PhysRevLett.114.142001)

- Re-interpret $t\bar{t}$ cross-section measurement
 (bottom figure)
 (doi: EPJC/s10052-014-3109-7)
3rd Generation: Scalar top - scalar tau 2ℓ

- Many additional signatures possible → check all the different corners of phase space
- Re-interpretation of a 2ℓ search + additional signal region
- LSP = $\tilde{G} \sim$ massless
- Targets diagonal boundary
- Signal regions:
 Vary jet p_T, m_{T^2}
3rd Generation: Search for scalar tops - recently combined 0ℓ and 1ℓ analyses

Statistically combining results extends exclusion

Test different branching ratios for $\tilde{t} \rightarrow t\tilde{\chi}_1^0$, $\tilde{t} \rightarrow b\tilde{\chi}_1^\pm$
Electroweak Direct Production

\[\sigma_{\text{tot}}[\text{pb}]: \text{pp} \to \text{SUSY} \]

\[\sqrt{s} = 8 \text{ TeV} \]

SUSY particles
- \(\tilde{u} \), \(\tilde{c} \), \(\tilde{t} \)
- \(\tilde{d} \), \(\tilde{s} \), \(\tilde{b} \)
- \(\tilde{g} \)
- \(\tilde{H} \)
- \(\tilde{W} \)
- \(\tilde{Z} \)
- \(\tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau \)

Neutralinos and Charginos
- \(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0 \)
- \(\tilde{\chi}_1^\pm, \tilde{\chi}_2^\pm \)
Electroweak Summary

- Small cross-sections
- Clean multi-lepton final states
- Low hadronic activity
- Searches using e, μ, τ
Electroweak: Search for Charginos (\(\tilde{\chi}^{\pm}_{1}\)) and next-to-lightest Neutralinos (\(\tilde{\chi}^{0}_{2}\))

- Hadronically decaying taus (0 e/\(\mu\))
- Not the best search channel; included for variety
- Minimize number of jets
- Some discriminating variables: \(E_{T}^{\text{miss}}\), \(m_{T2}\), and \(m_{T}(\tau_1) + m_{T}(\tau_2)\)

10.1007/JHEP10(2014)096
What about if SUSY particles can decay into SM particles (R-parity violating)?

→ final state without SUSY particles ~ no stable LSP.

What about if the SUSY particles have long lifetimes?
- SUSY particles with long lifetimes (e.g. \tilde{g} or $\tilde{\chi}_1^0$)
- Analyses depend on where in the detector the decay occurs

ATLAS Preliminary

95% CL limits, σ_{susy} not included
18.4-20.3 fb$^{-1}$, $\sqrt{s}=8$ TeV

Ewan Hill
20 / 23
What’s next?

What is coming up in the near future?

- LHC 2015 = 13 TeV
- How much data is needed before we publish?
13 TeV Strong Direct Production

Production cross-section
8 TeV → 13 TeV:
- Main backgrounds: × 2 – 3
- Gluino pairs: × ~ 10

Discovery sensitivity:
~ 3σ with 2 – 10 fb⁻¹ for masses heavier than those excluded at 8 TeV
Conclusions

- ATLAS has probed a significant amount of phase space
- No SUSY particles discovered ... yet?
- Study the $Z + E_T^{\text{miss}} + \text{jets}$ excess further with 13 TeV data
- First signs of SUSY at 13 TeV could be seen with just $2 - 10 \text{fb}^{-1}$

13 TeV data taking has started!
Z+MET details

<table>
<thead>
<tr>
<th>On-Z Region</th>
<th>(E_{T}^{\text{miss}}) [GeV]</th>
<th>(H_T) [GeV]</th>
<th>(n_{\text{jets}})</th>
<th>(m_{\ell\ell}) [GeV]</th>
<th>SF/DF</th>
<th>(E_{T}^{\text{miss}}) sig. [(\sqrt{\text{GeV}})]</th>
<th>(f_{\text{ST}})</th>
<th>(\Delta\phi(\text{jet}{12}, E{T}^{\text{miss}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-Z</td>
<td>(> 225)</td>
<td>(> 600)</td>
<td>(\geq 2)</td>
<td>(81 < m_{\ell\ell} < 101)</td>
<td>SF</td>
<td>-</td>
<td>-</td>
<td>(> 0.4)</td>
</tr>
<tr>
<td>Control regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed region</td>
<td>-</td>
<td>(> 600)</td>
<td>(\geq 2)</td>
<td>(81 < m_{\ell\ell} < 101)</td>
<td>SF</td>
<td>(< 0.9)</td>
<td>(< 0.6)</td>
<td>-</td>
</tr>
<tr>
<td>CR(\mu)</td>
<td>(> 225)</td>
<td>(> 600)</td>
<td>(\geq 2)</td>
<td>(81 < m_{\ell\ell} < 101)</td>
<td>DF</td>
<td>-</td>
<td>-</td>
<td>(> 0.4)</td>
</tr>
<tr>
<td>CRT</td>
<td>(> 225)</td>
<td>(> 600)</td>
<td>(\geq 2)</td>
<td>(m_{\ell\ell} \notin [81, 101])</td>
<td>SF</td>
<td>-</td>
<td>-</td>
<td>(> 0.4)</td>
</tr>
<tr>
<td>Validation regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRZ</td>
<td>(< 150)</td>
<td>(> 600)</td>
<td>(\geq 2)</td>
<td>(81 < m_{\ell\ell} < 101)</td>
<td>SF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VRT</td>
<td>150–225</td>
<td>(> 500)</td>
<td>(\geq 2)</td>
<td>(m_{\ell\ell} \notin [81, 101])</td>
<td>SF</td>
<td>-</td>
<td>-</td>
<td>(> 0.4)</td>
</tr>
<tr>
<td>VRTZ</td>
<td>150–225</td>
<td>(> 500)</td>
<td>(\geq 2)</td>
<td>(81 < m_{\ell\ell} < 101)</td>
<td>SF</td>
<td>-</td>
<td>-</td>
<td>(> 0.4)</td>
</tr>
</tbody>
</table>

\[
H_T = \sum_i p_T^{\text{jet } i} + p_T^{\text{lepton } 1} + p_T^{\text{lepton } 2}
\]

\(p_T^{\text{lepton } 1} > 25 \text{ GeV}, p_T^{\text{lepton } 2} > 10 - 14 \text{ GeV}, p_T^{\text{jet}} > 35 \text{ GeV} \)

Other cuts for \(10 \text{ GeV} < p_T^{\text{lepton}} < 25 \text{ GeV} \) leptons are tighter than for \(p_T^{\text{lepton}} > 25 \text{ GeV} \) leptons

Other cuts for \(35 \text{ GeV} < p_T^{\text{jet}} < 50 \text{ GeV} \) jets are tighter than for \(p_T^{\text{jet}} > 50 \text{ GeV} \) jets
Sensitivity at $\sim 2\sigma$ with $5 - 10\text{ fb}^{-1}$ for masses heavier than those excluded at 8 TeV
Variable definitions

\[m_T(a) = \sqrt{2p_T^a p_T^{miss}} \left(1 - \cos(\Delta \phi)\right) \]

where \(a = e/\mu/\tau \) (assumed massless).

\[m_{T2}(b, c) = \sqrt{\min_{q_T^b + q_T^c = p_T^{miss}}} \left(\max\left[m_T^2(p_T^b, q_T^b), m_T^2(p_T^c, q_T^c)\right]\right) \]

where \(b, c = \text{hadronic tau, jet, lepton+jet, etc.} \)

\[H_T = \sum_i p_T^{\text{jet } i} \]

\[m_{eff} = E_T^{miss} + \sum_i p_T^{\text{jet } i} + \sum_j p_T^{\text{lepton } j} + \sum_k p_T^{\text{hadronic tau } k} \]

Exact definitions are highly analysis dependent (number of jets, pt cut off, etc.).