

- Intro Method Plots
- Results
- Conclusions
- Backup

Search for direct top squark pair production in events with two tau leptons with the ATLAS detector

Ewan Hill

University of Victoria + TRIUMF

June 15 2016

Ewan Hill 1 / 14

ATLAS is searching for "new physics" to explain some open questions about the Standard Model

Hierarchy problem

Ewan Hill 2 / 14

Supersymmetry to the rescue

Supersymmetry fixing SM:

- $\tilde{G} = \text{dark}$ matter candidate
- top squark ("stop", \tilde{t}) helps with hierarchy problem

Ewan Hill 3 / 14

Intro Why SUS ATL Sign Met Plot Resu Con Bac

Many SUSY searches performed by ATLAS, including for top squarks

C CUCY	Status: March 2016 Model	e, μ, τ, γ Jets E_{-}^{m}	iss (£ dr(fb ⁻¹)	Mass limit	√x = 7.8 TeV	√s = 7, 8, 13 leV Reference
5 505 Y	MSUGRA/CMSSM 90,91, 	0-3 ε,μ/1-2 τ 2-10 jeta/3 έ γε 0 2-6 jeta γε mono-jet 1-3 jeta γε	s 20.3 6.8 s 3.2 6 s 3.2 6	980 GeV	1.85 TeV m(i)=m(j) m(t ²)=0 Garl(m(1 ⁻¹ gas, i)=m(2 ⁿ³ gas, i) m(i)=m(t ²)=5 GaV	1507.45525 ATLAS CONF-2015 062 To appear
od	● 68、3→06(ζ(tv)/v)よ ⁰ 日 25、25、3→06(1) ● 25、25→06(1) ● 25、25→06(1)→00(0 ⁺) ² (5) 5) (5) (5) (5) (5) (5) (5)	2 κ,μ (off-Z) 2 jets Ye 0 2-6 jets Ye 1 κ,μ 2-6 jets Ye 2 κ,μ 0-3 jets -	s 20.3 a 3.2 a 3.3 20 20 20 20 20 20 20 20	820 GeV	m(t)+0 GeV 1.52 TeV 1.6 TeV 1.6 TeV 1.35 TeV m(t)+0 GeV 1.35 TeV m(t)+0 GeV	1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-076 1501.03555
	gr 21, 2=-og/W27(GMS8(/ NLSP) GGM (bino NLSP) GGM (bino NLSP) GGM (biggstino-bino NLSP) GGM (biggstino-bino NLSP)	0 /-10 jens Wa 1-2 + 0-1 / 0-2 jens Wa 2	a 3.2 e s 20.3 è s 20.3 è s 20.3 è s 20.3 è		1.4 1997 m(r) = 100 GeV 1.63 TeV traj > 20 1.34 TeV cr(NLSP)<0.1 mn 1.37 TeV m(t) = 490 GeV, cr(NLSP)<0.1 mn, pr04 1.37 TeV m(t) = 490 GeV, cr(NLSP)<0.1 mn, pr04	1602.06154 1407.0503 1507.05403 1507.05403
ts	GGM (higgsino NLSP) Gravitino LSP	2 e, μ (Z) 2 jets Ye 0 mono-jet Ye	s 20.3 P s 20.3 P ^{4/2} scale	900 GeV 965 GeV	$\begin{split} m(MLSP) {\sim} 430~GeV \\ m(G) {\sim} 1.8 \times 10^{-4}~eV, ~m(g) {=} m(g) {=} 1.5~TeV \end{split}$	1500.00290 1502.01518
usions	日本	0 3δ Ye 0-1 κ.μ 3δ Ye 0-1 κ.μ 3δ Ye	a 3.3 ē a 3.3 ē a 20.1 ē		1.78 TeV m(\tilde{i}) -0303 GeV 1.76 TeV m(\tilde{i}) -0 GeV 1.37 TeV m(\tilde{i}) -3303 GeV	ATLAS-CONF-2015-067 To appear 1407.0600
qr	$ \begin{array}{c} \mathbf{e} & \phi_{1}\phi_{1}, \phi_{2} \rightarrow 0\left[\hat{r}_{1}^{2} \\ \phi_{2}\phi_{1}, \phi_{3} \rightarrow 0\left[\hat{r}_{1}^{2} \\ \phi_{3}\phi_{3}\phi_{3}\phi_{3}\phi_{3}\phi_{3}\phi_{3}\phi_{3}$	0 2.b Ye 2 κ,μ (55) 0.3.b Ye 1.2 κ,μ 1.2.b Ye 0.2 κ,μ 0.2 jets/1.2.b Ye 0 mono-jet/c-tag Ye 2 κ,μ (Z) 1.b Ye 3 κ,μ (Z) 1.b Ye 1 κ,μ 6 jets + 2.b Ye	s 3.2 k, a 3.2 k, a 3.2 k, a 3.2 k, a 20.3 k, b 20	840 GeV 325-540 GeV 205-510 GeV 205-715 GeV 785-705 GeV 190-600 GeV 290-610 GeV	mt(1):100 GeV mt(1):50 GeV, mt(1):= mt(1):100 GeV mt(1):= 3mt(1):mt(1):450 GeV mt(1):=100 Mt(1):450 GeV mt(1):100 GeV mt(1):100 GeV mt(1):100 GeV	ATLAS CONF-2015 086 1602,99058 1250,2102,1407,0503 0698516, ATLAS CONF-20 1407,0903 1403,5022 1403,5022 1403,5022 1506,08616
	$\begin{array}{c} \left\{ \begin{array}{c} t_{11} t_{12} t$	2 κ.μ Ο Υκ 2 κ.μ Ο Υκ 3 κ.μ Ο Υκ 2 3 κ.μ Ο Υκ 2 3 κ.μ Ο 2 μHs Υκ 7/γγ κ.μ Υ Ο-2 μ Υκ 4 κ.μ Ο Υκ 1 κ.μ γ Υ	a 20.3 7 a 20.3 8 a 20.5	90-335 GeV 140-475 GeV 335 GeV 715 GeV 425 GeV (70 GeV 635 GeV 115-370 GeV	ကရီး)-16-664/ ကရီး)-16-664 (RE 7)-0.2 (RH ဒီ)- ကရီး)-16-664 (RE 7)-0.2 (RH ဒီ)- ကရီး)-16-664 (RE 7)-0.2 (RH 2)- (RE 7)-87(2), (RE 7)-0.2 (RH 2)- (RE 7)-(RE 7), (RE 7)-0.2 (RH 2)-(RE 7), (RE 7)-(RE 7), (RE 7), (RE 7), (RE 7), (RE 7), (RE 7)-(RE 7), (RE 7)	1403.5294 1403.5294 1407.0390 1402.7029 1403.5294, 1402.7029 d 1501.07110 1405.5086 1507.65400
	Divert (1)() mont, lang-level (1) Divert (1)() mont, lang-level (1) Stable, stopped (2) Photomo (2) Divert (2) Divert (2) Divert (2) (2) Divert (2) Divert (2) Divert (2) (2) Divert (2) Divert (2) Divert (2) (2) Divert (2) Divert	1 Disapp. trk 1 jot Ye 0 1-5 jots Ye Ye 0 1-5 jots Ye Ye dEdxts trk - - - dEdyst trk - - -	a 20.3 K a 18.4 K 3.2 k 19.1 K 20.3 K 20.3 K 20.3 K 20.3 K	270 GeV 455 GeV 250 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	 市谷) 中部行→188.040 パイジーク2.06 市谷) 中部行→1875→188.040 パイジーク3.06 市谷) 中部行→160 246 10.04×10.05 市谷) 中部行→160 246 10.04×10.05 市谷) 中部行→160 246 10.04×10.05 市谷(24, 10.04×10.05) 市谷(24, 10.04×10.05) 市谷(25, 10.05) 市谷(1310.3875 1506.65332 1310.6884 Xiv.qqnew 1411.6782 1403.5542 1504.65162 1504.65162
	$ \begin{array}{c} U^{T}V_{i} g_{i} = r_{i}r_{i} + X_{i} r_{i} - r_{i}q_{i}r_{i}r_{j}r_{i}r_{i}r_{i}r_{i}r_{i}r_{i}r_{i}r_{i$	OLCT.μT	20.5 F. a 20.5 F. b 20.5 K ² 20.5 K ² 20.3 K ² 20.3 F. 20.3 F. 20.3 F. 20.3 F. 20.3 F. 20.3 F. 20.3 F. 20.3 F. 20.5 F. 20	760 GeV 450 GeV 917 GeV 910 GeV 320 GeV	1.7 TeV 1.45 TeV 1.45 TeV m(k+0)2, ct_{10} <t nn<br="">m(k)=02, ct_{10}<t nn<br="">m(k)=02 cm(k), due 80(y)=80(y)=86(y)=60(y) m(k)=600 ceV 80(y)=80(y</t></t>	1503,84450 1404,2503 1405,5085 1403,5085 1502,85885 1502,85885 1404,2503 1601,87453
	Officer Scalar charm, $\bar{c} \rightarrow c \bar{c}^{0}$	2 c.µ 28 -	20.3 ri 8 20.3 Z	0.4-1.0 TeV 510 GeV	m(1 ²) <2015 m(1 ²) <201 GeV	1501.01325

Ewan Hill 4 / 14

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/

Search for top squark to tau slepton signal over $t\bar{t}$ background

- ▶ 0-2 e or μ
- $\blacktriangleright 2-0 \tau_{had}$

Channels:

- lepton-lepton = 2 e or μ
- lepton-hadron = $1 \tau_{had}$ and (1 e or μ)
- hardon-hadron = $2 \tau_{had}$

Selection cuts isolate regions of phase space to maximize/minimize signal to background

Intro

- Method
- Analysis method Variables Signal regions SR cuts
- Plots
- Results
- Conclusions Backup

observable 2

Just count # events in phase space regions:

- Control: scale simulation to data for dominant backgrounds
- Validation: check scaling
- Signal: maximized signal to background

observable 1

Analysis blinded to reduce human bias

Data set from 2012: 8 TeV, 20fb^{-1}

Ewan Hill 6 / 14

Several kinematic variables separate signal from background

- Method Analysis method Variables Signal regions SR cuts
- Plots
- Results
- Conclusions
- Backup

- Number of b-jets
- Probes of decaying particles' masses, e.g. $m_{\mathrm{T2}}\left(\mathrm{b}\ell,\mathrm{b} au
 ight)$
- Sums/ratios of momenta e.g.

•
$$H_{\rm T} = p_{\rm T}^{\rm jet1} + p_{\rm T}^{\rm jet2}$$

• $\frac{p_{\rm T}^{\ell} + p_{\rm T}^{\star}}{\sum_{i}^{all} p_{\rm T}(i)}$

Ewan Hill 7 / 14

Design analyses around unknown signal masses: $m(\tilde{t})$ and $m(\tilde{\tau})$

Main cuts separating each channel/SR are $m_{\mathrm{T2}}(t) \rightarrow m(\tilde{t})$ and $m_{\mathrm{T2}}(W) \rightarrow m(\tilde{\tau})$

- ▶ SRHM $m_{T2}(W) > 120$ GeV vs SRHH $m_{T2}(W) > 50$ GeV
- ▶ SRHM $m_{T2}(t) > 180 \text{ GeV}$ vs SRHH all top squark masses
- 2 leptons $m_{\mathrm{T2}}(W)$ and jet p_{T} & multiplicity
- SRLM $m_{T2}(t) < 60$ GeV vs SRHH all top squark masses

Ewan Hill 9 / 14

t mass-probing variable

$$m_{\mathrm{T2}}(t) = m_{\mathrm{T2}} \left(\mathrm{b}\ell, \mathrm{b}\tau \right)$$

Eur. Phys. J. C 76, 1-30, 2016

Ewan Hill 10 / 14

W mass-probing variable

$$m_{\mathrm{T2}}(W) = m_{\mathrm{T2}}\left(\ell, \tau\right)$$

Eur. Phys. J. C 76, 1-30, 2016

Ewan Hill 11/14

No excesses seen in any signal region

 -	- 2	\sim	
	сι.	0	

1171	OT.	n	റ	$^{\circ}$
	~ ~		~	~

Plots

Results

SR counts Combined Exclusion

Conclusions

Backup

Analysis	Expected bkgd	Observed
	(nom. \pm stat. & syst.)	
Lepton-hadron low mass		
SRLM	22.1 ± 4.7	20
Lepton-hadron high mass		
SRHM	2.1 ± 1.5	3
Hadron-hadron		
SRHH	3.1 ± 1.2	3

2-leptons channel has many SRs : no excess.

Ewan Hill 12 / 14

Use SR/channel that gives best expected CLs for combination

13/14

Summary

- Intro
- Method
- Plots
- Results
- Conclusions
- Summary
- Backup

- Top squark could help fix an open problem in the Standard Model
- \blacktriangleright Low and high \tilde{t} masses probed as a function of the $\tilde{\tau}$ mass
- No excesses observed.
- \blacktriangleright Set limits on $m(\tilde{t})$ as a function of $m(\tilde{\tau})$
 - Heaviest top squark mass excluded $\sim 660~{\rm GeV}$
- \blacktriangleright Expecting $\sim 25 {\rm fb}^{-1}$ this year
 - Should be sensitive to $m(\tilde{t}) \sim 800 \text{ GeV}$

Ewan Hill 14 / 14

Region cuts are all orthogonal to each other

- Intro
- Method
- Plots
- Results
- Conclusions
- Backup
- Regional Cuts
- $\begin{array}{c} m_{T2} \text{ Upper} \\ \text{Limits} \\ \text{Real/fake } \tau \\ \text{Estimation} \\ \text{SRLM Exclusion} \\ \text{SRHM Exclusion} \\ \text{SRHH Exclusion} \\ \text{SRLL Exclusion} \\ \end{array}$

Region	$N_{\tau_{had}}$	N_{μ}	N_{jet}	N_{b-jet}	E_{T}^{miss}	$\Delta \phi(j_{1,2}, p_T^{\text{miss}})$	$m_{T2}(\tau_{had}, \ell)$	$m_{\mathrm{T}}^{\mathrm{sum}}(\tau_{\mathrm{had}}, \ell)$
SRHH	2	0	≥ 2	≥ 1	> 150 GeV	≥ 0.5	> 50 GeV	> 160 GeV
CRHHTop	1	1	≥ 2	≥ 1	> 100 GeV	≥ 0.5	-	[70,120] GeV
CRHHWjets	1	1	≥ 2	0	> 100 GeV	≥ 0.5	< 40 GeV	[80,120] GeV
VRHHTop	1	1	≥ 2	≥ 1	> 120 GeV	≥ 0.5	< 40 GeV	[120,140] GeV
VRHHWjets	1	1	≥ 2	0	> 120 GeV	≥ 0.5	< 40 GeV	[120,150] GeV
CRHHQCD	$\geq 2^a$	0	≥ 2	≥ 1	$> 150 { m ~GeV}$	$\le 0.5^{b}$	-	-

^aFor the multi-jet control region (CRHHQCD), no identification criteria are applied to tau leptons. ^bThe $\Delta \phi$ requirement only applies to the sub-leading jet j_2 .

Region	$N_{b-\mathrm{jet}}$	$H_{\rm T}/m_{\rm eff}$	$\frac{p_{\mathrm{T}}^{\ell} + p_{\mathrm{T}}^{\tau_{\mathrm{had}}}}{m_{\mathrm{eff}}}$	$m_{T2}(b\ell, b)$	$m_{\rm T2}(b\ell, b\tau_{\rm had})$	$m_{\rm T}(\ell, p_{\rm T}^{\rm miss})$	$m_{\rm eff}$
SRLM	≥ 2	< 0.5	> 0.2	< 100 GeV	< 60 GeV	-	-
CRTtLM	≥ 2	-	> 0.2	< 100 GeV	110 - 160 GeV	> 100 GeV	-
CRTfLM	≥ 2	-	> 0.2	< 100 GeV	$110-160~{\rm GeV}$	< 100 GeV	-
CRWLM	0	< 0.5	> 0.2	-	-	> 40 GeV	< 400 GeV
VRTLM	≥ 2	> 0.5	> 0.2	< 100 GeV	$60-110~{\rm GeV}$	-	-
Region	N_{b-jet}	E_{T}^{miss}	m_{eff}	$H_{\rm T}/m_{\rm eff}$	$m_{T2}(b\ell, b\tau_{had})$	$m_{T2}(\ell, \tau_{had})$	$m_T(\ell, p_T^{miss})$
SRHM	≥ 1	> 150 GeV	> 400 Ge	V < 0.5	> 180 GeV	> 120 GeV	-
CRTtHM	≥ 1	> 150 GeV	> 400 Ge	V < 0.5	> 180 GeV	20-80 GeV	> 120 GeV
CRTfHM	≥ 1	> 150 GeV	> 400 Ge	V < 0.5	> 180 GeV	20-80 GeV	< 120 GeV
CRWHM	0	> 150 GeV	> 400 Ge	V < 0.5	-	20-80 GeV	40-100 GeV
VRHM	≥ 1	$< 150 { m ~GeV}$	> 400 Ge	V < 0.5	$> 180 { m ~GeV}$	> 80 GeV	-

m_{T2} Upper Limits

wietho

Plots

Results

Conclusions

Backup

 $\begin{array}{c} {\rm Regional\ Cuts}\\ m_{{\rm T}2} \\ {\rm Upper}\\ {\rm Limits} \end{array}$

Real/fake auEstimation SRLM Exclusion SRHM Exclusion SRHH Exclusion SRLL Exclusion

m_{T2}	Max Value for	Max Value for
	Signal	$tar{t}$ background
$m_{\mathrm{T2}}\left(\mathrm{b}\ell,\mathrm{b} au ight)$	top squark mass	top mass
$am_{\mathrm{T2}}(\mathrm{b}\ell,\mathrm{b})$		top mass
$m_{\mathrm{T2}}\left(\ell, au ight)$	If chargino not virtual	W mass
	(not true here):	
	chargino mass	

Fake and τ background estimation done with MC

- Intro
- Method
- Plots
- Results
- Conclusions
- Backup Regional Cuts m_{T2} Upper Limits Real/fake τ
- SRLM Exclusion SRHM Exclusion SRHH Exclusion SRLL Exclusion

- ► Fit for tt
 (
 τ^{true}), tt
 (
 τ^{fake}), and W+jets seperately in the background-only fit with a CR for each.
- W+jets CRs: Use b-veto to isolate.
- ▶ $t\bar{t}$ CRs: Use an m_{T2} variable to isolate $t\bar{t}$ and then m_T^{ℓ} to distinguish true and fake taus.
- \blacktriangleright The same-sign method (tau has same sign charge as ${\rm e}/\mu)$ was also tested

Summary of results:

- Both methods give similar results to within the uncertainties.
- MC method was chosen because of a lack of statistics in the same-sign method.

Ewan Hill 17 / 14

Exclusion plot for lepton-hadron Low Mass channel

Ewan Hill 18 / 14

Exclusion plot for lepton-hadron High Mass channel

Ewan Hill 19/14

Exclusion plot for hadron-hadron channel

Ewan Hill 20 / 14

Exclusion plot for lepton-lepton channel

Ewan Hill 21 / 14