INVISIBLE HIGGS

Kenji Hamano (University of Victoria) on behalf of the ATLAS and CMS Collaborations

04 April 2017

Invisible decay of 125 GeV Higgs

- Concentrate on the 125 GeV Higgs.
 - BSM Higgs is covered by Tongguang Cheng.
 - 2HDM Higgs is covered in mono-H talk by Nicolo Trevisani.
- Physics motivation:
 - 125 GeV H as a part of SUSY: H -> neutralino.
 - Extra dimension: H -> graviscalars.
 - H -> dark matter (DM) particles.
- Indirect constraints from the 125 GeV Higgs measurements:
 - Non-SM decay BF < 0.34 at 95 % CL. (arXiv:1606.02266[hep-ex], ATLAS+CMS, 5 (7 TeV) + 20 (8 TeV) fb⁻¹)
 - SM predicts BF(H -> 4v) ~ 0.1 %. Any deviation from it is an indication of new physics.

04 April 2017

Higgs production and final states

- 3 major Higgs production modes:
- Associated production (ZH inv (leptonic)) (VH inv (hadronic))
 - Tag on Z -> II or V(Z or W) -> jet(s)
 - Same final state to mono-Z (lep) and mono-V (had) searches
- Vector Boson Fusion (VBF H inv)
 - Tag on the 2 jets.
 - Same final state to mono-V(jj) searches.
- Gluon Gluon Fusion (ggH inv)
 - Tag on ISR jet.
 - Same final state to mono-jet search.

ZH inv. leptonic mode

• Z decays to 2 leptons (electrons or muons).

	ATLAS	CMS
Data set	13 TeV, 13.3 fb ⁻¹	13 TeV, 12.9 fb ⁻¹
Document	ATLAS-CONF-2016-056	CMS PAS EXO-16-038
Object selection	Leading lepton $p_T > 30 \text{ GeV}$ Sub leading lepton $p_T > 20 \text{ GeV}$ eta < 2.5	Leading electron $p_T > 25 \text{ GeV}$ Leading muon $p_T > 20 \text{ GeV}$ Sub leading lepton $p_T > 20 \text{ GeV}$
Z selection	M(II) - M(Z) < 15 GeV	-15 GeV < M(II) - M(Z) < 10 GeV
Event selection	$\begin{array}{l} 3^{rd} \mbox{ lepton veto} \\ \mbox{B-jet veto} \\ \mbox{Missing } E_T > 90 \mbox{ GeV} \\ \Delta R(II) < 1.8 \\ \Delta \phi(p_T(II), \mbox{MET}) > 2.7 \\ \mbox{MET} + \mbox{jet } p_T - p_T(II) /p_T(II) < 0.2 \\ \Delta \phi(\mbox{MET}, \mbox{jets}) > 0.7 \\ p_T(II)/m_T < 0.9 \end{array}$	3^{rd} lepton veto 0 or 1 jet(s), Tau-jet veto Missing E _T > 100 GeV $p_T(II) > 60 \text{ GeV}$ $\Delta \phi(p_T(II), \text{ MET}) > 2.8$ MET - $p_T(II) /p_T(II) < 0.4$ $\Delta \phi(MET, \text{ jet}) > 0.5$

ZH inv. leptonic: Background

Background estimation

Background	ATLAS	CMS
ZZ	MC simulation	MC simulation
WZ	3 lepton control region	MC simulation
Z + jets	ABCD method	MET sideband
Non-resonant (WW, ttbar,)	eµ control region	eµ control region

04 April 2017

ZH inv. leptonic: WZ Background

 3-lepton control region: W(Iv)Z(II) dominated.

- Normalization factor data/MC is derived in this region
 - Contributions from other processes are subtracted using MC.
 - Normalization factor:

1.25 +/- 0.04 (stat) +/- 0.05 (sys)

Apply it to signal region.

ZH inv. leptonic: Z+jets Background

ABCD method

- Use two least correlated variables
 - Frac $p_T = ||MET + jet p_T| p_T(II)|/p_T(II)$
 - $\Delta \phi(p_T(II), MET)$
- $A = C^*(B/D)$
- MET sideband

- Use MC.
- Apply scale factor from MET sideband.

Region	Frac p _T	Δφ
A (signal region)	< 0.2	> 2.7
В	> 0.2	> 2.7
С	< 0.2	< 2.7
D	> 0.2	< 2.7

ZH inv: non-resonant Background

- eµ control region: W(ev)W(µv') and t(evq)tbar(µv'q') dominated.
- Signal region (ee or µµ) is the half of eµ.
 - Other processes are subtracted using MC.
- Efficiency correction factor between ee and µµ is applied (for the extrapolation to the signal region).

ZH inv. leptonic: Signal region

- Signal region
 - ATLAS: 456 events.
 - CMS: 265 events.
- Main systematic errors:
 - ZZ: MC correction (scale) factors such as lepton energy and resolution, particle ID and trigger efficiency.
 - ZZ: theoretical uncertainties.
 - Z+jets: correlation between ABCD cuts.

ZH inv. leptonic: Limits

- At 95 % CL
- $\sigma(Z(II)H)*BF(H->inv)$ limit

ATLAS

Observed	Expected
88 fb	58 fb

• BF(H -> inv) limit ATLAS

Observed	Expected
0.98	0.65
CMS	
Observed	Expected
0.86	0.70

Mono-Z Dark matter limits are also given

VH inv. hadronic mode

- ATLAS, 8 TeV, 20.3 fb-1 (arXiv:1504.04324[hep-ex]).
- W or Z -> 2 jets
 - Accept 3 jets events to improve signal efficiency.
- Event selection:

Backgrounds:

ltem	cut	Background	Method
Missing	MET > 120 GeV	W+jets	W+jets control region
transverse		Z+jets	Z+jets control region
		ttbar	Ttbar control region
Missing scalar sum of jet p _⊤	H _T > 120 GeV	Diboson, top	MC
Angular cuts	$\Delta \phi$ (MET, p_T^{miss}) < $\pi/2$	Mulit-jet	ABCD method
	Min[Δφ(MET,jets)]>1.5	Control region	
p _T ^{miss} = track base	ed missing momentum	-> scale fact	or -> apply to MC

More details covered in mono-V talk by Shuichi Kunori

- Systematic errors:
 - Jet and missing E_T reconstru
 - Diboson: MC modeling uncer
 - Z+jets, W+jets: jet flavor com and m(jj) distributions (model

AT LAS

VH inv. hadronic: Limits

- M(H) = 125 GeV at 95 % CL.
- $\sigma(VH)$ *BF(H->inv) limits:

Observed	Expected
1.1 pb	1.1 pb

BF(H->inv) limits:

Observed	Expected
0.78	0.86

VBF H inv.

• ATLAS, 8 TeV, 20.3 fb⁻¹ (arXiv:1508.07869[hep-ex]).

Event selection

Requirement	SR1	SR2a	SR2b
Leading Jet <i>p</i> _T	>75 GeV	>120 GeV	>120 GeV
Leading Jet Charge Fraction	N/A	>10%	>10%
Second Jet $p_{\rm T}$	>50 GeV	>35 GeV	>35 GeV
m_{jj}	>1 TeV	$0.5 < m_{jj} < 1 \text{ TeV}$	> 1 TeV
$\eta_{j1} imes \eta_{j2}$		<0	
$ \Delta\eta_{jj} $	>4.8	>4.8 >3 $3 < \Delta \eta_{jj} <$	
$ \Delta \phi_{jj} $	<2.5	N/A	A
Third Jet Veto $p_{\rm T}$ Threshold		30 GeV	
$ \Delta \phi_{j,E_{ m T}^{ m miss}} $	>1.6 for j_1 , >1 otherwise	>0.5	
$E_{\mathrm{T}}^{\mathrm{miss}}$	>150 GeV	>200 0	GeV

Background

- W+jets: W+jets control region (Only one lepton)
- Z+jes: Z+jets control region (|m(II) m(Z)| < 25 GeV)
- Multi-jets: jet smearing method (\rightarrow see the reference)

VBF H inv: Results and Limits

• Results: SR1 (539 events)

• BF(H->inv) limits:

Observed	Expected
0.28	0.31

SR2 (3,290 events)

Dominant systematic errors:

- Jet energy scale and resolution
- Parton shower modeling

CMS limit is give in combined analysis

ggH inv:

- CMS, 13 TeV, 12.9 fb⁻¹ (arXiV:1703.01651[hep-ex])
- Re-interpretation of mono-jet and mono-V(hadronic) dark matter search.
- Details covered in mono-jet talk by Osamu Jinnouchi.
- BF(H->inv) combined limits:

C)bserved	Expected	
0	.44	0.56	
	Combination of ggH _{inv} (mono-jet)		

- V(had)H_{inv} + VBF H_{inv} (mono-V)
- ggH inv only limits:

Observed	Expected
0.48	0.85

ATLAS combined analysis

- ATLAS, 4.7 (7 TeV) + 20.3 (8 TeV) fb⁻¹ (arXiv: 1509.00672[hep-ex])
- Combination of 3 modes:
 - VBF Hinv (shown above)
 - ZHinv leptonic (arXiv:1402.3244[hep-ex]).
 - ZHinv hadronic (shown above)
- BF(H->inv) limit = 0.25
- Further combining with visible decay modes:
 - BF(H->inv) limit = 0.23

ATLAS combined: DM Limits

Higgs-portal dark matter (H→WIMP pair) limits

CMS combined analysis

- CMS, 5.1 (7 TeV) + 19.7 (8 TeV) + 2.3 (13 TeV) fb⁻¹ (arXiv: 1610.09218[hep-ex])
- Combination of 4 modes:
 - VBFH_{inv}, ZH_{inv} leptonic, ZH_{inv} bbbar (arXiv:1404.1344[hep-ex])
 - VH_{inv} dijet, ggH_{inv} mono-jet (arXiv:1607.05764[hep-ex])
 - Plus 13 TeV data.
- Event selection and background estimation for each mode are similar to other analysis:

	8 TeV		13 TeV		V/PE coloctio	n	
	V(jj)	Monojet	V(jj)	Monojet	VDF SEIECIIO	11 8 TeV	13 TeV
$p_{\mathrm{T}}^{\mathrm{j}}$	>200 GeV	>150 GeV	>250 GeV	>100 GeV	$p_{\mathrm{T}}^{\mathrm{J_1}}$	$>50\mathrm{GeV}$	> 80 GeV
$ \eta ^{j}$	<	2	<2.4	<2.5	$p_{\mathrm{T}}^{\mathrm{J_2}}$	$>45\mathrm{GeV}$	$>70\mathrm{GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	>250 GeV	$>200\mathrm{GeV}$	>250 GeV	>200 GeV	$m_{ m jj}$	> 1200 GeV	>1100 GeV
τ_2/τ_1	< 0.5		<0.6		$E_{\mathrm{T}}^{\mathrm{miss}}$	>90 GeV	>200 GeV
<i>m</i> _{prune}	60–110 GeV		65–105 GeV		$S(E_{\mathrm{T}}^{\mathrm{miss}})$	$>4\sqrt{\text{GeV}}$	
$\min \Delta \phi(\vec{p}_{T}^{\text{miss}},j)$	>2 rad		>0.5 rad		min $\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, j)$	>	2.3
Ni	=1				$\Delta \eta(\mathbf{j}_1,\mathbf{j}_2)$	>	3.6

2.3 fb⁻¹ (13 TeV)

3500

1000

 E_{τ}^{miss}

1200

[GeV]

m_{ii} [GeV] 2.3 fb⁻¹ (13 TeV)

4000

CMS combined: 13 TeV Results

Mode Observed • 13 TeV, 2.3 fb⁻¹ GeV **45**E CMS Data events 40^h VBF iets $Z(\rightarrow vv)$ +jets results: $W(\rightarrow \ell v)$ +jets 126 **VBF** VV QCD multijet Z(II) 0-jet 26 Top quark 20 H, B(H \rightarrow inv)=100% 15 Z(II) 1-jet 6 10 5 V(jj) ~30? n 2500 1500 2000 3000 Monojet ~2000? 2.3 fb⁻¹ (13 TeV) 2.3 fb⁻¹(13 TeV) Events/GeV 10³ 10² Events/GeV 10⁴ 10³ Events - Data 🔶 Data CMS CMS Data CMS $Z(\rightarrow vv)$ +jets $Z(\rightarrow vv)$ +jets 16 V(jj) Monojet $W(\rightarrow \ell v)$ +jets $W(\rightarrow \ell v)$ +jets WW+top quark $Z(\ell^+\ell^-)$ (0-jet) Dibosons Dibosons 14 VVV Top quark Top quark 10 $Z/\gamma(\rightarrow \ell\ell)$ +jets $Z/\gamma(\rightarrow \ell\ell)$ +jets 10² ΖZ 12 QCD multijet QCD multijet WZ H, $B(H \rightarrow inv)=100\%$ H, B(H \rightarrow inv)=100% 10 10 $Z/\gamma(\rightarrow \ell \ell)$ +jets 10-H, B(H \rightarrow inv)=100% 8 10^{-2} 10 6 10^{-3} 10⁻² 4 10 Data/Pred. Data/Pred 0.5 0 0.5 900 1000 500 600 700 800 200 300 400 200 400 600 800 900 300 400 500 600 700 800 1000 m_{τ} [GeV] E_{T}^{miss} [GeV]

CMS combined: Limits

BF(H->inv) combined limit

Observed	Expected		
0.24	0.23		

 VBF H inv limit can be read out from the plot

Observed	Expected
0.44	0.32

- Dominant systematic uncertainties:
 - Lepton efficiency
 - W+jets/Z+jets ratio, theory

CMS combined: DM limits

Higgs-portal dark matter limits:

Conclusion

 This table summarize current constraints on BF(H->inv) from each channel and combined.

Mode	ATLAS		CMS	
ZH inv leptonic	0.98	13.3 (13 TeV) fb ⁻¹	0.86	12.9 (13 TeV) fb ⁻¹
VH inv hadronic	0.78	20.3 (8 TeV) fb ⁻¹	n/a	
ggH inv	n/a		0.48	12.9 (13 TeV) fb-1
VBF H inv	0.28	20.3 (8 TeV) fb ⁻¹	0.44	5.1 (7 TeV) + 19.7 (8 TeV) + 2.3 (13 TeV) fb ⁻¹
Combined	0.23	4.7 (7 TeV) + 20.3 (8 TeV) fb ⁻¹	0.24	5.1 (7 TeV) + 19.7 (8 TeV) + 2.3 (13 TeV) fb ⁻¹

• Analysis with full 2016 dataset is on-going.

Paper references

- arXiv:1606.02266[hep-ex] JHEP08(2016)045
- arXiv:1504.04324[hep-ex] Eur. Phys. J. C (2015) 75:337
- arXiv:1508.07869[hep-ex] JHEP 01 (2016) 172
- arXiV:1703.01651[hep-ex] Submitted to JHEP
- arXiv:1509.00672[hep-ex] JHEP11(2015)206
- arXiv:1402.3244[hep-ex] Phys. Rev. Lett. 112, 201802 (2014)
- arXiv:1610.09218[hep-ex] JHEP 02 (2017) 135
- arXiv:1404.1344[hep-ex] Eur. Phys. J. C 74 (2014) 2980
- arXiv:1607.05764[hep-ex] JHEP 12 (2016) 083

Backup: VBF H inv: 2 background

- Scale factors (signal region)/(control region) are derived by MC.
- (Signal region) = (scale factor)*(control region)
- Z+jets control region:

W+jets control region:

