Searches for resonant and non-resonant new phenomena from ATLAS

Alison Elliot, University of Victoria
on behalf of the
ATLAS Collaboration
Introduction: Resonant and non-resonant searches

Non-Resonant:
- Contact interactions can be found in a non-resonant search.
- Looks for an overall increase in total number of signal events.
- Can be mistaken for high energy QCD effects.

Resonant:
- Mediator particle decays can be found in a resonant search.
- Looks for a narrow or broad peak on top of a continuum.
Di-jet searches (resonant 8 TeV)

Event Selection

- Single jet trigger
- At least two jets in event
- \(m_{jj} > 250 \text{ GeV} \)
- Rapidity (y) of leading jets < 2.8
- Transverse momentums (\(p_T \)) > 50 GeV
- \(|y^*| = \frac{1}{2} |y_1 - y_2| < 0.6 \)

Phenomenological Models (limits [TeV])

- Excited quarks, \(q^* \): \(m_{q^*} > 4.06 \)
- Color-octet scalars, \(s_8 \): \(m_{s_8} > 2.70 \)
- Heavy \(W' \) gauge bosons \(m_{W'} > 2.45 \)
- Chiral \(W^* \) gauge bosons
 - \(m_{W^*} \) leptophobic: \(> 1.75 \)
 - \(m_{W^*} \) leptophilic: \(> 1.65 \)
- Quantum black holes \(m_{BH} > 5.66 \)
Di-jet Searches (non-resonant 8 TeV)

Event Selection:
- Single jet trigger
- At least two jets in event
- $m_{jj} > 600$ GeV
- Rapidity boost of system:
 \[|y_B| = \frac{1}{2} |y_1 + y_2| < 1.1 \]
- $|y^*| = \frac{1}{2} |y_1 - y_2| < 1.7$

Scattering angle between two jets: $\chi \equiv e^{y_1 - y_2} = e^{2|y^*|}$

Models:
- Strong gravity
- Contact interactions
 \[\Lambda > 8.1 \text{ TeV} \text{ (destructive interference)} \]
 \[\Lambda > 12.0 \text{ TeV} \text{ (constructive interference)} \]
Di-lepton (resonant)

Leptons:
Normalized to data under Z peak

Electrons:
- Di-EM calorimeter clusters trigger
- Shower profile and leakage, tracking quality
- Calorimetric isolation

Muons:
- Single muon triggers
- Inner detector & Muon Spectrometer quality
- Track isolation
- Opposite sign

Phenomenological Models (and limits in [TeV])
- Sequential SM, Z'_SSM, $m_Z > 2.9$ TeV
- Grand Unification, Z', χ, ψ, $m_Z > 2.62, 2.51$
- Z* Bosons, $m_{Z^*} > 2.85$ TeV
- Spin-2 Graviton, $(k/M_{\text{Pl}} = 0.1)$, $m_{G^*} > 2.68$ TeV
- QBH
 - ADD: $m_{th} > 3.65$ TeV
 - RS: $m_{th} > 2.24$ TeV
- Minimal Walking Technicolor Model
 - $M_A > 1.96$, $M_{R1} > 1.99$ (for $g = 2$)

Leptons:
Normalized to data under Z peak

Electrons:
- Di-EM calorimeter clusters trigger
- Shower profile and leakage, tracking quality
- Calorimetric isolation

Muons:
- Single muon triggers
- Inner detector & Muon Spectrometer quality
- Track isolation
- Opposite sign

Diagrams:
- $Z' \rightarrow ee$
- $Z' \rightarrow \mu\mu$

References:
Di-lepton (non-resonant)

Contact Interactions
Coupling between $q_{L,R}$ and $\ell_{L,R}$ probed for contact interactions

Large extra spatial dimensions
The string scale M_s is probed for interference and graviton effects

Leptons:
- $m_{\ell\ell} > 80$ GeV
- Background scaled to data in region 80 GeV < $m_{\ell\ell}$ < 120 GeV
- Control region for verification 120 GeV < $m_{\ell\ell}$ < 400 GeV

Electrons:
- Di-EM calorimeter clusters trigger
- Shower profile and leakage, tracking quality
- Calorimetric isolation
- Opposite sign

Muons:
- Single muon triggers
- Inner detector & Muon Spectrometer quality
- Track isolation
- Opposite sign

$\Lambda > 26.3$ TeV (L-R constructive)

$M_s > 5.0$ TeV (HLZ n=3 ADD)

QCD@LHC2015

September 2, 2015
Lepton + MET

Phenomenological Models (limits [TeV])
- SSM W' gauge bosons \(m_{W'} > 3.24 \text{ TeV} \)
- Chiral W* gauge bosons \(m_{W^*} > 3.21 \text{ TeV} \)
- Dark Matter Effective Field Theory (DM EFT):
 Various M* limits for different DM masses

Event Selection
- Single EM or muon trigger
- Electron: \(E_T \) and \(E_{T\text{miss}} > 125 \text{ GeV} \)
- Muon: \(p_T \) and \(E_{T\text{miss}} > 45 \text{ GeV} \)
- Isolated lepton

\[m_T \equiv \sqrt{2p_T E_{T\text{miss}}(1 - \cos \phi_{\ell\nu})} \]
Lepton + jets

Event Selection

- Single electron, single muon, and large-radius jet triggers
- Isolated leptons with $E_T > 25$ GeV (e), $p_T > 25$ GeV (mu)
- Transverse mass: $m_T = \sqrt{2p_T E_T \text{miss} (1 - \cos \phi_{\ell \nu})}$
- $E_T \text{miss} > 25$ GeV
- $E_T \text{miss} + m_T > 60$ GeV
- Boosted Topologies (large-radius jet along with lepton + small jet)
- Resolved Topologies (four small-radius jets individually resolved)

Phenomenological Models (limits [TeV])

- Topcolour-assisted-technicolour Z'_{TC_2}

 $m_{Z'} > 1.8$ TeV

- Bulk RS Kaluza–Klein gluon, $m_{gKK} > 2.2$ TeV

- Bulk RS Kaluza–Klein graviton, no limits set

- Scalar resonance, no limits set

Accepted by JHEP (2015) arXiv:1505.07018
Di-photon

arXiv:1504.05511

- Randall-Sundrum (RS) Model of extra spacial dimensions, leading to spin-2 gravitons
 \[m_{G^*} > 2.66 \text{ TeV} \ (k/M_{Pl} = 0.1) \]
 \[m_{G^*} > 1.41 \text{ TeV} \ (k/M_{Pl} = 0.01) \]

- Di-photon trigger
- Calorimetric isolation
- Shower shape quality
Phenomenological Models (limits [TeV])

- QBH model \(M_{\text{th}} > 4.6 \) TeV
- Generic gaussian-shape, exclude \(m_g \) of 4 GeV (5% width, visible \(\sigma \) near 0.1)
- Excited-quark model \(m_{q^*} > 3.5 \) TeV

- One photon and one jet candidate, each with \(p_T > 125 \) GeV
- Central, isolated photon
- Pseudorapidity \(\Delta \eta = |\eta_\gamma - \eta_{\text{jet}}| > 1.6 \)
Multi-jets (8 TeV)

H_T is defined as the scalar sum of p_T of jets in the event

- High H_T trigger, efficient > 1.2 TeV (> 1.5 TeV used in analysis)
- Three or more central jets with $p_T > 50$ GeV
- SM background estimated by low H_T region extrapolation through generators PYTHIA 8, Herwig++, and ALPGEN MC
- Black holes and string balls searched for in most sensitive regions
Di-bosons

$ZV \rightarrow \ell\ell jj$

Resolved – high or low p_T jets
Leptons or jets in mass window of Z, or Z/W

$ZV \rightarrow \ell\ell J$

Boosted – one large Z/W boson jet

$m_{W'} > 1.59 \text{ TeV}$
$m_{G^*} > 740 \text{ GeV}$

$WV \rightarrow \ell\nu jj$

Resolved – high or low p_T jets
Lepton + E_T^{miss} or jets in mass window of W, or Z/W

$WV \rightarrow \ell\nu J$

Boosted – one large Z/W boson jet

$m_{W'} > 1.49 \text{ TeV}$
$m_{G^*} > 760 \text{ GeV}$†

†see erratum
Di-bosons

$WZ \rightarrow \ell \nu \ell'$ (low and high mass regions defined with $m_W', \Delta \phi$)

Three charged tracks, Δy separated W, Z bosons
$m_W > 1.52$ TeV

$VV \rightarrow JJ$ (Boosted jets)

High p_T boosted jets selected in regions orthogonal to other di-boson searches

PLB 737, 223 (2014)
arXiv:1406.4456

Submitted to JHEP
arXiv:1506.00962
New: Run-2 Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
Di-jets (13 TeV)

\(s = 13 \text{ TeV}, 80 \text{ pb}^{-1} \)

ATLAS Preliminary

- Data
- QBH, \(M_{\text{th}} = 6.5 \text{ TeV} \)
- SM
- Theoretical uncert.
- Total uncertainties

\(|y^*| < 1.7, |y_0| < 1.1\)

ATLAS Preliminary

\(\sqrt{s} = 13 \text{ TeV}, 80 \text{ pb}^{-1} \)

Events

\(\chi \)

1/N dN/d\chi

\(m_{jj} > 3.4 \text{ TeV} \)

\(3.1 < m_{jj} < 3.4 \text{ TeV} \)

\(2.8 < m_{jj} < 3.1 \text{ TeV} \)

\(2.5 < m_{jj} < 2.8 \text{ TeV} \)

Alison Elliot

QCD@LHC2015
Multi-jets (13 TeV)

\[\int L \, dt = 74 \, \text{pb}^{-1} \]
\[\sqrt{s} = 13 \, \text{TeV} \]

ATLAS Preliminary

\[n_{\text{jet}} \geq 3 \]

ATLAS

\[\frac{\text{Events}}{0.1 \, \text{TeV}} \]

CHARYBDIS2

- Rotating black holes, \(n = 6 \)

\[\int L \, dt = 74 \, \text{pb}^{-1} \]
\[\sqrt{s} = 13 \, \text{TeV} \]

ATLAS Preliminary

- Expected (\(n_{\text{jet}} \geq 3 \))
- Observed (\(n_{\text{jet}} \geq 3 \))
- \(\pm 1 \sigma \)
- \(\pm 2 \sigma \)
- ATLAS \(\sqrt{s} = 8 \, \text{TeV} \)

Data 2015

- Data 2015
- Multijets
- \(M_b = 2.5 \, \text{TeV}, M_{th} = 6 \, \text{TeV} \)

95% CL exclusion

\[95\% \, \text{CL exclusion} \]
Conclusion

- Searches through many final states
- No significant excesses in any channels
 - Potential hints of new physics in di-boson channels
 - Very good agreement between data and Monte Carlo shapes in lepton + MET, di-lepton and multi-jets
- Excellent performance ATLAS Run-1
- New opportunities upcoming in Run-2
 - First data analyzed
 - Run-1 sensitivities should hopefully be exceeded by end of 2015
Full Exotics search summary

| Model | ℓ, γ | Jets | E^{miss}_T | $\mathcal{L} \text{dt} [\text{fb}^{-1}]$ | Limit | Reference |
|-------------------------------|------------------|------|---------------------|--|--------------|
| ADD $G_{0K} + g/q$ | ≥ 1, ≥ 1 | Yes | 20.3 | M_{0K} | 5.26 TeV | $n = 2$ |
| ADD non-resonant $\ell\ell$ | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 4.7 TeV | $n = 3$ HZ |
| ADD $Q+\ell\ell$ | $1\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 3.8 TeV | $n = 5$ |
| ADD $Q\ell\ell$ | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.82 TeV | $n = 5$ |
| ADD $Q\ell_2$ | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 4.7 TeV | $n = 6$ |
| ADD $Q\ell_2$ | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.0 TeV | $n = 6$ |
| ADD Q | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| R_1, $G_{0K} \rightarrow \ell\ell$ | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| R_1, $G_{0K} \rightarrow \gamma\gamma$ | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| Bulk RS | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| Bulk RS | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| Bulk RS | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| Bulk BD_2 | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| 2UED / RPP | $2\ell, \mu^+$ | | 20.3 | $M_{\ell\ell}$ | 5.8 TeV | $n = 2$ |
| **Extra dimensions** | | | | | | |
| **Gauge bosons** | | | | | | |
| **DM** | | | | | | |
| **Other** | | | | | | |