

Searches for resonant and non-resonant new phenomena from ATLAS

Alison Elliot, University of Victoria on behalf of the ATLAS Collaboration

Alison Elliot

Introduction: Resonant and non-resonant searches

Non-Resonant:

- Contact interactions can be found • in a non-resonant search.
- Looks for an overall increase in • total number of signal events.
- Can be mistaken for high energy • QCD effects.

Resonant:

- Mediator particle decays can be found in a resonant search.
- Looks for a narrow or broad peak • on top of a continuum.

Di-jet searches (resonant 8 TeV)

Event Selection

- Single jet trigger
- At least two jets in event
- $m_{ii} > 250 \text{ GeV}$
- Rapidity (y) of leading jets < 2.8
- Transverse momentums $(p_T) > 50 \text{ GeV}$
- $|y^*| = \frac{1}{2} |y_1 y_2| < 0.6$

Phenomenological Models (limits [TeV])

Excited quarks, q*: $m_{q*} > 4.06$ Color-octet scalars, s8 $m_{s8} > 2.70$ Heavy W' gauge bosons $m_{W} > 2.45$ Chiral W* gauge bosons m_{W*} leptophobic > 1.75 m_{W*} leptophilic > 1.65Quantum black holes $m_{BH} > 5.66$

Phys. Rev. D. 91, 052007 (2015), arXiv:1407.1376 (resonant)

Phys. Rev. Lett. 114, 221802, (2015) arXiv:1504.00357

Event Selection:

- Single jet trigger
- At least two jets in event
- $m_{ij} > 600 \text{ GeV}$
- Rapidity boost of system: $|y_B| = \frac{1}{2} |y_1 + y_2| < 1.1$
- $|y^*| = \frac{1}{2} |y_1 y_2| < 1.7$

Scattering angle between two jets: $\chi \equiv e^{|y_1-y_2|} = e^{2|y^*|}$

Models:

- Strong gravity
- Contact interactions
 - $\Lambda > 8.1$ TeV (destructive interference)
 - $\Lambda > 12.0$ TeV (constructive interference)

Di-lepton (resonant)

^{University} of Victoria Di-lepton (non-resonant)

Contact Interactions

Coupling between $q_{L,R}$ and $\ell_{L,R}$ probed for contact interactions

Large extra spatial dimensions

The string scale Ms is probed for interference and graviton effects

Leptons:

- $m_{\ell\ell} > 80 \text{ GeV}$
- * Background scaled to data in region $80 \; GeV \le m_{tt} \le 120 \; GeV$
- Control region for verification $120 \text{ GeV} < m_{tt} < 400 \text{ GeV}$

Electrons:

- Di-EM calorimeter clusters trigger
- Shower profile and leakage, tracking quality
- Calorimetric isolation
- Opposite sign

QCD@LHC2015

$\Lambda > 26.3$ TeV (L-R constructive)

$M_s > 5.0$ TeV (HLZ n=3 ADD)

Muons:

- Single muon triggers
- Inner detector & Muon Spectrometer quality
- Track isolation
- Opposite sign

September 2, 2015

Phenomenological Models (limits [TeV])

SSM W' gauge bosons	m _w > 3.24 TeV
Chiral W* gauge bosons	$m_{W^*}^{>}$ 3.21 TeV

Dark Matter Effective Field Theory (DM EFT): Various M* limits for different DM masses

Event Selection

- Single EM or muon trigger
- Electron: E_T and $E_T^{miss} > 125 \text{ GeV}$
- Muon: p_T and $E_T^{miss} > 45 \text{ GeV}$
- Isolated lepton

$$\mathbf{m}_{\mathrm{T}} \equiv \sqrt{(2\mathbf{p}_{\mathrm{T}} \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \varphi_{\mathrm{fy}}))}$$

Lepton + jets

Event Selection

- Single electron, single muon, and large-radius jet triggers ٠
- Isolated leptons with $E_T > 25$ GeV (e), $p_T > 25$ GeV (mu) •
- Transverse mass: $m_T \equiv \sqrt{(2p_T E_T^{\text{miss}}(1 \cos \phi_{fy}))}$
- $E_{T}^{miss} > 25 \text{ GeV}$ •
- $E_{T}^{miss} + m_{T} > 60 \text{ GeV}$
- **Boosted Topologies** (large-radius jet along with lepton + small jet)
- **Resolved Topologies** • (four small-radius jets individually resolved)

$5_{Z'} \times BR(Z' \rightarrow t\bar{t})$ [pb] ATLAS Obs. 95% CL upper limit 10^{3} Exp. 95% CL upper limit (pre-fit) √s=8 TeV, 20.3 fb⁻¹ Exp. 95% CL upper limit (post-fit) Exp. 1 σ uncertainty (pre-fit) Exp. 2 σ uncertainty (pre-fit) 10 Leptophobic Z'(1.2%) (LO x 1.3) Leptophobic Z'(2%) (LO x 1.3) Leptophobic Z'(3%) (LO x 1.3) 10 10 05 1.5

Phenomenological Models (limits [TeV])

- Topcolour-assisted-technicolour Z'_{TC2} $m_{\tau} > 1.8 \text{ TeV}$
- Bulk RS Kaluza–Klein gluon, $m_{\sigma KK} > 2.2$ TeV
- Bulk RS Kaluza-Klein graviton, no limits set
- Scalar resonance, no limits set

Alison Elliot

OCD@LHC2015

Z' mass [TeV]

arXiv:1505.07018

September 2, 2015

Di-photon

Phys. Rev. D 92, 032004 (2015) arXiv:1504.05511

• Randall-Sundrum (RS) Model of extra spacial dimensions, leading to spin-2 gravitons

$$m_{G^*} > 2.66 \text{ TeV} (k/\overline{M}_{Pl} = 0.1)$$

 $m_{G^*} > 1.41 \text{ TeV} (k/\overline{M}_{Pl} = 0.01)$

- Di-photon trigger
- Calorimetric isolation
- Shower shape quality

September 2, 2015 9

Phenomenological Models (limits [TeV])

- QBH model $M_{th} > 4.6 \text{ TeV}$
- Generic gaussian-shape, exclude $m_G of 4 \text{ GeV} (5\% \text{ width, visible } \sigma \text{ near } 0.1)$
- Excited-quark model $m_{q^*} > 3.5 \text{ TeV}$

- One photon and one jet candidate, each with $p_T > 125 \text{ GeV}$
- Central, isolated photon
- Pseudorapidity $\Delta \eta = |\eta_{\gamma} \eta_{iet}| > 1.6$

Alison Elliot

Multi-jets (8 TeV)

JHEP 07 (2015) 032, arXiv:1503.08988

 H_{T} is defined as the scalar sum of p_{T} of jets in the event

- High H_T trigger, efficient > 1.2 TeV (> 1.5 TeV used in analysis)
- Three or more central jets with $p_T > 50 \text{ GeV}$
- SM background estimated by low H_T region extrapolation through generators PYTHIA 8, Herwig++, and ALPGEN MC
- Black holes and string balls searched for in most sensitive regions

Di-bosons

New: Run-2 Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

Di-jets (13 TeV)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-042/

15

Multi-jets (13 TeV)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-043/

Alison Elliot

Conclusion

- Searches through many final states
- No significant excesses in any channels
 - Potential hints of new physics in di-boson channels
 - Very good agreement between data and Monte Carlo shapes in lepton + MET, di-lepton and multi-jets
- Excellent performance ATLAS Run-1
- New opportunities upcoming in Run-2
 - First data analyzed
 - Run-1 sensitivities should hopefully be exceeded by end of 2015

Alison Elliot

Full Exotics search summary

Limit

ATLAS Exotics Searches* - 95% CL Exclusion

 ℓ, γ Jets $\mathsf{E}^{\text{miss}}_{-}$ (\mathcal{L} dt[fb⁻¹]

Status: July 2015 Model

 $\int \mathcal{L} dt = (4.7 - 20.3) \text{ fb}^{-1}$

 $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

					<u> </u>		
s Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH $\rightarrow \ell q$ ADD QBH high N_{trk} ADD BH high Σ_{PT} ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\gamma$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ 2UED / RPP SSM $Z' \rightarrow \ell\ell$	$\begin{array}{c} -\\ 2e, \mu\\ 1e, \mu\\ 2\mu(SS)\\ \ge 1e, \mu\\ -\\ -\\ 2e, \mu\\ 2\gamma\\ 2e, \mu\\ 1e, \mu\\ -\\ 2e, \mu(SS)\\ 2e, \mu\\ 2\gamma\\ 2e, \mu\\ 2\gamma\\ 2e, \mu\\ 2z, \end{array}$		Yes - - - - Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mo 5.25 TeV n = 2 Ms 4.7 TeV n = 3 HLZ Mth 5.2 TeV n = 6 Mth 5.82 TeV n = 6, Mo = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mo = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mo = 3 TeV, non-rot BH Grave mass 2.68 TeV k/Mp = 0.1 Grave mass 740 GeV k/Mp = 0.1 W' mass 760 GeV k/Mp = 1.0 W' mass 500-720 GeV k/Mp = 1.0 Krk mass 960 GeV 2.2 TeV Z' mass 2.02 TeV BR = 0.925	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.09988 1405.4123 1504.05511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605 1405.4123 1509.07177
CI Gauge boson	$\begin{array}{l} \text{SSM } \mathcal{W}' \to \ell \nu \\ \text{EGM } \mathcal{W}' \to WZ \to \ell \nu \ell' \ell' \\ \text{EGM } \mathcal{W}' \to WZ \to qq\ell\ell \\ \text{EGM } \mathcal{W}' \to WZ \to qqqq \\ \text{HVT } \mathcal{W}' \to WH \to \ell \nu bb \\ \text{LRSM } \mathcal{W}_R^{R} \to t\bar{b} \\ \text{LRSM } \mathcal{W}_R^{R} \to t\bar{b} \end{array}$	1 e, μ 3 e, μ 2 e, μ - 1 e, μ 1 e, μ 0 e, μ - 2 e, μ	 2j/1J 2J 2b 2b,0-1j ≥1b,1J 2j 	- Yes - - Yes Yes - -	19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.34.1.5 TeV W' mass 1.34.1.5 TeV W' mass 1.34.1.5 TeV W' mass 1.34.1.5 TeV W' mass 1.32 TeV W' mass 1.92 TeV W' mass 1.76 TeV Λ 12.0 TeV Λ 21.6 TeV	1405.77494 1406.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886 1504.00357 1407.2410
MO	Cl uutt EFT D5 operator (Dirac)	2 e, μ (SS) 0 e, μ	$\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ j}$	Yes Yes	20.3 20.3	Λ 4.3 TeV $ C_{LL} = 1$ M. 974 GeV at 90% CL for $m(\chi) < 100$ GeV M. 974 GeV at 90% (CL for $m(\chi) < 100$ GeV	1504.04605 1502.01518
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	- - Yes	20.3 20.3 20.3 20.3	LQ mass 1.05 TeV $\beta = 1$ LQ mass 1.0 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	Preliminary Preliminary Preliminary
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ		Yes Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass 855 GeV T in (T,B) doublet Y mass 770 GeV Y in (B,Y) doublet B mass 735 GeV isospin singlet B mass 755 GeV B in (B,Y) doublet T _{5/3} mass 840 GeV B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W, vZ$	1 γ 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j 1 b, 2 j or 1 j –	- Yes -	20.3 20.3 4.7 13.0 20.3	q* mass 3.5 TeV only u* and d*, $\Lambda = m(q^*)$ q* mass 4.09 TeV only u* and d*, $\Lambda = m(q^*)$ b* mass 870 GeV left-handed coupling t* mass 2.2 TeV $\Lambda = 2.2$ TeV v* mass 1.6 TeV $\Lambda = 1.6$ TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma 2 e, \mu 2 e, \mu (SS) 3 e, \mu, \tau 1 e, \mu $	2 j - - 1 b -	Yes Yes -	20.3 20.3 20.3 20.3 20.3 20.3 7.0	a_{T} mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 551 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monores 1.34 TeV 10 ⁻¹ 1	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary
						Mass scale [lev	1

*Only a selection of the available mass limits on new states or phenomena is shown.