Combined measurements of the Mass and Couplings Properties of the Higgs boson

&

Differential cross sections of the Higgs boson measured in the diphoton decay channel

using the ATLAS Detector

Florian U. Bernlochner

on behalf of the ATLAS Collaboration

University of Victoria, Canada

PASCOS 2013

November, 2013

Talk Overview

- i. Higgs Boson Production and decay
- ii. The ATLAS detector and the LHC
- iii. Combining Mass measurements from $H \rightarrow \gamma \gamma$ & $H \rightarrow ZZ^*$
- iv. Combining Coupling measurements for all search channels
- v. Differential Cross sections from $H \rightarrow \gamma \gamma$
- vi. Summary & Conclusions

[ATLAS-CONF-2013-014] [ATLAS-CONF-2013-034] [Phys. Lett. B 726 (2013) 88] [ATLAS-CONF-2013-072] Existence of Higgs field essential for mass generation of Weak vector bosons + quarks & leptons in Standard Model

Spontaneous symmetry breaking in Higgs Mechanism produces new scalar particle: the Higgs boson

In *pp* collisions Higgs Boson produces via $gg \rightarrow H$, VBF, *ZH*, *WH* & *ttH*

Cross section for various m_H at $\sqrt{s} = 8$ TeV:

i.b Higgs Boson Decay & Discovery

Higgs Boson decays after $10^{-10} - 10^{-13}$ ps into other SM particles

Branching fractions for Higgs decay:

Last year, 4th of July ATLAS and CMS announced discovery of new boson ↓ Couplings and spin (see talk of Roberto Di Nardo) seem compatible with SM Higgs boson

ii. ATLAS Detector & Large Hadron Collider

ATLAS is multipurpose detector

focus: Higgs, EW, BSM, B physics

Multilayered EM & Hadronic calorimeter

excellent Tracking & Muon detection

Very successful 2011& 2012 run:

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

ATLAS detector & arial picture of the LHC

iii.a Combining Mass measurements of $H \rightarrow \gamma \gamma$ & $H \rightarrow ZZ^*$

Two measurements w/ good mass resolution:

$$H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4\ell$$

Higgs Mass [GeV] $H \rightarrow \gamma \gamma \qquad H \rightarrow ZZ^* \rightarrow 4\ell$
 $126.8 \pm 0.2 \pm 0.7 \qquad 124.3 \pm 0.5 \pm 0.3$

First error is statistical, second systematic.

Can **combine both measurements** under the assumption of a single resonance:

 \downarrow

Profile likelihood for combination

$$\Lambda(m_H) = \frac{\mathcal{L}(m_H)}{\mathcal{L}(\widehat{m}_H)}$$

with the full likelihood contours from the individual measurements in $m_H \& \mu$, taking into account correlated systematics.

Diphoton and 4ℓ mass spectra

iii.b Combining Mass measurements from $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^*$

To test the consistency between both measurements a modified test statistic can be used.

$$\Delta m_H = m_H^{\gamma\gamma} - m_H^{4\ell}$$

 $\Delta m_H = 2.3^{+0.6}_{-0.7} \pm 0.6 \text{ GeV}$

Compatibility with Δm_H of the level of 1.5% (2.4 σ), tension between both measurements

Assuming non-gaussian uncertainties for the 3 principal systematic uncertainties ($Z \rightarrow ee$ calibration/extrapolation, material upstream & energy scale of presampler detector) improves compatibility to 8%.

100 250 150 200 300 m_T [GeV] Transverse mass $m_T = \left(\left(E_T^{\ell \ell} + E_T^{\text{miss}} \right)^2 - \left| \mathbf{p}_T^{\ell \ell} + \mathbf{E}_T^{\text{miss}} \right| \right)^{1/2}$ distributions for $H \to WW * \to \ell \nu \ell m_{\pi}$ [GeV]

assumption of a single resonance:

Signal strength combination from

Profile likelihood for combination

$$\Lambda(\mu) = rac{\mathcal{L}(\mu)}{\mathcal{L}(\widehat{\mu})}$$

 $H \rightarrow \gamma \gamma, H \rightarrow ZZ^* \rightarrow 4\ell, H \rightarrow WW * \rightarrow \ell \nu \ell \nu$

Coupling strength $\mu = \sigma^{\text{measured}} / \sigma^{\text{SM}}$

и

Evaluated at $m_H = 125.5 \text{ GeV}$

 $\begin{array}{ccc} H \rightarrow \gamma \gamma & H \rightarrow ZZ^* \rightarrow 4\ell & H \rightarrow WW^* \rightarrow \ell \nu \ell \nu \\ 1.6 \pm 0.3 & 1.4 \pm 0.4 & 1.0 \pm 0.3 \end{array}$

8/18

iv.b Combining Coupling measurements

Combined signal strength results for μ and $\mu_{VBF+VH}/\mu_{ggF+ttH}$:

Overall signal production strength: $\mu = 1.33^{+0.21}_{-0.18}$

Evidence for VBF+VH: $\mu_{VBF+VH}/\mu_{ggF+ttH} = 1.4^{+0.7}_{-0.5}$

iv.c Combining Coupling measurements

Projection in $\mu_{VBF+VH}-\mu_{ggF+ttH}$ plane:

iv.d Combining Coupling measurements

More detailed study on the Higgs coupling can be done via *leading order tree-level motivated* framework.

Assumptions:

- i. Single resonance at $m_H = 125.5 \text{ GeV}$
- ii. Narrow width approximation holds, i.e. rates of the process $i \rightarrow H \rightarrow f$ are given by

$$\sigma \cdot \mathcal{B} = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

with Γ_H the Higgs width, and Γ_f the partial width of the $H \to f$ transition, and σ_i the cross section for $i \to H$ production.

iii. No modifications in the tensor structure of the SM Lagrangian, i.e. Higgs is 0^+

Free parameters in the framework: coupling scale factors κ_j^2 ratio of measured over SM cross section times partial decay width , κ_H^2 the total Higgs width, or double ratios of the coupling scale factors $\lambda_{ij} = \kappa_i / \kappa_j$.

E.g. the effective couplings of $gg \to H \to \gamma\gamma$ can be written as

$$\frac{(\sigma \cdot \mathcal{B})^{\text{meas}}}{(\sigma \cdot \mathcal{B})^{\text{SM}}} = \frac{\kappa_g^2 \kappa_\gamma^2}{\kappa_H^2}$$

Variety of benchmark models with focus on different observables:

Model	Probed	Parameters of	Functional assumptions					Example: $gg \rightarrow H \rightarrow \gamma\gamma$		
	couplings	interest	κ_V	κ_F	ĸg	κγ	ĸ _H			
1	Couplings to	κ_V, κ_F			\checkmark	\checkmark		$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_H^2(\kappa_F,\kappa_V)$		
2	fermions and bosons	$\lambda_{FV}, \kappa_{VV}$	\checkmark	\checkmark	\checkmark	\checkmark	-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$		
3	Custodial symmetry	$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$	-	\checkmark	\checkmark	\checkmark	-	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$		
4	Custodiai Symmed y	$\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$	-	\checkmark	\checkmark	-	-	$\kappa^2_{ZZ} \cdot \lambda^2_{FZ} \cdot \lambda^2_{\gamma Z}$		
5	Vertex loops	κ_g, κ_γ	=1	=1	-	-	\checkmark	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g,\kappa_\gamma)$		

The ticks correspond to a certain fixed functional dependence - more details in backup

Model 1: One coupling factors for fermions and

one coupling factor for hospins: κ_F , κ_V **Model 2:** Removing the constraint on the Higgs boson width (i.e) that the massered partial widths have the saturate the total width) only the state on $\lambda_{FW} = \kappa_F / \kappa_V$ and $\kappa_{VV} = \kappa_V^2 / \hat{\kappa}_H$ can be measured.

 $\begin{array}{c|c} \mbox{Model 1} & \mbox{Model 2} \\ \kappa_F = 0.86^{+0.32}_{0.50,10} & \mbox{}_{0.5} \lambda_{FV} \in [10.7], 1201]_{3} & \mbox{}_{3.5} \\ \kappa_V = 1.12^{+0.10}_{-0.10} & \mbox{}_{VV} \in [1.13, 1.46]_{\rm er}{}^{\prime \mu}{}_{\rm optum} \end{array}$

Compatibility of SM with both model fits: 12%.

 $\lambda_{W_{2}} / 18$

iv.f Combining Coupling measurements

SM custodial symmetry: W & Z couple identically to Higgs , i.e. $\lambda_{WZ} = \kappa_W / \kappa_Z = 1$

Model 3 & 4: $H \rightarrow VV \& i \rightarrow H \rightarrow VV$

information; Model 4 also includes one degree of freedom for a potential BSM to $H\to\gamma\gamma$

 $\begin{array}{ll} \mbox{Model 3} & \mbox{Model 4} \\ \lambda_{WZ} = 0.81^{+0.16}_{-0.15} & \lambda_{WZ} = 0.82 \pm 0.15 \end{array}$

Compatibility of SM with Model 4: 20%.

Calculated using full 4D covariance between determined values.

Model 5: Result for $\kappa_g \& \kappa_\gamma$:

 $\kappa_g = 1.04 \pm 0.14$ $\kappa_\gamma = 1.20 \pm 0.15$

Compatibility of SM with fit: 14%.

Calculated using full 2D covariance between determined values.

Differential cross section measurements from $H\to\gamma\gamma$

Measured 7 variables: Higgs p_T and rapidity, $\cos \Theta^*$, N_{jets} , leading jet p_T , p_T^{H+jj} , $\Delta \phi_{jj}$

Higgs p_T , helicity angle, and N_{jets} compared with HRes, Powheg+Py8, HJ Minlo+Py8

Compatibility with SM predictions:

P-value based on χ^2 using full experimental + theory covariance

	Njets	$p_{\mathrm{T}}^{\gamma\gamma}$	$ y^{\gamma\gamma} $	$ \cos \theta^* $	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi_{jj}$	$p_{\mathrm{T}}^{\gamma\gamma jj}$
POWHEG	0.54	0.55	0.38	0.69	0.79	0.42	0.50
MINLO	0.44	-	-	0.67	0.73	0.45	0.49
HRES 1.0	-	0.39	0.44	-	-	-	-

- * Statistical limited at this point
- $\rightarrow\,$ Good agreement with SM predictions.

vi.a Summary & Conclusion

* Combination of precision mass measurement from $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^*$:

$$m_{H} = 125.5 \pm 0.2^{+0.5}_{-0.6} \,\, {
m GeV}$$

Seems to disfavor single Higgs-like boson; compatibility with a single resonance is 1.5% or a tension of 2.4σ between both masses is observed, maybe due to strong non-gaussian behavior of systematic uncertainties.

* Overall signal production strength combining $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$:

$$\mu = 1.33^{+0.21}_{-0.18}$$

Observed coupling compatible with SM Higgs

* VBF coupling strength from combination:

$$\mu_{\rm VBF}/\mu_{\rm ggF+ttH} = 1.4^{+0.4+0.6}_{-0.3-0.4}$$

 \rightarrow Evidence of 3.3 σ for VBF production of Higgs

17 / 18

vi.b Summary & Conclusion

* Results with leading order tree-level motivated framework:

Assumptions Single resonance, 0^+ , narrow width approx.

- * 5 models with focus on different observables:
 - 1/2 Couplings to Fermions & Bosons
 - 3/4 Custodial Symmetry
 - 5 Vertex loops
- Ϋ́ Addsdetermined coupplings 22 s = 7 TeV JLdt = 4.6-4.8 fb¹ COMPARTID Let with the SM 2 1.8 Combined H→γγ, ZZ*, WW* 95% CL (p-values ranging from 12-20%) 1.6 14 1.2 Differential cross section 1 **measurements** from $H \rightarrow \gamma \gamma$ 0.8 0.6 * 7 observables studied, e.g. Higgs
 - p_T and helicity angle
 - $\rightarrow~$ All measured distributions compatible with the SM.

Backup