The Next Generation B-Factories

Michael Roney University of Victoria

Lake Louise Winter Institute 22 February 2011

Physics Program

Super Flavour Factory Accelerators

The Detectors

Status

Physics program

Overview

- Use a broad set of measurements to observe physics beyond the Standard Model and to elucidate its nature.
- Precision measurements
 - new physics enter in loops
 - interference \Rightarrow asymmetries
- Rare/Forbidden (in SM) decays

Overview

- e⁺e⁻ collider with centre-of-mass near Y(4S)
 - just above threshold for B-meson pair production
 no fragmentation
- Luminosity 100x previous generation $e^+e^$ collider $\mathcal{L}=10^{34} \rightarrow 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$

⁻ 5-10 x 10¹⁰ b, c, τ pairs (50-100 ab⁻¹)

 Operate with asymmetric beam energies to give boost to CM allowing for time dependent CPV measurements

Overview

- Complements LHC program, both of ATLAS, CMS as well as LHCb
- LHCb is a 'current generation' B Factory
 - Limited by trigger to ~ 1fb⁻¹ per year
 - Submitted expression of interest in April 2008
 for an upgrade giving x10 as follow-up to a 10 fb⁻¹ sample
 LOI in preparation to upgrade after 5 fb⁻¹
- Focus this talk on 'Next Generation' e⁺e⁻ Super Flavour Factories

Flavour sector gives experimental basis for much of SM parameters that can be:

- determined experimentally with precision
- compared with reliable theoretical predictions

established major pillars of the Standard Model:

- the particle content
- the weak couplings
- the suppression of flavour-changing neutral current

and constrains Beyond-SM theories

e.g. Minimal Flavour Violation (?) when new physics is found at the LHC the flavour sector will continue to provide unique information on the nature of that new physics

CKM Matrix

In SM weak charged transitions mix quarks of different generations

Encoded in unitary CKM matrix

$$\begin{pmatrix} d' & s' & b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ub} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

quark transition

q_i

Unitarity \rightarrow 4 independent parameters, one of which is the complex phase and sole source of CP violation in SM

Wolfenstein parameterisation:

$$\mathbf{V}_{_{CKM}} = \begin{pmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\$$

CKM Unitarity Triangle

Physics beyond the SM signaled by breakdown of unitarity of CKM matrix Wolfenstein

9

CKM Matrix

Physics at Super Flavour Factories

- Test CKM at 1% level
 - CPV in B decays from new physics (non-CKM)
- B-recoil technique for B->K(*)ll, B->τν, B->D*τν
- τ physics: lepton flavour violations, g-2, EDM, CPV
- With polarised beam: Precision EW physics
- Many other topics:
 - Y(5S) physics, CPV in Charm, ISR radiative return, spectroscopy...
- Physics motivation is independent of LHC
 - If LHC finds NP, precision flavour input essential
 - If LHC finds no NP, high statistics B and τ decays are unique way of probing >TeV scale physics

B Physics at the $\Upsilon(4S)$

- A. New Physics in CP violation
 - 1. ΔS measurements
- B. Theoretical aspects of rare decays
 - 1. New physics in $B \to K^{(*)} \nu \bar{\nu}$ decays
 - 2. $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_s \ell^+ \ell^-$
 - 3. Angular analysis of $B \rightarrow K^* l^+ l^-$
 - 4. $\bar{B} \to X_d \gamma$ and $\bar{B} \to X_d \ell^+ \ell^-$
- C. Experimental aspects of rare decays
 - 1. $B \rightarrow K^{(*)}\nu\overline{\nu}$
 - 2. $B \rightarrow \ell \nu$ and $B \rightarrow \ell \nu \gamma$
 - 3. Experimental aspects of $\bar{B} \rightarrow X_s \gamma$
 - 4. Inclusive and exclusive $b \rightarrow s\ell^+\ell^-$
 - 5. More on $B \to X_{s/d} \ell^+ \ell^-$ with a hadron tag
- D. Determination of $|V_{ub}|$ and $|V_{cb}|$
 - 1. Inclusive Determination of $|V_{ub}|$
 - 2. Inclusive Determination of $|V_{cb}|$
- E. Studies in Mixing and CP Violation in Mixing
 - 1. Measurements of the mixing frequency and *CP* asymmetries
 - 2. New Physics in mixing
 - 3. Tests of CPT
- F. Why measure γ precisely (and how)?
- G. Charmless hadronic B decays
- H. Precision CKM

Super Flavour Factory Physics Program Summary

- *B* Physics at the $\Upsilon(5S)$
 - 1. Measurement of B_s Mixing Parameters
 - 2. Time Dependent *CP* Asymmetries at the $\Upsilon(5S)$
 - 3. Rare Radiative B_s Decays
 - 4. Measurement of $B_s \rightarrow \gamma \gamma$
 - 5. Phenomenological Implications

Electroweak neutral current measurements

Spectroscopy

- A. Introduction
- B. Light Mesons
- C. Charmonium
- D. Bottomonium
 - 1. Regular bottomonium
 - 2. Exotic bottomonium
- E. Interplay with other experiments

Direct Searches

- A. Light Higgs
- B. Invisible decays and Dark Matter
- C. Dark Forces

Super Flavour Factory Physics Program Summary

τ physics

- A. Lepton Flavor Violation in τ decay Predictions from New Physics models LFV in the MSSM LFV in other scenarios SuperB experimental reach
- B. CP Violation in τ decay
- C. Measurement of the τ electric dipole moment
- D. Measurement of the $\tau~g-2$
- E. Search for second-class currents

Charm Physics

A. On the Uniqueness of Charm

B. $D^0 - \overline{D}^0$ Oscillations

- 1. Experimental Status
- 2. Combination of measurements and CPV
- 3. Measurements of strong phases
- 4. Theoretical Interpretation
- 5. Measuring x_D and y_D at SuperB
- Projections for mixing measurements at SuperB
- Estimated sensitivity to CPV from mixing measurements
- C. CP Violation
 - 1. Generalities
 - 2. SM Expectations
 - 3. Experimental Landscape
 - Littlest Higgs Models with T Parity A Viable Non-ad-hoc Scenario
- D. Rare Decays
 - 1. $D^0 \rightarrow \mu^+ \mu^-, \gamma \gamma$
 - 2. $D \rightarrow l^+l^-X$
- E. Experimental possibilities for rare decay searches at SuperB
 - 1. $D \rightarrow l^+l^-X$
- F. A case for Running at the $D\bar{D}$ threshold?

Super Flavour Factory Physics Program Summary

Complementary with LHCb

	Belle or BaBar	SuperB or Belle II	LHCb
	~ 0.5 ab ⁻¹	50 ab⁻¹	$10 {\rm ~fb^{-1}}$
Δ <mark>S(</mark> φK _S)	0.22	0.029	0.14
ΔS(η'K _S)	0.11	0.020	
_{βs} from S(J/ψφ)			0.01
S (K*γ)	0.36	0.03	
S (ργ)	0.68	0.08	
$\Delta B/B(B \rightarrow \tau \nu)$	3.5σ	3%	
$B_s \rightarrow \mu\mu$	•	•	$5\sigma @ 6 \text{ fb}^{-1}$
$\tau \rightarrow \mu \gamma $ [×10 ⁻⁹]	<45	<8	
τ → μμμ [×10 ⁻⁹]	<209	<1	
α / ϕ_2	11 ⁰	1 ⁰	4.5°
γ / φ ₃	16°	2 ⁰	2.4°

Advantage:

LHCb

• Modes where the final states are charged only.

• Β_c, Λ_b

B factories

- Modes with $\gamma,\,\pi^0$.
- \bullet Modes with ν .
- τ decays.
- $K_{\rm S}$ vertex.

Fits - present situation

L. Silvestrini et al.

Is the fit showing some discrepancy ?

And also $BR(B_s \rightarrow \mu\mu) < 26 \times 10^{-9} @95\% \text{ prob.}$

17

NP probed using many measurements

TABLE XXIII: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY models from Ref. [416]. $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

	AC	RVV2	AKM	δLL	FBMSSM
$D^0 - ar{D}^0$	***	*	*	*	*
$S_{\psi\phi}$	***	***	***	*	*
$S_{\phi K_S}$	***	**	*	***	***
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*
$B_s ightarrow \mu^+ \mu^-$	***	***	***	***	***
$\tau ightarrow \mu \gamma$	***	***	*	***	***

Example 1) sin2 β from Gluonic Penguins

- SM CP asymmetry is $\sin_2\beta$, but new physics in loop with different phase will modify.
- Need to understand QCD effects.
 - calculations
 - many modes

Example 2) Flavour-changing Neutral Currents e.g. $B \rightarrow K^{(*)}\ell^+\ell^-$

- Forward/Backward asymmetry sensitive to new physics.
- Current measurements do not ^a/_q agree well with SM

Example 3) Rare Leptonic Decays

- $B^{\pm} \rightarrow \tau^{\pm} v \& B^{\pm} \rightarrow \mu^{\pm} v$ directly sensitive to charged higgs.
- important SM parameters V_{ub} and $f_{\rm B}.$

$$BF(B \rightarrow l\nu)_{SM} = \frac{G_F^2 m_B}{8\pi} (m_l^2) (1 - \frac{m_l^2}{m_B^2})^2 (f_B^2 | V_{ub} |^2) \tau_B \text{ the most accessible leptonic B decay}$$

$$BF(B \rightarrow \tau \nu)_{SM} = [1.20 \pm 0.25] \times 10^{-4} \qquad |V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3}$$

$$From \text{ inclusive semileptonic B decays}$$

$B^+ \rightarrow \tau^+ v_{\tau}$ Sensitive to charged Higgs

$B^+ \rightarrow \tau^+ v_{\tau}$ Experimental method

J.M. Roney - non-CP Heavy Flavour

Reconstruct event to select B⁻ events from background...

Reconstruct B_{tag} in hadronic mode:

24

....and look for excess of missing energy associated with the neutrino

$B^+ \rightarrow \tau^+ v_{\tau}$ Current Results

Results consistent within uncertainties, but all above the SM prediction

 $r_H = 1.37 \pm 0.39$

¹ HFAG, <u>http://www.slac.stanford.edu/xorg/hfag</u> ² $|V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3}$ HFAG ICHEP08 $f_B = 190 \pm 13 \text{MeV}$ HPQCD arXiv:0902.1815

$B^+ \rightarrow \tau^+ v_{\tau}$ Current Results

Alternative approach (within SM): extract $BF(B \rightarrow \tau v_{\tau})$ from CKM fit using other flavour observables

output of the CKM fit w/o BF($B \rightarrow \tau \nu$) in the input

$B^+ \rightarrow \tau^+ v_{\tau}$ Current Results

28

Limit on Charged Higgs from $B^+ \rightarrow \tau^+ v_{\tau}$ with 50ab⁻¹ at Super Flavour Factories

Example 4) Lepton Flavour Violation

• e.g.
$$\tau^{\pm} \rightarrow \mu^{\pm} \gamma$$
 or $\tau^{\pm} \rightarrow \ell^{\pm} \ell^{\mp} \ell^{\pm}$

• Polarization helps suppress backgrounds, mainly $e^+e^- \rightarrow \gamma_{ISR} \tau^+\tau^$ and identify nature of signal if observed

	Process	Expected	3σ evidence
	Trocess	$90\%{\rm CL}$ upper limit	reach
SuperB, 75 ab^{-1}	$\mathcal{B}(\tau \to \mu \gamma)$	2.4×10^{-9}	5.4×10^{-9}
	$\mathcal{B}(\tau \rightarrow e \gamma)$	$3.0 imes 10^{-9}$	$6.8 imes 10^{-9}$
	$\mathcal{B}(\tau \to \ell \ell \ell)$	$2.3 - 8.2 \times 10^{-10}$	$1.2{-}4.0\times10^{-9}$

cf 90% cl Limits on B($\tau \rightarrow \mu\gamma$): <4.5x10⁻⁸ (Belle) <4.4x10⁻⁸ (BaBar) 30

Example 5) Polarized Beam provide an impressive Precision EW Program at SuperB

 Measure the difference between cross sections with left-handed beam electrons and right-handed beam electrons

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \propto g_V^f = T_3^f - Q_f \sin^2 \theta_W$$

Driven by $\gamma - Z$ interference at $\sqrt{s} = 10.58$ GeV

 same type of measurement as performed by SLD at the Z

$e^+e^- \rightarrow \mu^+\mu^- \ (a) \ \int s = 10.58 GeV$ Diagrams $Cross Section A_{FB} A_{FB} A_{LR} (Pol = 100\%)$

0.0028

-0.00051

 $\sigma_{ALR} = 5 \times 10^{-6} \rightarrow \sigma_{(sin 2\theta eff)} = 0.00018$

 $|Z+\gamma|^2$

(nb)

1.01

cf SLC $A_{LR} \sigma_{(sin2\theta eff)} = 0.00026$

relative stat. error of 1.1% (pol=80%) require <~0.5% systematic error on beam polarisation polarized beam provide measurement of sin²Θw(eff) of using muon pairs of comparable precision to that obtained by SLD, except at 10.58GeV.

- Similar measurement can be made with taus and charm
- Test neutral current universality at high precision
- Because it depends on gamma-Z interference it is sensitive to Z'
- Measure NC Z-b-bbar vector coupling with higher precision and different systematic errors than determined at LEP with A_{FB}^b and at high precision

So what about Z-b-bbar couplings?

- hep-ph/9512424 (Bernabeu, Botella, Vives)
 - γ-Z interferometry at the Phi factory
 - Assuming only resonance production
 - Same arguments for $\phi \rightarrow Y(4S)$

$$A_{LR} = -\frac{6}{\sqrt{2}} \left(\frac{G_F M_{Y(4S)}^2}{4\pi\alpha} \right) g_A^e g_V^b \langle Pol \rangle$$

$$Q_{b} = -1/3; \stackrel{e}{\underset{CA}{\circ}} = 0.5$$

$$\langle Pol \rangle = 80\%; A_{LR} \sim -0.01$$

1 billion reconstructed Y(4S) decays gives A_{LR} to 0.3% stat. Currently value:

$$g_V^b = -0.3220 \pm 0.0077(2.4\%)$$

- Measurable for all $B^0 \overline{B}{}^0$ and $B^+ B^-$ final states, both resonant and continuum.
- All QCD corrections included in the single form factor that cancels in the asymmetry.
- Very clean measurement, no large theoretical corrections (in progress...)

Z-b-bar

• note: if A_{FB}^{b} is omitted from the SM fit $M_{Higgs} = 76 \pm {}^{54}_{33}$ GeV low mass Higgs is strongly preferred

SM expectation & LEP J.M. Roney, Victoria Measurement of g_V^b

• SM: -0.34372 +0.00049-.00028

SM expectation & LEP JM. Roney, Victoria Measurement of g_V^b

- SM: -0.34372 +0.00049-.00028
- A_{FB}^b: -0.3220±0.0077

with 1.0% polarization systematic error and 0.3% statistical error gives SuperB error of ±0.0032

At SuperB no QCD corrections

- At LEP QCD corrections were required hadronization effects, hard gluons, etc
- We think it was done properly at LEP with correctly assessed systematic uncertainties, but...
- An advantage at SuperB over a high energy machine, e.g. Z-factory, is that these corrections do not exist: we are coupling to pseudoscalars with no hadronization

Super Flavour Factory Accelerators

Overview

- Next generation Flavour-physics facility. Primarily will operate at the $\Upsilon(4S)$ (\rightarrow BB), but with ability to run on $\Upsilon(1, 2, \text{ or } 3S)$ and above the $\Upsilon(4s)$ and for SuperB at charm threshold.
- Asymmetry e⁺e⁻ collider with luminosity ~100× PEP-II/KEKB, 10³⁶cm⁻²s⁻¹, but with comparable beam currents and power.

• somewhat lower asymmetry, $\beta \gamma = 0.28$ vs 0.56

 For SuperB e- (low energy) beam will be longitudinally polarized ~80%

e+e- Colliders... luminosity vs c.m. energy

Colliders... luminosity trends

How to get to $\mathcal{L}=10^{36}$ cm⁻²s⁻¹ ...

$$\mathcal{L} = \frac{N^+ N^- f_c}{4\pi\sigma_y \sqrt{\left(\sigma_z \tan\theta/2\right)^2 + \sigma_x^2}}$$

- f_c frequency of bunch on bunch collisions
- N^{\pm} the number of e^{\pm} per bunch
- σ_x horizontal rms bunch size (in bending plane)
- σ_y vertical rms bunch size
- σ_z rms bunch length (longitudinal)
- θ crossing angle between beams at IP

reminder of some alternating-gradiant synchrotron features:

 $x(s) = A\sqrt{\beta(s)}\cos(\psi(s) + \delta)$

- *x* transverse motion of beam particles
- *s* path length of particles in beam direction
- $d\psi/ds = 1/\beta$ determines phase advance
- A,δ constants of integration

Motion developing with *s* traces out an ellipse in $\{x, x' \equiv dx/ds\}$ phase space. πA = Area of ellipse = emittance in case of ensemble of particles. For Gaussian in both $\{x, x'\}$, define emittance in terms of rms spread of beam: σ_x

$$\varepsilon_x = \pi \frac{\sigma_x^2}{\beta_x}$$
; similarly for vertical direction: $\varepsilon_y = \pi \frac{\sigma_y^2}{\beta_y}$

This definition of emittance includes 39% of the beam (1-Sigma in 2D)

Higher luminosity would normally require

head - on collisions:
$$\mathcal{L} = \frac{N^+ N^- f_c}{4\sqrt{\varepsilon_x \beta_x^* \varepsilon_y \beta_y^*}}$$

PEP-II designed with head-on collisions: required complex IR with magnets inside detector

KEKB designed with ±11mrad crossing angle installed Crab cavities, ran from Feb 2007

 $\mathbf{48}$

Recall...

... bunch in one beam acts as nonlinear lens to a particle in other beam.

Changes particle's transverse oscillation tune (no. oscillations in closed orbit). In ensemble, there is a range of tune shifts,

characterised by beam - beam tune shifts by parameters ξ_y and ξ_x .

For beams colliding at a large angle θ in vertical direction and ~ head - on in horizontal direction :

$$\mathcal{L} \propto \frac{N\xi_y}{\beta_y}$$
$$\xi_y \propto \frac{N\sqrt{\beta_y}}{\sigma_x\sqrt{1+\phi^2}}; \text{ where } \phi = \frac{\sigma_z}{\sigma_x} \tan\left(\frac{\theta}{2}\right) \approx \frac{\sigma_z}{\sigma_x} \frac{\theta}{2} \text{ is the "Piwinski angle"}$$

What about the bunch length?

RF in the *s* direction gives longitudinal oscillations Describe longitudinal motion in terms of $\{z, \delta p / p\}$ where :

z distance the particle leads the "ideal" along design trajectory

 $\delta p/p$ energy spread

RF frequency determines the bunch length σ_z

"Hour Glass Effect" If $\sigma_z \gg \beta^*$ generally \mathcal{L} drops because $\beta(s) \approx \beta^* \times (s/s@IP - 1)^2$ near IP resulting in particles with $|z| \gg 0$ contributing less to \mathcal{L} But higher \mathcal{L} needs small β^* so Hour Glass Effect drives shorter bunch lengths Hour glass effect drives shorter bunches, but there are troubles with shorter bunch length

- problems of Higher Order Mode heating serious operational issue
- coherent synchrotron radiation of short bunches (additional energy losses & instabilities)
- excessive power consumption

Original Super B Factory designs from SLAC and KEK dating to 2001...

$$\mathcal{L} = \frac{N^+ N^- f_c}{4\sqrt{\varepsilon_x \beta_x^* \varepsilon_y \beta_y^*}}$$

Try to get to $10^{36} \text{ cm}^{-2} \text{s}^{-1}$ by :

- reducing β_y^* but limited by hour glass effect
- use crab cavities
- \bullet increase number of particles per bunch $N^{\scriptscriptstyle -}$ and N^+

Can reach $\mathcal{L} \sim 5-7 \ge 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ Requires ~100MW of wall power (cf 22MW PEP-II)

Original SuperKEKB design...

- shorten bunches from $\sigma_z = 6.5 \text{mm} \rightarrow 3 \text{mm}$
- \Rightarrow allows β^* to decrease
- decrease ε
- increase beam currents $I^- \times I^+ = 1.2A \times 1.6A \rightarrow 9.4A \times 4.1A$

High currents \Rightarrow High wall plug power \Rightarrow high operating costs

Still didn't reach $\mathcal{L} = 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

SuperKEKB design changed SuperB nanobeam design

How to get to $\mathcal{L}=10^{36}$ cm⁻²s⁻¹ ...

J. Seeman, HEPAP, May 2009

- •Crossing angle IR with large Piwinski angle (DAΦNE, KEKB)
- •Very low IR vertical and horizontal beta functions (ILC)
- •Low horizontal and vertical emittances (Light sources)
- •Ampere beam currents (PEP-II, KEKB)
- •Crab waist scheme (Frascati, DAΦNE)

Crab Waist with large Piwinski Angle

Crab waist scheme with large Piwinski angle $\phi \approx \frac{\sigma_z}{\sigma_x} \frac{\theta}{2} >> 1$

 \Rightarrow decrease horizontal rms σ_x and increase crossing angle θ

 \Rightarrow Overlap area of colliding beams decreases $\propto \frac{\sigma_x}{\theta}$

If β_{y}^{*} is comparable to overlap scale

then $\beta_y^* \approx \frac{\sigma_x}{\theta} << \sigma_z$ and we get small β_y^* without small $\sigma_z!$

Crab waist Proven at DAONE

•DA Φ NE e+e- collider at Frascati with Ecm @ Φ (1020 MeV) •Upgraded to test crab waist scheme

•Crab Waist effectiveness successfully demonstrated in working collider •Gains of ~ factor of 3 in luminosty

	DAΦNE (KLOE run)	DA ΦNE Upgrade
l _{bunch} (mA)	13	13
N _{bunch}	110	110
β _y * (cm)	1.8	0.85
β _x * (cm)	160	26
σ _y * (μm)	5.4 low curr	3.1
σ _x * (μm)	700	260
σ _z (mm)	25	20
Horizontal tune shift	0.04	0.008
Vertical tune shift	0.04	0.055
θ _{cross} (mrad) (half)	12.5	25
Φ _{Piwinski}	0.45	2.0
L (cm ⁻² s ⁻¹)	1.5x10 ³²	>5x10 ³²

Crab waist Proven at DAONE

•DAΦNE e+e- collider at Frascati with Ecm @ Φ (1020 MeV)
•Upgraded to test crab waist scheme
•Crab Waist effectiveness successfully demonstrated in working collider
•Gains of ~ factor of 3 in luminosty

Italian SuperB Collider

Tor Vergata

• U. Rome Campus near Frascati

other option is Frascati lab site

Parameters

		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	Tau/charm
LUMINOSITY	cm ⁻² s ⁻¹	1.00E+36		1.00E+36		1.00E+36		1.00E	+35	threshold
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.6	·
Circumference	m	1258,4		1258.4		1258.4		1258.4		running
X-Angle (full)	mrad	66		66		66		66		at 1035
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	Baseline +
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	other 2 options:
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	•Lower v-emittance
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16	•Higher currents
σ _x @ IP	μm	7.211	8.672	5.099	8.274	10.060	12.370	18.749	23.076	(twice bunches)
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σx	μm	11.4	33	8.0	85	15.9	944	29.7	32	
Σγ	μm	0.050		0.030		0.076		0.131		Baseline:
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	
σ∟ (full current)	mm	5	5	5	5	4.4	4.4	5	5	•Higher emittance
Beam current	mA	1892	2447	1460	1888	3094	4080	1365	1766	due to IBS
Buckets distance	#	2		2				1		A group ot the boom
lon gap	%	2		2		2		2		•Asymmetric dean
RF frequency	Hz	4.76E	+08	4.76E+08		4.76E+08		4.76E+08		currents
Harmonic number		1998		1998		1998		1998		
Number of bunches		978		978		1956		1956		
N. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10	_
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
Tune shift y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	RF power includes
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	SR and HOM
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166	
σ _E (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04	-
CM o _E	dE/E	5.00	-04	5.00	E-04	5.00	E-04	5.26E	-04	-
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	-
Total RF Power	MW	17.0	J8 🔪	12.	12	30.	48	3.1	1	

Polarization

- Polarization of one beam (LER) is included in SuperB design.
 - LER chosen because spin rotators scale in strength with energy.
- Longitudinal polarization times and short beam lifetimes indicate a need to inject vertically polarized electrons.
 - The plan is to use a polarized e- source similar to the SLAC SLC source.
- Spin rotators:
 - Solenoids (dipoles will require vertical bending causing unacceptable vertical emittance growth).
- Expected longitudinal polarization with symmetric geometry scheme at IP ~ 80%.
- Need polarimeter to measure longitudinal polarization. Would be nice to be able to measure the transverse polarization as well:
 - We could measure the spin depolarization resonances which would give us a good calibration of the LER beam energy

Italian SuperB Collider

Interaction Region

Estimates of Polarization Systematic errors...arXiv:1009.6178

Table 16.4: Systematic errors expected for the polarization measurement.

Item	δP/P
Laser Polarization	<0.1%
Background uncertainty	<0.25%
Linearity of phototube response	<0.25%
Uncertainty in dP (Difference between the luminosity weighted polarization and the	
Compton IP polarization. Includes uncertainties due to beam energy and direction	
uncertainties.)	<0.4%
Uncertainty in asymmetry analyzing power	~0.5%
Total Systematic Error	<1.0%

SuperB Luminosity Projections

Super-B Peak Luminosity versus Year

P. Krizan, CKM 2010

SuperKEKB - upgrade from KEKB

Machine design parameters

peremetere		KE	KB	SuperKEKB		unite
parameters	LER	HER	LER	HER	units	
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	5.0	nm
Emittance ratio	к	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	lb	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴ 8 x 10 ³⁵		10 ³⁵	cm ⁻² s ⁻¹	

- Small beam size & high current to increase luminosity
- Large crossing angle

M. Iwasaki, ICHEP 2010

Change beam energies to solve the problem of LER short lifetime

SuperKEKB Luminosity Projections

Y. Ohnishi
The Detectors

OPTIONS (below line)

SuperB Detector

- Reuse BaBar components: magnet, DIRC bars, barrel CsI calorimeter.
- Some issues:
 - New silicon; add Layer 0 with smaller beam pipe
 - Need new way to read out DIRC
 - Need new technology for forward calorimeter
 - Possible forward PID
 - Likely backward EMC

More details on SuperB Detector on Thursday

16:30 Drift Chamber Design Optimization Studies for SuperB, Darren SWERSKY

16:45 LYSO Forward Calorimeter, Alessandro ROSSI

17:15 Impact on the SuperB physics reach of the Vertex Detector configuration, Giulia CASAROSA

Belle II detector

 Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→20 kHz)
 Improved performance and hermeticity

Vertexing: 2 DEPFET pixel layres — 4 double-sided strip layers

> Tracking: small-cell drift chamber He-C₂H₆

Calorimetry:

faster readout

CsI(TI) (barrel)

pure Csl (endcaps)

Hadron identification: Time-of-Propagation detector (barrel) Aerogel RICH (forward)

 μ , K_I: Resistive Plate

scintillators (endcaps)

Chambers (barrel),

Particle identification Time-Of-Propagation counter Proximity focusing RICH

- TOP: reconstructs Cherenkov rings from 3D information from PMTs:
 x,y coordinates and time of photons propagation
- Proximity focusing RICH: measures Cherenkov angle.
 Inhomogeneous aerogel radiator to improve photon resolution
- $\hfill\square$ Improved K/ π separation in wide momentum range

More details on Belle-II and SuperKEKB on Thursday

16:00 Status and Plans for SuperKEKB and Belle II experiment, Hiroyuki NAKAYAMA

16:15 Physics prospects of SuperKEKB/Belle II experiment, Kurtis NISHIMURA

Status and outlook

Mer 14/04/2010

^{11 Sole} 24 ORB

Innovazione. Più spazio all'industria Gelmini aggiorna il piano nazionale

Eugenio Bruno

ROMA

Un acceleratore di particelle complementare a quello del Cern di Ginevra. Un network dei laboratori di nanotecnologia. Una «fabbrica del futuro» per rilanciare il manifatturiero. Uno studio approfondito nell'epigenetica. Sono alcuni dei «progetti bandiera» che il ministro dell'Istruzione Maristella Gelmini punta a inserire tra le priorità del programma nazionale della ricerca (Pnr) 2010-2012.

La lista degli interventi su cui il Miur vuole dirottare le prime risorse che il Pnr intercetterà contiene 14 voci. Fermo restando che da qui alla sua ufficializzazione potrebbe anche subire delle modifiche, l'elenco si pre-

Gli interventi

National Research Plan for 2010-2012 of the Italian Ministry of

SuperB flagship project

in the Italian

Education and Science

Progetto	Settore	(milioni)
Super B Factory	Fisica	650
Cosmo - Skymed II generation	Aerospazio	TANKA
Epigenomica	Medicina	N.D.
3N - Network nazionale delle nanotecnologie	Industria	300
Ritmare - Ricerca ita. per il mare	Industria	795
Sintonia - Sistema integrato di telecomunicazioni	Aerospazio	671
Ipi - Invecchiamento e pop. isolate	Medicina	90
Agro Alimentare	Agricoltura	100
L'ambito nucleare	Energia	53,5
Recupero e rilancio della Villa dei Papiri	Beni cluturali	20
Elettra-Fermi-Eurofel	Industria	191
Astri - Astrofisica con specchi a tecnologia replicante italiana	Aerospazio	
Controllo delle crisi nei sistemi complessi socio-economici	Economica	30
La fabbrica del futuro	Industria	30

SuperB Status (Ministerial approved press release, p1) The Italian Government Funds the Super-B Accelerator

🗰 Friday, 24 December 2010 10:02 🛛 📴 Media and press release »

The Ministry for Education, University and Research has decided to select the SuperB project conducted by the Italian National Institute of Nuclear Physics (INFN) as one of its "flagship projects" in Italy over the next few years and has delivered an initial funding for 2010 as a part of a multiannual funding program. Reconstructing the history of the Universe by researching the most infrequent events using high-precision technology. This is the INFN idea underlying the construction of SuperB, the particle accelerator based in Italy and with international involvement, which the Ministry for Education, University and Research has decided to sponsor and finance. A large interest has been expressed in many countries, meanwhile physicists from the United States, Germany, France, Russia, the United Kingdom, Israel, Canada, Norway, Spain, Poland are taking part to the design effort. The purpose of the project is to conduct top-level basic research, developing innovative techniques with an important impact in terms of technology and other research areas. In the words of the ministerial decree, "the project involves entities and Universities, as well as companies in various business sectors. It is expected to have a number of effects on relevant issues for the country, especially as regards the expansion of basic scientific perspectives and specific applications concerning particle detection, advanced simulation techniques, nanometre metrology, and others." Istituto Italiano di Tecnologia (IIT) is cooperating to the project with INFN. It will be in fact possible the use of the accelerator as a high brilliancy light source. The machine will be equipped with several photon channels, allowing the extension of scientific program to physics of matter and biotechnology.

The SuperB project basic assumption is that particle accelerators, smaller than the current "giants", operated at a low energy, can allow excellent scientific results complementary to the high energy frontier.

SuperB Status (Ministerial approved press release, p2)

The crucial element consists in getting particle beams, which are extremely compact, small size and versions to collide. SuperB is thus expected to increase by one hundred times compared to the current limit the same of reactions produced in the same unit of time in the laboratory. In this way, through the study of very rare processes, which cause the decay of particles that are already known, it should be possible to account for minute effects not mentioned in the theories.

The quantum leap by SuperB is based on ideas developed in Italy and tested by the accelerator division of the National Laboratories of INFN in Frascati using the machine called *Dafne*. More specifically, the intersection of the beams at an angle is one of the strengths of the project because it allows a set of particles to follow exactly the same path as those moving in the opposite direction.

The experiments and simulations conducted so far show that SuperB will be able to meet the demands of physics and to produce 1000 pairs of B mesons, the same number of lepton T pairs, and several thousands of D mesons for every second of its full-power operation.

SuperB is expected to have a technological impact in terms of:

- Biology
- · Chemistry and the environment
- Microelectronics
- · Diagnostics and medical applications
- Innovative materials
- Nanotechnologies
- Cultural heritage

CONTACT INFORMATION:

Prof. Roberto Petronzio INFN President Mob. +39335 356843

Umberto Dosselli INFN Vice pres. Mob. +39320 9232316

Romeo Bassoli INFN Communication Office Manager Tel +39066868162 Mob. +39328 6666766 romeo.bassoli@presid.infn.it vincenzo.napolano@presid.infn.it

SuperB Approval

- Italian parliament approved 19MEuro for the 2010 first year of the project in line with the proposed funding profile as proposed in INFN submission.
- Next 50MEuro to come in spring 2011
- Approved funding for construction in 5 years as presented and approved in the official INFN annually updated planning document
 - Aggressive plan with the funding for construction in five years; planning first collisions for physics in 2016
- Site selection decision by INFN to be made this winter Tor Vergata and Laboratori Nazionali di Frascati (LNF) favoured sites
- U.S. DOE contributing much of PEP-II and BaBar: negotiating details value at a couple of hundred million Euros

SuperB funding profile: INFN Piano Triennale 2010-12

Componenti Super B	Y1	Y2	Y3	¥4	Y5	Y6	Y7	Y8	Y9	Y10
Sviluppo Acceleratore (130 M€) Costruzione infrastrutture, Sviluppo	20	50	60							
damping rings, Sviluppo transfer lines, Messa in funzione linac, Damping lines transfer lines, Costruzione facility end-user										
Sviluppo Centri Calcolo (43 M€)	5	15	23							
Sviluppo progettazione costruzione centro di calcolo per analisi dati										
Completamento Acceleratore (126 M€)				42	42	42				
Installazione componenti negli archi acceleratore, Installazione zona di interazione, Messa in funzione acceleratore										
Utilizzo installazione (80 M€)							20	20	20	20
Costi operazione e manutenzione acceleratore										
Totale Infrastrutture tecniche	25	65	83	42	42	42	20	20	20	20
Overbeede INEN	2.2	50	7.5	20	20	20	10	4.0	10	10
(34.3 M€ equivalente al 9%)	2.3	5.9	7.5	3.0	3.0	3.0	1.0	1.0	1.0	1.0
Cofinanziamento INFN (150 M€)	15	15	15	15	15	15	15	15	15	15
Costo Totale del progetto (563.3 M€)	42.3	85.9	105.5	60.8	60.8	60.8	36.8	36.8	36.8	36.8

SuperKEKB Milestones this year

- 22 Jun. 2010: A budget of 10 Billion Yen announced
 - The MEXT, the Japanese Ministry that supervises KEK, has announced that it will appropriate a budget of 100 oku-yen (approx \$110M) over the next three years starting this Japanese fiscal year (JFY2010) for the high performance upgrade program of KEKB. This is part of the measures taken under the new "Very Advanced Research Support Program" of the Japanese government. ("KEKB upgrade plan has been approved", Press Release 23 Jun 2010; KEK web site)
- 30 Jun. 2010: KEKB operation was shut down, and KEKB upgrade started
- 24 Dec. 2010: SuperKEKB approved in FY2011 budget
 - The Cabinet of Japan announced the national budget plan of JFY2011 Feb 2011, where SuperKEKB upgrade was approved as requested by MEXT. This will be final decision of SuperKEKB after approval by the Japanese Diet. ("Green light from the Cabinet", M. Yamauchi to Belle II members)

SuperKEKB Construction Plan Feb 2011 (K. AKAI)

SuperKEKB Budget

- "Very Advanced Research Support Program"
 - MEXT has announced that it will appropriate 10 Billion Yen for three years (FY2010–12).
 - Among this, 7.5 Billion Yen was already appropriated in FY2010.
 - This budget is for upgrading LER vacuum system and LER magnet system.
- Other budgets
 - 21.4 Billion Yen for SuperKEKB construction is expected for FY2011-14.
 - Among this, approval of 4.06 Billion Yen for FY2011 was announced by the Cabinet.
 - They are for various accelerator components and facilities, including DR tunnel, buildings for DR and MR and cooling system.
- Total budget
 - Total construction budget is 31.4 Billion Yen (~ 270 MEuros)

• The operation budget is expected in FY2014 and later.

Summary

• Extremely broad and exciting physics program with sensitivity to new physics that is complementary to the LHC.

- Flexibility in ways that machines can achieve 100× luminosity with beam currents and power comparable to current facilities
- SuperB and SuperKEKB both approved

Additional slides

Three theory lectures at LLWI-2011 on Flavour:

Monday 21 Feb 08:30 Physics at Future B factories, Martin BENEKEThursday 24 Feb 08:30 Flavour Physics, Yosef NIRThursday 24 Feb 09:30 Quark Masses, Johann KüHN

Five contributed talks on Next Generation B-Factories (aka Heavy Flavour Factories) in Thursday 24 Feb afternoon session:

SuperKEKB/Belle II

16:00 Status and Plans for SuperKEKB and Belle II experiment, Hiroyuki NAKAYAMA 16:15 Physics prospects of SuperKEKB/Belle II experiment, Kurtis NISHIMURA

SuperB

16:30 Drift Chamber Design Optimization Studies for SuperB, Darren SWERSKY16:45 LYSO Forward Calorimeter, Alessandro ROSSI17:15 Impact on the SuperB physics reach of the Vertex Detector configuration, Giulia CASAROSA

In addition: 18 talks on heavy flavour from existing data – e⁺e⁻ colliders: BaBar, Belle, CLEO-c Hadron colliders: Do, CDF, LHCb, ATLAS, CMS

~1/3 of LLWI presentations are on heavy flavour topics

Recent publications from proponents of e^+e^- Super Flavour Factories

- SuperB 2010 Progress Reports:
 - Physics arXiv:1008.1541
 - Detector arXiv:1007.4241
 - Accelerator arXiv:1009.6178
- Physics at Super B Factory (Belle-II + theorists)
 arXiv:1002.5012

Uncertainty in x_D improves more than that of y_D

PDG 2010: HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)
Maximum beam energy (GeV)	e ⁻ : 8.33 (8.0 nominal) e ⁺ : 3.64 (3.5 nominal)	$e^{-}: 7-12$ (9.0 nominal) $e^{+}: 2.5-4$ (3.1 nominal) (nominal $E_{\rm cm} = 10.5 \text{ GeV}$)	$e^{-}: 4.2$ $e^{+}: 6.7$	$e^{-}: 7$ $e^{+}: 4$
Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	21083	12069 (design: 3000)	$1.0 imes 10^6$	$8 imes 10^5$
Time between collisions (μs)	0.00590 or 0.00786	0.0042	0.0042	0.004
Full crossing angle (μ rad)	$\pm 11000^{\dagger}$	0	± 33000	± 41500
Energy spread (units 10^{-3})	0.7	e^-/e^+ : 0.61/0.77	$e^-/e^+: 0.73/0.64$	$e^{-}/e^{+}: 0.58/0.84$
Bunch length (cm)	0.65	e^-/e^+ : 1.1/1.0	0.5	e^{-}/e^{+} : 0.5/0.6
Beam radius (μ m)	H: 124 (e ⁻), 117 (e ⁺) V: 0.94	H: 157 V: 4.7	H: 8 V: 0.04	e^- : 11 (H), 0.062 (V) e^+ : 10 (H), 0.048 (V)
Free space at interaction point (m)	+0.75/-0.58 (+300/-500) mrad cone	± 0.2 , $\pm 300 \text{ mrad cone}$	± 0.35	$e^-: +1.20/ - 1.28, e^+: +0.78/ - 0.73$ (+300/-500) mrad cone
Luminosity lifetime (hr)	continuous	continuous	continuous	continuous
Turn-around time (min)	continuous	continuous	continuous	continuous

PDG 2010: HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)	
Injection energy (GeV)	$e^{-}/e^{+}: 8/3.5$	2.5-12	$e^{-}/e^{+}: 4.2/6.7$	$e^{-}/e^{+}:7/4$	
Transverse emittance ($10^{-9}\pi$ rad-m)	e^{-} : 24 (57 [*]) (H), 0.61 (V) e^{+} : 18 (55 [*]) (H), 0.56 (V)	$e^-: 48 (H), 1.5 (V)$ $e^+: 24 (H), 1.5 (V)$	$e^{-}: 2.5 (H), 0.006 (V)$ $e^{+}: 2.0 (H), 0.005 (V)$	5 (H), 3 (V)	
β^* , amplitude function at interaction point (m)	e^{-} : 1.2 (0.27 [*]) (H), 0.0059 (V) e^{+} : 1.2 (0.23 [*]) (H), 0.0059 (V)	$e^-: 0.50 (H), 0.012 (V)$ $e^+: 0.50 (H), 0.012 (V)$	$e^-: 0.032 (H), 0.00021 (V)$ $e^+: 0.026 (H), 0.00025 (V)$	$e^-: 0.025 (H), 3 \times 10^{-4} (V)$ $e^+: 0.032 (H), 2.7 \times 10^{-4} (V)$	
Beam-beam tune shift per crossing (units 10^{-4})	e^- : 1020 (H), 900 (V) e^+ : 1270 (H), 1290 (V)	e^{-} : 703 (H), 498 (V) e^{+} : 510 (H), 727 (V)	20 (H), 950 (V)	e^{-} : 12 (H), 807 (V) e^{+} : 28 (H), 893 (V)	
RF frequency (MHz)	508.887	476	476	508.887	
Particles per bunch (units 10 ¹⁰)	e^-/e^+ : 4.7/6.4	e^-/e^+ : 5.2/8.0	e^-/e^+ : 5.1/6.5	e^-/e^+ : 6.53/9.04	
Bunches per ring per species	1585	1732	978	2500	
Average beam current per species (mA)	e^{-}/e^{+} : 1188/1637	e^{-}/e^{+} : 1960/3026	e^{-}/e^{+} : 1900/2400	e^-/e^+ : 2600/3600	

PDG 2010: HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)	
Beam polarization (%)	_	_	> 80	_	
Circumference or length (km)	3.016	2.2	1.258	3.016	
Interaction regions	1	1	1	1	
Magnetic length of dipole (m)	e^-/e^+ : 5.86/0.915	e^-/e^+ : 5.4/0.45	e^{-}/e^{+} : 0.9/5.4	e^-/e^+ : 5.9/4.0	
Length of standard cell (m)	$e^{-}/e^{+}:75.7/76.1$	15.2	40	e^-/e^+ : 75.7/76.1	
Phase advance per cell (deg)	450	e^{-}/e^{+} : 60/90	360 (V), 1080 (H)	450	
Dipoles in ring	$e^-/e^+: 116/112$	e^-/e^+ : 192/192	e^-/e^+ : 186/102	e^-/e^+ : 116/112	
Quadrupoles in ring	$e^{-}/e^{+}:452/452$	e^-/e^+ : 290/326	e^-/e^+ : 290/300	e^-/e^+ : 466/460	
Peak magnetic field (T)	$e^-/e^+: 0.25/0.72$	$e^-/e^+: 0.18/0.75$	$e^-/e^+: 0.52/0.25$	$e^-/e^+: 0.22/0.19$	

Italian SuperB Collider

Spin Rotator location for Beam Polarization

Figure 16.9: Layout of the Compton polarimeter.