Future Prospects at e+e- Machines

J. Michael Roney University of Victoria

7th International Workshop on the CKM Unitarity Triangle Cincinnati, Ohio 29 September 2012

Scope of Presentation:

Future prospects at BES-III and the BINP SuperB c/ τ

Physics Prospects and Status of Belle-II and SuperB

Future prospects at BES-III and the BINP SuperB c/ τ

UVic

BES-III Datasets and Future Plans

(Xiaoyan Shen)

• 2009: 106M ψ (2S) (4*CLEO-c ψ (2S) sample

225M J/ ψ 4*BESII J/ ψ sample

- 2010: 900 pb⁻¹ ψ(3770)
- 2011: 1800 pb⁻¹ ψ (3770) (3.5*CLEO-c ψ (3770) sample)

470 pb⁻¹ ψ(4040)

• 2012: tau mass, $\psi(2S)$: 0.4 billion, J/ ψ : 1 billion, R scan

Looking to the future...

2013: E_{CM}=4260 and 4360 MeV for "XYZ" studies, R scan

2014: E_{CM}=4170 MeV for D_s (~2.4 fb⁻¹)

2015-...? Additional 10 fb⁻¹ ψ(3770) data

BESIII is scheduled to run another 8-10 years from now

BINP Super c/t Factory (B. Shwartz, Tau2012 Nagoya)

Physics program:

- High statistic spectroscopy and search for exotics
 - Charm and charmonium spectroscopy
 - Spectroscopy of the highly excited Charmonium states (complementary to Bottomonium)
 - Light hadron spectroscopy in charmonium decays
- Precision charm physics
 - Precision charm \rightarrow precision CKM (strong phases, f_D , f_{Ds} , form-factors...)
 - Unique source of coherent D^o/D^obar states (D^o mixing, CPV in mixing, strong phases for φ₃ measurements at SuperB and LHC)
- Precision τ-physics with polarized beams
 - Lepton universality, Lorentz structure of τ-decay...
 - CP and T-violation in τ and Λ_c decays
 - LFV decays (τ->μγ)
 - Second class currents (with kinematical constraints at threshold)
- Two photon physics and light hadronic cross section via ISR

BINP Super c/t Factory (B. Shwartz, Tau2012 Nagoya) Technical specifications:

- Beam energy from 1.0 to 2.5 GeV
- Peak luminosity is 10³⁵ cm⁻²s⁻¹ at 2 GeV
- Electrons are polarized longitudinally at IP
- On-line energy monitoring (~5-10 x 10⁻⁵)

Main design features:

- Two rings with Crab Waist collision scheme and single interaction point
- Sub-mm beta-y at IP
- Preserving of damping parameters (by 4 SC wigglers) through the whole energy range to optimize the luminosity
- 5 Siberian snakes to obtain the longitudinally polarized electrons for the whole energy range
- Highly effective positron source (50 Hz top-up injection)
- Polarized electron source
- 2.5 GeV full energy linac

BINP Super c/t Factory (B. Shwartz, Tau2012 Nagoya)

Artistic view of future machine

Accelerator Complex200 MEuroDetector80 MEuroBuildings Construction and Site Utilities50 MEuro

Conceptual Design Report: 200 signatories from Germany, Israel, Italy, Slovenia, Russia

In 2012: project was included in top list of the 6 projects approved for further development by the Russian Governmental Commission on the Innovations and High Technologies

BINP Super c/t Factory (B. Shwartz, Tau2012 Nagoya) MOU between Cabibbo Lab and BINP

Source: CabibboLab/INFN Content: Press Release Date Issued: 11 September 2012

A major agreement was recently signed between the Nicola Cabibbo Laboratory Consortium (CLC) and the Budker Institute for Nuclear Physics (BINP) in Novosibirsk, Russia. The Memorandum of Understanding (MoU) will enable the joint development of projects for the construction of a SuperB Factory (B particles factory) in Rome and a SuperC-Tau Factory (C and tau particles factory) in Novosibirsk.

Physics Prospects and Status of Belle-II and SuperB

Specific talks in parallel sessions: WG II Tues Horii, Lindemann WG IV Sunday Finocchiaro WG V Monday Onuki WG VII Monday Branchini, Asner

Plus...

a host of presentations at this meeting in theory and experiment on what this exciting future holds

Physics Program

SuperKEKB and SuperB Accelerators

The Detectors

Status

Physics program

UVic

Overview

- e⁺e⁻ collider with centre-of-mass near Y(4S)
 - just above threshold for B-meson pair production
 no fragmentation
- Luminosity 100x previous generation $e^+e^$ collider $\mathcal{L}=10^{34} \rightarrow 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$

⁻ 5-10 x 10¹⁰ b, c, τ pairs (50-75 ab⁻¹)

• Operate with asymmetric beam energies to give boost to CM allowing for time dependent CPV measurements

Physics at e+e- Super Flavour Factories

- Test CKM at 1% level
 - CPV in B decays from new physics (non-CKM)
- B-recoil technique for B->K(*)ll, B->τν, B->D*τν
- τ physics: lepton flavour violations, g-2, EDM, CPV, V_{us}...
- Charm: mixing, CPV,...
- Many other topics:
 - Y(5S) physics, , ISR radiative return, spectroscopy, Dark Sector probe, low mass Higgs...
- With polarised beam: Precision EW physics
- Physics motivation is independent of LHC
 - If LHC finds NP, precision flavour input essential
 - If LHC finds no NP, high statistics B and τ decays are unique way of probing >TeV scale physics

Future Prospects at e+e- Machines

Experiment:	No Result	Moderately precise	Precise	Very precise
Theory:		Moderately clean	Clean, needs Lattice	Clean

Observable/mode	Current	LHCb (2017)	Super B (2022)	LHCb upgrade	Theory	
Luminosity	$\sim 1{\rm fb}^{-1}$	$5{\rm fb}^{-1}$	$75 \mathrm{ab}^{-1}$	$50{\rm fb}^{-1}$		
α						LHCb can only use ρπ
β from $b \to c\overline{c}s$						
$B_d \to J/\psi \pi^0$						β theory error B _d
$B_s \to J/\psi K_s^0$						β theory error B_s
γ						
$ V_{ub} $ inclusive						Need an e ⁺ e ⁻
$ V_{ub} $ exclusive						environment to do a
$ V_{cb} $ inclusive						precision measurement
$ V_{cb} $ exclusive						using semi-leptonic B
						decays.

LHCb

- Modes where the final states are charged only.
- B_s
- B_c , Λ_b
-

B factories

- Modes with γ, π^0 .
- \bullet Modes with ν .
- τ decays.
- $K_{\rm S}$ vertex.

Observable	Expected th.	Expected exp.	Facility
	accuracy	uncertainty	
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) [c\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
ϕ_2		1.5°	Belle II
ϕ_3	***	3°	LHCb
CPV			
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
$S(B_s \to \phi \phi)$	**	0.05	LHCb
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II
$S(B_s \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II
A_{SL}^d	***	0.001	LHCb
A ^s _{SL}	***	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
rare decays			
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II
$B(B \rightarrow D\tau\nu)$		3%	Belle II
$\mathcal{B}(B_d \rightarrow \mu\nu)$	**	6%	Belle II
$\mathcal{B}(B_s o \mu \mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \rightarrow K^{(*)}\nu\nu)$	***	30%	Belle II
$B(B \rightarrow s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)
$B(K \rightarrow \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
charm and τ			
$B(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
$ q/p _D$	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II

Belle II Collaboration comparisons with LHCb assuming integrated luminosities: Belle II: 50 ab⁻¹ LHCb: 10 fb⁻¹

17

Observable/mode	Current	LHCb	SuperB	Belle II	LHCb upgrade	theory	
	now	(2017)	(2021)	(2021)	(10 years of	now	
		$5{\rm fb}^{-1}$	$75 {\rm ab}^{-1}$	$50 {\rm ab^{-1}}$	running) 50fb^{-1}		
			τ Decays				
$\tau \rightarrow \mu \gamma ~(\times 10^{-9})$	< 44		< 2.4	< 5.0			
$\tau \rightarrow e \gamma ~(\times 10^{-9})$	< 33		< 3.0	< 3.7 (est.)			
$\tau \rightarrow \ell \ell \ell \; (\times 10^{-10})$	< 150 - 270	<244 a	< 2.3 - 8.2	< 10	< 24 ^b		
		B	_{u,d} Decays				
$BR(B \rightarrow \tau \nu) (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2	From
$BR(B \rightarrow \mu\nu) (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08	TIOM
$BR(B \rightarrow K^{*+}\nu\overline{\nu}) \ (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1	Meadow's et al
$BR(B \rightarrow K^+ \nu \overline{\nu}) (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5	
$BR(B \rightarrow X_s \gamma) (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23	arXiv:1109.5028v2
$A_{CP}(B \rightarrow X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		$\sim 10^{-6}$	
$B \rightarrow K^* \mu^+ \mu^-$ (events)	250°	8000	10-15k ^d	7-10k	100,000	-	
$BR(B \rightarrow K^* \mu^+ \mu^-) (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39	
$B \rightarrow K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-	
$BR(B \rightarrow K^{\bullet}e^+e^-) (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39	
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$	0.27 ± 0.14^{e}	f	0.040	0.03		-0.089 ± 0.020	
$B \rightarrow X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-	
$BR(B \rightarrow X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		0.08	0.10		1.59 ± 0.11	
$S \text{ in } B \rightarrow K_s^0 \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1	
$S \text{ in } B \rightarrow \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015	
$S \text{ in } B \rightarrow \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02	
		I	3, Decays				
$BR(B_s^0 \to \gamma \gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 - 0.3		0.4 - 1.0	
$A_{SL}^{s}(\times 10^{-3})$	$-7.87 \pm 1.96~^{i}$	j	4.	5. (est.)		0.02 ± 0.01	
		i	D Decays				
x	$(0.63 \pm 0.20\%$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 \ k}$	
y	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim~10^{-2}$ (see above).	
<i>YCP</i>	$(1.11 \pm 0.22)\%$	0.02%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).	
q/p	$(0.91 \pm 0.17)\%$	8.5%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).	
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	4.4	1.4	1.4	2.0	$\sim~10^{-3}$ (see above).	
	· · · · · · · · · · · · · · · · · · ·	Other p	orocesses De	cays	•		
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002	l		clean	J. Michael Koney

Observable/mode	Current	LHCb	SuperB	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5 {\rm fb}^{-1}$	$75 {\rm ab}^{-1}$	$50 {\rm ab^{-1}}$	$50 {\rm fb^{-1}}$	
α from $u\overline{u}d$	6.1°	5°ª	1°	1°	ь	$1-2^{\circ}$
β from $c\bar{c}s$ (S)	0.8° (0.020)	0.5° (0.008)	0.1° (0.002)	0.3° (0.007)	0.2° (0.003)	clean
S from $B_d \rightarrow J/\psi \pi^0$	0.21		0.014	0.021 (est.)		clean
S from $B_s \rightarrow J/\psi K_s^0$?			?	clean
γ from $B \rightarrow DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	1.2 (est.)		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
V _{ub} (exclusive) %	7.0		3.0%	5.0		dominant

From Meadow's et al arXiv:1109.5028v2

...there are a few 3σ effects in the flavour sector that can only be probed with e⁺e⁻machines

 $\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau} \otimes \overline{B} \rightarrow D^* \ell^- \overline{\nu}_{\ell} \cong Background$

Most recently: *BABAR*'s 3.4 σ evidence for an excess of B decays to D(*) τv compared to SM expectations BF($B \rightarrow D^{(*)} \tau v$)/BF($B \rightarrow D^{(*)} \ell v$)

Measure the ratios to minimize systematic errors

NB:this result kills Type II 2HDM

(see D. Lopes Pegna's talk on *BABAR*, D. Zander is showing the Belle result & S. Fajfer's on the theory in WG II Sun. am)

Future Prospects at e+e- Machines

Many physics channels best studied with e⁺e⁻ super flavour factories

a few from that long list...

Rare Leptonic Decays

•
$$B^{\pm} \rightarrow \tau^{\pm} \nu \& B^{\pm} \rightarrow \mu^{\pm} \nu$$
 directly sensitive to charged higgs.

 important SM parameters V_{ub} and f_B.

$$BF(B \rightarrow l\nu)_{SM} = \frac{G_F^2 m_B}{8\pi} (m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 (f_B^2 | V_{ub} |^2) \tau_B \text{ the most accessible leptonic B decay}$$

$$BF(B \rightarrow \tau \nu)_{SM} = [1.20 \pm 0.25] \times 10^{-4} \qquad |V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3}$$

$$From \text{ inclusive semileptonic B decay}$$

 $BF(B \rightarrow \mu \nu)_{SM} \sim 5 \times 10^{-7}$ will be measured to $\sim 5 - 6\%$ Measure $BF(B \rightarrow \tau \nu)_{SM} / BF(B \rightarrow \mu \nu)_{SM}$ removes $f_{B} | V_{\mu b} | \rightarrow$ search for new physics Future Prospects at e+e- Machines

J. Michael Roney

$B^+ \rightarrow \tau^+ v_{\tau}$ Sensitive to charged Higgs $r_{\!_H}$ W. S. Hou, PR D 48, 2342 (1993) possible large 2.5 $BF(B^+ \rightarrow l^+ \nu_l) = BF(B^+ \rightarrow l^+ \nu_l)_{SM} \langle r_H \rangle_{SM}$ BF effects - 0.01 2 $\varepsilon_0 \overline{100Ge}$ $m_B^2 \tan^2 \beta$ +0.01TYPE II 2HDM r_{H} $m_B^2 \tan^2 \beta$ 0.5 MSSM $1+\varepsilon_0 \tan\beta$ 0.15 0.2 0.25 0.3 0.35 0.4 0.05 0.1 SUSY loop corr. e.g. G. Isidori, arXiv:07010.5377 $\tan\beta/m_{H^{\pm}}$

Can use ratio of tau:mu BFs to remove common factors and systematics. Errors on ratio dominated by muon measurement ~5-6%

Lepton Flavour Violation

• e.g.
$$\tau^{\pm} \rightarrow \mu^{\pm} \gamma$$
 or $\tau^{\pm} \rightarrow \ell^{\pm} \ell^{\mp} \ell^{\pm}$

• Polarization helps suppress backgrounds, mainly $e^+e^- \rightarrow \gamma_{ISR} \tau^+\tau^$ and identify nature of signal if observed

$$\frac{\tau^{-}}{\tilde{\chi}^{-}} \frac{\tilde{\nu}}{\tilde{\chi}^{-}} \frac{\tilde{\chi}^{-}}{\tilde{\chi}^{-}} \gamma$$

 $\begin{array}{c} \text{SuperB, 75 ab}^{-1} \end{array} \begin{array}{c} \begin{array}{c} \text{Process} & \text{Expected} & 3\sigma \text{ evidence} \\ \hline 90\% \text{ CL upper limit} & \text{reach} \\ \hline \mathcal{B}(\tau \rightarrow \mu \gamma) & 2.4 \times 10^{-9} & 5.4 \times 10^{-9} \\ \mathcal{B}(\tau \rightarrow e \gamma) & 3.0 \times 10^{-9} & 6.8 \times 10^{-9} \\ \mathcal{B}(\tau \rightarrow \ell \ell \ell) & 2.3 - 8.2 \times 10^{-10} & 1.2 - 4.0 \times 10^{-9} \end{array} \end{array}$

cf 90% cl Limits on B($\tau \rightarrow \mu\gamma$): <4.5x10⁻⁸ (Belle) <4.4x10⁻⁸ (BaBar) _{J. Michael Roney}

G. Isidori - Symmetry Physics Implications

ESPP Open Symposium [Cracow, 10-12 Sep. 2011]

* The key role of LFV and EDMs

...and there is no doubt that if MEG will see a positive signal, then all other LFV searches would be extremely important to understand the nature of the effect.

SuperB polarised beam

- SuperB is the only e^+e^- high- \mathcal{L} B-factory with a polarised beam: has a unique, and rich, precision electroweak program
- Left-Right Asymmetries (A_{LR}) yield measurements of unprecedented • precision of the neutral current vector couplings (g_v) to each of five fermion flavours, f:
 - neutral current vector Recall: g_V^f gives θ_W in SM $\begin{cases} g_A^f = T_3^f \\ g_V^f = T_3^f 2Q_f \sin^2 \theta_W \end{cases}$ beauty (D) • charm (U)
 - tau
 - muon
 - electron

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \propto g_V^f = T_3^f - Q_f \sin^2 \theta_W$$

Driven by $\gamma - Z$ interference at $\sqrt{s} = 10.58$ GeV Similar to SLD's measurement at the Z pole

SuperB polarised beam

Fermion flavour	0 (nb) eff %	Number Selected events (billions)	SM gvf (Mz)	A _{LR} 70% Pol	g <u>v^f</u> Total Error (%)	Sin²θ _w (M _z) Total Error
beauty	1.1 (95%)	38	-0.3437 ± .0001	-0.013	0.5	0.0026
charm	1.3 (30%)	29	+0.1920 ±.0002	-0.003	0.5	0.00076
tau	0.92 (25%)	17	-0.0371 ±.0003	-3x10 ⁻⁴	2.3	0.00043
muon	1.15 (54%)	46	-0.0371 ±.0003	-3x10 ⁻⁴	1.5	0.00027

26

SuperB polarised beam Comparisons with present neutral current vector coupling uncertainties Physics Report Vol 427, Nos 5-6 (2006), ALEPH, OPAL, L3, DELPHI, SLD

c-quark: SuperB ~7 times more precise **b-quark:** SuperB ~5 times more precise

SuperB polarised beam

Existing tension in data from the Z-Pole:

Physics Report Vol 427, Nos 5-6 (2006) ALEPH, OPAL, L3, DELPHI, SLD

For a 125GeV Higgs,

 $\begin{array}{l} g_{Vb} \hspace{0.2cm} 2.8\sigma \hspace{0.2cm} from \hspace{0.2cm} SM \\ g_{Ab} \hspace{0.2cm} 3.1\sigma \hspace{0.2cm} from \hspace{0.2cm} SM \end{array}$

 $g_{Rb} = (g_{Vb} - g_{Ab})/2 \text{ is } 3\sigma \text{ from SM}$ SuperB is the only facility in foreseeable future that will be able to experimentally address this 3σ deviation

Super Flavour Factory Accelerators

Colliders... luminosity trends

How to get to $\mathcal{L}=10^{36}$ cm⁻²s⁻¹ ...

J. Seeman, HEPAP, May 2009

•Crossing angle IR with large Piwinski angle (DAΦNE, KEKB)

•Very low IR vertical and horizontal beta functions (ILC)

- •Low horizontal and vertical emittances (Light sources)
- •Ampere beam currents (PEP-II, KEKB)

•Crab waist scheme (Frascati, DAΦNE) – SuperB only

34

0 1 1

SuperKEKB - upgrade from KEKB

Machine design parameters

noromotoro	KE	KB	Super	unito		
parameters		LER	.ER HER LER HER			
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	1	1	41	mrad	
Horizontal emittance	٤x	18	24	3.2	5.0	nm
Emittance ratio	к	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200	0/5.9	32/0.27	25/0.31	mm
Beam currents	lb	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξy	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x	10 ³⁴	8 x	cm ⁻² s ⁻¹	

- Small beam size & high current to increase luminosity
- Large crossing angle

Touschek worse at

Change beam energies to solve the problem of LER short lifetime lower energies

SuperB Parameters

		Base	Line	Low Emittance		High Current Tau/Charm (prelim.)			(prelim.)	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e ^{_j})	Michau/charm
LUMINOSITY	cm ⁻² s ⁻¹	1.00E	+36	1.00	E+36	1.00	E+36	1.00E	+35 R	iney threshold
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.6	thicshold
Circumference	m	1250	N4	125	8.4	125	i8.4	125	3.4	running
X-Angle (full)	mrad	66		6	6	6	6	66	5	at 1035
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	at 1000
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	Baseline +
β _v @IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	Dasenne i
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	other 2 options:
ɛ _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	•Lower v-emittance
ε _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16	•Higher currents
σ _x @ IP	μm	7.211	8.672	5.099	8.274	10.060	12.370	18.749	23.076	(twice bunches)
σ _y @IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σ _x	μm	11.4	33	8.0	85	15.	944	29.7	32	
Σν	μm	0.05	i0	0.0	30	0.076		0.131		Baseline :
σ _L (O current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	Tich on on itton oo
σ _L (full current)	mm	5	5	5	5	4.4	4.4	5	5	•Higher emittance
Beam current	mA	1892	2447	1460	1888	3094	4080	1365	1766	due to IBS
Buckets distance	#	2		2				1		
lon gap	%	2		2			2	2		•Asymmetric deam
RF frequency	Hz	4.76E	+08	4.76	+08	4.76	E+08	4.76E	+08	currents
Harmonic number		199	8	19	98	19	98	199	8	
Number of bunches		97	8	97	8	19	56	195	i6	-
N. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.3/E+10	-
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	-
Tune sniπ y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
Europy, user/turn	MoV	2.11	0.865	2.11	0.865	2 11	0.865	20.0	40.0	RF power includes
or (full current)	dE/E	6.43E.04	7.34F.04	6.43E.04	7.34F.04	6.43E.04	7.34F.04	6.94F.04	7.34F.04	SP and HOM
CM σ⊧	dE/E	5.00E	-04	5.00	E-04	5.00	E-04	5.26E-04		SK allu HUM
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	m
Total RF Power	MW	17.0	18	12.	72	30	.48	3.1	1	J. Michael Roney 👹
										UVic

Future Prospects at e+e- Machines

P. Krizan, CKM 2010

The Detectors

SuperB Detector

UVic

Drift Chamber with ionization "cluster counting" improves particle ID

Prototype in TRIUMF test beam with e^{+}, μ^{+}, π^{+} at 140–350 MeV/c. μ/π separation \approx SuperB π/K separation at 2-3 GeV/c, use TOF for independent beam particle ID

Drift Chamber with ionization "cluster counting" improves particle ID

Belle II Detector KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) **EM Calorimeter:** CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) **Particle Identification** Time-of-Propagation counter (barrel) electrons (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD positrons (4GeV) Central Drift Chamber $He(50\%):C_2H_6(50\%)$, small cells, long lever arm, fast electronics

Belle II Detector (in comparison with Belle)

Future Prospects at e+e- Machines

J. Michael Roney

Status and outlook

SuperB Status (Ministerial approval press release, Dec 2010) The Italian Government Funds the Super-B Accelerator

🗰 Friday, 24 December 2010 10:02 🛛 🔁 Media and press release »

8 🕹 🖾

The Ministry for Education, University and Research has decided to select the SuperB project conducted by the Italian National Institute of Nuclear Physics (INFN) as one of its "flagship projects" in Italy over the next few years and the definered an initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program initial funding for 2010 as a part of a multiannual funding program. Reconstructing the hard of the project program into the most infrequent events using high-precision technology. This is the INFN as a part of the design of the talian of figure interest has been expressed in the united states, Germany, France, Russia, the United Kingdom, Israel, Canada and Research, developing innovative techniques with an important impact in terms of technology and other research areas. In the words of the ministerial decree, "the project involves entities and Universities, as well as companies in various business sectors. It is expected to have a number of effects on relevant issues for the country, especially as regards the expansion of basic scientific perspectives and specific applications concerning particle detection, advanced simulation techniques, nanometre metrology, and others." Istituto Italiano di Tecnologia (IIT) is cooperating to the project with INFN. It will be in fac

The SuperB project basic assumption is that particle accelerators, smaller than the current "giants", operated at a low energy, can allow excellent scientific results complementary to the high energy frontier.

SuperB Status

- SuperB approved as the first in a list of 14 "flagship" projects within the Italian National Research Plan
- National Research Plan endorsed by "CIPE" (institution responsible for infrastructure long term plans)
- A financial allocation of 256 Million Euros over six years approved for the "SuperB Flavour Factory" (total cost and request ~twice that, assuming PEP-II equipment re-use)
- Cabibbo Lab created on Oct 7, 2011
 - Major step forward: first major particle physics accelerator lab to be created in a generation
 - legal structure needed in order to spend funds, sign MOUs
 - MOUs with various institutions and labs completed or nearing completion
 - most recently completed MOU with Budker Institute

SuperB Status

- SuperB Collaboration formally in place since March 2012
- Cabibbo Lab management in place April 2012
- First hires in May/June 2012
- International Review Committee set up by Italian Ministry of Science (MIUR) to examine the Cost and Schedule of the SuperB project
 - Committee received costing document in July 2012
 - Report of the committee expected this autumn
- Ministerial review for all Flagship projects in autumn 2012

SuperB Status - key milestones

- Site selection: summer 2011
- Machine and Detector TDR end 2012
- Start civil engineering 2013
- Start machine installation early 2014
- First collisions 2018

SuperKEKB/Belle II Status

Funding

•~100 MUS for machine approved in 2009 -- Very Advanced Research Support Program (FY2010-2012)

•Full approval by the Japanese government in December 2010; the project was finally in the JFY2011 budget as approved by the Japanese Diet end of March 2011

•Most of non-Japanese funding agencies have also already allocated sizable funds for the upgrade of the detector.

 \rightarrow construction started in 2010!

Fortunately little damage during the March 2011 earthquake \rightarrow no delay

•Ground breaking ceremony in November 2011

•SuperKEKB and Belle II construction proceeding according to the schedule.

1/3 of new dipole magnets have been installed in LER. (July 9, 2012)

Three magnets per day ! Total ~100

- Installing the 4 m LER dipole over the 6 m HER dipole (remain in place).
- All LER dipoles are scheduled to be installed this year.

Entirely new LER beam pipe with ante-chamber and Ti-N coating

Fabrication of the LER arc beam pipe section is completed

Future Prospects at e+e- Machines

Damping ring construction started in Jan 2012

UVic

Summary

- BES III: 2015- taking 10 fb⁻¹ ψ(3770); runs another 8-10yrs
- Promising developments for c/τ factory in Novosibirsk
- SuperB e⁺e⁻ flavour factories provide extremely broad and exciting physics program with sensitivity to new physics that is complementary to the LHC.
- Flexibility in ways that these machines can achieve 100× luminosity with beam currents and power comparable to current facilities
- SuperB is hosted in CabibboLab: world's newest HEP accelerator lab - Italian parliament approved funding for ~ first half; undergoing cost and schedule review now for the balance; ground breaking in 2013
- SuperKEKB received Japanese Diet approval for complete project in 2011, construction proceeding well!

Additional slides

0 UVic

SuperB funding profile: INFN Piano Triennale 2011-13

Componenti Super B	Y1	Y2	Y3	¥4	Y5	Y6	¥7	Y8	Y9	Y10
Sviluppo Acceleratore (130 M€)	20	50	60							
Costruzione infrastrutture, Sviluppo damping rings, Sviluppo transfer lines, Messa in funzione linac, Damping lines transfer lines, Costruzione facility end-user										
Sviluppo Centri Calcolo (43 M€)	5	15	23							
Sviluppo progettazione costruzione centro di calcolo per analisi dati										
Completamento Acceleratore (126 M€)				42	42	42				
Installazione componenti negli archi acceleratore, Installazione zona di interazione, Messa in funzione acceleratore										
Utilizzo installazione (80 M€)							20	20	20	20
Costi operazione e manutenzione acceleratore										
Totale Infrastrutture tecniche	25	65	83	42	42	42	20	20	20	20
(379 M€)										
Overheads INFN	2.3	5.9	7.5	3.8	3.8	3.8	1.8	1.8	1.8	1.8
(34.3 M€ equivalente al 9%)										
Cofinanziamento INFN (150 M€)	15	15	15	15	15	15	15	15	15	15
Costo Totale del progetto (563.3 M€)	42.3	85.9	105.5	60.8	60.8	60.8	36.8	36.8	36.8	36.8

B Physics at the $\Upsilon(4S)$

- A. New Physics in CP violation
 - 1. ΔS measurements
- B. Theoretical aspects of rare decays
 - 1. New physics in $B \to K^{(*)} \nu \bar{\nu}$ decays
 - 2. $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_s \ell^+ \ell^-$
 - 3. Angular analysis of $B \rightarrow K^* l^+ l^-$
 - 4. $\bar{B} \to X_d \gamma$ and $\bar{B} \to X_d \ell^+ \ell^-$
- C. Experimental aspects of rare decays
 - 1. $B \rightarrow K^{(*)}\nu\overline{\nu}$
 - 2. $B \rightarrow \ell \nu$ and $B \rightarrow \ell \nu \gamma$
 - 3. Experimental aspects of $\bar{B} \rightarrow X_s \gamma$
 - 4. Inclusive and exclusive $b \rightarrow s\ell^+\ell^-$
 - 5. More on $B \to X_{s/d} \ell^+ \ell^-$ with a hadron tag
- D. Determination of $|V_{ub}|$ and $|V_{cb}|$
 - 1. Inclusive Determination of $|V_{ub}|$
 - 2. Inclusive Determination of $|V_{cb}|$
- E. Studies in Mixing and CP Violation in Mixing
 - 1. Measurements of the mixing frequency and *CP* asymmetries
 - 2. New Physics in mixing
 - 3. Tests of CPT
- F. Why measure γ precisely (and how)?
- G. Charmless hadronic B decays
- H. Precision CKM

Super Flavour Factory Physics Program Summary

- *B* Physics at the $\Upsilon(5S)$
 - 1. Measurement of B_s Mixing Parameters
 - Time Dependent CP Asymmetries at the *Υ*(5S)
 - 3. Rare Radiative B_s Decays
 - 4. Measurement of $B_s \rightarrow \gamma \gamma$
 - 5. Phenomenological Implications

Electroweak neutral current measurements

Spectroscopy

- A. Introduction
- B. Light Mesons
- C. Charmonium
- D. Bottomonium
 - 1. Regular bottomonium
 - 2. Exotic bottomonium
- E. Interplay with other experiments

Direct Searches

- A. Light Higgs
- B. Invisible decays and Dark Matter
- C. Dark Forces

Super Flavour Factory Physics Program Summary

τ physics

- A. Lepton Flavor Violation in τ decay Predictions from New Physics models LFV in the MSSM LFV in other scenarios SuperB experimental reach
- B. CP Violation in τ decay
- C. Measurement of the τ electric dipole moment
- D. Measurement of the $\tau~g-2$
- E. Search for second-class currents

Charm Physics

A. On the Uniqueness of Charm

B. $D^0 - \overline{D}^0$ Oscillations

- 1. Experimental Status
- 2. Combination of measurements and CPV
- 3. Measurements of strong phases
- 4. Theoretical Interpretation
- 5. Measuring x_D and y_D at SuperB
- Projections for mixing measurements at SuperB
- Estimated sensitivity to CPV from mixing measurements
- C. CP Violation
 - 1. Generalities
 - 2. SM Expectations
 - 3. Experimental Landscape
 - Littlest Higgs Models with T Parity A Viable Non-ad-hoc Scenario
- D. Rare Decays
 - 1. $D^0 \rightarrow \mu^+ \mu^-, \gamma \gamma$
 - 2. $D \rightarrow l^+l^-X$
- E. Experimental possibilities for rare decay searches at SuperB 1. $D \rightarrow l^+l^-X$
- F. A case for Running at the $D\bar{D}$ threshold? Future Prospects at e+e- Machines

Super Flavour Factory Physics Program Summary

