

PHYSICS AND ASTRONOMY SEMINAR

Dr. John Kormendy

University of Texas at Austin, Department of Astronomy

"Structure and Formation of S0 and Spheroidal Galaxies"

Abstract

This talk emphasizes the importance of environmentally driven secular evolution of galaxies. I present observational evidence that Sph galaxies such as Fornax and NGC 205 are bulgeless S0 galaxies. Both are late-type galaxies that have been transformed into gas-free, "red and dead" galaxies by a variety of internal and environmental processes.

I update Sidney van den Bergh's parallel sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge to total light defines the position of a galaxy in this tuning fork diagram. This classification makes one major improvement. I extend the S0a-S0b-S0c sequence to spheroidal (Sph) galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural home for spheroidals, which once were thought to be low-surface-brightness ellipticals.

To motivate the juxtaposition of spheroidals and irregulars, I present photometry and bulge-disk decompositions of late-type S0s that bridge the gap between the more common S0b and Sph galaxies. Several S0s in the Virgo cluster have $B/T \le 0.1$. They are the S0cs that were missing from van den Bergh's paper.

I update the structural parameter correlations of Sph, spiral, irregular, and elliptical galaxies. This shows that spheroidals of increasing luminosity form a continuous sequence with the disks (but not bulges) of SOc-SOb-SOa galaxies. Remarkably, this Sph-SO-disk sequence is almost identical to that of irregular and spiral galaxies. I review the evidence for a variety of physical processes which transform gas-rich, star-forming S+Im galaxies into gas-poor SO+Sph galaxies.

Tuesday, November 3, 2015 3:00 p.m. Elliott Building Room 160