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1 Preliminaries

1.1 Sets

Questions:

1. Consider the sets A and B where:

A = {a ∈ Z | a = 2k, for some integer k},

B = {b ∈ Z | b = 2j − 2, for some integer j}.

Does A = B? If yes, prove it. If no, explain why not.

2. Consider the sets A = {1, 2, 3}, B = {x, y}, and C = {u, v}. Let P(A) denote

the powerset of A. Find each of the following:

(a) P(A ∪B)

(b) P(B × C)

(c) P(P(C))

(d) A× (B ∩ C)

(e) (A×B)× C

3. Prove the following: The empty set is a subset of every set.

4. Prove or disprove: For the arbitrary sets A,B, and C, knowing that A ⊆ B and

A ⊆ C implies that A ⊆ B ∩ C.
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5. Prove the following identity:

A× (B ∪ C) = (A×B) ∪ (A× C)

for arbitrary, nonempty sets, A,B and C.

6. Prove that for any three arbitrary sets, A, B, and C, if C ⊆ B − A, then

A ∩ C = ∅.

7. If the statement about powersets is true, prove it, or find a counterexample if

it is false. For all sets A and B,

(a) P(A ∪B) ⊆ P(A) ∪ P(B)

(b) P(A ∩B) = P(A) ∩ P(B)

(c) If A ⊆ B then P(A) ⊆ P(B)

8. Prove this statement of De Morgan’s Laws :

A ∩B = A ∪B.
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Solutions:

1. Yes, A = B. We will prove this by showing that A ⊆ B and B ⊆ A.

We begin by showing that A ⊆ B. Let a ∈ A, then we know that a = 2k

for some integer k. Letting k = j − 1, where j is an integer, we see that

a = 2(j − 1) = 2j − 2, so a ∈ B, hence A ⊆ B.

Now we show B ⊆ A. Let b ∈ B. This means that b = 2j − 2 for some integer

j. Picking j = k + 1, for some integer k, we can see that b = 2(k + 1) − 2 =

2k+2−2 = 2k, therefore b ∈ A. Thus B ⊆ A and we can conclude that A = B.

2. The powerset of any set is the collection of all possible subsets of that set. With

∅ representing the empty set.

(a) A ∪B = {1, 2, 3, x, y}.
P(A ∪ B) = {∅, {1}, {2}, {3}, {x}, {y}, {1, 2}, {1, 3}, {1, x}, {1, y}, {2, 3},
{2, x}, {2, y}, {3, x}, {3, y}, {x, y}, {1, 2, 3}, {1, 2, x}, {1, 2, y}, {1, 3, x}, {1, 3,
y}, {1, x, y}, {2, 3, x}, {2, 3, y}, {2, x, y}, {3, x, y}, {1, 2, 3, x}, {1, 2, 3, y}, {2, 3,
x, y}, {1, 3, x, y}, {1, 2, x, y}, A ∪B}.

(b) B × C = {(x, u), (x, v), (y, u), (y, v)}.
P(B × C) = {∅, {(x, u)}, {(x, v)}, {(y, u)}, {(y, v)}, {(x, u), (x, v)}, {(x, u),

(y, u)}, {(x, u), (y, v)}, {(x, v), (y, u)}, {(x, v), (y, v)}, {(y, u), (y, v)}, {(x, u),

(x, v), (y, v)}, {(x, u), (x, v), (y, v)}, {(x, u), (y, u), (y, v)}, {(x, v), (y, u), (y, v)},
B × C}.

(c) P(C) = {∅, {u}, {v}, C}
P(P(C)) = {∅, {∅}, {{u}}, {{v}}, {C}, {∅, {u}}, {∅, {v}}, {∅, C}, {{u}, {v}},
{{u}, C}, {{v}, C}, {∅, {u}, {v}}, {∅, {u}, C}, {∅, {v}, C}, {{u}, {v}, C}, {∅,
{u}, {v}, C}}.
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(d) B ∩ C = ∅.
A× (B ∩ C) = A× ∅ = ∅.
Note: The Cartesian product of any set with the empty set is always the

empty set.

(e) A×B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}.
(A × B) × C = {((1, x), u), ((1, y), u), ((2, x), u), ((2, y), u), ((3, x), u), ((3,

y), u), ((1, x), v), ((1, y), v), ((2, x), v), ((2, y), v), ((3, x), v), ((3, y), v)}.

3. Suppose for contradiction that the empty set, ∅, is not a subset of some ar-

bitrary set, S. Then there exists some element in ∅ that is not in S, but by

definition there are no elements in ∅, a contradiction. Therefore ∅ is a subset of

every set.

4. The statement is true, so we must prove it.

Let x ∈ A, then x ∈ B (since A ⊆ B) and x ∈ C (since A ⊆ B). x is in both B

and C, thus x ∈ B ∩C. We picked x to be an arbitrary element of A therefore

A ⊆ B ∩ C.

5. To prove this we will show A × (B ∪ C) ⊆ (A × B) ∪ (A × C) and then (A ×
B) ∪ (A× C) ⊆ A× (B ∪ C).

We begin with A× (B∪C) ⊆ (A×B)∪ (A×C). Suppose (x, y) ∈ A× (B∪C),

certainly x ∈ A, with y ∈ B or, inclusively, y ∈ C.

Case 1: Suppose y ∈ B. Then (x, y) ∈ (A × B), and certainly (x, y) ∈
(A×B) ∪ (A× C).

Case 2: Suppose y ∈ C. Then (x, y) ∈ (A × C), and certainly (x, y) ∈
(A×B) ∪ (A× C).

Now we will show that (A × B) ∪ (A × C) ⊆ A × (B ∪ C). Suppose that

(x, y) ∈ (A×B)∪(A×C). This means that either (x, y) ∈ A×B, or (inclusive)
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(x, y) ∈ A× C.

Case 1: Suppose (x, y) ∈ A×B. Then x ∈ A and y ∈ B. Certainly y ∈ B∪C,

thus (x, y) ∈ A× (B ∪ C).

Case 2: Suppose (x, y) ∈ A×C. Then x ∈ A and y ∈ C. Certainly y ∈ C ∪B,

thus (x, y) ∈ A× (C ∪B).

Since we have proved that both sets are subsets of each other, we may conclude

equality.

6. Suppose that C ⊆ B − A. This means for x ∈ C, that x ∈ B but x /∈ A. Then

no element in C is also in A which means that A ∩ C = ∅.

7. (a) False. Consider this counterexample: Let A = {1, 2} and B = {a, b}.
A ∪ B = {1, 2, a, b}. Certainly {1, 2, a, b} ∈ P(A ∪ B), but {1, 2, a, b} /∈
P(A) ∪ P(B).

(b) True. We will show that P(A∩B) ⊆ P(A)∩P(B) and then P(A)∩P(B) ⊆
P(A ∩B).

Suppose that X ∈ P(A ∩ B). This means that X ⊆ A ∩ B, hence X ⊆ A

and X ⊆ B. Then of course X ∈ P(A) and X ∈ P(B), so X ∈ P(A) ∩
P(B).

Suppose X ∈ P(A) ∩ P(B). This implies that X ∈ P(A) and X ∈ P(B),

and by definition, X ⊆ A and X ⊆ B. Then X ⊆ A∩B, so X ∈ P(A∩B).

Now we may conclude equality.

(c) True. Suppose that A ⊆ B. Let X ⊆ A, then X ∈ P(A). But since A ⊆ B

we also know that X ⊆ B hence X ∈ P(B). Therefore P(A) ⊆ P(B).

8. We will prove this statement by showing A ∩B ⊆ A ∪ B and then A ∪ B ⊆
A ∩B.
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Suppose that x ∈ A ∩B. This means x /∈ A ∩ B, so either x ∈ A and x /∈ B,

x /∈ A and x ∈ B, or x /∈ A and x /∈ B. In symbols this precisely means that

x ∈ A ∪B (draw a Venn-Diagram for yourself to clearly see this).

Now let x ∈ A ∪ B. So either x ∈ A or x ∈ B. If x ∈ A, then x /∈ A and

certainly x /∈ A ∩ B, so x ∈ A ∩B. If x ∈ B we know that x /∈ B, so of course

x /∈ B ∩ A. This means that x ∈ A ∩B.

We may now conclude equality of the sets and the identity has been proved.
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1.2 Relations and Graphs

Questions:

1. Given the relations, R, that are defined on the sets S, determine if R is reflexive,

symmetric, transitive, and/or antisymmetric. Explain your reasoning.

(a) Let S denote the set of all nonempty subsets of {a, b, c, d, e} and define

A R B to mean that A ∩B = ∅, for A,B ⊆ S.

(b) Let S be the set of all residents in Victoria, B.C., and x R y means that x

is a friend of y.

Note: Assume that friendship goes both ways (i.e. if x is a friend of y,

then y is a friend of x).

(c) Let S be the set of ordered pairs of real numbers with (x1, x2) R (y1, y2) if

and only if x1 = y1 and x2 ≤ y2.

(d) Let Q be any nonempty set with S = P(Q). For all

X, Y ∈ S, X R Y if and only if X ⊆ Y .

2. Prove that the following relations, R, defined on the sets S are equivalence

relations. Describe the equivalence class of z ∈ S, and determine the number

of total equivalence classes of R.

(a) Let S be the set of all positive integers. Let x R y if and only if x and

y have the same largest prime divisor. Describe the equivalence class of

z = 11.

(b) Let S be the set of ordered pairs of real numbers and define (x1, x2) R

(y1, y2) if and only if x21 + x22 = y21 + y22. Describe the equivalence class of

z = (2, 5).

3. Draw a directed graph corresponding to the relation, R, on the set S = {1, 2, 3, 4, 5, 6}.

(a) x R y if and only if y divides x.
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(b) R = {(1, 2), (2, 3), (5, 4), (1, 1), (6, 1), (2, 5), (5, 2), (3, 3)}

4. Write an equivalence relation on the set S = {1, 2, 3, 4, 5, 6} that has the subsets

{1, 3, 6}, {2, 5}, and {4} as the partition of its equivalence classes.

5. Given the set S = {{1}, {2}, {3}, {4}, {1, 2}, {1, 5}, {3, 6}, {4, 6}, {0, 3, 6},
{1, 5, 8}, {0, 3, 4, 6}} and the relation, R, being the is a subset of relation. Draw

a Hasse Diagram for this partial order.

6. Let S be the set of all integers and x R y if and only if x ≡ y (mod 5). Is R a

partial order? Explain why or why not. If R is a partial order, draw its Hasse

diagram.

7. If S is a set with |S| = k, how many relations on S are:

(a) symmetric?

(b) antisymmetric?

Hint : Consider the k × k matrix, M . 1 in the ith row and jth column means

mi R mj, while 0 in the ith row and jth column denotes mi ��R mj. Count the

possibilities that will result in the matrix which represents the given relation.

8. Let S = N. If we define a R b to mean that b
a
∈ Z, is R antisymmetric?
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Solutions:

1. We will verify each property individually.

(a) Reflexive: No.

A ∩ A = A 6= ∅.

Symmetric: Yes.

If A ∩B = ∅, then B ∩ A = ∅ since A ∩B = B ∩ A.

Transitive: No.

{a} ∩ {b, c} = ∅ and {b, c} ∩ {a, d} = ∅, but {a} ∩ {a, d} = {a} 6= ∅.

Antisymmetric: No.

{a, b} ∩ {c, d} = ∅, but {c, d} ∩ {a, b} = ∅.

(b) Reflexive: Yes.

Technically everyone is a friend to themselves.

Note: Be a best friend to yourself, self love is essential!

Symmetric: Yes.

If x is a friend of y, then y is a friend of x.

Transitive: No.

Suppose that x is a friend of y and y is a friend of z, this does not guarantee

that x and z are friends.

Antisymmetric: No.

(c) Reflexive: Yes.

(x1, x2) (x1, x2) since x1 = x1 and x2 ≤ x2.

Symmetric: No.

(1, 2) R (1, 3) since 2 ≤ 3, but (1, 3) ��R (1, 2) as 3 � 2.

Transitive: Yes.

Suppose (x1, x2) R (y1, y2) and (y1, y2) R (z1, z2). This means that x1 = y1
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and y1 = z1, so x1 = z1. Also, x2 ≤ y2 and y2 ≤ z2, so x2 ≤ z2 hence

(x1, x2) R (z1, z2).

Antisymmetric: Yes.

If (x1, x2) R (y1, y2) and (y1, y2) R (x1, x2), x2 ≤ y2 and y2 ≤ x2, thus

x2 = y2, hence (x1, x2) = (y1, y2) .

(d) Reflexive: Yes.

X ⊆ X.

Symmetric: No.

If X ⊆ Y , then Y 6⊆ X unless X = Y (not necessarily the case).

Transitive: Yes.

Suppose that X ⊆ Y and Y ⊆ Z, then certainly X ⊆ Z.

Antisymmetric: Yes.

Suppose that X ⊆ Y and Y ⊆ X, then X = Y .

2. To prove that R is an equivalence relation we must show that R is reflexive,

symmetric and transitive.

(a) Reflexive: Yes.

A positive integer certainly has the same largest prime divisor as itself.

Symmetric: Yes.

If x has the same largest prime divisor as y, then y has the same largest

prime divisor as x.

Transitive: Yes.

Suppose that x and y share the same largest prime divisor, as well as y

and z. Then x and z share that largest prime divisor.

Therefore R is an equivalence relation.
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The equivalence class of z = 11 is [11] since 11 is prime. The other positive

integers in [11] are the positive integers whose largest prime divisor is 11.

The number of equivalence classes is equal to the cardinality of all the

prime numbers, which is infinite.

(b) Reflexive: Yes.

x21 + x22 = x21 + x22.

Symmetric: Yes.

Suppose that x21 + x22 = y21 + y22, then of course y21 + y22 = x21 + x22.

Transitive: Yes.

Suppose x21 + x22 = y21 + y22 and y21 + y22 = z21 + z22 , then certainly x21 + x22 =

z21 + z22 .

Therefore R is an equivalence relation.

The equivalence class of z = (2, 5) is [29]. This equivalence class includes

all ordered pairs of real numbers such that x21 + x22 = 29.

There are infinitely many equivalence classes of R, one for each positive

real number that can be written as the sum of the squares of two real

numbers.
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3. Hint : We put an arrow from x to y if x R y.

(a)

1

23

4

5 6

(b)

1

23

4

5 6
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4. When determining this relation we must ensure that it is reflexive, symmetric

and transitive. Specifically every element in the same equivalence class must

have these properties with every other element in its equivalence class and with

no other elements.

R = {(1, 1), (3, 3), (6, 6), (1, 3), (3, 1), (1, 6), (6, 1), (3, 6), (6, 3), (2, 2), (5, 5), (2, 5),

(5, 2), (4, 4)}.

5.

{0,3,4,6} {1,5,8}

{0,3,6} {4,6} {1,5}

{3,6} {4}

{1,2}

{2}

{1}

6. A relation is a partial order if it is reflexive, transitive and antisymmetric,

therefore we will attempt verify these properties.

Reflexive: Yes.

x ≡ x (mod 5).

Transitive: Yes.

Suppose x ≡ y (mod 5) and y ≡ z (mod 5), certainly x ≡ z (mod 5).
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Antisymmetric: No.

0 ≡ 5 (mod 5) and 5 ≡ 0 (mod 5), but 0 6= 5.

Therefore R is not a partial order.

7. (a) 2k · 2 k2−k
2 = 2

k(k+1)
2 .

|M | = k2. There are k entries along the diagonal, which can have entry 0

or 1, 2k choices. For any entry in the lower triangle of M , it must match

in the corresponding upper triangle, therefore there are two choices, 1 or

0, for these k2−k
2

entries.

(b) 2k · 3
k(k−1)

2 .

There are 2k choices along the main diagonal. There are exactly three

disjoint possibilities for any entry, (mi,mj), for i 6= j. Either (mi,mj) is in

R, (mj,mi) is in R, or neither of (mj,mi), (mi,mj) is in R. Once the lower

half triangle, k2−k
2

entires, has been assigned values the upper half will

be designated accordingly. Thus there are three options for these entries

which gives us 3
k2−k

2 choices.

8. Suppose a
b
∈ Z and b

a
∈ Z. Since a, b ∈ N, the only way this is possible is if

a = b, hence R is antisymmetric.
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2 Graph Theory

2.1 Graphing Preliminaries

2.2 Definitions and Basic Properties

Questions:

1. Draw the following graphs and determine how many edges each has.

(a) K4

(b) K3,2

(c) K1,5

2. How many edges are in

(a) Kn?

(b) Km,n?

For some positive integers m,n.

3. If a graph has five vertices of degree 4 and four vertices of degree 3, how many

edges does it have?

4. Draw the following graphs, or explain they cannot exist.

(a) A graph with an isolated vertex and a universal vertex.

(b) A cubic graph of order 5.

(c) A bipartite graph of order 5 and size 7.

(d) A bipartite graph of order 8 and size 10.

5. Can a graph have K3 subgraph and be bipartite? Explain.

15



6. Let G be the following graph:

(a) Is the following a subgraph of G?

(b) Draw an induced subgraph of G with exactly 3 edges.

7. Draw a graph with K4 as an induced subgraph.

8. A graph has 26 vertices and 58 edges. There are five vertices of degree 4, six

vertices of degree 5, and seven vertices of degree 6. If the remaining vertices all

have the same degree, what is this degree?

9. A graph has 24 vertices and 30 edges. It has five vertices of degree 4, seven

pendant vertices, and seven vertices of degree 2. All other vertices have degree

3 or 4. How many vertices of degree 4 are there?

10. Use graph theory to explain why at any party an even number of people speak

to an odd number of people.
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11. Can there exist a graph on 13 vertices and 31 edges, with three vertices of de-

gree 1, and seven vertices of degree 4? Explain.

12. Is the subgraph of a bipartite graph also bipartite? Would that change if bi-

partite graphs required edge sets to be non-empty? Explain.

13. If a graph G has 15 edges and all vertices of the same degree d, what are the

possible values of d? Describe briefly each graph.

14. Given the following degree sequences either construct a graph with such a degree

sequence, or explain why this would be impossible.

(a) 1, 1, 1, 1, 1, 1

(b) 5, 4, 3, 2, 1

(c) 6, 6, 4, 2, 2, 2, 2, 1

15. How many (simple) graphs are there with exactly n vertices?

16. What is the maximum number of vertices on a graph that has 35 edges and

every vertex has degree ≥ 3?

17. Suppose all vertices in a graph, G, have odd degree, k. Prove k divides |E(G)|.

18. The compliment of a graph, G, of order n, denoted G, has the same vertex set

as G with E(G) = E(Kn) − E(G). If every vertex of G has an odd degree,

except for one, how many vertices have odd degree in G?
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19. Construct a graph on five vertices with six edges such that there are no three

pairwise adjacent vertices (i.e. no triangles).

20. Using graph theory, explain whether or not it is possible for each person, in a

group of 15 individuals, to have exactly three friends. (Assume that friendship

is a symmetric relation, i.e. friendship goes both ways.)

21. Does there exist a graph where the degree of each vertex is even? Explain

22. Prove that it is impossible for every vertex of a graph to have a different degree.

23. Prove that if G is a graph with n vertices and n edges with no vertices of degree

0 or 1, then the degree of every vertex is 2.
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Solutions:

1. (a)

K4 has 6 edges.

(b)

K2,3 = K3,2 has 6 edges.

(c)

K1,5 = K5,1 has 5 edges.

2. (a) (n−1)(n)
2

edges.

This can be seen using the Euler’s Theorem. Each vertex in a Kn graph
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has degree (n− 1). And so we have that:

n∑
i=1

(deg(vi)) = n · (n− 1) = 2 · |E|

Therefore, |E| = n·(n−1)
2

.

(b) m · n edges.

In a Kn,m graph, there are n vertices of degree m and m vertices of degree

n. Using the Euler’s Theorem we see:

2n ·m = 2|E|,

hence

n ·m = |E|.

3. Using Euler’s Theorem:

5 · 4 + 4 · 3 = 2|E|

|E| = 16.

4. (a) Impossible.

It is not possible to have a graph with a universal vertex and an isolated

vertex, as a universal vertex must be adjacent to all other vertices while

an isolated vertex cannot be adjacent to any vertices. The existence of one

contradicts the definition of the other.

(b) Impossible.
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By a corollary to Euler’s Theorem we know there must be an even number

of odd degree vertices.

(c) Impossible.

The only way to partition 5 vertices would either be with partite sets of

size 1 and 4, or partite sets of size 2 and 3. K1,4 has 1 · 4 = 4 edges, while

K2,3 has 2 · 3 = 6 edges. Neither complete bipartite graphs on 5 vertices

can have more than 6 edges, so 7 edges is not possible.

(d) There are several graphs with these properties, here is one:

5. A bipartite graph cannot have a K3 subgraph, as there would be three mutually

adjacent vertices in the graph, requiring three different partite sets, contradict-

ing that the graph is bipartite.

6. (a) No.

This graph is clearly bipartite so by question 5 we know K3 cannot be a

subgraph.

(b) Many such subgraphs of size 3 exist, such as:
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7. Many such graphs exist, such as K4 itself. One possible graph is:

8. There are 26− 5− 6− 7 = 8 vertices of degree x. Applying Euler’s Theorem:

5 · 4 + 6 · 5 + 7 · 6 + 8 · x = 2 · 58,

Rearranging we obtain x = 3. Thus the degree of the remaining eight vertices

is 3.

9. Let x be the number of vertices of degree 3, and y the number of vertices of

degree 4. The order of the graph is 24 therefore:

5 + 7 + 7 + x+ y = 24

Applying Euler’s Theorem:

5 · 4 + 7 · 1 + 7 · 2 + 3 · x+ 4 · y = 3 · 30
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We now have two equations with two unknowns and can solve this system of

equations. Isolating for x in the first equation, x = 5 − y, and substituting

it into the second equation, with some arithmetic we obtain y = 4. Therefore

there are exactly four vertices of degree 4.

10. This follows from Euler’s Theorem. Let us create a graph where each person is

represented by a vertex. We can represent two people ‘speaking’ by connecting

their respective vertices with an edge. Euler’s Theorem shows us that there

must be an even number of odd degree vertices in any graph (don’t forget that

zero is an even number). Thus, it follows that there must be an even number

of people at any party who speak to an odd number of people.

11. No.

By Euler’s Theorem, since this graph has 31 edges, the sum of its degrees must

be 62. There are 13 − 3 − 7 = 3 vertices with currently undetermined degree,

but we know that the sum of the degrees of these three vertices must equal

62 − 3 · 1 − 7 · 4 = 31. We are now left to determine three positive integers,

x1, x2, x3, who sum to 31, which represent the degrees of the undetermined

vertices.

We know that in any graph there must be an even number of odd vertices

(currently there is an odd number of odd degree vertices), thus either one or

three of these vertices will have an odd degree.

Case 1: Suppose that only one of the three remaining vertices has odd degree,

say x1, implying there are two vertices with even degree. We know that the

vertex of odd degree cannot be degree one or seven by the set up of the problem.

Case 1a: Suppose deg(x1) = 3, then 31 = 3 + x2 + x3 which implies that

one of the vertices of even degree will have degree ≥ 14. This is impossible

since the graph only has 13 vertices.
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Case 1b: Suppose deg(x1) = 5, then 31 = 5 + x2 + x3 which implies that

one of the vertices of even degree will have degree ≥ 13. This is impossible

given the order of the graph.

Case 1c: Suppose deg(x1) = 9 is, then 31 = 9 + x1 + x2 which implies that

deg(x2) = deg(x3) = 12. Then x2 and x3 are universal vertices, but if there

are two universal vertices it is impossible to have any vertices of degree one.

Case 2: Suppose that all three of the remaining vertices have odd degree. One

of these vertices will have degree at least b31
3
c = 11. Certainly no vertex of this

graph may be degree 13 since |V (G)| = 13. Thus one vertex must be degree 11,

say x1. We know that:

31 = 11 + x2 + x3,

20 = x2 + x3.

By this set up, x2, x3 ≤ 10, thus their only possible degrees are three, five and

nine. Neither combination of two of these numbers adds up to 20.

Therefore there is no possible way for a graph with these parameters to exist.

12. Yes the subgraph of any bipartite graph is also bipartite, just keep the same

partite sets, or some subset of them, in the subgraph. This answer does not

change if we require non-empty edges sets since then there is just limited vari-

ation on the possible partite sets.

13. This graph G has 15 edges, so the sum of the degrees of the vertices must be

30.

If d = 1, the graph has order 30 (disjoint union of 15 K ′2s).

If d = 2, the graph has order 15 (disjoint cycles Cm, Cn where n+m = 15).
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If d = 3, the graph has order 10.

If d = 5, the graph has order 6 (K6).

These are the only possible cases. Remember that we are looking at simple

graphs so multiple edges exist nor can vertices be self-adjacent.

14. (a) Consider three disconnected copies of K2:

(b) Impossible.

There are an odd number of vertices with even degree (there are other

valid arguments).

(c) Impossible.

Notice that this graph has seven vertices, two of which have degree 6. This

graph would have two universal vertices, which means that the minimum

degree of any vertex must be 2, which is not the case.

15. 2(n2) = 2
n(n−1)

2 .
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We know a complete graph has
(
n
2

)
edges, so we can consider counting the num-

ber of spanning subgraphs of Kn. We have the choice of including or excluding

each edge of Kn, two options for each edge.

16. n = 23.

The number of vertices will be maximized by minimizing the degree of the ver-

tices.

First we attempt to create a 3-regular graph. Let n be the number of vertices

of this graph, by Euler’s Theorem we see:

2 · 35 = 3n.

There is no integral solution for n, so this graph is not possible.

We next try a graph where every vertex, but one, is degree 3. We see:

70 = 3(n− 1) + 4,

Which rearranges to give us n = 23 ∈ Z+. Note that this means that there are

22 (an even number of) vertices of (odd) degree 3.

17. Suppose there are n vertices. By Euler’s Theorem,
∑n

i=1 deg(vi) = n · k =

2|E(G)|. We know n ∈ Z and 2|E(G)|
k
∈ Z, therefore k divides |E(G)|.

18. n− 1.

All vertices of G, except one, have odd degree. To guarantee there are an even

number of odd degree vertices, n must be odd.
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If the degree of a vertex in G is k, the degree of that same vertex in G is n−1−k.

n− 1 is certainly even as n is odd, therefore if k is odd, n− 1−k is odd as well.

The vertex in G of even degree will still have an even degree in G by the same

argument. Thus, there are also n− 1 vertices of odd degree in G.

19. There are many possible graphs, here is one:

20. Impossible.

Let each person represent a vertex where an edge between two vertices denotes

friendship. Suppose each person has exactly three friends, meaning that the

degree of every vertex is 3. Euler’s Theorem tells us that there must always be

an even number of odd degree vertices, this set up has an odd number of odd

vertices which is not possible.

21. Yes this is possible.

Kn, where n is odd, or any cycle are two such examples. (More exist, try to

find some more!)
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22. Suppose our graph has n vertices. First we must notice that if a graph has a

vertex of degree 0, an isolated vertex, then there is no vertex of degree n−1, an

universal vertex. Similarly a graph with a vertex of degree n− 1 cannot have a

vertex of degree 0. Therefore the degrees of the vertices of the given graph will

be a subset of either V1 = {0, 1, 2, ..., n− 2} or V2 = {1, 2, 3, ..., n− 1}. We can

see that |V1| = |V2| = n− 1, but there are n vertices we need to assign degrees

to, thus at least two of the vertices must share the same degree meaning it is

impossible for every vertex to have a different degree.

Note: This proof method uses the Pigeonhole Principle.

23. Let G be a graph with n vertices and n edges. By Euler’s Theorem we know,

n∑
i=1

deg(vi) = 2 · |E(G)| = 2n.

By assumption there are no vertices of degree 0 or 1, so δ(G) ≥ 2.

Suppose for contradiction that there is at least one vertex with degree more

than 2. By Euler’s Theorem we see:

n∑
i=1

deg(vi) ≥ 2(n− 1) + 3 > 2n,

a contradiction. Therefore we can conclude that the degree of every vertex must

be exactly 2.
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2.3 Isomorphisms

Questions:

1. In your own words, what does it mean for two graphs to be isomorphic?

2. If G1 and G2 are isomorphic graphs then they have the same number of ver-

tices, the same number of edges, and the same degree sequence. What is the

converse of this statement, and is it true or false? If true, prove it. If false, find

a counterexample.

3. Draw all non-isomorphic graphs with n vertices for

(a) n = 3

Hint : there are four such graphs.

(b) n = 4

Hint : there are 11 such graphs.

(c) n = 5 and connected

Hint : There are 21 such graphs

4. Show that every graph is isomorphic to the subgraph of some complete graph.

What is a necessary lower bound for the order of these complete graphs?

5. Prove that if two graphs are isomorphic, they must contain the same number

of triangles.
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6. Given the following two graphs, write an explicit isomorphism between them.

a

b c

d

e

f g

h m

np

q

rs

tu

7. Let the vertex set of a graph be the set of binary strings of length three. Edges

occur between vertices whose binary strings differ by exactly one digit. Show

that this graph is isomorphic to the graph formed by the corners and edges of

a cube.

8. True or False? If true, provide a brief proof. If false, provide a counterexample.

(a) If two graph have the same number of vertices with the same quantity and

of order cycles, then they are isomorphic.

(b) Two isomorphic graphs must have the same number of edges and vertices.

(c) Two isomorphic graphs always look exactly the same.

(d) Isomorphism is an equivalence relation on all graphs.

(e) The degree sequence of two isomorphic graphs must be the same.

(f) K3,2 is isomorphic to C5.

(g) K4,2 is isomorphic to K2,4.

(h) If G contains no cycles, all graphs isomorphic to G also have no cycles.
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9. Determine whether the following pairs of graphs are isomorphic. If they are

redraw one to look like the other, if not determine why.

(a)

a b

c d

e

f
1

23

4

5 6

(b)

a b c

d e

1

2 3

4 5

(c)

a b

c

d 1 2

3

4
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(d)

a

b

c d

e

1

2

3 4

5

(e)

a

b
c

d

e

f

g h

i

1

2
3

4

5

6

7 8

9

10. A self-complimentary graph is a graph whereG ∼= G. Construct a self-complementary

graph of order 8. Show the two graphs are isomorphic by drawing the comple-

ment to look the same as the original graph.
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Solutions:

1. Put simply, these two graphs have the same structure.

More formally, two graphs, G and H, are isomorphic if there exists a bijection

between V (G) and V (H), f : V (G) −→ V (H), where uv ∈ E(G) if and only if

f(u)f(v) ∈ E(H). Isomorphism is denoted: G ∼= H.

2. The converse of this statement is: ”If two graphs G1 and G2 have the same

number of vertices, same number of edges, and the same degree sequence, then

they are isomorphic”.

This statement is false. Here is one of many counter-examples:

The above two graphs have the same number of vertices, edges and identical

degree sequences, but are not isomorphic since the leftmost graph has no five

cycles, while the rightmost graph has two.
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3. (a)

(b)
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(c)

35



36



4. Consider a graph, G, with n vertices. G is certainly isomorphic to some span-

ning subgraph of Kn since E(G) ⊆ E(Kn), and V (G) = V (Kn). G is also a

subgraph, although not spanning, of Kk for k > n. Therefore G is isomorphic

to some subgraph of every complete graph on least n vertices.

5. We prove this using the definition of isomorphism; if two graphs G and H are

isomorphic, there exists a bijection, f : V (G) −→ V (H), between them that

maintains adjacencies.

Suppose that G has a triangle with vertices a, b, c. The mapping of these ver-

tices to H maintain that they are all pairwise adjacent, that is f(a), f(b), f(c)

forms a triangle in H. Thus, each triangle in G corresponds to a triangle in H.

Since an isomorphism is a bijection, it has an inverse. If a triangle with vertices

u, v, w exists in H, then f−1(u), f−1(v), f−1(w) form a triangle in G, as desired.
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6. The following is a bijection between the vertices that maintains adjacencies:

a −→ m

b −→ n

c −→ p

d −→ q

e −→ r

f −→ s

g −→ t

h −→ u

Note: There are multiple correct solutions. Verify yours is correct by following

the isomorphism and attempting to draw this graph in the same form as the

other.

7. This is best shown with an illustration:

111

011 001

101

110

010 000

100

Since we have been able to draw the graph representing the length three binary

strings, as outlined by the question, as a cube we may conclude that it is indeed

isomorphic to the corners and edges of a cube.
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8. (a) False.

Consider the following counterexample: P5 and the empty graph, K5. Both

have five vertices and no cycles but are clearly not isomorphic.

(b) True.

By definition, an isomorphism is a bijection, so certainly the sizes of the

vertex sets must be the same. An isomorphism also preserves adjacencies,

hence the number of edges of the two graphs are necessarily the same.

(c) False.

It is possible to draw a graph in multiple ways. The key to isomorphism

is that the structures are identical, not how they are drawn.

For example this is the same graph (hence isomorphic to itself) drawn in

two different ways: K2,2:

(d) True.

We show that an isomorphism function is an equivalence relation by prov-

ing the three properties of an equivalence relation individually.

Reflexive: Yes.
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Any graph is certainly isomorphic to itself, just let the isomorphism be the

identity function.

Symmetric: Yes.

Suppose G ∼= H, then there exists a mapping f : V (G) −→ V (H). By def-

inition, f is a bijection so there exists an inverse mapping, f−1 : V (H) −→
V (G), that maintains adjacencies, telling us that H ∼= G.

Transitive: Yes.

Let us consider three graphs G, H, I with G ∼= H and H ∼= I. We know

there exists a mapping from V (G) −→ V (H) that maintains adjacencies,

and similarly a mapping from V (H) −→ V (I). Composing these func-

tions we obtain the mapping: V (G) −→ V (H) −→ V (I) which maintains

adjacencies, hence G ∼= I.

(e) True.

If this were not true, then it would not be possible to create a bijection

that maintains every adjacency.

(f) False.

The degree sequences of these two graphs are different! Two vertices in

K3,2 have degree 3, while all vertices in C5 have degree 2.

(g) True.

These graphs are identical in structure.

(h) True.

Let G ∼= H. If H contains a cycle, in order to maintain all adjacencies in
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G, G would contain a cycle too.

9. (a) Non-isomorphic.

The degree sequences differ. The graph on the left has two vertices of

degree 3, while the graph on the right has four vertices of degree 3.

(b) Non-isomorphic.

The graph on the right contains a vertex of degree 4, while the graph on

the left does not.

(c) Isomorphic.

Here is the rightmost graph drawn in the form of the leftmost graph:

2 3

1

4

(d) Isomorphic.
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Here is the rightmost graph drawn in the form of the leftmost graph:

1

4

2 5

3

(e) Non-isomorphic.

The graph on the left has a triangle formed by vertices c, g, h while the

graph on the right is triangle-free.
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10. There are exactly ten self-complementary graphs of order 8. Below is one such

example (verify for yourself that these two graphs are indeed isomorphic):

G:

a

b

c

d

e

f

g

h

G:

f

a

d

g

b

e

h

c
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2.4 Eulerian Circuits

Questions:

1. In your own words, define an Eulerian circuit and an Eulerian trail.

2. Are the following graphs Eulerian? Does there exist an Eulerian trail?

Hint : Use the parity of the vertex degrees.

(a)

(b)
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(c)

(d)

(e)
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(f)

3. Suppose two graphs, G and H, are Eulerian. If an arbitrary vertex of G is made

adjacent to an arbitrary vertex in H, is the new graph Eulerian?

4. Explain how the Königsberg Bridge problem is directly related to the study of

Eulerian graphs.

5. Prove that there is a walk from vertex u to vertex v if and only if there is a uv

path.

Hint: Induction in one direction.

6. Find a graph of order 7 such that both G and G contain Eulerian circuits.

Hint : For every v ∈ V (G), degG(v) + degG(v) = 6.

7. Determine if each statement is true or false. If true, provide a brief proof. If

false, find a counterexample:

(a) Any graph in which all vertices have even degree contains an Eulerian

circuit.

(b) A closed walk contains a cycle.

(c) A graph with multiple components can contain a Eulerian cycle.
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(d) If a connected graph has n = 2k vertices, for some positive integer k, all

with odd degree, then there are k disjoint trails containing every edge.

8. For which integers m and n is Km,n Eulerian?

9. Is a Eulerian circuit necessarily a cycle? Prove or find a counterexample.

10. For which positive integers n does Kn have an

(a) Eulerian circuit?

(b) Eulerian trail?

11. If the following statement is true, prove it. If false, provide a counterexample.

All circuits of order n contain a cycle and any circuit that is not isomorphic to

Cn contains at least two cycles.

12. Define the relation, R, on the set of vertices of a graph, to be u R v if and only

if there exists a uv walk, where u, v ∈ V (G). Prove that R is an equivalence

relation on V (G).

13. Prove that at least one of G and G is connected.

14. Prove that if for a graph, G, of order 9 every pair of distinct vertices u, v ∈ V (G)

deg(v) + deg(u) ≥ 8 then G is connected.

15. If G is a connected graph on n vertices, what is the lower bound for the number

of edges G?
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16. Show if vertices u and v belong to a circuit of G that after the removal of any

arbitrary edge of this circuit a uv trail will remain in the graph.
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Solutions:

1. An Eulerian circuit is a trail that uses every edge exactly once and ends where

it began. A Eulerian trail is a trail that goes through every edge, but does not

necessarily end where it began.

2. (a) Neither an Eulerian circuit nor an Eulerian trail exist as there are more

than two vertices with odd degree.

(b) No Eulerian circuit exists but there exists an Eulerian trail as there are

exactly two odd degree vertices.

(c) Yes, there exists both a Eulerian circuit and a Eulerian trail as all vertices

are of degree 4, meaning all vertices are of even degree.

(d) Neither an Eulerian circuit nor an Eulerian trail exists as there are more

than two vertices with odd degree.

(e) Neither an Eulerian circuit nor an Eulerian trail exists as there are more

than two odd degree vertices.

(f) Neither an Eulerian circuit nor an Eulerian trail exists as there is only one

vertex with odd degree.

3. This new graph will not be Eulerian.

Both G and H are Eulerian so all of their vertices have even degree. Making

vertices from G and H adjacent will result in two odd degree vertices. There

will, however, exist a Eulerian trail.

4. Recall the Königsberg Bridge Problem: The city of Königsberg, Prussia, was

set on both sides of a river and included two large islands, all connected by
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seven bridges. Is there a way to walk through the city crossing every bridge

exactly once while finishing where you started?

Let the land masses represent the vertices of a graph and bridges the edges.

Solving the problem boils down to finding an Eulerian Circuit in the graph.

5. Assume there exists a path from u to v. By definition, every path is also a walk,

hence we have identified a uv walk.

Conversely, suppose there exists a walk from u to v. We will proceed by induc-

tion on the length, k, of the walk.

Base case: Consider a uv walk of length k = 1. No vertices are repeated, so

this walk is also a path.

Induction hypothesis: Assume for any uv walk of length ≤ k, for some

positive integer k, that there also exists a uv path.

Induction step: Consider a uv walk of length k + 1. If no vertices are re-

peated, then this walk is also a path and we are done. Let us assume instead

that there is a vertex repeated in this walk, call it x. Then our walk is of the

form: u...x...x...v. Consider the walk obtained from the first walk by removing

all edges travelled between the two x vertices. We now have a walk of length

≤ k, and so by our induction hypothesis there exists a uv path.
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6. We must find a connected graph with all even vertices such that its complement

also has even degree and is connected.

One possible solution:

7. (a) False.

This graph also must be connected with all vertices a non-zero, even degree.

Counterexample: Two disjoint K3’s. The degree of every vertex is even,

but there is no path that uses every edge exactly once.

(b) True.

From question 5, the existence of a uv walk implies the existence of a uv

path, so if there exists a closed uu walk, there exists a closed uu path,

which is a cycle.

(c) False.
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An Eulerian circuit requires crossing every edge exactly once, but if there

are no edges between the components of the graph, there is no way to

reach every edge.

Counterexample: Two disjiont K3’s.

(d) True.

Consider pairing off the vertices of the graph (which we can do since there

are an even number of them), and add an edge between each pair of ver-

tices. Now the degree of every vertex is even and there exists an Eulerian

circuit. Removing the edges between the vertex pairs leaves us with k

disjoint trails that contain all the edges.

8. Km,n is Eulerian if and only if m,n are both non-zero, even integers.

The m vertices in the first partite set have degree n, while the n vertices in the

second partite set all have degree m. Requiring both m,n to be even ensures

that all the vertices of the graph have even degree.

9. No, an Eulerian circuit is not necessarily a cycle.

Counterexample: K5 certainly has an Eulerian circuit however that circuit is

certainly not a cycle since vertices have been repeated.

10. (a) Any odd n.

The degree of every vertex will be n− 1, an even number.
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(b) For all odd values of n there will be a closed Eulerian trail (i.e. an Eulerian

circuit). The only open Eulerian trail occurs when n = 2.

11. True.

Let C = v0, v1, ..., vn, v0 be the vertices of the circuit in our graph (remember

that vertices may be repeated but not edges). If C has no repeated vertices it

is a cycle and we’re done.

Suppose that C has a repeated vertex, say vi, for some i = 1, ..., n. We use a

similar strategy as the induction step from the proof of question 5 and identify

the v0v0 path which is certainly a cycle. Now consider the part of our circuit

which starts and ends at the repeated vertex, vi (the part we ignored to form

the v0v0 path). If this sub-circuit contains a repeated vertex, repeat the same

process as above, if not then it is a cycle and we are done.

12. We show the three properties of an equivalence relation hold.

Reflexive: Yes.

Consider the trivial walk from a vertex to itself.

Symmetric: Yes.

Suppose there exists a uv walk, then follow it in the opposite direction to find

a vu walk.

Transitive: Yes.

Suppose there is a uv walk and a vz walk. Consider first following the uv walk

and then continuing to z by the vz walk. This is a uz walk, as desired.
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13. If G is connected then we are done.

Alternatively, suppose that G is disconnected (we’d like to show that G is con-

nected). Let u, v ∈ V (G). If uv /∈ V (G), then uv ∈ V (G) and hence there is a

uv path in G. If uv ∈ V (G) then certainly u and v are in the same component.

We know G is disconnected, so consider some vertex w in a different component

than u, v. Certainly uw,wv /∈ V (G), so uw,wv ∈ V (G), thus there is a uv path

in G.

Since u, v, w were arbitrary vertices of G, and a graph is connected if there

exists a uv path between all vertices u, v ∈ V (G), we may conclude that G is

connected, as desired.

14. Suppose for a contradiction that G is a disconnected graph of order 9 such

that for every pair of distinct vertices, u, v, deg(u) + deg(v) ≥ 8. Since G is

disconnected there must exist vertices, say x, y, such that no xy path exists

in G. If no xy path exists then certainly xy /∈ E(G) and x, y do not share

neighbours. Let deg(x) = k for some k = 0, ..., 8. Since y is not adjacent

to x and they share no neighbours, deg(y) ≤ 8 − k − 1. Together we have

deg(x) + deg(y) ≥ k + 8− k − 1 = 7, a contradiction.

Therefore our additional hypothesis that G was disconnected was false, hence

G is connected.

15. |E(G)| ≥ n− 1.

Proof: Consider Kn which has
(
n
2

)
= n(n−1)

2
edges. We want to remove as many

edges as possible without disconnecting the graph. We begin by removing n−2

edges from the first vertex, so the first vertex is now a pendant (degree 1) vertex.

Every other vertex of the graph is now adjacent to exactly n− 2 other vertices.
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We can now remove n − 3 edges from the next vertex, n − 4 from the next,

and so on. Hence the maximum number of edges that can be removed without

disconnecting the graph is:

(n− 2) + (n− 3) + ...+ 2 + 1 =
(n− 2)(n− 1)

2

Therefore the minimum number of edges required for the graph to be connected

is exactly:
(n)(n− 1)

2
− (n− 2)(n− 1)

2
= n− 1.

16. Recall that in any given circuit, there must exist two trails between any given

pair of vertices. This is because there are two distinct ways of going around the

circuit.

u v

Thus, removing any single edge cannot destroy both trails, as there is no com-

mon edge between them, hence there still exists a uv trail.
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2.5 Hamiltonian Cycles

Questions:

1. Explain the difference between an

(a) Eulerian circuit and a Hamiltonian cycle.

(b) Eulerian trail and a Hamiltonian path.

2. Which of the following graphs are Hamiltonian? If they are Hamiltonian identify

a Hamiltonian cycle. If they are not, explain briefly why.

(a)
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(b)

(c)
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(d)

(e)
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(f)

(g)

3. Recall that Dirac’s Theorem states: if a graph G has at least 3 vertices such

that every vertex has degree at least n
2
, then G is Hamiltonian. Show that

Dirac’s Theorem does not hold if the minimum degree requirement is reduced

to n−1
2

.
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4. Does there exist a graph that is both Eulerian and Hamiltonian? If so, find one.

If not, explain why this is impossible.

5. A group of n people are going out to dinner, where n ≡ 0 (mod 2) and n ≥ 3.

If every person going to dinner is friends with at least half the group, prove it

is possible to seat the friends around a circular table so each person is seated

next to two friends.

6. Let G be a graph with at least 3 vertices and
(
n−1
2

)
+ 2 edges. Prove that G is

Hamiltonian.

7. Determine if each statement is true or false. If true, provide a brief proof. If

false, find an explicit counterexample.

(a) A graph of order n ≥ 4 that contains a triangle cannot be Hamiltonian.

(b) Every Hamiltonian graph contains a Hamiltonian path.

(c) If there exists a Hamiltonian path between any two vertices in a graph,

then the graph is Hamiltonian.

8. Let G be a connected graph with 13 vertices and 76 edges. Show that G is

Hamiltonian. Is G also Eulerian? Explain.

9. For what integers m and n is Km,n Hamiltonian? Explain.

10. Prove that if a cycle that begins and ends at vertex v goes through the vertex

w, then there exists a cycle that begins and ends with the vertex w.
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11. Prove that if G is a connected bipartite graph, with a Hamiltonian path, the

orders of the partite sets differ by at most one.

12. Find a connected, cubic, non-Hamiltonian graph.

13. Show that any cubic graph of order 6 is Hamiltonian. Try to do this without

using Ore’s or Dirac’s Theorem.

Hint : There are only two cubic graphs of order six.

14. Consider a cube. Identify a Hamiltonian cycle in the graph formed by its edges

and vertices.
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Solutions:

1. (a) A Eulerian circuit is a circuit that uses every edge and vertex in the graph.

A Hamiltonian cycle is a cycle that uses every vertex. In a Eulerian circuit

it is possible to pass through some vertices multiple times while that is not

possible in a Hamiltonian cycle. Also, a Hamiltonian cycle may not visit

every edge while that is a requirement of a Eulerian circuit.

(b) A Eulerian trail is a trail that uses every edge and vertex. A Hamiltonian

path is a path that uses every vertex.

A Eulerian trail may visit the same vertex multiple times while a Hamil-

tonian path will not. A Hamiltonian path may not visit every edge in the

graph, while that is a requirement of Eulerian trail.

2. (a) This graph is not Hamiltonian. This is because removing either of the

vertices of degree 3 in the graph will disconnect it into two components.

In a Hamiltonian graph, the graph obtained by removing any non-

empty, proper subset of U of the vertices of the graph will have no more

than |U | components. This means removing a single vertex cannot

disconnect a Hamiltonian graph.

(b) Yes, the Hamiltonian cycle is highlighted in red.
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(c) Yes, many Hamiltonian cycles exist. One example is highlighted in red.

(d) Similar to part (a), removing any vertex of degree 3 will disconnect

the graph. This means the graph is not Hamiltonian.

(e) This is the Petersen graph, which is famously non-Hamiltonian.

(f) Similar to parts (a) and (d), it is possible to remove two vertices and

disconnect the graph into more than two parts, as shown below.

−→

(g) Yes, a Hamiltonian cycle is highlighted in red.
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3. The following graph is a sufficient counterexample.

This graph is not Hamiltonian as it is acyclic however the minimum degree is
n−1
2

= 3−1
2

= 1.
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4. Yes, many Hamiltonian and Eulerian graphs exist. The following is a simple

example:

5. We can use a graph to represent the relationships of the group, where represent

each person is represented with a vertex and each friendship with an edge.

By Dirac’s Theorem, this graph is Hamiltonian as every vertex will have degree

at least n
2
. We can use a Hamiltonian cycle of the graph as the seating plan,

which will seat each person next to two friends.

6. If G is complete we are done, as all complete graphs are Hamiltonian. Let us

suppose instead that G is not complete.

Let u and v be two arbitrary non-adjacent vertices in G.

Let G′ = G − u − v. The upper limit on the number of edges in G′ is the size

of Kn−2, which is
(
n−2
2

)
. This gives the following inequality:(

n− 2

2

)
≥
(
n− 1

2

)
+ 2− (deg(v) + deg(u))

65



This can be rearranged to find a lower limit on deg(u) + deg(v):

deg(v) + deg(u) ≥
(
n− 1

2

)
+ 2−

(
n− 2

2

)
deg(v) + deg(u) ≥ (n− 1)(n− 2)− (n− 2)(n− 3)

2
+ 2

deg(v) + deg(u) ≥ n

Thus, G satisfies Ore’s Theorem which means G is Hamiltonian.

7. (a) False.

Consider the complete graph K4. This graph contains many triangles but,

as with all complete graphs, is Hamiltonian.

(b) True.

This can be seen by simply deleting one edge from a Hamiltonian cycle of

the graph. This will leave a path that goes through every vertex, but is

not a cycle.

(c) True.

If there is a Hamiltonian path between any two vertices then graph is con-

nected. Take two adjacent vertices u and v. Add the edge connecting them

to the Hamiltonian path between them, which will create a Hamiltonian

cycle.

8. Notice that G has exactly two fewer edges than K13, as the size of K13 is(
13
2

)
= 78. This means the minimum possible degree of a vertex in G is 10, as

at most two edges from one vertex in K13 could be removed to obtain G.

As the minimum degree of any vertex in G is 10 then by Dirac’s Theorem that
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G is Hamiltonian.

The graph is not necessarily Eulerian as G can be obtained from K13 by deleting

two edges in such a way that G has four vertices of degree 11.

9. A graph Km,n is Hamiltonian if and only if m = n, with m,n ≥ 2.

Proof :

K1,1 cannot contain a Hamiltonian cycle as it is acyclic. So we consider when

m,n ≥ 2.

Assume Km,n is Hamiltonian with m,n ≥ 2. Assume for a contradiction that

m 6= n. Without loss of generality suppose that m < n. A cycle in a bipartite

graph is necessarily of even length and will alternate between the two partite

sets. Let a cycle begin at some vertex in the partite set of size n. Once the

cycle is length 2m, it will return to the partite set of size n and all vertices in

the partite set of size m have been visited. There will however be n −m > 0

vertices unreached by this cycle in the partite set of size n. This means Km,n

cannot have a Hamiltonian cycle, which is a contradiction.

Conversely, suppose Km,n has m = n. It is easy to see that there exists a

Hamiltonian cycle.

10. If a cycle beginning and ending at v contains w then the cycle will have a vertex

sequence {v, v1, v2, ..., vk−1, w, vk, vk+1, ...v}.

Thus, there exists edge-disjoint paths from v−w and w− v. We can put these

path together w − v + v − w. This will form a cycle that begins and ends with

w with a vertex sequence {w, vk, vk+1, ...v, v1, v2, ..., vk−1, w}.

11. Let us assume for a contradiction that there exists a Hamiltonian path in a

bipartite graph, G, where one partite set contains at least two vertices more
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than the other. Let us call the partite sets A and B and assume without loss

of generality that |A|+ 2 ≤ |B|.

Certainly if a Hamiltonian path existed it will begin in B and alternate between

the two partite sets. Once the path is of length 2|A| + 1 all vertices in A will

be visited, while at least one vertex in B will not be visited. This means it is

not possible for a Hamiltonian path to exist.

12. The Petersen graph is such a graph.

68



13. Notice that there are only two unique cubic graphs of order 6. A Hamiltonian

cycle has been highlighted for each in red.

Thus, since both graphs are Hamiltonian it follows that all cubic graphs of order

6 are Hamiltonian.

14. Consider the cube below where the vertices are the corners of the cube and the

edges are the edges of the cube.
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Highlighted below is one of several Hamiltonian cycles in red:
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2.6 Trees and Their Properties

Questions:

1. Provide an example of a degree sequence of a tree with at least 3 vertices. Ex-

plain why this is a possible degree sequence.

2. Give three equivalent definitions of a tree.

3. Prove that the addition of any edge to a tree creates a cycle.

4. Draw all non-isomorphic trees of order n, where

(a) n = 4

Hint : There are exactly two.

(b) n = 5

Hint : There are exactly three.

(c) n = 6.

Hint : There are exactly six.

5. Does there exist a tree with a Hamiltonian trail? If yes, provide an example.

6. True or false: The subgraph of a tree is always a tree. Justify your answer.

7. A tree has 100 leaves, 20 vertices of degree 6, and half of the remaining vertices

have degree 4. The left over vertices are degree 2, how many vertices are of

degree 2?
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8. A tree, T , with 35 vertices has 25 leaves, two vertices of degree 2, three vertices

of degree 4, two vertices of degree 6 and three vertices of degree x. Solve for x.

9. Prove, by induction, that if a connected graph has n vertices and n− 1 edges,

then it is a tree.

10. Let T be a tree. Suppose deg(v) ∈ {1, 5} for all vertices of T . If T has 25

vertices of degree 5, how many vertices does T have?

11. Let T be a tree with 21 vertices such that deg(v) ∈ {1, 3, 5, 6} for every vertex

of T . If T has 15 leaves and one vertex of degree 6, how many vertices with

degree 5 are in T?

12. Prove that the deletion of any edge of a tree results in a disconnected graph.

What can we say about the components of this new graph?

13. Prove that any tree with more than two vertices is bipartite.

14. Explain why any tree with two vertices of degree 3 has at least four leaves.

15. What is a necessary and sufficient condition for a tree to be a complete bipartite

graph? Explain.

16. Determine a formula for the number of edges in a forest with order n and c

components.

72



17. Find a graph with five vertices and four edges that is not a tree. What specific

property of a tree fails?

18. Construct a tree with the following properties or explain why such a tree cannot

exist.

(a) 10 vertices and the sum of degrees of vertices is 24.

(b) 12 vertices and 15 edges.

(c) 8 vertices and 7 edges.

(d) 4 vertices and the sum of degrees of vertices is 3.

19. Consider the graph G below:

b e

ca

f g i

j

h

k lm
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(a) Draw a spanning tree, T , of G that has two vertices of degree 6, or explain

why such a spanning subgraph does not exist.

(b) Find an induced 4-cycle of G, or explain why such a subgraph does not

exist.
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Solutions:

1. Infinitely many possible degree sequences exist. If you can draw a tree with

your degree sequence then it is correct.

The sum of your degree sequence must be 2(n− 1), and there must be at least

two vertices of degree 1.

A possible example is: 3, 1, 1, 1.

2. The following are equivalent:

i) G is a tree.

ii) G is a connected acyclic graph.

iii) G is a connected graph with n− 1 edges.

iv) G is an acyclic graph with n− 1 edges.

3. Let T be a tree, then T is connected with n − 1 edges. Consider adding some

edge to T , T now has n edges and hence is no longer a tree. Certainly the

addition of this edge did not disconnect the graph, hence it must have a cycle.

4. (a) n = 4 :
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(b) n = 5 :

(c) n = 6 :
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5. Yes.

Every Pn, for n ∈ Z+, is a Hamiltonian trail as well as a tree.

6. False.

Consider the tree, P2. Removing the only edge produces a disconnected sub-

graph which is clearly not a tree.

7. Nine vertices with degree 2.

Let n denote the number of vertices of this tree and x the number of vertices

with degree 2 or 4. Thus, n = 100 + 20 + x. Applying Euler’s formula knowing

that our graph is a tree (|E| = n− 1), we obtain the equality:

100 + 20(6) +
1

2
· 4x+

1

2
· 2x = 2(n− 1)

Substituting n we get,

100 + 120 + 3x = 200 + 40 + 2x− 2

With basic arithmetic we get x = 18. There are x
2

= 9 vertices of degree 2.

8. x = 5.

T is a tree with 35 vertices, hence it has 34 edges. Euler’s Theorem gives:

2 · 34 = 25(1) + 2(2) + 3(4) + 2(6) + 3(x)

With some algebra we get x = 5.
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9. We proceed by induction on the order of the graph.

Base case: The graph with one vertex and no edges is the trivial tree.

Induction hypothesis: Suppose that any connected graph of order k with

k − 1 edges is a tree, for some k ≥ 1.

Induction step: Consider an arbitrary connected graph, G, of order k+ 1 and

size k.

Suppose every vertex in G has degree at least 2, then by Euler’s Formula we

have:

2 · k ≥ 2(k + 1) = 2k + 2,

which is a contradiction. Thus there must exist some vertex of degree 1, say u.

Now consider G − u, which is a connected graph with order k and size k − 1,

so by the induction hypothesis G − u is a tree. Readding the vertex u and its

single adjacency cannot form a new cycle, so G is a connected, acyclic graph

with k + 1 vertices and k edges and hence a tree.

The result follows from the Principle of Mathematical Induction.

10. T has 102 vertices.

Let n = |V (G)|, from Euler’s Theorem we get the equation:

2(n− 1) = 25(5) + (n− 25)(1),

which rearranges to give n = 102.
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11. There are two vertices of degree 5.

Let x represent the number of degree 5 vertices. Using Euler’s Theorem we see:

2 · 20 = 15(1) + 1(6) + x(5) + (21− 15− 1− x)(3).

With some algebra we get x = 2.

12. Suppose T is a tree on n vertices. Then we know that T has n − 1 edges and

is simultaneously connected and acyclic. Consider removing one edge of T , T

is no longer a tree since it has n− 2 edges and n vertices. The removal of this

edge certainly did not add a cycle, so the graph must be disconnected.

The components of this new graph are trees.

13. Consider a tree with at least three vertices. We know that a graph is bipartite

if and only if it contains no odd cycles, and that every tree is acyclic. Certainly

there are no odd cycles in a tree, so every such tree is bipartite.

14. Let T be a tree of order n with two vertices of degree 3. Let x be the number

of leaves of T . We know that there are n − x − 2 vertices that are not degree

1 or 3, these vertices will have degree at least 2. Applying Euler’s Theorem we

see:

2(n− 1) ≥ 2(3) + x+ (n− x− 2)(2) = 2n− x+ 2

With some basic arithmetic we obtain the inequality x ≥ 4, as desired.

15. A tree, T , is a complete bipartite graph if and only if T = K1,n for some positive

integer n.

We know that every tree has at least one leaf. The only way for a complete
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bipartite graph to have vertices of degree 1 is if one of the partite sets has only

one vertex.

16. |E(G)| = n− c.

Let ci represent the number of vertices in the ith component of the forest, for

i = 1, ..., c. Certainly n = c1 + ...+ cc, with each component is a tree, thus each

component has ci − 1 edges. The total number of edges in the forest is

c1 − 1 + c2 − 1 + ...+ cc − 1 = n− c

17. There are many possible graphs satisfying these properties. If your graph is

disconnected or has a cycle then it is not a tree.

Consider the following disconnected cyclic graph on five vertices with four edges

that is not a tree:

18. (a) Impossible.

In any tree,
n∑
i=1

(deg(vi)) = 2(n− 1)
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(b) Impossible.

In any tree, there are always n− 1 edges.

(c) Many possible such trees.

Here is one:

(d) Impossible.

See reasoning in (a).

19. (a) There is no such spanning tree.

Vertices f and g are the only vertices of G with degree 6. The appropriate

T would require all vertices adjacent to f and g. f and g share the neigh-

bour, m, hence the graph induced by vertices f, g and their neighbours

will create a triangle, meaning T was not a tree.

(b) The subgraph induced by vertices b, e, f, g is one such induced 4-cycle.
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2.7 Planar Graphs

Questions:

Throughout this section we will use V to denote the number of vertices of the graph,

E the number of edges of the graph, and R the number of regions.

1. What is a planar graph?

2. In your own words, define what it means for two graphs to be ‘homeomorphic’?

3. Determine whether each of the following graphs is planar. If so, redraw it in

the plane. If not, explain why using Kuratowski’s Theorem.

(a)
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(b)

(c)
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(d)

(e)

4. Prove that all trees are planar.
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5. Let G be a connected, planar graph with at least 4 vertices. Prove that the

number of regions is bounded above by 2V − 4.

6. Prove that if G is a connected planar graph where E = 3V −6 then every region

of G is a triangle.

7. For which integers n is Kn planar?

8. For which integers m and n is Km,n planar?

9. Show that Pn is homemorphic to P2 for all n ≥ 2.

10. Let G be a planar graph where δ(G) ≥ 5. Show that G has at least 12 vertices.

11. Show that a connected, planar graph with order 22 has no more than 60 edges.

12. Determine if each statement is true or false. If true, provide a brief proof. If

false, find an explicit counterexample.

(a) If G is a graph with E ≤ 3V − 6 then G is planar.

(b) The subgraph of any planar graph is planar.

(c) Every planar graph of order 4 or more contains at least one vertex of degree

5 or less.

(d) If G has order 11, then at least one of G or G is non-planar.

13. For each of the following values, determine whether there exists a corresponding

planar graph. If it exists, draw it. If not, explain why briefly.

85



(a) 7 vertices and 13 edges.

(b) 6 regions and 5 vertices.

(c) 8 vertices and 20 edges.

(d) 10 regions and 5 edges.

14. Does there exist a plane graph with 5 regions such that every region is bounded

by exactly four edges. Explain.

15. Prove if there exists a circuit in a planar graph that contains two regions, both

with an even number of boundary edges, then the circuit is of even length.
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Solutions:

1. A graph is ‘planar’ if it can be drawn in the plane so that edges only intersect

at vertices. Any graph that is not planar is called ‘nonplanar’.

2. Two graphs are homeomorphic if one is a ‘subdivision’ of the other. A ‘subdi-

vision’ of a graph is a graph that results from a, possibly empty, sequence of

subdivisions of edges.

3. (a) This graph is nonplanar as it is homeomorphic to K3,3, as shown below.

(b) This graph is planar, as shown in the redrawing below.
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(c) This graph is planar, as shown in the redrawing below.

(d) This graph is nonplanar as it is homeomorphic to K5, as shown below.
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(e) This graph is nonplanar as it is homeomorphic to K3,3, as shown below.

4. We proceed by induction on the order of the tree.

Base case: A tree with one vertex will have no edges and so is trivially planar.

Induction hypothesis: Suppose that any tree with order k is planar, for some

k ≥ 1.

Induction step: Let T be a tree with k + 1 vertices. As T is a tree, it must

contain at least two leaves. Let us call one of these leaves a.

Let T ′ = T − a. Then T ′ is a connected graph of order k. By the Induction

Hypothesis, T ′ is planar.

Since T ′ is a acyclic, we can add a to T ′ without create any edge crossings.

Thus T is planar.

The result follows by the Principle of Mathematical Induction.

5. As G is a connected, planar graph it follows from Euler’s Planar Graph Theorem

that the number of edges in G is E = V +R− 2.

Further, as G is planar there is an upper bound on the number of edges in G:

E ≤ 3V − 6.
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If follows then that:

V +R− 2 ≤ 3V − 6

R ≤ 2V − 4

So, the upper limit on the number of regions in G is 2V − 4, as desired.

6. First, notice that G cannot be a tree as if G were a tree then E = V −1 = 3V −6.

This would imply that 2V = 5, a contradiction that the number of vertices in

a graph is an integer. This means each region is bounded by at least 3 edges.

Since G is planar, V −E +R = 2. Thus, 3V − 6 = 3E − 3R and so 2E = 3R.

If any region were bounded by more than 3 edges, then 2E > 3R. As this is

not true, it follows that every region is bounded by three edges. That is, each

region is a triangle.

7. It follows from Kuratwoski’s Theorem that if n ≥ 5 then the graph is nonplanar,

as for all Kn, with n ≥ 5 K5, K5 will be a subgraph.

For Kn where n = 1, 2, 3, 4 one can verify by hand that each graph is indeed

planar, as shown below.

K1 : K2 : K3 :
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K4 :

8. Without loss of generality, if m ≤ 2, n ≤ 3 then Km,n is planar.

If both m and n are greater than or equal to 3, then K3,3 will be a subgraph of

Km,n and so by Kuratowski’s theorem the graph will be nonplanar.

9. First we can draw P2:

We can obtain any other Pn from P2 by subdividing the single edge of P2 n− 2

times. This will form Pn and implying Pn and. P2 to homeomorphic, as desire.

10. As the minimum degree of any vertex in G is 5, it follows from Euler’s Theorem

that: 5V ≤ 2E.

As G is planar, it follows from Euler’s Planar Graph Theorem that E ≤ 3V − 6

as G must have at least 3 vertices.

Thus, by transitivity of order, it follows that 5
2
V ≤ 3V − 6. Rearranging this

inequality shows that 12 ≤ V , as desired.

11. If G is a planar graph with V = 22, then we can apply Euler’s Planar Graph

Theorem. It follows that, E ≤ 3V − 6 = 3(22)− 6 = 60, as desired.
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12. (a) False.

If G is planar then E ≤ 3V − 6. The converse of this statement is false

however. The graph below has 10 vertices and 15 edges, so E ≤ 3(V )−6 =

3(10)− 6 = 24. However, it contains a subgraph that is isomorphic to K5

and so the graph is nonplanar.

(b) True.

If a graph contains a nonplanar subgraph, then the graph must be nonpla-

nar.

(c) True.

For every planar graph of order 3 or more, E ≤ 3V − 6. Suppose for a

contradiction that there exists a planar graph of order at least 4 where

every vertex is of degree 6 or more.

Then, by Euler’s Theorem, 6V ≤ 2E. It then follows that 6V ≤ 6V − 12,

a contradiction.
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(d) True.

The total number of edges in a complete graph is
(
11
2

)
= 55. Hence, if G

has x edges then G has 55−x edges. If a graph is planar then E ≤ 3V −6,

so it follows that if a graph has more than 3V −6 edges then it is nonplanar.

Notice that 2(11)− 6 = 27. Thus, if G has 28 or more edges we are done.

Let us suppose instead that G has no more than 27 edges. Then G at least

55− 27 = 28 edges, and so is nonplanar.

13. (a) Such a graph does exist and has exactly 8 regions.

(b) Such a graph does exist and, using Euler’s Planar Graph Theorem, will

have exactly 9 edges.
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(c) There is no such planar graph. We know that any planar graph with more

than 3 vertices will have an upper bound on size: E ≤ 3V − 6. This graph

however has 20 > 3(8)− 6 = 18 and so cannot be planar.

(d) There is no such planar graph. Suppose that there is such a plane graph,

then by Euler’s Planar Graph Theorem V − E + R = 2. It follows that

V = 2−R + E = 2− 10 + 5 < 0, which is impossible.

14. A graph that has 5 regions all bounded by 4 edges then we can sum the total

number of edges in the graph to see that 2E = 4R.

Using Euler’s Planar Graph Theorem, V −E+R = 2, it follows that V = 2+ E
2

.

Since the graph is planar, we can use the upper bound on the number of edges:

E ≤ 3V − 6

≤ 3(2 +
E

2
)− 6

≤ 3E

2

≤ 3E

2

This is a contradiction, and so no such planar graph exists.

15. Suppose C is a circuit in a planar graph enclosing exactly two regions that each

have an even number of boundary edges. As G is planar, these two regions

must share exactly one edge. Therefore, C includes every edge of each region,

except the one that is shared. So, C includes an odd number of edges from the

both regions. The sum of two odd numbers is even hence the length of C is even.
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2.8 Colouring Graphs

Questions:

1. Describe what is meant by “colouring a graph”.

2. What can be said about a graph with chromatic number 1?

3. Determine the chromatic number for the following graphs. Provide a brief

explanation.

(a) Kn.

(b) Km,n.

(c) Any bipartite graph.

(d) Any tree.

(e)
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(f)

(g)

(h)

96



(i)

4. If the following is true, prove it. If false, provide a counterexample. Any graph

with n or n+1 vertices and exactly n edges has chromatic number at most three.

5. True or False? Provide an explanation or find a counterexample.

(a) If χ(G) = 3 then G contains a triangle.

(b) If a planar graph contains a triangle, then χ(G) = 3.

(c) Isomorphic graphs have the same chromatic number.

(d) Homeomorphic graphs have the same chromatic number.

(e) Any Hamiltonian graph with χ(G) = 2 is planar.

(f) A graph is bipartite if and only if it has chromatic number 2.

(g) If χ(G) ≤ 4 then G is planar.
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(h) If χ(G) = n, then G contains a subgraph isomorphic to Kn.

(i) If there exists a 4-colouring of G then χ(G) = 4.

(j) If G contains a subgraph isomorphic to Kn then χ(G) ≥ n.

(k) If we can prove G has no 3-colouring then χ(G) = 4.

6. An edge colouring of a graph is an assignment of colours to the edges of the

graph such that no adjacent edges have the same colour. Find a minimum edge

colouring for the following graphs. Does each graph have the same number of

colours in a minimum edge colouring as a minimum vertex colouring?

Hint : You’ve already identified the chromatic number of these graphs in ques-

tion 3.

(a)
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(b)

7. Model and restate the following scenarios as a graph-colouring problem. Clearly

indicate what represents the vertices, edges and colours.

(a) A zoo plans to remodel by removing all cages and instead placing animals

in large, open, enclosed areas. Any animals that cannot live together in

harmony (i.e. a lion and a elk) must be put in different enclosures. The

zoo would like to determine the minimum number of enclosures needed so

that each animal can live peacefully.

(b) The English department is scheduling courses for the upcoming year. Each

student has made a list of the courses they would like to enrol in. The de-

partment would like to make a schedule so that every student can enrol in

all of their desired courses without conflict.

8. Explain why a graph with 8 vertices and 17 edges has chromatic number more

than two.
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9. Use induction to prove that χ(G) + χ(G) ≤ n + 1, where n is the number of

vertices of G.

10. If the following is true, prove it. If false, provide an explicit counterexample.

If every region of a planar graph is bounded by an even number of edges, then

there exists a 2-colouring of the graph.

11. Prove that if a graph has at most two cycles of odd length then it can be

coloured with 3 colours.

12. Consider a colouring of a graph. What can you say about all vertices assigned

the same colour?
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Solutions:

1. Colouring a graph refers to assigning every vertex of a graph colours such that

no adjacent vertices have the same colour.

2. If a graph can be coloured with exactly one colour then it follows that there are

no adjacent vertices in the graph. Hence, the graph is edge-less/empty.

3. (a) χ(Kn) = n.

Every vertex in a complete graph is adjacent to every other vertex, so each

vertex must be assigned a unique colour.

(b) χ(Km,n) = 2.

Vertices are only adjacent to vertices in the opposite partite set. We can

colour every vertex in one partite set one colour, and a different colour for

every vertex in the other partite set.

(c) Chromatic number: 2.

See explanation for (b), the fact the graph was complete bipartite was ir-

relevant.

(d) Chromatic number: 2.

Every tree is bipartite. See (b).
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(e) χ(G) = 3.

This graph has a triangle, three mutually adjacent vertices, hence χ(G) ≥
3. Consider the following assignment of colours:

We have identified a 3-colouring, so we can conclude that χ(G) = 3.

(f) χ(G) = 2.

The given graph is bipartite.
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(g) χ(G) = 4.

The graph has a K4 subgraph implying χ(G) ≥ 4. Consider the following

colouring:

We have found a proper 4-colouring of G hence χ(G) = 4.

(h) χ(G) = 2.

The graph is bipartite.
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(i) χ(G) = 4.

The graph has a 5-cycle and triangles hence χ(G) ≥ 3. We know colour-

ing the outer cycle will require three colours since 5 is odd. However, the

central vertex is adjacent to every vertex in the cycle so, χ(G) > 3.

Consider the following colouring:

We have identified a proper 4-colouring, hence χ(G) = 4.

4. False.

Consider the following disconnected graph:

It has a K4 subgraph and so requires at least four colours, but it has 6 vertices

and 6 edges.
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5. (a) False.

Every odd cycle with length n ≥ 3 has chromatic number 3 and no trian-

gles.

(b) False.

K4 is planar and contains a triangle, but χ(K4) = 4.

(c) True.

An isomorphism preserves adjacencies between vertices and hence will also

preserve a proper colouring.

(d) False.

C4 and K3 = C3 are homeomorphic but χ(C4) = 2 since it is an even cycle,

while χ(K3) = 3 since it is an odd cycle.

(e) False.

Consider K3,3 which is Hamiltonian (proved in 2.5 question 9) and bipar-

tite, hence χ(K3,3) = 2, but K3,3 is certainly not planar by Kuratowski.

(f) True.

A graph is bipartite if and only if it contains no odd cycles. We know that

if a graph contains an odd cycle, its chromatic number is at least 3. Hence

if the chromatic number is two the graph contains no odd cycles and is

bipartite.
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(g) False.

Consider K3,3. This graph has chromatic number 2 ≥ 4, but is not planar.

(h) False.

Consider any odd cycle, Cn, with n ≥ 5, such as C5. These graphs have

chromatic number 3, but do not contain K3 subgraphs.

(i) False.

All graphs with χ(G) ≤ 3 and order at least four can be coloured using

four colours, this colouring just may not be a minimum colouring.

(j) True.

The chromatic number of a graph is at least as large as the chromatic

number of all its subgraphs.

(k) False.

K5 does not have a 3-colouring, but it also does not have a 4-colouring,

hence χ(G) 6= 4.
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6. (a) Here is one such minimum edge colouring:

We see a minimum edge colouring requires three colours while a minimum

vertex colouring required two.

(b) Consider one such minimum edge colouring:

We see a minimum edge colouring requires five colours while a minimum

vertex colouring required four.
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7. (a) Every animal represents a vertex. Two vertices are adjacent (i.e. there

is an edge) if these animals cannot live together peacefully. The vertices

assigned the same colour represent the animals that can live in the same

enclosure. The zoo is attempting to find the chromatic number of such a

graph.

(b) Let each course be a vertex, with two vertices adjacent if a student in-

dicates that they would like to enroll in both courses. Vertices assigned

the same colour represent courses that can run at the same time. Any

colouring of this graph will give the department such a schedule, however

the most efficient schedule would be indicated by the chromatic number of

the graph.

8. We know χ(G) > 1 since there is an edge. We also know a graph is bipartite if

and only if χ(G) = 2, so it will suffice to prove that G is not bipartite.

Suppose for contradiction that G is a bipartite graph with partite sets V and

U . Let |V | = x and |W | = 8− x, with 1 ≤ x ≤ 7.

If x = 1 then K1,7 has 7 edges.

If x = 2 then K2,6 has 12 edges.

If x = 3 then K3,5 has 15 edges.

If x = 4 then K4,4 has 16 edges.

The graph we are considering has 17 edges and certainly is not bipartite since it

has more edges than any possible complete bipartite graph on 8 vertices. Hence

χ(G) > 2, as desired.

9. We will proceed by induction on the order of the graph.
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Base Case: n = 1. Certainly G = G with χ(G) = 1, therefore χ(G) + χ(G) =

2 ≤ 1 + 1.

Induction Hypothesis: Suppose that χ(G) + χ(G) ≤ n+ 1 for n = 1, ..., k.

Induction Step: Consider a graph, G, with k + 1 vertices. Consider some

vertex, x, of G. By the induction hypothesis, χ(G − x) + χ(G− x) ≤ k + 1.

Between G and G, x is adjacent to at most k neighbours. If x can be assigned

a colour in G then in G we will need at most one additional colour. Therefore

χ(G) + χ(G) ≤ k + 1 + 1 = k + 2, as desired.

The result follows by the Principle of Mathematical Induction.

10. The statement is true.

Consider a planar embedding of such a graph. Identify one region, since it is

bounded by an even cycle, we can colour this cycle with two colours. We can

do the same for every region, and if we have already coloured one of the ver-

tices of the boundary cycle then colour the adjacent vertices the opposite colour.

11. We must consider three distinct cases.

Case 1: Suppose G has no odd cycles. Then G is bipartite with χ(G) = 2, so

certainly we can colour G with three colours.

Case 2: Suppose that G contains exactly one odd cycle, C. Then certainly

χ(G) > 2 as this graph is not bipartite. Consider removing an arbitrary ver-

tex u ∈ C from G, this would create a graph with no odd cycles. So, G − u
2-colourable. Adding u back to G would only require one additional colour, so
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G is 3-colourable.

Case 3: Suppose G contains exactly two odd cycles, C1 and C2, we now con-

sider two subcases:

Case 3a: Suppose that C1 and C2 share a common vertex, u. Con-

siderG−u, which now has no odd cycles since removing a vertex from

a cycle breaks the cycle. Thus, G− u is bipartite and 2-colourable.

Adding back u will require at most one additional colour, so G is

3-colourable.

Case 3b: Suppose C1 and C2 share no common vertices. If every

vertex in C1 is adjacent to every vertex in C2 then there would be

another odd cycle in G which is impossible by assumption. Thus,

there exists two vertices, u ∈ C1 and v ∈ C2, such that uv /∈ E(G).

Consider obtaining the graph G − u − v, this will break both cy-

cles in G, making G − u − v a graph free of odd cycles, and hence

2-colourable. As u and v are not adjacent in G readding them will

require at most one additional colour. Thus, G is 3-colourable.

We have now shown that all graphs with no more than two odd cycles are 3-

colourable.

12. There are no adjacent vertices within a set of vertices of the same colour.
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3 Counting: Fundamental Topics

3.1 Basic Counting Principles

3.2 The Rules of Sum and Product

Questions:

For each of your solutions, when appropriate, explicitly identify if you are using the

rule of sum, the rule of product, or both.

1. Explain the following in your own words.

(a) The rule of sum for multiple events.

(b) The rule of product for multiple events.

2. In which counting scenarios will you need to apply both the rule of sum and

product?

3. How many different licence plates with exactly 6 characters (numbers and low-

ercase letters) can be made given the following specifications?

(a) No restrictions. This plate can have any arrangement of digits and letters

and repetition is allowed.

(b) The first two characters are digits and the last four are letters. Repetition

is not allowed.

(c) The characters alternate between letters and digits and no digit may be

repeated.

(d) The license plate includes no more than one digit.

Hint : Consider all possible cases.

(e) The first character must be either “T” or 0 and the last character must be

either “J” or “Q”.
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4. A university student is looking to take out a book on either frogs or fireflies

from their campus library. There are 45 books available covering frogs, and 13

discussing fireflies. How many books does this student have to choose from?

5. Joselyn stops by a sandwich shop on her way home from class. The shop sells

4 types of potato chips, 3 types of cookies, 7 different drinks and 10 different

sandwiches. She is interested in determining how many different ways there are

to order if she’d either like a drink and a cookie, or a meal which includes a

sandwich, a drink, and chips.

6. Two 6-sided dice, each of a different colour, are rolled. Determine how many

outcomes are possible.

7. How many nonempty sets of letters can be formed from 3 X’s and 5 Y’s?

Hint: As these are sets, the order of the letters is irrelevant.

8. How many integers x are there where 10 000 ≤ x ≤ 99 999 and:

(a) x is even?

(b) x contains exactly one digit 0?

(c) x has at least one repeated digit?

9. How many ternary sequences (sequences using only the digits 0,1, and 2) of

length 10 exist such that no consecutive digits are the same?

10. How many integers, x, between 100 and 999 are divisible by 5?
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11. A palindrome is a word that has the same spelling when read forwards or back-

wards. Find the number of 7-letter palindromes.

12. Let A = {a1, a2, ..., am} and B = {b1, b2, ...bn}. How many functions

f : A→ B are there such that:

(a) f(a1) = f(a2)

(b) f(a1) = b1 and f(a2) 6= b1

(c) f(a1) ∈ {b1, b2, b3}

(d) f(a1) = bk, for some k ∈ {1, 2, ...n} and for all other ai, i ∈ {2, 3, ...m}
f(ai) 6= bk

(e) f(a1) 6= f(a2)

13. How many functions are there from a set with 5 elements to a set with 3 ele-

ments?

14. How many different ways are there to answer a true or false test with 25 ques-

tions, assuming every question is answered?

15. The math department is hosting an event. They are randomly inviting one

professor and one student to give a speech together. If there are 1500 students

and 50 professors, how many different pairs could give a speech? What about

if only one person gives a speech and it could be a student or a professor?

16. If A = {1, 2, 3}, B = {a, b, c, d}, C = {α, β, γ, χ, λ}, how many distinct 3-tuples

are there in the set A×B × C?

17. Jamie is buying a combination lock to lock up her work-out gear at the gym.

Jamie would like to pick the most secure lock to protect her valuables. Lock
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1 advertises that its combination is an ordered sequence of numbers between 1

and 35 such that the first number cannot be the third number. Lock 2 adver-

tises that its combination is an ordered sequence of 4 numbers between 1 and

25 where the first three numbers are all distinct and the fourth number must

be the same as one of the previous three numbers. Which lock should Jamie

purchase?

18. How many words (strings of letters) exist that are length 1, 2 or 3?
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Solutions:

1. (a) The sum rule for multiple events is for events that are independent (i.e.

events/situations that cannot occur at the same time). If one event can

occur m ways, and the other event can occur in n ways, where both events

are independent, then the two events together can occur in m+ n ways.

(b) The product rule for multiple events is for events that are happening in

sequence of one another, thus are not independent. For example, if one

event can occur in m ways and then another event follows and can occur

in n ways, then the sequence of these two events can occur in mn ways.

2. The product and sum rule are used together when a set of sequences of events

are occurring independently.

3. (a) Rule of product

There are exactly 10 digits and 26 letters in the alphabet, therefore each

character has 10 + 26 = 36 possibilities. The licence plate has 6 characters

so there are 36 · 36 · 36 · 36 · 36 · 36 = 366 licence plates.

(b) Rule of product

For the first two characters there are 10 digit choices, since the digits may

be repeated. For the first letter there are 26 choices, but only 25 for the

second since no possible repetition. Similarly, there are 24 options for

the third letter and 23 for the fourth letter. Putting all of these options

together there are a total of 10·10·26·25·24·23 = 35 880 000 licence plates.

(c) Rule of product and rule of sum

First, consider the case when the plate begins with a letter. There are 26

options for the first letter, 10 options for the first digit, 26 for the second

letter, 9 for the second digit, 26 for the last letter and 8 for the last digit

(recall that only letters can repeat). Then, multiply the number of options
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together to see there is a total of 26 · 10 · 26 · 9 · 26 · 8 = 12 654 720 licence

plates with this specification.

Now we consider the case when the plate begins with a digit and then

alternates. The counting is the same as multiplication is commutative.

Since these cases are disjoint there are 12 654 720+12 654 720 = 25 309 440

possible licence plates with this restriction.

(d) Rule of product and rule of sum.

To count the number of possible licence plates with at most one of the

characters a digit, we consider two cases: plates with 0 digits and 1 digit,

then sum these together.

The number of possible licence plates with no digits is 26·26·26·26·26·26 =

266.

The number of possible licence plates with exactly one digit is slightly more

complex. There are six possible places that the single digit can appear.

We can account for this by applying the six possible places the digit can go

to the choice of the digit. So for the digit there will be 6 · 10 possibilities.

The remaining five spots will all have a letter and so, in total, there are

6 · 10 · 265 possible licence plates with this restriction.

Thus, the total number of licence plates with at most one digit is 266 + 6 ·
10 · 265 = 1 021 798 336.

(e) Rule of product and sum.

Based on the restrictions, we know that there are 4 cases.

The plate can begin with “T” and end with “J”. There are no further

restrictions therefore for each of the four middle characters there are 36

options so there are 364 possible plates with this restriction.
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Similarly, the plate can begin with “T” and end in “Q” and so there are

364 possible plates.

The number of possible plates in the other two remaining cases is the same:

the plate begins with 0 and ends with “J” or the plate begins with 0 and

ends with “Q”.

Therefore there are 364+364+364+364 = 6 718 464 possible licence places

with these restrictions.

4. Rule of sum.

Since the student would like either a book on frogs or on fireflies there are

45 + 13 = 58 books to choose from.

5. Rule of sum and product.

Consider first the number of options if Joselyn orders a drink and a cookie.

Then, consider the number of options if she orders a sandwich, drink, and

chips.

There are 3 types of cookies and 7 drinks to choose from, so there are 3 · 7 = 21

possible combinations of a cookie and a drink.

There are 10 different sandwiches, 7 drink options, and 3 types of cookies.

Therefore there are 10 · 7 · 3 = 210 combinations for this meal.

In total Joselyn can order 21 + 210 = 231 possible combinations at the shop.

6. Rule of product.

As each die is a different colour, they are distinct. Let us assume the dice are

blue and red. This means rolling a 1 on the blue die and a 2 on the red die is

distinct from rolling a 2 on the blue die and a 1 on the red die.
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On each die there are 6 options therefore there are 6×6 = 36 possible outcomes.

7. Rule of product.

Consider an ordered pair, (X, Y ) where 0 ≤ X ≤ 3 and 0 ≤ Y ≤ 5. Let the

ordered pair represent the number of X’s and Y ’s in the given non-empty set.

There are 4 possibilities for the value of X’s and 6 possibilities for the value

of Y ’s in the pair. In total there are 6 × 4 − 1 = 23 possible pairs. We must

subtract 1 because one of our pairs represents the empty set, (0, 0). Thus, there

are 22 possible non-empty sets.

8. (a) Rule of product.

All such integers will end in either 0, 2, 4, 6, or 8, thus there are 5 options

for the last digit. For the first digit, any number other than 0 is possible,

thus there are 9 options. For the other four remaining digit any digit is

possible so there are 10 options. In total there are 5 · 9 · 104 integers x.

(b) Rule of product.

First, notice that the 0 can occur in any place in x but the first digit. We

can build x by first placing the 0. There are 4 different places the 0 can

go. The remaining four places can be assigned any non-zero digit. This

means each place has 9 options. Thus, in total there are 5 · 94 integers x.

(c) Rule of product.

We can count the number of five digit numbers with at least one repeated

digit by counting the total number of five digit numbers and subtracting

the number of five digit numbers with no repeated digits.

The number of five digit numbers is 9 · 104 = 90 000. The number of five

digit numbers with no repeated digits is 9 · 9 · 8 · 7 · 6 = 27 216. Thus,

there are 90 000 − 27 216 = 62 784 five digit numbers that have at least
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one repeated digit.

9. Rule of product.

The first digit in the sequence can be any of 0,1, or 2. Thus there are 3 pos-

sibilities. The second digit cannot be the same as the first digit. This means

there are 2 possibilities for it. Similarly, for each following digit they cannot be

the digit that proceeds them, meaning there are 2 possibilities. Therefore there

are 3 · 29 = 1 536 ternary strings with the required restriction.

10. Rule of product.

An integer is divisible by 5 if and only if the last digit place is either a 5 or 0.

This means there are 2 possibilities for the final digit of x.

The first digit of x can be any digit except 0. Thus there are 9 possibilities. The

second digit of x is any digit, thus there are 10 possibilities. Using the product

rule, there are 5 · 9 · 10 possible values of x.

11. Rule of product.

In a palindrome of length 7 the first and last letter, the second and sixth letter,

and the third and fifth letter are the same. The fourth letter can be any letter.

So, we can assign any letters to the first four letters but the last three letters

are determined by this as well. Therefore there are: 26 · 26 · 26 · 26 · 1 · 1 · 1 =

264 = 456 976 palindromes of length 7.

12. Rule of product.

(a) nm−1 · 1

This is because all elements in A have n possible possibilities, except f(a2)

which has only one possibility – whatever was assigned to f(a1).
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(b) 1 · nm−2 · n− 1

This is because all elements in A except f(a1), f(a2) are unrestricted. f(a1)

must be b1 and so has only one possible value, while f(a2) can be any

element in B except b1 and so has n− 1 possible values.

(c) 3 · nm−1

This is because all elements in A, except f(a1), can be assigned to any

element in B and so have n options while f(a1) can only be one of three

possibilities.

(d) n · n− 1m−1

This is because whatever element is assigned to f(a1) cannot be assigned

to any other element. This means all elements but f(a1) have only n− 1

possible values in B.

(e) nm−1 · n− 1

This is similar to part b except f(a1) is not restricted.

13. Rule of product.

For each of the five elements in the first set, there are 3 possible values in the

second set. Therefore, there are 35 possible functions.

14. Rule of product.

Each of the 25 question can be answered in one of two ways: true or false. Thus,

there are 225 possible ways to answer the test.

15. Rule of product and sum.

For the first part of the question we can use the product rule, giving that are

1500 · 50 possible pairs. For the second part, we can use the sum rule to see

that there are 50 + 1500 possible people to give a speech.
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16. Rule of product.

Each tuple will be of the form (a, b, c) where a ∈ A, b ∈ B and c ∈ C. The

number of possible options in the first position is 3, the number of possible

options in the second position is 4, and the number of possible options in the

last position is 5. Using the rule of product it follows that there are 3 ·4 ·5 = 60

distinct elements in A ·B · C.

17. Rule of product.

Jamie should purchase the most secure lock, which will be the lock with the

highest number of possible combinations.

Lock 1’s combination is an ordered sequence of 3 numbers, with 35 options for

numbers. The first number can be any of the 35 possible numbers. The second

number can also be any of the 35 possible numbers. The last number can be

any number between 1 and 35 except for whatever the first number was, so

there are 34 possibilities. Hence, this combination lock has 35 · 35 · 34 = 41 650

possible combinations.

Lock 2’s combination is an ordered sequence of 4 numbers, with 25 options

for number. The first number can be any of the 25 possible number. The

second number can be any of the 25 possible number, except for whichever was

assigned to the first number, leaving 24 options. Similarly, the third number

can be any number except whatever was assigned to the first two numbers,

leaving 23 options. The fourth number must be one of the first three numbers,

meaning it has 3 options. This means this lock has 25 · 24 · 23 · 3 = 41 400

possible combinations.

Therefore, lock 1 has a higher number of possible combinations and so is the

lock Jamie should buy.

18. Rule of sum and product.

The different cases that we must consider are words of length 1, length 2, and
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length 3. There are exactly 26 words of length 1, 262 words of length 2, and 263

words of length 3 as there are no restrictions on these words. Therefore there

are 26 + 262 + 263 = 18 278 words of length 1, 2 and 3.
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3.3 Permutations

Questions:

1. In your own words, describe a permutation.

2. Explain why the permute function requires distinct objects when counting.

3. How many different permutations of the word MATHS are there of length,

(a) 5?

(b) 3?

(c) If repetitions are allowed, how many different 10 letter ’words’ can we make

using the letters from MATHS?

4. How many different 6 letter permutations of the word COFFEE are there?

Hint : Be aware of repeated letters.

5. (a) You and seven friends dine at a circular table at a fancy restaurant. How

many different ways can the eight of you seat yourselves around this table?

(b) What if two people insist on sitting together?

Hint: The arrangement is considered the same if everyone sits next to the same

two people.

6. There are 25 people competing in the school swim race including Nia, Andre,

and Katie.

(a) At the race, the first, second, third, fourth, and fifth fastest swimmers

receive medals. How many possible ways can these medals be distributed?
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(b) How many possible ways can these medals be distributed if Nia, Andre,

and Katie always place in the top three positions?

7. A group of eight would sit in a row at the movie theater, how many ways can

arrange themselves if Andrew and Asiya refuse to sit beside each other?

8. In how many ways can the numbers 3, 4, 4, 5, 6, 7, 8 be arranged to create num-

bers less than 6000000?

9. Leora has 20 books in her room. Her three friends each want to borrow two

books from her. Tomorrow they’re all coming over to pick them up, in how

many different ways can Leora loan out the books such that the order she gives

each friend their books is the order in which they read them?

10. José lost the last two digits of his friend’s phone number. How many different

phone numbers will José potentially have to call before calling his friend?

11. How many 7-letter words, with no repeated letters, are there such that:

(a) There are no additional restrictions?

(b) T must occur in the word?

(c) A must be the first letter?

(d) Exactly one of X, Y must be in the word?

12. In a group of teenagers m of them are naturally brunette and n of them were

not born with brown hair. How many different ways can these teenagers be

arranged in a line such that the m brunette’s are all together?
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13. Using the definition of a permutation, show that P (n, n) = n!.

14. Explain when you would use a permutation instead of the Rule of Product.

15. Create a counting problem that has the solution:

(a) P (7, 2).

(b) P (10, 9).

16. Prove that for an integer n ≥ 2 that

P (n+ 1, 2)− P (n, 2) = 2 · P (n, 1)

.

17. A K-pop fan has 10 different posters to arrange (in a line) on their wall. Three

posters are from one band, four from a different group, and three from a third

group. How many ways can the posters be lined up such that posters from the

same group are together?

18. How many ways can the letters of MISSISSIPPI be permuted?

19. What if the functions from question 12, section 3.2, had to be one-to-one? What

must first be said about the cardinality of A and B?

20. (a) How many ways can the letters in BOOKKEEPER be rearranged?

(b) What if the E’s cannot be consecutive?

(c) What if the E’s had to be consecutive?

(d) What if the vowels had to occur consecutively?
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Solutions:

1. A permutation is a linearly ordered arrangement of distinct objects.

2. If objects could be repeated, two identical arrangements would be counted as

different.

3. (a) 120.

We are arranging, in a particular order, five distinct letters, therefore there

are P (5, 5) = 120 different permutations of MATHS.

(b) 60.

We are arranging, in a particular order, three out of five distinct letters

therefore there are P (5, 3) = 60 different 3 letter permutations of MATHS.

(c) 510.

There are ten letter positions available, with 5 options for each letter, so

there are 510 such words.

4. 20.

There are six letters and two pairs of two repeating letters (double E’s and

double O’s), hence there are 6!
2!2!

= 20 possible permutations.

5. (a) 5 040.
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We avoid having potentially the same arrangement in different spots around

the table by fixing one person and then arranging those around them, which

gives 7! = 5 040 choices.

(b) 1 440.

If two people insist on sitting together, we begin by fixing their seats to-

gether then arrange the remaining six friends, 6! = 720. For the two

individuals sitting together, we are unsure who will be on the left versus

right, so we multiply by two to account for the two possibilities of their

positions. All together there are 6! · 2 = 1 440 ways to seat everyone.

6. (a) 6 375 600.

We are interested in an ordered arrangement of five individuals from twenty-

five swimmers, which gives P (25, 5) possible top five medal distributions.

(b) 2 772

There are P (3, 3) = 3! ways to place Nia, Andre, and Katie in the top

three positions. The remaining 2 positions can be filled in P (22, 2) ways.

Thus, using the rule of product there are P (3, 3) ·P (22, 2) = 2772 ways for

the medals to be given out.

7. 30 240.

We begin by sitting the six individuals who are not Andrew or Asiya, there are

P (6, 6) ways to do this. To guarantee Andrew and Asiya are not beside each

other, they will either sit on an end or between two other friends. There are

five seats between friends and two on the ends, which gives seven possible seats
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for Andrew and Asiya thus P (7, 2) choices. By applying the Rule of Product it

follows that there are P (7, 2) · P (6, 6) = 30 240 ways to seat the group.

8. 1 440.

We only consider numbers less than 6 000 000, thus the only possible first digits

are ≤ 5. There are four options for the first digit, and the remaining digits can

go in any order, 6! = 720 options. We must divide by 2 to account for the two

identical 4’s in the set. Hence there are 4·6!
2!

= 2 · 6! = 1 440 possible numbers

possible.

9. 27 907 200.

Leora is giving out 2 · 3 = 6 of her twenty books, in a specific order, which is

P (20, 6) = 27 907 200 possible distributions.

10. 100.

José has ten possibilities for one of the lost digits and another ten for the second

lost digit. By the Rule of Product there are 102 = 100 possible phone numbers

he will have to call before calling his friend.

11. (a) 3 315 312 000.

We are arranging, in a particular order, seven letters from 26 possible let-

ters, which is simply P (26, 7) = 3 315 312 000.

(b) 892 584 000.
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We begin by placing the T in one of the 7 spots and arranging the other

six letters around it. There are P (25, 6) ways to assign the six letters that

aren’t T , and seven positions the T can be placed. By the Rule of Product

there are 7 · P (25, 6) = 892 584 000 such words.

(c) 127 512 000.

There is only one option in the assignment of the first letter, A, only in

the ordered arrangement of the remaining six letters selected from the re-

maining 25 from the alphabet, which makes P (25, 6) = 127 512 000 words.

(d) 1 356 727 680.

We first pick whether the word has X or Y , two choices, and then place

it in one of the seven spots, seven options. Now we arrange the remaining

six letters which are picked from the 24 possible letters (since exactly one

of X and Y is used), P (24, 6) possibilities. By the Rule of Product there

are 7 · 2 · P (24, 6) = 1 356 727 680 such words.

12. m!(n+ 1)!.

Let us consider the m brunette’s to be one distinct object. We now must ar-

range n+1 individuals into a line which yields P (n+1, n+1) = (n+1)! possible

arrangements. Within the single ‘object’ of brunettes, there are P (m,m) = m!

ways to arrange the brunette individuals. By the Rule of Product there are are

m!(n+ 1)! such arrangements.

13. Applying the definition,

P (n, n) =
n!

(n− n)!
=
n!

0!
=
n!

1
= n!
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14. The permutation function is one specific application of the product rule if you

are trying to determine the number of possible arrangements of k out of n dis-

tinct objects (k ≤ n). If this is not the specific case, count using the Rule of

Product.

15. Solve your own problem to verify this.

16. We will use the definition of the permutation function to show this result:

P (n+ 1, 2) =
(n+ 1)!

(n+ 1− 2)!
=

(n+ 1)(n)(n− 1)!

(n− 1)!
= n(n+ 1),

P (n, 2) =
n!

(n− 2)!
=
n(n− 1)(n− 2)!

(n− 2)!
= n(n− 1)

Subtracting,

P (n+ 1, 2)− P (n, 2) = n(n+ 1)− n(n− 1) = n(n+ 1− (n− 1)) = 2n

We see that,

P (n, 1) =
n!

(n− 1)!
=
n(n− 1)!

(n− 1)!
= n,

therefore 2P (n, 1) = 2n, as desired.

17. 5 184.

To start, we consider the posters for the same K-pop group to be a distinct

object, which reduces the problem to arranging three distinct objects in a line,

P (3, 3) = 3! possibilites. Now within each group of posters there are 3! ways to

arrange the first group’s posters within the line, 4! the second, an 3! the third.
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By the Rule of Product there are (3!)3 ·4! = 5 184 ways to line up these posters.

18. 34 650.

For any arrangement with repeated objects, we know that we must divide by

the factorial of the number of repeated objects. In the word MISSISSIPPI there

are four I’s, four S’s and two P’s, therefore in total there are 11!
4!·4!·2! = 34 650

distinct permutations of this word.

19. |A| = m ≤ n = |B|, otherwise no one-to-one functions can exist between the

sets.

(a) 0.

Assuming a1 6= a2, by definition of a one-to-one function this is impossible.

(b) P (n− 1,m− 1).

We have only one possible assignment of f(a1). For f(ai), i = 1, ...,m,

each must equal a distinct element from {b2, ..., bn}, hence we are picking

m − 1 objects from a set of n − 1 distinct objects, P (n − 1,m − 1) such

functions.

(c) 3(n−1)!
(n−m)!

.

There are three choices for f(a1), and the remaining m − 1 ai’s must be

uniquely assigned to the n−1 remaining bj’s, P (n−1,m−1) options. The

Rule of Product yields, 3 · P (n− 1,m− 1) = 3(n−1)!
(n−1−(m−1))! such one-to-one

functions.
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(d) P (n,m).

The requirement is satisfied by the definition of a one-to-one function,

hence we are selecting m objects from a set of n distinct objects, P (n,m).

(e) P (n,m).

Same reasoning as (d).

20. (a) 151 200.

We are permuting 10 letters, P (10, 10) = 10!, but O and K repeat twice

and E thrice, so we must divide by 2!, 2, !, 3!. All together there are 10!
2!2!3!

=

151 200 distinct arrangements.

(b) 70 560.

We begin by placing the letters that are not E, there are seven of them

so 7!
2!2!

, still accounting for the repeated letters, possible arrangements. We

now place the three E’s between (or on the outside) of the placed letters

to guarantee no E’s are consecutive. There are eight possible gaps to place

the E’s so there are P (8,3)
3!

ways to put the E’s in accounting for the fact that

they are identical. By the Rule of Product there are 7!
2!2!
· P (8,3)

3!
= 70 560

such arrangements.

(c) 10 080.

We can consider the E’s to be one letter since their arrangement is irrele-

vant as they are identical. Now we arrange the eight objects, dividing by

2! · 2! since there are two O’s and K’s, hence 8!
2!2!

= 10 080 possibilities.
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(d) 3 600.

We will group all the vowels together and consider them to be one distinct

object. Within this object of vowels there are 5!
2!·3! possible arrangements

since some vowels are repeated. We now arrange this block within the five

consonants, so there are P (6, 6) = 6! arrangements, but we must divide

by 2! to account for the identical K’s. By the Rule of Product there are
5!
3!2!
· 6!
2!

= 3 600 such arrangements.
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3.4 Combinations and the Binomial Theorem

Questions:

1. In your own words, explain the differences and similarities between a permuta-

tion and a combination and describe when each one is used.

2. A lottery ticket consists of five unordered, distinct numbers between 1 and 69

and one letter. A winning ticket must contain all the numbers and the letter

drawn by the lottery company. If the prize is $10,000,000 and the tickets cost

$0.50 is it worth buying all the tickets to ensure a win?

3. The local college’s intramural basketball team accepts 21 players. This year 80

students tried out. They want to arbitrarily decide who to let on the team. In

each scenario, determine how many different possible teams there are.

(a) No further restrictions.

(b) The school boasts about the opportunities available for first year students

so, the team wants to make 10 out of the 21 team-members first year

students. Out of the 80 players who tried out, 40 of them are first year

students.

(c) While the intramural team is non-competitive, they enjoy beating the

neighbouring college’s team, so they guarantee the two highest scoring

players from last year’s team a spot.

(d) The school wants to have a mix of students who played last year and

students who didn’t. 65 of the students who registered did not play last

year, while 15 students did. The school wants 10 students who did not

play last year and 11 who did.

(e) The coach wants to make sure there is a good mix of types of players on the

team,. Each student tells the coach which position they play: 20 students

play centre, 15 play shooting guard, 10 play point guard, 20 play small
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forward, and 15 play power forward. The coach wants to ensure the team

has 5 people who play shooting guard and 4 people of every other position.

(f) There are 5 students who are graduating this year. The coach wants to

ensure at least 3 of them get to play.

4. A teacher randomly selects 4 numbers from 1 to n. There are exactly 2672670

possible sets of 4 numbers that can be chosen. Determine n.

5. How many distinct, three-element subsets of A are there, where

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}?

6. (a) If there are 12 students in a class and the teacher would like to create

groups of 6, how many ways can the groups be arranged?

(b) What if two students refuse to work together?

7. Eli wakes up every morning and makes himself a smoothie with frozen fruit. He

picks 3 fruits everyday to make his smoothie with out of the 10 options types

of fruit in his freezer. He likes any combination of fruit in his smoothie except

banana with apple. How many ways are there for Eli to make his smoothie?

8. UVic is picking what first year math courses they should offer next year. They

can only offer both ‘Logic and Foundations’ and ‘Linear Algebra’ if they are

also offering ’Calculus 1‘. If there are 15 possible first year math courses and

they will offer 7 courses, how many different ways can they offer courses?
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9. Robert is picking the group from his dance class to perform the opening act

at the upcoming show. The opening act will have 8 students out of a class of

20, how many possible groups of dancers are there given each of the following

scenarios:

(a) No further restrictions.

(b) The opening act must be half advanced dancers and half beginner dancers.

There are ten students of each level in the class.

(c) Charlotte and Mohammad do not want to dance together.

(d) The opening act has a solo at the end that one of the 8 dancers will perform.

10. Give an algebraic and a combinatorial proof of:

m

(
n

m

)
= n

(
n− 1

m− 1

)
Recall : A combinatorial proof is an arbitrary scenario where the same thing can

be counted two different ways.

11. Give a combinatorial proof of the identity:

n∑
k=0

(
n

k

)
= 2n

12. Give a combinatorial proof of Pascal’s Identity:

For any integer n ≥ 2 and each integer k such that 0 < k < n:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
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13. Use the binomial theorem to efficiently expand the binomial:

(a) (x+ y)n

(b) (3− x)6

(c) (2x− 3y)7

(d) (4x+ 7y)15

14. Determine the coefficient of x9y4 in the expansion of:

(a) (x+ y)13

(b) (2x+ y)13

(c) (4x− 3y)13

15. Determine the coeffiecient of:

(a) x7y4 in (2x− 3y)11

(b) x7y2 in (2x+ 5y)9

(c) x5 in (3x− y)5

(d) x3y9 in (−2x+ 2y)12

(e) xy6 in (2x− 4y)7

16. Evaluate the following using the binomial theorem:

(a)
∑n

k=2 2k
(
n
k

)
, n ≥ 2

(b)
∑n

m=0
(−1)m

m!(n−m)!
, n ≥ 1

17. Using the binomial theorem, prove (1 + i)n + (1− i)n is an integer for all n ≥ 0,

where i2 = −1.
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18. Evaluate the following for all positive integers n:

(a)
∑n

k=0 6k
(
n
k

)
(b)

∑n
k=0 4n

(
n
k

)
(c)

∑n
k=0(−3)k(2)n−k

(
n
k

)
(d)

∑n
k=0 6

(
n
k

)
(e)

∑n
k=0(−1)n−k

(
n
k

)

Recall: Multinomial Theorem: For positive integers n,m, the coefficient of

xn1
1 x

n2
2 · · · xnmm is

n!
n1!n2!···nm!

,

where ni ∈ Z for 0 ≤ ni ≤ n, for every i = 1, 2, ...,m and n1 +n2 + ...+nm = n.

19. When is the multinomial theorem used instead of the binomial theorem?

20. Use the multinomial theorem to determine the coefficient of

(a) x2yz in (x+ y + z)4

(b) w2x2y2z2 in (2w − x+ 3y − 3z)8

(c) xyz in (3x− y − z)10
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Solutions:

1. The main difference between a permutation and a combination is that for a

permutation the order in which the elements are selected matters while for a

combination the order does not matter. Both a combination and a permutation

count the ways in which an event can occur.

The formula for permutation, P (n, r), is n!
(n−r)! while the formula for combina-

tion, C(n, r) is n!
(n−r)!r! . Clearly, C(n, r) = P (n,r)

r!
which highlights that order is

irrelevant in a combination.

2. There are
(
69
5

)(
26
1

)
= 292 201 338 possible tickets. Thus, the cost of buying all

the tickets is higher than the prize money and so it is not worth it to buy all

the tickets to ensure a win.

3. (a)
(
80
21

)
The coaches must form a team of 21 from 80 players. The order in which

the team is selected is irrelevant. So, there are exactly
(
80
21

)
possible teams.

(b)
(
40
10

)(
40
11

)
First we choose the 10 first year students that make the team, then we

choose the remaining 11 spots from the remaining 40 students. Using the

product rule, multiply these together to see that there are
(
40
10

)(
40
11

)
possible

teams.

(c)
(
78
19

)
The two highest scoring players are already guaranteed a position on the

team, so the remaining 18 players from the 78 other students who tried

out need to be selected. So, there are
(
78
19

)
poossible teams.

(d)
(
65
10

)(
15
11

)
First, select the 11 returning students for the team and then 10 new stu-

dents. There are
(
65
10

)(
15
11

)
possible teams with this structure.
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(e)
(
20
4

)(
15
5

)(
10
4

)(
20
4

)(
15
4

)
First select the player who play centre position, then shooting guard, point

guard, small forward and finally power forward. Using the product rule, it

follows that there are
(
20
4

)(
15
5

)(
10
4

)(
20
4

)(
15
4

)
possible teams with this struc-

ture.

(f)
(
75
16

)(
5
5

)
+
(
75
17

)(
5
4

)
+
(
75
18

)(
5
3

)
The cases we must consider are whether there are 3, 4 or, 5 graduating

students on the team. First, we select the number of graduating students

and then, using the product rule, we select the appropriate number of

remaining players.

Using the rule of sum, in total there are
(
75
16

)(
5
5

)
+
(
75
17

)(
5
4

)
+
(
75
18

)(
5
3

)
possible

teams with this structure.

4. n = 91

(
n

4

)
= 2 672 670

n!

4!(n− 4)!
= 2 672 670

2 672 670 =
n(n− 1)(n− 2)(n− 3)

4!

2 672 670(4!) = n(n− 1)(n− 2)(n− 3)

2 672 670(4!) = n4 − 6n3 + 11n2 − 6n

0 = n4 − 6n3 + 11n2 − 6n− 2 672 670(4!)

Solving above for n, it follows that n = 91.
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5.
(
13
3

)
A contains 13 elements and we are looking at unordered, subsets of cardinality

3. Thus, there are
(
13
3

)
subsets.

6. (a)
(
12
6

)
The order in which the students are chosen is irrelevant thus this is a

standard combination. So, there are
(
12
6

)
possible groups of six.

(b)
(
10
5

)(
2
1

)
First, assign the two students who refuse to work together each to one of

the two groups. Then choose the remaining five students in each group

from the other ten students in the class. Applying the rule of product,

there are
(
10
5

)(
2
1

)
possible groups of six, given this restriction.

7.
(
10
3

)
−
(
8
1

)
=
(
9
2

)
+
(
9
2

)
+
(
8
3

)
The total number of smoothies without any restriction is

(
10
3

)
. The number

of smoothies that include both banana and apple are
(
8
1

)
so, the total possible

smoothies are:
(
10
3

)
−
(
8
1

)
.

Alternatively, we can find the total number of smoothies using 3 cases:

Case 1: Banana is chosen for the smoothie. The total number of smooth-

ies in this case is:
(
8
2

)
, since apple cannot be chosen.

Case 2: Apple is chosen for the smoothie. The total number of smoothies

in this case is:
(
8
2

)
, since banana cannot be chosen.

Case 3: Neither banana nor apple is chosen for the smoothie. The total

number of smoothies in this case is:
(
8
3

)
.

Thus, the total smoothies is the sum of all these cases which is:
(
9
2

)
+
(
9
2

)
+
(
8
3

)
.
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8.
(
15
7

)
−
(
12
5

)
=
(
2
1

)(
13
6

)
+
(
13
7

)
+
(
12
4

)
Similar to the previous question, this can be done in two ways:

The total number of possible course offerings with no restrictions is:
(
15
7

)
. The

restricted cases are those in which both ‘Logic and Foundations’ and ‘Linear

Algebra’ are offered but ‘Calculus 1’ is not. There are
(
12
5

)
cases of this type.

This gives that the total ways courses can be offered is:
(
15
7

)
−
(
12
5

)
.

Alternatively, we can count the possible course offerings by cases.

Case 1: Exactly one of ‘Logic and Foundations’ or ‘Linear Algebra is offered.

First, we can select one of the two and then the other 6 courses. There are(
2
1

)(
13
6

)
ways to do this.

Case 2: Neither ‘Logic and Foundations’ and ‘Linear Algebra is offered. There

are
(
13
7

)
ways to do this.

Case 3: Both ‘Logic and Foundations’ and ‘Linear Algebra are offered. This

means ‘Calculus 1’ must also be offered. The other 4 courses can be selected in(
12
4

)
ways.

The total ways to offer the courses are:
(
2
1

)(
13
6

)
+
(
13
7

)
+
(
12
4

)
.

9. (a)
(
20
8

)
(b)

(
10
4

)(
10
4

)
(c)

(
20
8

)
−
(
18
6

)
=
(
18
8

)
+
(
2
1

)(
18
7

)
(d)

(
20
8

)(
8
1

)
=
(
20
1

)(
19
7

)
. Robert can either choose the group of dancers for the

opening act and then select a soloist or he can select a soloist from the

class and then select the other 7 dancers.
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10. Algebraic:

m

(
n

m

)
= n

(
n− 1

m− 1

)
m(n!)

(n−m)!m!
=

n(n− 1)!

(n− 1− (m− 1))!(m− 1)!

n!

(n−m)!(m− 1)!
=

n!

(n−m)!(m− 1)!

Clearly from above, the two side are algebraically equivalent.

Combinatorial: Consider a group of n people who all apply to be on a com-

mittee of m people that requires a leader. There are two possible ways we can

form the committee. We can either first choose from the larger group of n peo-

ple our committee of m individuals, and then within that committee chose a

leader, m possibilities. This is m
(
n
m

)
.

Alternatively, we can pick from the leader from the larger group of n people

first, and then from the remaining n− 1 select the remaining m− 1 non-leader

committee members. This is n
(
n−1
m−1

)
.

Since we counted the same scenario in two different ways, these expressions are

equivalent.

11. We can look at this problem as counting the number of subsets given a set. We

know that 2n counts the total number of subsets from a set of cardinality n.

This is because for each element in the set we are given two ’choices’: whether

or not to include it in the set. Since there are n elements in a set, we can use

the product rule to see there are a total of 2n possible subsets.

Alternatively, we know that
(
n
k

)
is the total number of subsets of size k from a

set of size n. And so, the left side is the sum of all possible subsets of n of size

0 to n. This is all possible sizes of subsets and so this is all possible subsets of
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a set of size n.

Since we counted the same scenario in two different ways, these expressions are

equivalent.

12. Suppose a teacher in a classroom of n students is looking to take k students to

a special conference. We know that there are
(
n
k

)
to select these students, which

is the left side of our equation.

We can also look at this problem in two cases. Suppose there is a student

Chan Ming in the class. We can look at two cases relating to Chan Ming either

attending the conference or not. If Chan Ming does not attend the conference

there are
(
n−1
k

)
ways of picking students to go to the conference. If Chan

Ming does attend the conference there are
(
n−1
k−1

)
ways of selecting the remaining

students to attend the conference. Thus, by the Rule of Sum, the total number

of possible groups of students to attend the conference is
(
n−1
k

)
+
(
n−1
k−1

)
.

Since we counted the same scenario in two different ways, these expressions are

equivalent.

13. (a)
∑n

k=0 x
kyn−k

(
n
k

)
(b)

∑6
k=0(3)k(−x)6−k

(
6
k

)
= x6− 18x5 + 135x4− 549x3 + 1215x2− 1458x+ 729

(c)
∑7

k=0(2x)k(−3y)7−k
(
7
k

)
= 128x7−1344x6y+6048x5y2−15120x4y3+22680x3y4−

20412x2y5 + 10206xy6 − 2187y7

(d)
∑15

k=0(4x)k(7y)n−k
(
15
k

)

144



14. (a)
(
13
9

)
Notice first: (x+ y)13 =

∑13
k=0(x)k(y)13−k

(
13
k

)
.

Thus, the coefficient we are looking for occurs when k = 9. This is equal

to
(
13
9

)
.

(b) 29
(
13
9

)
Notice first: (2x+ y)13 =

∑13
k=0(2x)k(y)13−k

(
13
k

)
.

Thus, the coefficient we are looking for occurs when k = 9. This is equal

to 29
(
13
9

)
.

(c)
(
13
9

)
· 49(−3)4

Notice first: (4x− 3y)13 =
∑13

k=0(4x)k(−3y)13−k
(
13
k

)
.

Thus, the coefficient we are looking for occurs when k = 9. This is equal

to
(
13
9

)
· 49(−3)4.

15. (a) 27 · 34 ·
(
11
7

)
We can first expand our binomial using the binomial theorem, that is:

(2x− 3y)11 =
∑11

k=0(2x)k(−3y)11−k
(
11
k

)
.

The term x7y4 will occur when k = 7, so the coefficient of x7y4 is 27·34·
(
11
7

)
.

(b) 27 · 52 ·
(
9
7

)
Notice first: (2x+ 5y)9 =

∑9
k=0(2x)k(5y)9−k

(
9
k

)
.

Thus, the coefficient we are looking for occurs when k = 7. This is equal

to 27 · 52 ·
(
9
7

)
.

(c) 35

Notice first: (3x− y)9 =
∑5

k=0(3x)k(−y)5−k
(
5
k

)
.

Thus, the coefficient we are looking for occurs when k = 5. This is equal

to 35.
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(d) (−2)3 · (2)9 ·
(
12
3

)
Notice first: (−2x+ 2y)12 =

∑12
k=0(−2x)k(2y)12−k

(
12
k

)
.

Thus, the coefficient we are looking for occurs when k = 3. This is equal

to (−2)3 · (2)9 ·
(
12
3

)
.

(e) 2 · 46 · 7
Notice first: (2x− 4y)7 =

∑7
k=0(2x)k(−4y)7−k

(
7
k

)
.

Thus, the coefficient we are looking for occurs when k = 1. This is equal

to 2 · 46 · 7.

16. (a) Notice: 3n =
∑n

k=0 2k1n−k
(
n
k

)
and so:

n∑
k=2

2k
(
n

k

)
= 3n −

1∑
k=0

2k
(
n

k

)
= 3n − 1− 2n

(b)

n∑
k=0

(−1)k

k!(n− k)!
=

1

n!

n∑
k=0

(−1)k(1)!n!

k!(n− k)!

=
1

n!

n∑
k=0

(−1)k(1)n−k
(
n

k

)
=

1

n!
(1− 1)n

= 0, as n ≥ 0

17. By the Binomial Theorem:

(1 + i)n + (1− i)n =
n∑
k=0

(i)k
(
n

k

)
+

n∑
k=0

(−i)k
(
n

k

)
=

n∑
k=0

((i)k + (−i)k)
(
n

k

)
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We know that
(
n
k

)
∈ Z and so we can focus on ((i)k + (−i)k). Let us proceed

by cases on the parity of k.

Case 1: Suppose k is even. If k is even, let us write k = 2t, for some t ∈ Z.

Then ((i)k + (−i)k) = ((i)2t + (−i)2t). This implies (i)2t = (i2)t = (−1)t and

(−i)2t = ((−i)2)t = (1)t. Thus, ((i)k + (−i)k) = (−1)t + (1)t which implies that

((i)k + (−i)k) ∈ Z, as desired.

Case 2: Suppose k is odd. If k is odd, let us write k = 2t + 1, for

some t ∈ Z. Then ((i)k + (−i)k) = ((i)2t+1 + (−i)2t+1). This implies that

(i)2t+1 = i(i2t) = i(−1)t and (−i)2t+1 = −i(i2t) = −i(−1)t. Thus, we have that

((i)k + (−i)k) = i(−1)t − i(−1)t = 0 ∈ Z, as desired.

18. (a)
∑n

k=0 6k
(
n
k

)
= (6 + 1)n = 7n

(b)

n∑
k=0

4n
(
n

k

)
= 4n

n∑
k=0

(
n

k

)
= 4n(1 + 1)n

= 4n · 2n

= 23n

(c)
∑n

k=0(−3)k(2)n−k = (−3 + 2)n = (−1)n

(d)

n∑
k=0

6

(
n

k

)
= 6

n∑
k=0

(
n

k

)
= 6(1 + 1)n

= 6 · 2n
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(e)
∑n

k=0(−1)n−k
(
n
k

)
= (−1 + 1)n = 0

19. When evaluating a polynomial with more than two terms to some integer power

the multinomial theorem is used to determine the coefficients of the terms. The

binomial theorem is a version of the multinomial theorem that can be used for

binomials.

20. (a) Using the theorem, the coefficient is 4!
2!1!1!

= 12.

(b) Using the theorem, the coefficient is clearly 8!
2!2!2!2!

· 22 · (−1)2 · 32 · (−3)2 =

816480.

(c) There is no term with xyz since the sum of the exponents of the variables

must add up to the exponent, 10.
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3.5 Combinations with Repetitions

Questions:

1. Find two statements equivalent to: “The number of combinations of n objects

taken r at a time, where repetition is allowed.”

2. When using the combinations with repetitions formula,

(
n+r−1

r

)
=
(
n+r−1
n−1

)
,

what does n represent? r?

3. Seven teammates go to a fast food joint between tournament games. The menu

offers: cheeseburgers, hamburgers, hot dogs, fries, and onion rings. If each in-

dividual orders only one thing, how many different ways can the group order?

4. A tea shop offers twenty varieties of teas. Assuming they will not run out of

tea, how many combinations of tea, with repetition allowed, can 12 teas be

purchased?

5. A store has a sale on basic T-shirts, offering 50% off any purchase of exactly

12 shirts. They have 40 different colours to pick from. In how many ways can

someone purchase 12 shirts such that,

(a) they would like every shirt to be a different colour?

(b) they can purchase the same colour shirt more than once?

149



6. How many ways are there to distribute 20 toy cars to m children if:

(a) the toy cars are identical?

(b) the toy cars are distinct?

7. Parents are distributing the last of the Halloween candies between their four

children. There are seven packs of Skittles and six chocolate bars, in how many

ways can these parents distribute the candy such that each child gets at least

one pack of Skittles.

8. Create a situation that results in counting the number of integer solutions to:

x1 + x2 + x3 = 10,

where xi ≥ 0 for i = 1, 2, 3.

9. How many integer solutions are there to the inequality,

x1 + x2 + x3 + x4 + x5 < 20,

where xi ≥ 0 for 1 ≤ i ≤ 5?

10. How many integer solutions are there to

x1 + x2 + x3 + x4 = 8,

where x1 ≥ 1, x2 > 1 and x3, x4 ≥ 0.
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11. How many integer solutions are there to:

x1 + x2 + x3 + x4 = 30,

where xi ≥ 1 for i ∈ {1, 2}, x3 ≥ 4, and x4 ≥ 0?

12. How many integer solutions are there to:

x1 + x2 + x3 + x4 + x5 ≤ 21,

where xi ≥ 0 for i ∈ 1, 2, 3, x4 ≥ 1 and x5 ≥ 3?

13. How many ways can we arrange ten identical towels in a house with five bath-

rooms where each bathroom needs one towel?

14. For which positive integer, n, will the two equations,

x1 + x2 + x3 + ...+ x22 = n, and

y1 + y2 + y3 + ...+ y51 = n,

have the same number of positive integer solutions?

15. Hannah is buying two dozen loaves of bread at a bakery out of n options. The

bakery has more than three dozen of each type and Hannah is okay with repe-

tition. If she can select the bread in 593 775 different ways, how many different

types of bread does the bakery have?

Note: one dozen = 12.

16. Prove, either algebraically or with a combinatorial proof, that(
n+r−1

r

)
=
(
n+r−1
n−1

)
.
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17. Which formula would you use to count:

(a) An ordered arrangement of r distinct objects from a set of n distinct objects

with no repetition?

(b) The un-ordered arrangement of r objects from n objects where repetition

is not allowed?

(c) The distribution of r distinct objects from n distinct objects, where un-

limited repetition is allowed?

(d) The distribution of r identical objects into n distinct containers?

18. How many integer solutions exist to x1 + x2 + x3 = 0 with the restriction that

xi ≥ −5 for all i = 1, 2, 3?

19. Write the following problems as an equivalent problem of counting the number

of integer solutions of an equation. (You do not need to count the number of

solutions).

Hint : Refer to question 1 from this section.

(a) The selection of seven marbles from a group of 3 red, 4 blue and 2 green

marbles.

(b) Distributing 30 identical poker chips to 5 different players.

(c) Picking 12 apples from 4 different varieties of apples, where at least two of

each type is selected.

(d) The distribution of 15 identical markers into 4 distinct boxes such that the

number of markers in the first and second boxes are equal.

20. How many ways can someone distribute x identical marbles into n distinct boxes

such that there are m boxes empty, m ≤ n?
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21. How many ways are there to distribute r identical shoes into n distinct shoe

boxes with the first m boxes collectively holding at least s shoes, where m ≤ n

and s ≤ r?
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Solutions:

1. i) The number of ways r identical elements can be distrbuted into n distinct

containers.

ii) The number of non-negative integer solutions to:

x1 + x2 + ...+ xn = r.

2. We are selecting r elements, with possible repetition, from a set of n distinct

objects.

3. 330.

We are interested in selecting seven items from the menu, potentially with rep-

etition, from five distinct options, hence there are
(
5+7−1

7

)
=
(
11
7

)
= 330 ways

these teammates can order.

4. 41 120 525.

We are interested in selecting 12 teas out of 20 possible teas with potential repe-

tition, hence there are
(
20+12−1

12

)
=
(
31
12

)
= 141 120 525 ways to select twelve teas.

5. (a)
(
40
12

)
.

This is just a combinations problem, picking 12 shirts from 40 gives
(
40
12

)
ways to select them.
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(b)
(
51
12

)
.

We are interested in selecting 12 shirts, potentially the same, from 40 dis-

tinct colours, hence there are
(
40+12−1

12

)
=
(
51
12

)
ways to do this.

6. (a)
(
20+m−1

20

)
.

The m children are certainly distinct, so we are interested in distribut-

ing the 20 identical toys to the m distinct children, which gives precisely(
20+m−1

20

)
=
(
20+m−1
m−1

)
. different ways to do this.

(b) m20.

This is equivalent to distributing 20 distinct objects into m distinct boxes.

Each of the toys has m choices for which box to be assigned to, which

yields m20 ways to distribute these toys.

7. 1680.

After giving each child one Skittle, we count how to distribute the 3 remaining

Skittles and 6 chocolate bars. First we count the ways to distribute the remain-

ing Skittles, then the chocolate, and then we’ll apply the Rule of Product.

Skittles: We are arranging three identical objects, potentially with repetition,

between four distinct individuals, so there are
(
4+3−1

3

)
=
(
6
3

)
ways to distribute

the Skittles.

Chocolate: Arranging six identical chocolate bars between four distinct chil-

dren gives
(
4+6−1

6

)
=
(
9
6

)
ways to distribute the chocolate.

In total there are
(
6
3

)
·
(
9
6

)
= 1 680 ways to distribute this candy.
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8. There are many possible correct answers, one example is, in how many can you

distribute ten treats between three dogs?

9. 42 504.

We can re-express this problem as how many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 + x6 = 19,

where xi ≥ 0 for i = 1, ..., 5 and x6 ≥ 0.

x6 is a placeholder variable which accounts for when
∑5

i=1 xi < 20, since every

positive value of x6 corresponds to,

x1 + x2 + x3 + x4 + x5 = 19− x6 < 20

Therefore we are distributing 19 identical objects between 6 distinct contain-

ers, hence there are
(
6+19−1

19

)
=
(
24
19

)
= 42 504 solutions to the original inequality.

10. 56.

First we must rewrite the problem accounting for the xi’s with restrictions larger

than one. We first distribute one into x1 which means our problem is equivalent

to asking how many solutions there are to,

x1 + x2 + x3 + x4 = 7

where x2 > 1 and x1, x3, x4 ≥ 0. Since x2 ∈ Z, x2 > 1 is equivalent to x2 ≥ 2.

Putting two into x2, our problem is equivalent to asking for the number of

integer solutions to,

x1 + x2 + x3 + x4 = 5,

where xi ≥ 0 for i = 1, 2, 3, 4. Thus we are arranging 5 identical objects into 4
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distinct containers, so there are
(
4+5−1

5

)
=
(
8
5

)
= 56 unique integral solutions.

11. 2 925.

We begin by distributing one into x1, one into x2, and four into x4, therefore

this problem is equivalent to the number of integer solutions of,

x1 + x2 + x3 + x4 = 24,

where xi ≥ 0 for all i. We are interested in distributing 24 identical objects

into four distinct containers, hence there are
(
24+4−1
4−1

)
=
(
27
3

)
= 2 925 integer

solutions.

12. 26 334.

We first put one into x4 and three into x5 which makes the problem equivalent

to the number of integer solutions to:

x1 + x2 + x3 + x4 + x5 ≤ 17,

where xi ≥ 0, for i = 1, 2, 3, 4, 5. Adding a placeholder variable to account for

the inequality (as in question 9), this is equivalent to the number of integer

solutions to:

x1 + x2 + x3 + x4 + x5 + x6 = 17,

where xi ≥ 0 for i = 1, 2, 3, 4, 5, 6. We are distributing 17 identical objects into

six distinct containers, so the number of integer solutions to this is
(
6+17−1
6−1

)
=(

22
5

)
= 26 334.
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13. 126.

First we will put a towel in each bathroom. Now we are left to distribute the

five remaining identical towels into the five bathrooms, with potential repeti-

tion. Using the combination with repetition formula there are exactly
(
5+5−1

5

)
=
(
9
5

)
= 126 ways to distribute these towels.

14. n = 7.

Notice that positive integer solutions implies that each xi, yi ≥ 1 for all i. So

we can start by giving one to each xi, yi, reducing the equations to:

x1 + x2 + x3 + ...+ x22 = n− 22 and

y1 + y2 + y3 + ...+ y51 = n− 55,

where xi, yi ≥ 0.

The number of non-negative solutions to the first equation is
(
22+(n−22)−1

n−22

)
=(

n−1
n−22

)
. The number of non-negative solutions to the second equation is

(
55+(n−55)−1

n−55

)
=(

n−1
n−55

)
.

If we want the same solutions to the two equations then we need
(
n−1
n−22

)
=
(
n−1
n−55

)
.

Recall that
(
n
m

)
=
(

n
n−m

)
, so we know

(
n−1
n−22

)
=
(
n−1
21

)
. Now we have

(
n−1
21

)
=(

n−1
n−55

)
. This tells us that 21 = n− 55, which gives n = 76.
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15. n = 7.

If we know Hannah has 593 775 different ways of choosing two dozen loaves

with repetition from n distinct bread varieties, then we know that,(
n+ 24− 1

24

)
=

(
n+ 23

24

)
= 593 775

With trial and error, we can see that,(
30

24

)
= 593 775

Which means that n+ 24− 1 = 30, and so n = 7.

16. Algebraically: Expanding using the definition of the combination function,

we know,

(
n+r−1

r

)
= (n+r−1)!

r!(n−1)! ,

and that,

(
n+r−1
n−1

)
= (n+r−1)!

(n−1)!r! .

It is easy to see that these expansions are equal since multiplication is commu-

tative, so we’re done.

Combinatorial proof : We can look at this problem as placing r balls into n

boxes.

If we wish to do this, we can line up the r balls and place n−1 dividers between

them. The balls between either the beginning/end and a divider or two dividers

represents the number of balls in a box. Thus, there are n−1+r total positions,

where each position is either filled with a ball or a divider.

From these positions we can either choose where to first place the dividers and
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then have the balls fill the remaining positions,
(
n+r−1
n−1

)
, or we can choose where

to place the balls first and have the dividers fill the remaining positions,
(
n+r−1

r

)
.

The two options are equivalent and are equal to the right and left sides of the

equation, respectively.

17. (a) P (n, r)

(b) C(n, r)

(c) nr

(d) C(n+ r − 1, r) = C(n+ r − 1, n− 1)

18. 136.

To solve this problem, we would like to find an equivalent equation so that

xi ≥ 0 for i = 1, 2, 3 and we have a familiar problem to solve. We begin by

removing −5 from each xi, by giving 5 to each xi. Our problem is now to

determine the number of integer solutions to

x1 + x2 + x3 = 15,

for each xi ≥ 0. This gives precisely
(
3+15−1

15

)
=
(
17
15

)
= 136 possible solutions.

19. Determine the number of integer solutions to:

(a)

x1 + x2 + x3 = 7,

where 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4 and 0 ≤ x3 ≤ 2. We have x1 representing

the red marbles, x2 the blue and x3 the green marbles.
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(b)

x1 + x2 + x3 + x4 + x5 = 30,

where xi ≥ 0 for i = 1, 2, 3, 4, 5. Each xi represents how many poker chips

each individual has. (We require each xi to be positive since we are mod-

elling a situation where having negative poker chips is nonsensical.)

(c)

x1 + x2 + x3 + x4 = 12,

where xi ≥ 2 for i = 1, 2, 3, 4. Each xi represents the number of apples of

each variety that have been selected.

(d) x1 + x2 + x3 + x4 = 15, where xi ≥ 0 for i = 1, 2, 3, 4 with x1 = x2. Each

xi represents the amount of markers in each box.

20.
(
n−m+x−1

x

)
·
(
n
m

)
.

We would like to distribute x identical marbles into n−m distinct boxes. This

can be done in
(
n−m+x−1

x

)
ways. However, we do not know which m boxes will

be left empty, so we must multiply by
(
n
m

)
. Hence there are

(
n−m+x−1

x

)
·
(
n
m

)
ways to distribute these marbles.

21.
(
m+s−1

s

)
·
(
n+r−s−1

r−s

)
.

We begin by distributing s shoes into the first m boxes. These s shoes are

identical and the m boxes distinct. There are
(
m+s−1

s

)
ways to do this. Next,

we must distribute the remaining r − s identical shoes into the n boxes. There

are
(
n+r−s−1

r−s

)
ways to do this. So by the Rule of Product, there are

(
m+s−1

s

)
·(

n+r−s−1
r−s

)
ways to distribute these shoes.
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3.6 The Pigeonhole Principle

Questions:

1. In your own words, describe the Pigeonhole Principle.

2. State the Pigeonhole Principle in terms of sets, functions and domains.

3. What can you say about the number of pigeons occupying each pigeonhole if

there are n pigeons and m pigeonholes, where m ≥ n?

4. Let k and m be positive integers. Explain why the existence of km+ 1 pigeons

and m pigeonholes results in at least one pigeonhole housing k + 1 pigeons.

5. Apply the pigeonhole principle to solve the following problems. Describe the

‘pigeons’ and the ‘pigeonholes’.

(a) There are 367 individuals attending a mathematics seminar, is it possible

that everyone has a different birthday? Explain.

(b) Consider a subset of the positive integers with 29 elements. Prove that at

least two elements in this set will have the same remainder when divided

by 28.

(c) You are handed a bag with 9 pairs of shoes in it. If you take shoes one

at a time, how many shoes must you take out to guarantee that you have

found a pair?

(d) You are given a list of 17 500 three letter “words” (strings of letters of

length 3, repetition is allowed). Are all of these words distinct? Explain.

6. Prove that any subset of A = {1, 2, ..., 9} with 6 or more elements contains two

elements whose sum is 10.
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7. An ice cream parlour sells 15 different ice cream flavours. A parent brings 8

children to the parlour and lets them each get a double-scoop of ice cream with

the requirement that each scoop must be different flavor. Is it possible for no

flavour to be ordered more than once?

8. Prove that if more than 1001 integers are selected from {1, ..., 2000} then:

(a) there are two integers with the property that one number divides the other.

(b) there are two integers that are relatively prime (i.e. there exist two inte-

gers, say m and n, such that gcd(m,n) = 1).

Hint : Every pair of consecutive integers are relatively prime.

9. How many people must attend a conference to ensure that at least two atten-

dees share the same first and last initial?

10. While trying to apply for scholarships to pay for college, Brynn spends six weeks

sending out applications. She sends out at least one application daily, but less

than 60 were sent out over the course of these six weeks. Prove that there was

a period of consecutive days where Brynn applied for 23 scholarships.

11. Show that any subset of the positive integers with more than three elements,

will contain two distinct elements whose sum is even.

12. The local library has 12 computers available. There are 42 people who signed up

to use them today. Each person may only use one computer, and to minimize

the strain on the computers, the library does not allow more than six people

to use a single computer in a day. Show that there are at least five computers

used by three or more individuals.
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13. At a party there are n people, where n ≥ 2. Prove that it is guaranteed that

two people will speak to the exact same number of people.

14. Prove that in any set of exactly 13 integers 12 divides the difference of two

numbers from that set.

15. Farmer Mary has 32 cows in a rectangular paddock measuring 15 metres by 24

metres. Show that at any given moment, there are two cows that are no more

than 5 metres apart.

16. How many integers must you pick in A = {1, 2, ..., 200} to ensure that there is

at least one number divisible by 5?

17. How many integers in X = {0, .., 60} must be chosen to ensure that an odd

integer is selected?
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Solutions:

1. If there are k pigeons that are flying into n pigeonholes where n < k, then there

must be at least one box with at least two pigeons.

2. A function from one finite set to a smaller finite set cannot be one-to-one. There

will be at least two elements from the domain that map to the same image in

the co-domain/range. The pigeons represent the domain and the pigeonholes

the co-domain. The function is the assignment of pigeons to pigeonholes.

3. There is nothing specific that can be said, unless m > n. If m > n we know that

at least one pigeonhole will be empty. Beyond that, there are many possible

arrangements of the pigeons.

4. First notice if k = 1, this is precisely the pigeonhole principle.

Consider when k > 1. Suppose for contradiction that each pigeonhole houses at

most k pigeons. Then there are, at most, k × n = kn pigeons, which is a con-

tradiction as there are kn+1. Thus, at least one pigeonhole hosts k+1 pigeons.

5. (a) There are 366 possible birthdays, including February 29. As 367 > 365,

there will be at least two people who have the same birthday.

The pigeons are the people and the pigeonholes are the birthdays.

(b) Every integer can be written in the form 28k + m, where k ∈ Z and

m ∈ {0, 1, ..., 27}. So, m represents the remainder of the integer when

divided by 28. There are 28 possible values of m. Therefore, there must

be at least two integers in the set of 29 integers with the same remainder.
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The pigeons are the different integers and the pigeonholes represent the

possible remainders upon division by 28.

(c) You must take out at least 10 shoes before you are guaranteed to obtain a

pair. Any less and it is possible that each shoe is from a different pair.

The pigeons are the shows and the pigeonholes are the pairs of shoes.

(d) To determine this, we must first count the number of distinct three letter

words. For each position in the word there are 26 possible letters. There-

fore, in total there are 263 = 17 576 distinct three letter words. This means

that it is possible, but not definitive, that all words on this list are distinct

as there are more three-letter words possible than there are words on the

list.

The pigeons are the number of three-letter words and the pigeonholes are

the words on the list.

6. If we prove the statement about subsets of size 6, the result will follow for all

larger subsets.

Let the pigeonholes be: {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. Let the pigeons be the

integers in the subset. As there are at least 6 distinct integers chosen and only

5 pigeonholes, two pigeons must be in the same pigeonhole. Notice there is only

one box whose sum does not add to 10, but this box can only contain at most

one pigeon, the number 5. Thus, a box with two pigeons indicates there must

be a pair of integers whose sum is 10.

7. Let each flavour a child orders be a pigeon and each flavour option be a pigeon-

hole. There are eight children who each order two flavours of ice cream and

15 flavour options. This means there are 15 pigeonholes and 16 pigeons. This
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means that at least one flavour must be ordered twice.

8. (a) Any even positive integer can be written as x = 2ky (essentially just fac-

toring out the two’s), where k ∈ N, and y is odd. There are exactly 1000

odd numbers in A = {1, ..., 2000}.

Let us define a pigeonhole for each odd integer y ∈ A as:

PHy = {x ∈ A : x = 2ky, where y is odd and k ≥ 0}.

This gives us our 1000 pigeonholes.

Select any 1001 numbers from A, these are the pigeons. Then, by the

pigeonhole principle, there exists a pigeonhole, PHy, that contains two

selected numbers: a and b. Say a = 2ky and b = 2py for some distinct,

nonnegative integers k and p. If k > p, then b divides a and if k < p, then

a divides b.

(b) We can partition the numbers into sets of size two, where the second

digit is one less than the first: {1, 2}, {3, 4}, ..., {1997, 1998}, {1999, 2000}.
Then, there are exactly 1000 of these disjoint subsets, which represent our

‘pigeonholes’.

Choose any 1001 integers and let them represent our ‘pigeons’. Then by

PHP, we will have two integers from the same disjoint subset. Hence, two

integers are relatively prime.

9. First determine the number of possible, distinct initials. There are 26 options

for each one’s first and last initial. Therefore, there are 262 = 676 different

possible initials.

Let the attendees represent the ‘pigeons’ and the possible initials represent the

‘pigeonholes’. To guarantee there are at least two attendees with the same

initials, it follows from the Pigeonhole Principle that we need more than 676
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attendees. So, we require at least 677 attendees.

10. Notice that Brynn spent 6 · 7 = 42 days sending out scholarship applications.

For 1 ≤ i ≤ 42, let xi represent the number of scholarships Brynn has sent out

in total as of day i. Since Brynn sends out at least one application per day and

no more than 60 total, we know that 1 ≤ x1 < x2 < ... < x42 < 60.

Now adding 23 to every term of the inequality we obtain:

1 + 23 = 24 ≤ x1 + 23, x2 + 23, ..., x42 + 23 < 60 + 23 = 83

Note: Recognizing that you need to do this is the heart of the proof. We add

23 because we are trying to prove that there are 23 consecutive days where

scholarship applications were sent out, which allows us to conclude this by the

PHP.

Now we have 84 distinct numbers, {x1, x2, ..., x42, x1 + 23, x2 + 23, ..., x42 + 23}.
Let these numbers represent out ‘pigeons’. These 84 numbers must all lie be-

tween 1 and 83, where the range of integers from 1 to 83 represent out pigeon-

holes. Thus by the PHP there exists an xi = xj+23 for some i > j ∈ {1, ..., 42}.
This means that from the beginning of day j + 1 to the end of day i, Brynn

applied for 23 scholarships.

11. It suffices to prove the result for subsets of exactly size three, since that will

imply the result for subsets of size larger than three.

The only way for the sum of two integers to be even is if both of the integers

have the same parity, that is both are even or both are odd. Any given integer

can be classified as either even or odd, hence any subset of 3 integers will con-

tain at least two with the same parity by the PHP. Thus, there are two integers
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in the subset with an even sum.

12. There are 12 pigeonholes (computers) and 42 pigeons. In this problem there is

a restriction that no pigeonhole can hold more than 6 pigeons.

We wish to show that there are five computers which are used by three or more

people.

Let us assume for a contradiction that this is not true. This would mean that

8 computers are used by at most 2 people. This would mean that these 8

computers are used by at most 16 people all together.

There are 42 people who use a computer at the library and so that means the

remaining 26 people use 4 computers.

This means that there are 26 pigeons and 5 pigeon holes where the maximum

capacity of each pigeonhole is 6. This however gives that the maximum capacity

for the remaining computers is 24, which is a contradiction.

So, at least 5 computers are to be used by three or more people.

13. Let us assume that if one person speaks to another, the person will respond.

That is, assume speaking to someone is a reflective relation.

If there are n people at the party, each person can speak to between 0 and

n− 1 people, as no person can speak to themselves and speaking to someone is

reflective.

If a person spoke to n − 1 people, then it is impossible for any person to have

spoken to 0 people. In this case every person spoke to between 1 and n − 1

people. That means there are n− 1 potential number of people a person could

have spoken to.
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If a person at the party spoke to 0 people, then it is impossible for someone to

have spoken to everyone. In this case every person will have spoken to between

0 and n − 2 people. That means there are n − 1 potential number of people a

person could have spoken to.

In both of the above cases, there are n−1 potential amounts of people a person

could have spoken to but n people. Thus, by the PHP two people will have

spoken to the same amount of people at the party.

14. For 12 to divide the difference of two numbers, they must have the same re-

mainder upon division by 12. Observe that 12k + m− (12j + m) = 12(k − j),
where k, j,m ∈ Z and m represents the remainder of the arbitrary integer when

divided by 12.

Certainly the only possible remainders are {0, ..., 11}, of which there are 12 pos-

sibilities. Thus by the PHP, as 12 integers have been selected at least two must

have the same remainder when divided by 12. Thus, their difference is divisible

by 12, as desired.

15. Notice that a rectangle with width of 3 metres and height of 4 metres has a

diagonal length of 5 metres. If we divide the field into rectangles of this size,

we are able to split the field into 30 rectangles. Let the cows represent ‘pigeons’

and the rectangles represent ‘pigeonholes’. Then, by the PHP, at least two cows

must be in the same rectangle. The farthest two cows are apart in a rectangle

in 5 metres and so the result follows.

16. In A, there are exactly 40 integers divisible by 5. Therefore one must select

200 − 40 + 1 = 161 integers to guarantee that at least one of them is divisible

by 5.
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17. There are exactly 30 odd numbers bin X, and 61 numbers to choose from.

Therefore at least 61− 30 + 1 = 32 numbers must be selected to guarantee that

at least one is odd.
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4 Inclusion and Exclusion

4.1 The Principle of Inclusion-Exclusion

Questions:

Where appropriate, indicate the set and the conditions you will be working with.

1. In your own words explain the Principle of Inclusion-Exclusion.

2. Determine whether the following mathematical statement is true or false. If it

is true, prove it. If it is false, provide a counterexample.

N(c1 c2) = N(c1c2).

3. A kindergarten class with 30 students was surveyed about which activities they

enjoy. 20 students enjoy nap time, and 14 students enjoy colouring. Determine

(a) How many students don’t enjoy colouring?

(b) If 7 students like both activities, how many students like either colouring,

nap-time or both?

(c) How many students enjoy exactly one activity?

4. There are 500 families that live in the neighbourhood of South Brambleton. 100

of these families have no children and no pets. 300 families have pets, and 400

have children. How many homes in South Brambleton have both of children

and pets living in them?
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5. Suppose there are 100 different cookies at the bake-sale. There are 40 cookies

with chocolate chips and 25 with raisins.

(a) If 11 cookies have both chocolate chips and raisins, how many cookies have

neither chocolate chips nor raisins?

(b) Suppose there are also 30 cookies with oatmeal, 10 of which also have

chocolate, and 15 of which have raisins. If there are only 6 cookies with all

three ingredients in them, how many cookies do not contain any oatmeal,

raisins, and chocolate chips?

6. A school is having a year end barbeque. Each family is asked to contribute at

least one of the three following foods: salads, sandwiches, and juices. If there

are 150 families attending and you know that 25 brought salads and sandwiches,

30 brought sandwiches and juice, and 40 brought salad and juice. Further, each

item is brought by 50 families. Lastly, 60 families bring at least two items and

20 families bring all three items.

(a) How many families brought exactly one item?

(b) How many different families brought only juice?

(c) How many families did not only bring sandwiches?

7. At a local twin convention, the attendees are seated at circular tables. Each

table can sit 12 people so 6 sets of twins. In how many ways can they be ar-

ranged so that no individual sits beside their twin?

Note: two seating arrangements are the same if one is simply a rotation of the

other.

8. Determine the number positive integers in A = {1, 2, 3, ...3000} that are:

(a) divisible by 7 or 2.

(b) divisible by 7 and not 2.
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(c) not divisible by 3 or 5.

(d) divisible by 2, 3 and 7, but not divisible by 11.

9. How many nine-digit sequences contain all of the digits 1,2, and 3 appearing at

least once?

10. How many 10-digit permutations of the digits 0, 1, ..., 9 exist such that the first

digit is at least 2 and the last digit is less than or equal to 7?

11. How many sequences of 10 distinct letters do not contain any of the words:

GAINS, BUG, SNAP?

12. How many sequences of 12 distinct letters do not contain any of the words:

DOG, SPUN, or DREAM?

13. How many ways can the letters of MISSISSIPPI be arranged such that none of

the following are true: all of the I’s are consecutive, all the P’s are consecutive,

and all the S’s are consecutive?

14. How many non-negative integer solutions are there to x1 + x2 + x3 + x4 = 25 if

(a) 0 ≤ xi for i = 1, 2, 3, 4?

(b) 0 ≤ xi ≤ 9 for i = 1, 2, 3, 4?

(c) 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3, 2 ≤ x3 ≤ 7, 3 ≤ x4 ≤ 11?

15. How many ways are there to distribute 25 identical marbles into 6 distinct boxes

so that each of the first three boxes have no more than six balls?
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16. Consider a finite set, S, with |S| = k. Let c1, c2, c3, c4 be four conditions, each of

which may be satisfied by one or more elements of the set S. Use the Principle

of Inclusion-Exclusion to prove that

N(c2 c3 c4) = N(c1 c2 c3 c4) + N(c1 c2 c3 c4).

Hint : Use a combinatorial proof and consider an arbitrary element of the set.
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Solutions:

1. The Principle of Inclusion-Exclusion is a counting method that ensures ev-

ery possible event is counted, while also taking into account events that can

co-occur. This method is a way of ensuring events are not counted twice or

“double counted”.

2. This mathematical statement is false.

The left side, N(c1c2), represents the number of elements where c1 and c2 are

not simultaneously satisfied. These elements include elements where one of c1

or c2 is satisfied.

The right side, N(c1 c2), represents the elements where neither c1 nor c2 are

satisfied.

An example of this situation follows. Suppose you are looking for a movie to

watch. You are choosing between action movies, movies that are at least two

hours long, and movies in Spanish. Let c1, c2, and c3 represent action movies,

movies that are at least two hours long, and movies that are in Spanish.

If you are looking for pick a movie that satisfies the condition c1c2. This means

you are choosing a movie that is not both an action movies and two hours or

longer. So, you may still pick a shorter action movie or a two hour long movie

of a different genre.

If on the other hand you are looking to pick a movie that satisfies the condition

c1 c2. This means you are looking for a movie that is neither an action movie

nor longer than two hours. This condition excludes movies that are both action

and two hours or longer, movies that are only actions movies, and movies that

are just two hours or longer.

Thus, N(c1c2) may be smaller than N(c1 c2) as it excludes fewer elements.
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3. Let S be the set of kindergarten students, thus |S| = 30. Let c1 be the condition

that students enjoy nap time, and c2 be the condition that the students enjoy

colouring. So, N(c1) = 20 and N(c2) = 14.

(a) 16 students

This is the total number of students in the class subtracted by those who

enjoy colouring: 30− 14 = 16 students do not enjoy colouring.

(b) 27 students

From the question, we know N(c1c2) = 7 as there are 7 students that

satisfy both of our conditions. We are looking for the number of students

that like one or both of the surveyed activities. So, by PIE: N(c1 c2) =

N(c1) +N(c2)−N(c1c2) = 20 + 14− 7 = 27.

(c) 20 students

We are looking for the number of students who only enjoy colouring and

the number of students who only enjoy nap time.

The number of students who only enjoy naptime is equal to the number

of students who like nap time, subtracted by the number of students who

enjoy both colouring and nap time: N(c1c2) = N(c1)−N(c1c2) = 20−7 =

13.

Similarly, N(c1c2) = N(c2)−N(c1c2) = 14− 7 = 7.

Thus, the total of students who only enjoy one activity is: N(c1c2) +

N(c1c2) = 13 + 7 = 20.
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4. 300 homes.

Let P be the set of families with pets and C the set of families with children.

The question asks for |P ∩ C|. In the question they tell us that |P ∪ C| =

500− 100 = 400. By Inclusion-Exclusion,

|P ∪ C = |P |+ |C| − |P ∩ C|.

Rearranging, we get

|P ∩ C| = |P |+ |C| − |P ∪ C| = 300 + 400− 400 = 300.

Thus, 300 homes have both pets and children in them.

5. (a) 46 cookies.

Let c1 represent cookies with chocolate chips and c2 represent cookies with

raisins. From the question we know thatN = 100, N(c1) = 40, N(c2) = 25,

and N(c1c2) = 11.

We are looking for N(c1 c2). By PIE, we know that:

N(c1 c2) = N −N(c1)−N(c2) +N(c1c2)

We can sub in our given values to see that N(c1 c2) = 46
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(b) 35 cookies.

We can introduce an additional variable c3 to represent cookies with oat-

meal. We are given additional information: N(c3) = 30, N(c1c3) = 10,

N(c2c3) = 15, and N(c1c2c3) = 6.

We are interested in N(c1 c2 c3). By PIE it follows that:

N(c1 c2 c3) = N−N(c1)−N(c2)−N(c3)+N(c1c2)+N(c1c3)+N(c2c3)−N(c1c2c3)

We can sub in our given values to see that N(c1 c2 c3) = 35

6. (a) This question has no correct answer because it describes an impossible

situation. For example, it says that |A ∪ B ∪ C| = 150. It also says that

|A| = |B| = |C|. This can only occur if A, B and C are disjoint.

However, the question also says that they are NOT disjoint. Hence the

question has no correct answer.

(b) 135 families.

We are interested in N(c1c2c3). By PIE, we know that:

N(c1c2c3) = N −N(c1c2c3)

= N − (N(c2)−N(c1c2)−N(c2c3) +N(c1c2c3))

= 150− (50− 25− 30 + 20)

= 135

So, 135 families did not bring only sandwiches.

7. 11!−
∑6

i=1(−2)i
(
6
i

)
(11− i)!

Let S be a set of 6 twins. Let us number the twins as 1, 2, 3, 4, 5, and 6. Let ci
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represent the condition where twins i sit next to each other for i = 1, 2, 3, 4, 5, 6.

To find N(c1), we can first seat the twins next to each other at the table. We can

seat the twins next to each other and then place the other ten people around

the table. Since this is a round table, where we seat the twins is irrelevant.

There are 10! ways to arrange everyone in this manner. We must also consider

which twin is in which seat. There are 2 ways to arrange the twins themselves.

Thus, using the product rule, we can see that N(c1) = 2 ·10! is the total seating

arrangements where two twins sit next to each other.

This follows similarly for each N(ci) for i = 2, 3, 4, 5, 6. Thus, we collect these

terms together, let T1 =
(
6
1

)
2 · 10! where T1 is the total seating arrangements

where two twins are seated next to each other.

To find N(cpcq) for 1 ≤ p < q ≤ 6, we can treat the seating as the arrangement

of 10 distinct objects, where each pair of twins is one object. Since this is a

round table, there are 9! ways of seating everyone. We then must account for

the arrangement of each twin. There are 2 ways to arrange each twin, and so

in total we have N(cpcq) = 22 · 9!.

We can again collect all seatings where two pairs of twins are seating together.

Let us use T2 to represent this total. Then T2 =
(
6
2

)
22 · 9!.

Similarly, N(cpcqcr) = 23 · 8!, where 1 ≤ p < q < r ≤ 6 and so T3 =
(
6
3

)
23 · 8!;

N(cpcqcrcs) = 24 · 7!, where 1 ≤ p < q < r < s ≤ 6 and so T4 =
(
6
4

)
24 · 7!;

N(cpcqcrcsct) = 25 · 6!, where 1 ≤ p < q < r < s < t ≤ 6 and so T5 =
(
6
5

)
25 · 6!;

and N(c1c2c3c4c5c6) = 26 · 5! and so T6 =
(
6
6

)
26 · 5!.

The total number of possible seatings is simply N = 11!, as there are 12 people

to seat at a circular table.

We are looking for N(c1 c2 c3 c4 c5 c6), and so we can use PIE and our above
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values to find this.

N(c1 c2 c3 c4 c5 c6) = N − T1 + T2 − T3 + T4 − T5 + T6

= 11!−
6∑
i=1

(−2)i
(

6

i

)
(11− i)!

8. (a) 1714 numbers.

First, let us count how many numbers are divisible by each of 7 and 2. Let

us call S2 the set of numbers in A that divisible by 2, and S7 the set of

numbers in A that are divisible by 7.

The numbers in A that are divisible by 2 are:

|S2| =
⌊

3000

2

⌋
= 1500

The numbers in A that are divisible by 7 are:

|S7| =
⌊

3000

7

⌋
= 428

The numbers in A that are divisible by both 2 and 7 are:

|S2 ∩ S7| =
⌊

3000

lcm(2, 7)

⌋
=

⌊
3000

14

⌋
= 214
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Thus, by PIE, the total numbers in A divisible by either 2 or 7 is:

|S2 ∪ S7| = |S2|+ |S7| − |S2 ∩ S7|

=

⌊
3000

2

⌋
+

⌊
3000

7

⌋
−
⌊

3000

14

⌋
= 1500 + 428− 214

= 1714

(b) 214 numbers.

We are interested in |S2 ∪ S7|. We can use the values found in part a to

do so.

|S2 ∪ S7| = |S7| − |S2 ∩ S7|

= 428− 214

|S2 ∪ S7| = 214

(c) 1400 numbers.

Let S3 and S5 represent the sets of numbers in A divisible by 3 and 5,

respectively. Thus we have that:

|S3| =
⌊

3000

3

⌋
= 1000

|S5| =
⌊

3000

5

⌋
= 600

|S3 ∩ S5| =
⌊

3000

lcm(3, 5)

⌋
=

⌊
3000

15

⌋
= 200
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Thus, by PIE:

|S3 ∪ S5| = 3000− |S3| − |S3|+ |S3 ∩ S5|

= 1000 + 600− 200

= 1400

And so, there are 1400 numbers in A divisible by neither 3 nor 5.

(d) 63 numbers.

We are looking for |S2 ∩ S3 ∩ S7 ∩ S11|.

|S2 ∩ S3 ∩ S7| =
⌊

3000

lcm(2, 3, 7)

⌋
=

⌊
3000

42

⌋
= 71

|S2 ∩ S3 ∩ S7 ∩ S11| =
⌊

3000

lcm(2, 3, 7, 11)

⌋
=

⌊
3000

462

⌋
= 8

Thus, using PIE, we have that:

|S2 ∩ S3 ∩ S7 ∪ S11| = |S2 ∩ S3 ∩ S7| − |S2 ∩ S3 ∩ S7 ∩ 11|

= 71− 8

= 63

Thus, there are 63 numbers in A that are divisible by 2,3, and 7 but not 11.
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9. 109 − 3(99) + 3(89)− 79 sequences.

Let c1, c2, and c3 be the condition that a 9 digit sequences does not include 1,

2, and 3, respectively.

To find N(c1) we can find the number of sequences we can make with the the

other 9 digits, excluding 1. This is 99 as there are 9 options for each of of the

9 digits where order does matter. Similarly, N(c2) = N(c3) = 99.

To find N(c1c2), we can find the number of sequences we can make with the

other 8 digits. This is 89, as there are 8 options for each of the 9 digits. Similarly,

N(c1c3) = N(c2c3) = 89.

To find N(c1c2c3), we can find the number of sequences we can make with the

other 7 digits. This is 79, as there are 7 options for each of the 9 digits.

The total number of 9 digit sequences in N = 109.

Thus, by PIE, the number of sequences that include 1, 2, and 3 at least once is

equal to N(c1 c2 c3):

N(c1 c2 c3) = N −N(c1)−N(c2)−N(c3) +N(c1c2)

+N(c1c3) +N(c2c3)−N(c1c2c3)

= 109 − 3(99) + 3(89)− 79

10. 10!− 2 · 9!− 2 · 9! + 22 · 8!

Let c1 be the condition that the first digit is less than 2 and c2 be the condition

that the last digit is greater than 7.
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The total number of sequences without restrictions is N = 10!, as there are 10

digits to permute. In order to use PIE, we will find N(c1), N(c2), and N(c1c2).

For N(c1), we are looking at permutations of these 10 digits with a restriction

that the first digit can only be 0 or 1. This gives that N(c1) = 2 ·9!, as there are

two possibilities for the first digit and the remaining 9 digits are then permuted.

Similarly, N(c2) = 2 · 9!.

To find N(c1c2), we are looking at permutations of these 10 digits where two

positions have restrictions. The first and last digit both must be one of two

numbers, as above. The other 8 digits are a permutation. Thus, we have that

N(c1c2) = 22 · 8!.

We are looking for N(c1 c2). Thus, by PIE:

N(c1 c2) = N −N(c1)−N(c2) +N(c1c2)

= 10!− 2 · 9!− 2 · 9! + 22 · 8!

11. 26!
16!
− 6(21!)

16!
− 8(23!)

16!
− 7(22!)

16!
+ 4(19!)

16!
+ 3(18!)

16!
+ 4·3·(19!)

16!
− 1

Let N(c1), N(c2), and N(c3) represent the number of words containing GAINS,

BUG, and SNAP, respectively. Let N represent the total number of letter

sequences of length 10. Thus, N = P (26, 10) = 26!
16!

To form a sequence that contains GAINS, we need to arrange 5 letters from the

remaining 20 letters of the alphabet. This can be done in P (21, 5) = 21!
16!

ways.

Then, choose the position for the word GAINS within this sequence. This can

be done in 6 ways. Thus, using the product rule N(c1) = 6 · P (21, 5) = 6(21!)
16!

.

Similarly for BUG and SNAP, there are N(c2) = 8 · P (23, 7) = 8(23!)
16!

and

N(c3) = 7 · P (22, 6) = 7(22!)
16!

.

A sequence containing both BUG and SNAP requires 3 other letters. There are
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P (19, 3) ways to arrange these letters. There are then 3 ways to place BUG in

between these letters and 4 ways to then place SNAP. Thus, using the product

rule there are N(c2c3) = 4 · 3 · P (19, 3) = 4·3·(19!)
16!

.

A sequence that contains both BUG and GAINS must include the sequence

BUGAINS, as the sequence does not allow for any repeated letters. Thus, there

are N(c1c2) = 4 · P (19, 3) = 4(19!)
16!

.

A sequence that contains both GAINS and SNAP must contain the sequence

the sequence GAINSNAP. Thus, N(c1c3) = 3 · P (18, 2) = 3(18!)
16!

.

A sequence containing GAINS, SNAP, and BUG must contain the sequence

BUGAINSNAP. This sequence is of length 10 and so there is only one sequence

containing all three words. Thus, N(c1c2c3) = 1

We are looking for the number of sequences not containing any of these words,

N(c1 c2 c3). By PIE, we know that:

N(c1 c2 c3) = N −N(c1)−N(c2)−N(c3) +N(c1c2) +N(c1c3) +N(c2c3)−N(c1c2c3)

= P (26, 10)− 6 · P (21, 5)− 8 · P (23, 7)− 7 · P (22, 6) + 4 · P (19, 3)+

3 · P (18, 2) + 4 · 3 · P (19, 3)− 1

=
26!

16!
− 6(21!)

16!
− 8(23!)

16!
− 7(22!)

16!
+

4(19!)

16!
+

3(18!)

16!
+

4 · 3 · (19!)

16!
− 1

12. 26!
14!
− 10·23!

14!
− 9·22!

14!
− 8·21!

14!
+ 6·7·19!

14!
+ 4·5·17!

14!

Let N(c1), N(c2), N(c3) represent the number of words containing DOG, SPUN,

and DREAM, respectively.

To count the number of sequences that contain DOG, we can first permute

the other 9 letters in the sequence from the remaining 23 letters. There are
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P (23, 9) = 23!
14!

ways to do this. We can then place the word DOG somewhere

in the sequence. There are 10 different ways to place DOG. Thus, using the

product rule we can see that N(c1) = 10·23!
14!

. Similarly, N(c2) = 9·22!
14!

and

N(c3) = 8·21!
14!

.

To count the number of sequences containing both DOG and SPUN, we can first

permute the other 5 letters from the remaining 19 letters. There are P (19, 5) =
19!
14!

ways to do this. We can then place DOG and SPUN somewhere in the

sequence. There are 6 · 7 ways to place these words. Thus, using the product

rule we can see that N(c1c2) = 6·7·19!
14!

. Similarly, N(c2c3) = 4·5·17!
14!

.

There can be no sequences containing both DOG and DREAM as these se-

quences of letters are not disjoint. Thus N(c1c3) = 0. Similarly, there can be

no sequences containing all three of the words DOG, SPUN, and DREAM.

The total sequences with 12 letters is N = P (26, 12) = 26!
14!

We are interested in

N(c1 c2 c3). Using PIE, we can see that:

N(c1 c2 c3) = N −N(c1)−N(c2)−N(c3) +N(c1c2) +N(c1c3) +N(c2c3)−N(c1c2c3)

=
26!

14!
− 10 · 23!

14!
− 9 · 22!

14!
− 8 · 21!

14!
+

6 · 7 · 19!

14!
+

4 · 5 · 17!

14!
+ 0− 0

13. 11!
4!4!2!
− 8!

4!2!
− 10!

4!4!
− 8!

4!2!
+ 7!

4!
+ 5!

2!
+ 7!

4!
− 4!

We are interested in counting the number of permutations of MISSISSIPPI that

satisfy the outlined conditions.

Let c1, c2, and c3 be the conditions that all I’s consecutive, all P’s are consecu-

tive, and all S’s are consecutive, respectively.

First, let us focus on N(c1). This is the number of sequences in which all I’s are

consecutive. We can treat the the 4 I’s as a single block and arrange the other
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7 letters with it. The order of the I’s is irrelevant so there is only one way to

arrange them. Thus, there are 8! ways to arrange these 8 blocks, but we must

account for repetition. The word contains 2 P’s and 4 S’s, this means we must

divide the number of ways to rearrange these letters within our sequence. This

gives us N(c1) = 8!
4!2!

. Similarly, N(c2) = 10!
4!4!

and N(c3) = 8!
4!2!

.

Next, we can look at N(c1c2). This is the number of sequences where all the I’s

are consecutive and all the P’s are consecutive. Similar to above, we can look

at the I’s and P’s as blocks where the order is irrelevant. We can arrange these

blocks with the remaining 5 letters, giving us a total of 7 elements. Again, as

there are 4 S’s, we must divide by the number of ways to arrange the S’s to

account for repetition. This gives us that N(c1c2) = 7!
4!

. Similarly, N(c1c3) = 5!
2!

and N(c2c3) = 7!
4!

.

Next, we can look at the number of sequences that satisfy c1, c2 and c3. We can

look at these consecutive sequences as blocks to arrange where, again, the order

within them does not matter. With the remaining letter, there are 4 blocks.

That means that N(c1c2c3) = 4!.

The total number of permutations without restrictions is N = 11!
4!4!2!

We can now

solve for our desired result using PIE, which is N(c1 c2 c3).

N(c1 c2 c3) = N −N(c1)−N(c2)−N(c3) +N(c1c2) +N(c1c3) +N(c2c3)

−N(c1c2c3)

=
11!

4!4!2!
− 8!

4!2!
− 10!

4!4!
− 8!

4!2!
+

7!

4!
+

5!

2!
+

7!

4!
− 4!
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14. Any question that specifies an upper bound on the value of xi will require the

use of the Principle of Inclusion-Exclusion.

(a) 3 276.

This is simply the same sort of problem seen in 3.5 (notice that there is

no upper bound on xi’s). Thus, there are
(
4+25−1

25

)
= 3 276 solutions.

(b) 348 integer solutions.

Let N(ci) denote the number of integer solutions that satisfy the given

equation where xi ≥ 10, for i = 1, 2, 3, 4.

By symmetry, N(c1) = N(c2 = N(c3) = N(c4), so we need only find N(c1).

The value of N(c1) is the same as the number of integer solutions to the

equation x1 +x2 +x3 +x4 = 15 where xi ≥ 0 for i = 1, 2, 3, 4. So using the

combination with repetition formula we see: N(c1) = N(ci) =
(
4+15−1

15

)
=

816.

We then need to find N(cicj) for i 6= j and i, j = 1, 2, 3, 4. Similarly,

N(cicj) is the same as the number of integer solutions to x1+x2+x3+x4 = 5

where xi ≥ 0 for i = 1, 2, 3, 4. Thus N(cicj) =
(
4+5−1

5

)
= 56.

As we are looking for non-negative integer solutions we see that, N(cicjck) =

0 for i 6= j 6= k while i, j, k = 1, 2, 3, 4 and N(c1c2c3c4) = 0.

The total number of possible integer solutions without restrictions was

found in part (a). We can now solve for our desired result using PIE.

Thus,

N(c1 c2 c3 c4) = 3 276− 4(816) + 6(56)− 0 + 0 = 348

(c) 1 509 integer solutions.

Notice that this is the same as determining the number of solutions to
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x1 + x2 + x3 + x4 = 20 where 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 5, and

0 ≤ x4 ≤ 8.

Let N(c1) denote the number of integer solutions that satisfy the given

equation with x1 ≥ 6.

Let N(c2) denote the number of integer solutions where x2 ≥ 4.

Let N(c3) denote the number of integer solutions where x3 ≥ 6.

Let N(c4) denote the number of integer solutions where x4 ≥ 9.

N(c1) is equivalent the number of integer solutions to x1+x2+x3+x4 = 14

where xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c1) =
(
4+14−1

14

)
= 680.

N(c2) is equivalent the number of integer solutions to x1+x2+x3+x4 = 16

where xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c2) =
(
4+16−1

16

)
= 969.

N(c3) is equivalent the number of integer solutions to x1+x2+x3+x4 = 14

where xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c3) =
(
4+14−1

14

)
= 680.

N(c4) is equivalent the number of integer solutions to x1+x2+x3+x4 = 11

where xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c4) =
(
4+11−1

11

)
= 364.

N(c1c2) is equivalent the number of integer solutions to x1 +x2 +x3 +x4 =

10 where xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c1c2) =
(
4+10−1

10

)
= 286.

N(c1c3) equivalent is the number of integer solutions to x1+x2+x3+x4 = 8

where xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c1c3) =
(
4+8−1

8

)
= 165.

N(c1c4) is the number of integer solutions to x1 + x2 + x3 + x4 = 5 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c1c4) =
(
4+5−1

5

)
= 56.

N(c2c3) is the number of integer solutions to x1 + x2 + x3 + x4 = 10 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c2c3) =
(
4+10−1

10

)
= 286.

N(c2c4) is the number of integer solutions to x1 + x2 + x3 + x4 = 7 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c2c4) =
(
4+7−1

7

)
= 120.
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N(c3c4) is the number of integer solutions to x1 + x2 + x3 + x4 = 5 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c3c4) =
(
4+5−1

5

)
= 56.

N(c1c2c3) is the number of integer solutions to x1 +x2 +x3 +x4 = 4 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c1c2c3) =
(
4+4−1

4

)
= 35.

N(c1c2c4) is the number of integer solutions to x1 +x2 +x3 +x4 = 1 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c1c2c4) =
(
4+1−1

1

)
= 4.

N(c1c3c4) is the number of integer solutions to x1 + x2 + x3 + x4 = −1

where xi ≥ 0 for i = 1, 2, 3, 4. There are no possible such solutions hence

N(c1c3c4) = 0.

N(c2c3c4) is the number of integer solutions to x1 +x2 +x3 +x4 = 1 where

xi ≥ 0 for i = 1, 2, 3, 4. Therefore N(c2c3c4) =
(
4+1−1

1

)
= 4.

As we are looking for non-negative integer solutions: N(c1c2c3c4) = 0.

Putting this all together and applying the Principle of Inclusion-Exclusion

we see that the number of integer solutions to the initial equation is:

N(c1 c2 c3 c4) = [N(c1 +N(c2 +N(c3) +N(c4)] + [N(c1c2) +N(c1c3 +N(c1c4)

+N(c2c3) +N(c2c4) +N(c3c4)]− [N(c1c2c3) +N(c1c3c4)

+N(c1c2c4) +N(c2c3c4)] +N(c1c2c3c4)

= 3276− [680 + 969 + 680 + 364] + [286 + 165 + 56 + 286 + 120

+ 56]− [35 + 4 + 0 + 4] + 0 = 1 509.

15.
(
30
5

)
−
(
3
1

)
·
(
23
17

)
+
(
3
2

)
·
(
16
10

)
−
(
9
3

)
.

Let ci represent the arrangements where box i has more than 6 marbles for

i = 1, 2, 3.
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To find N(c1), we can give the first box 7 marbles and then arrange the other

18 marbles without restrictions. This is an arrangement where order does not

matter and repetition is allowed which implies that N(c1) =
(
6+18−1

18

)
=
(
23
18

)
.

Similarly, N(c2) = N(c3) =
(
23
18

)
.

In order to count the number of cases where both the first and second box

have more than 6 marbles, we can give the first two boxes 7 marbles each and

then arrange the remaining 11 marbles. This is an arrangement of 11 marbles

into 6 boxes without restrictions. This implies that N(c1c2) =
(
6+11−1

11

)
=
(
16
11

)
.

Similarly, N(c1c3) = N(c2c3) =
(
16
11

)
.

In order to count the number of cases where all three of the first three boxes

contain more than 6 marbles, we can give each box 7 marbles and then distribute

the other 4 marbles. This is simply an arrangement of 4 objects into 6 boxes,

without restrictions. This implies N(c1c2c3) =
(
6+4−1

4

)
=
(
9
4

)
.

The total number of arrangements of marbles without restrictions is the ar-

rangement of 25 objects into 6 boxes. This implies that N =
(
30
25

)
. Thus:

N(c1 c2 c3) = N −N(c1)−N(c2)−N(c3) +N(c1c2) +N(c1c3) +N(c2c3)

−N(c1c2c3)

=

(
30

5

)
−
(

3

1

)
·
(

23

17

)
+

(
3

2

)
·
(

16

10

)
−
(

9

3

)

16. Let x ∈ S and let n be the number of conditions, out of c1, c2, c3, c4, that are

satisfied by the element x (i.e. 0 ≤ n ≤ 4). We will consider the various

possibilities for n and see which of the three terms in the equation x satisfies.

If n = 0 then x satisfies none of the conditions outlined, thus x is included in

both N(c2 c3 c4) and N(c1 c2 c3 c4).

If n = 1, let us assume without loss of generality that x satisfies c1 and does
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not satisfy ci for i = 2, 3, 4. Then x will be included in N(c2 c3 c4) and in N(c1

c2 c3 c4).

If x satisfies ci for i = 2, 3, 4 then x will not be counted in any of the three

terms of our equation, so we may ignore these cases.

For n = 2, 3, 4 then x is not counted in any of the three terms of the equation.

Thus, all cases have been considered and hence the two sides of our equation

are equal.
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4.2 Derangements: Nothing in its Right Place

Questions:

1. Explain, in your own words, what a derangement is. Give a simple example.

2. Explain how a derangement is an application of the Principle of Inclusion and

Exclusion.

3. How many ways can we permute the alphabet such that no letter is in its usual

place?

4. A high school decides to host a gift exchange for their students. If 150 students

participate in the exchange, how many different ways can gift-givers be assigned

such that,

(a) no student is assigned to themselves?

(b) there are 50 grade 9’s, 30 grade 10’s, 30 grade 11’s, and 40 grade 12’s par-

ticipating, and the students only draw names from students in their own

grade?

5. Kalil is interviewing for jobs at 5 different companies where each job has a two-

part interview. He has 5 interview-appropriate outfits. Kalil wants to wear each

outfit once for each round of interviews, but does not want to wear the same

outfit to the second-part of an interview as he wore to the first. How many

ways can he do this?

6. How many different ways can you arrange the numbers {1, 2, 3, ..., 9, 10} such

that no even number is in its original position?
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7. For the set of positive integers {1, 2, 3, 4, ..., n− 1, n}, we know that the first 6

digits appear in the first 6 positions. If there are 2 385 derangement of this set,

what is the value of n?

8. A waiter (who is not particularly good at their job) has 8 customers at lunch.

Every person order a different meal. How many different ways can the waiter

bring people their food such that:

(a) no one get the meal they ordered?

(b) at least one person gets the food they ordered?

(c) exactly two people get the food they ordered?

(d) exactly one person gets someone else’s food?

9. Twelve friends host a potluck (a party where everyone brings a dish), six of

them are vegetarians while the other six are not. Every individual bring both

a drink and a main dish (suppose that the vegetarians only bring vegetarian

main dishes). How many ways can these friends bring home leftovers such that

each friend brings home one drink and one main dish and

(a) no friend brings home either of the things they brought to the potluck?

(b) the vegetarians all bring home the meal they brought but not their drink,

while the non-vegetarians bring home the drink they brought but not a

different main dish?

(c) No one brings home both of the items they brought.

Hint : Use PIE instead of trying to adapt the derangement formula.
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10. Give a combinatorial proof of:

n! =
∑n

k=0

(
n
k

)
·d(k)

for every 1 ≤ k ≤ n, with n ∈ Z+, where d(k) represents the number of de-

rangement’s of k elements.
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Solutions:

1. Simply, a derangement is a permutation where no element appears is in its orig-

inal position. Formally, a derangement is a function, f , on a set X such that

for all x ∈ X, f(x) 6= x.

One simple example of a derangement would be asking students to mark each

other assignments such that no student can mark their own work.

2. Derangements are one specific application of the PIE. In order to find the num-

ber of ways to arrange items such that nothing is in its original place, we could

use the PIE to exclude all the cases where things are in their right place. (Re-

member that PIE is defined by satisfying none of the conditions.)

3. d(26).

We are interested in permuting 26 elements such that none are in their original

position; this is simply a derangement of 26 elements. Thus there are,

d(26) = 26!
26∑
k=0

(−1)k

k!
,

ways to derange the alphabet.

4. (a) d(150).

Every student must give one gift, but they will not be assigned themselves,

this is simply a derangement of 150 elements. Thus the number of possible

ways to draw names is,

d(150) = 150!
150∑
k=0

(−1)k

k!

197



(b) d(50) · d(30)2 · d(40).

The way gift-givers are assigned in each grade is a derangement of a set of

size equal to the number of students in that grade. We can then use the

Rule of Product to find the total number of possibilities within the school.

There are,

d(50) · d(30)2 · d(40) = (50!
50∑
k=0

(−1)k

k!
)(30!

30∑
k=0

(−1)k

k!
)2(40!

40∑
k=0

(−1)k

k!
),

ways the gift-givers can be assigned.

5. 5! · d(5).

For the first round of interviews, Kalil can simply assign one outfit to each in-

terview, giving 5! possible distributions of these outfits. For the second round of

interviews, the outfit must be different at that job than worn in the first round.

Hence, we would like to derange the five outfits, d(5), from the first round. By

the Rule of Product there are 5! · d(5) ways for Kalil dress for these interviews.

6. d(10) + 5 · d(9) + 10 · d(8) + 10 · d(7) + 5 · d(6) + d(5).

We solve this problem using cases depending on how many odd numbers re-

mained in their original position.

Case 1: No odd numbers are in their place. Then every number is not in its

original place and there are d(10) such permutations.

Case 2: One odd number is in its original place. First we must determine
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which of the five odd numbers stayed, there are
(
5
1

)
= 5 options. The remaining

9 digits will be deranged, d(9). By the Rule of Product there are 5 · d(9) such

permutations.

Case 3: Two odd numbers are not deranged. There are
(
5
2

)
= 10 choices of

which odd numbers remained in their initial position. The remaining 8 digits

will be deranged, d(8). By the Rule of Product there are 10 · d(8) such permu-

tations.

The pattern is clear and we see that,

Case 4:
(
5
3

)
·d(7) = 10 · d(7).

Case 5:
(
5
4

)
·d(6) = 5 · d(6).

Case 6:
(
5
5

)
·d(5) = d(5).

By the Rule of Sum there are,

d(10) + 5 · d(9) + 10 · d(8) + 10 · d(7) + 5 · d(6) + d(5),

ways to permute the integers one through ten such that no even number is in

its original position.

7. n = 10.

We begin by deranging the first 6 elements, which will be deranged but remain

in the first 6 positions in the list, d(6) ways to do this. We now derange the

remaining n − 6 digits amongst the last n − 6 positions, which gives d(n − 6)

ways to do this. By the Rule of Product, d(6) · d(n − 6) = 2385. Rearranging
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to solve for n, we obtain,

d(n− 6) =
2385

d(6)
=

2385

265
= 9

By trial and error we see that d(n− 6) = d(4) = 9, hence n− 6 = 4 which gives

n = 10.

8. (a) d(8).

This is a derangement of eight elements, d(8) ways to distribute these

meals.

(b) 8!− d(8).

Any permutation that is not a derangement will result in at least one per-

son receiving the food they ordered. This can be calculated by taking the

total number of possible ways the waiter could have delivered the food,

8!, subtracted by the number of ways that no one gets the right meal, so

8!− d(8).

(c) 28 · d(6).

We are unsure which two people will get the food they ordered, so we

must multiply the derangement of the 6 plates, d(6), by
(
8
2

)
= 28. There-

fore there are d(6) · 28 ways exactly two people receive what they ordered.

(d) This is impossible. Assuming that the kitchen send out the correct orders,

if one person gets the wrong meal in the group then someone else must

have received a wrong meal as well.
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9. (a) [d(12)]2.

There are d(12) ways the drinks can be redistributed and d(12) ways the

meals can be redistributed, so by the Rule of Product there are [d(12)]2

ways to take home the leftovers.

(b) [d(6)]2.

There is only one way for vegetarians to take home there own dishes and

there are d(6) ways to redistribute their drinks. There is only one way for

non-vegetarians to take home their own drinks and there are d(6) ways the

leftovers can be given out. So, by the Rule of Product there are [d(6)]2

possible distributions.

(c)
∑12

k=0(−1)k[(12− k)!]2
(
12
k

)
.

We will use PIE instead of derangements as adapting the formula of d(n)

is more complex.

Let ci be the case where i people bring home both their own drink and

main dish for 1 ≤ i ≤ 12.

If there were no restrictions, the number of permutations would be N =

(12!)2, 12! possible distributions for the drinks, and 12! for the meals.

If at least one person brings home their own main dish and drink, there

are
(
12
1

)
different ways this person could be chosen. There (11!)2 ways to

permute the remaining drinks and main dishes. This gives that N(c1) =(
12
1

)
· (11!)2.

Similarly, if at least two people bring home their own main dish and drink,
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there
(
12
2

)
different pairs of people who could take home their own things

and (10!)2 ways to permute the remaining drinks and main dishes. Thus,

N(c2) =
(
12
2

)
(10!)2

This patterns continues for each N(ci).

Since we are looking for N(c1 c2 c3...c12), using PIE we can see that:

N(c1 c2 c3...c12) = (12!)2 −
(

12

1

)
· (11!)2 +

(
12

2

)
(10!)2 − ....+

(
12

12

)
(0!)2

=
12∑
k=0

(−1)k[(12− k)!]2
(

12

k

)

10. We will count the number of permutations of the numbers 1, 2, 3, ..., n, which

is certainly n!. Alternatively, for every possible permutation we can consider

how there are k elements that have been deranged, and hence n − k elements

in their original positions for 0 ≤ k ≤ n. The n − k fixed elements can be

selected in
(

n
n−k

)
=
(
n
k

)
ways, with d(k) ways that the k remaining elements

can be deranged. We sum these cases from k = 0 to k = n to account for all

possible permutations, and the proof is complete since we’ve counted the same

situation in two different ways.
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4.3 Onto Functions and Stirling Numbers of the Second Kind

Questions:

1. In your own words, explain what an onto function is.

2. Using the language of “objects” and “containers”, what is counting the number

of surjective functions equivalent to?

3. Give an example of an onto function.

4. Let f : A→ B be a surjective function, what can you say about |A| compared

to |B|?

5. Count the number of surjective functions from C to D where |C| = n and

|D| = n+ 1.

6. How many surjective functions f : A −→ B exist where A is the first 13 letters

of the alphabet and B = {1, 2, 3, ..., 9}?

7. Consider the function g : X → Y where X = {1, 2, 3, 4} and Y = {α, β}. How

many functions g are not surjective?

8. A middle school social studies teacher wants the students to learn about the

seven different continents of the world. Between the 27 students they must split

into groups such that every continent has at least one student studying it. How

many different ways can the students group themselves?

Note: You may leave your solution in terms of a summation without evaluating

it.
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9. At an engineering firm there are 4 professional engineers. Currently they have

7 different clients, one of which is by far the most profitable. In how many ways

can each engineer work on at least one account with the condition that Billi,

the most senior engineer, is always given the most valuable client.

10. In your own words, define what a Stirling number of the Second Kind is.

11. Express the number of onto functions from a set of size k to a set of size j where

k ≥ j using Stirling numbers.

12. You have been asked to distribute 10 different stuffed animals between 5 labelled

bins.

(a) How many ways can the stuffed animals be distributed so that every bin

has at least one stuffed animal in it?

(b) One of the stuffed animals is a collectable. In how many ways can we

distribute the stuffed animals such that the collectable is in the first bin,

and no bins are left empty?

(c) Suppose the bins are identical. How many ways can the stuffed animals

be distributed amongst the bins, with any number bins left empty?

13. Consider the integer 55 335 = 3 · 5 · 7 · 17 · 31.

(a) In how many ways can 55 335 be written as the product of two factors,

where each factor must be greater than 1?

(b) In how many ways can 55 335 be written as the product of two or more

factors, with every factor greater than 1?

Note: The order of the factors is irrelevant since multiplication is commutative.
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14. Using the definition of Stirling numbers, algebraically prove:

(a) S(n, 1) = 1.

(b) S(n, 2) = 2n−1 − 1.

(c) S(n, n− 1) =
(
n
2

)
.
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Solutions:
Note: There are two equivalent formulas for Stirling numbers:

S(m,n) =
1

n!

n−1∑
k=0

(−1)k
(
n

k

)
(n−k)m =

1

n!

n∑
k=0

(−1)k
(
n

k

)
(n−k)m

These formulas are equivalent as:

1

n!

n∑
k=0

(−1)k
(
n

k

)
(n− k)m =

1

n!

n−1∑
k=0

(−1)k
(
n

k

)
(n− k)m + (−1)n

(
n

n

)
(n− n)m

=
1

n!

n−1∑
k=0

(−1)k
(
n

k

)
(n− k)m + 0

=
1

n!

n−1∑
k=0

(−1)k
(
n

k

)
(n− k)m

Thus, you may use either in your solutions.

1. An onto function is a function f : A −→ B where for all b ∈ B, there exists

some a ∈ A such that f(a) = b.

2. The number of ways to distribute n different objects into m distinct containers

where no container is left empty and n ≥ m.

3. There are many possible examples, one example is the function y = x where

x ∈ Z.

4. Since every element of B, which is the codomain/range, has been mapped to

by f it follows that |A| ≥ |B|.
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5. There exists no surjective functions from C to D. As noted in question 3, the

size of the domain no smaller than the codomain/range. In this case, |D| > |C|
and so no possible onto functions exist.

6.
∑8

k=0(−1)k
(
9
k

)
(9− k)13

For f : A→ B, |A| = 13 and |B| = 9. Therefore, there are
∑8

k=0(−1)k
(
9
k

)
(9−

k)13 such onto functions.

7. 24 −
∑1

k=0(−1)k
(

2
2−k

)
(2− k)4 = 2.

The number of non-surjective functions g can be found by subtracting the num-

ber of surjective g functions from the total number of g functions.

There are 24 = 16 possible functions. Applying the formula for onto functions,

we see that there are
∑1

k=0(−1)k
(

2
2−k

)
(2 − k)4 possible surjective functions.

Hence there are only 16− 14 = 2 non-surjective functions from X to Y .

8.
∑6

k=0(−1)k
(

7
7−k

)
(7− k)27

This is essentially counting the number of onto functions from a set of size 27

to a set of size 7. Therefore, there are
∑6

k=0(−1)k
(

7
7−k

)
(7− k)27 possible ways

the students can group themselves.

9.
∑2

k=0(−1)k
(

3
3−k

)
(3− k)6 +

∑3
k=0(−1)k

(
4

4−k

)
(4− k)6 = 2 100

To solve this problem, we must consider two distinct cases and then apply the

sum rule.

Case 1: Suppose Billi is assigned only the most expensive client. Then we are

considering how to assign the remaining 6 accounts to the other 3 engineers
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such that they each get at least one client. This is precisely the number of onto

functions from a set of size 6 to size 3, so there are
∑2

k=0(−1)k
(

3
3−k

)
(3−k)6 = 540

ways of doing this.

Case 2: Suppose instead that Billi is assigned the most expensive client as well

as other clients. Then we are left to assign the remaining 6 clients between the

4 engineers where each gets at least one client. This is the same as counting

the number of onto functions from a set of size 6 to a set of size 4. Therefore

there are exactly
∑3

k=0(−1)k
(

4
4−k

)
(4− k)6 = 1 560 ways to do this.

Adding these cases together using the sum rule, we see that there are 540 +

1 560 = 2 100 ways to assign the engineers to their clients so that Billi is always

assigned the most expensive client.

10. A Stirling number of the second kind, denoted S(m,n), is the number of ways

to distribute m distinct objects into n identical containers with no container

left empty.

The formula is: S(m,n) = 1
n!

∑n−1
k=0(−1)k

(
n

n−k

)
(n − l)m. This is the formula

for counting the number of onto functions from a set of size m to a set of size n

divided by n!. The division by n! is done to account for the identical “container”.

11. We know the formula for the the number of onto functions from a set of size k

to a set of size j is:
∑j−1

n=0(−1)n
(

j
j−n

)
(j − n)k.

By definition of Stirling numbers, we know S(k, j) = 1
j!

∑j
n=0(−1)n

(
j

j−n

)
(j −

n)k.

It is clear from the formulas that we can express the number of onto functions

in terms of Stirling numbers as: j! · S(k, j).
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12. (a)
∑4

k=0(−1)k
(

5
5−k

)
(5− k)10 = 5 103 000

This is simply the number of onto functions from a set of size 10 to a set

of size 5. Thus, there are
∑4

k=0(−1)k
(

5
5−k

)
(5 − k)10 = 5 103 000 way of

distributing the stuffed animals.

(b)
∑3

k=0(−1)k
(

4
4−k

)
(4− k)9 +

∑4
k=0(−1)k

(
5

5−k

)
(5− k)9 = 1 020 600

First, put the collectable in the first bin. Now we must consider two cases

depending on if we will put any other stuffed animals in the first bin.

Case 1: Suppose the collectable is the only stuffed animal in the first bin.

Then we distribute the remaining 9 stuffed animals between the 4 distinct

bins. This is the number of onto functions from a set of size 9 to a set of

size 4. Thus, there are exactly
∑3

k=0(−1)k
(

4
4−k

)
(4− k)9 = 186 480 ways to

distribute the stuffed animals in this case.

Case 2: Suppose the first bin has more stuffed animals than just the

collectable. Then we distribute other 9 stuffed animals between the 5 con-

tainers such that no container is left empty. There are
∑4

k=0(−1)k
(

5
5−k

)
(5−

k)9 = 834 120 ways to distribute the stuffed animals in this case.

Now apply the rule of sum to see that there are 186 480 + 834 120 =

1 020 600 ways to distribute the stuffed animals such that no bin is left

empty and the collectable is put into the first bin.

(c)
∑5

n=1 S(10, n) = 86 472

Since the bins are identical we will use Stirling numbers. We must consider

multiple cases to account for how many containers are left empty.

Case 1: Suppose no containers are left empty. We can use part a and

divide it by 5!, to account for the identical containers. In this case, there

are 5 103 000
5!

= 42 525 = S(10, 5) ways to distribute the stuffed animals.
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Case 2: Suppose 1 container is left empty. Now we are interested in how

many ways we can assign 10 distinct stuffed animals into the 4 remaining

identical containers so that none are left empty. There are S(10, 4) =

34 105 ways to do this.

Case 3: Suppose 2 containers are left empty. Now we are interested in how

many ways we can assign 10 distinct stuffed animals into the 3 remaining

identical containers so that none are left empty. In this case there are

S(10, 3) = 9 330 ways to distribute the stuffed animals.

Case 4: Suppose 3 containers are left empty. In this case, there are

S(10, 2) = 511 ways to distribute the stuffed animals.

Case 5: Suppose 4 containers are left empty. Then, there are S(10, 1) = 1

way to distribute the stuffed animals.

Case 6: It is not possible for all the containers to be left empty.

We now apply the Rule of Sum and see that there are
∑5

n=1 S(10, n) =

42 525 + 34 105 + 9 330 + 511 + 1 = 86 472 ways to distribute these stuffed

animals.

13. We recall from number theory that any factor of 55 335 will be the product of

some subset of the factors of 55 335. For example. 3 · 5 and 31 · 3 · 17 are both

factors of 55 335.

(a) S(5, 2) = 15

We are essentially looking at the number of ways to distribute 5 distinct

numbers into 2 identical “containers”, the factors, such that no container

is left empty. This is because each factor must be greater than 1.

We know these containers are identical as multiplication is communica-

tive and so the order of the two factors is irrelevant. Thus, there are
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S(5, 2) = 15 2-factor factorizations of 55 335.

(b)
∑5

n=2 S(5, n) = 15 + 25 + 10 + 1 = 51

We will consider cases since 55 335 can be written as the product of up to

5 factors. there can be up to 5-factor factorizations of 55 335 since it is

made up of 5 distinct prime numbers.

Case 1: How many 2-factor factorizations exist? This follows directly

from part (a): 15.

Case 2: How many 3-factor factorizations exist? In other words, in how

many ways can we distribute 5 distinct numbers into 3 identical contain-

ers/factors such that no container is left empty? S(5, 3) = 25.

Case 3: How many 4-factor factorizations exist? S(5, 4) = 10.

Case 4: How many 5-factor factoriations exist? S(5, 5) = 1.

We can add these cases together using the Rule of Sum to see that there

are
∑5

n=2 S(5, n) = 15 + 25 + 10 + 1 = 51 possible factorizations where no

factor is 1.

14. (a) S(n, 1) =
1

1!

1∑
k=0

(−1)k
(

1

1− k

)
(1− k)n

=

(
1

1− 0

)
(1− 0)n +

(
1

0

)
(1− 1)n

= 1 · 1 + 0 · 0

= 1
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(b) S(n, 2) =
1

2!

2∑
k=0

(−1)k
(

2

2− k

)
(2− k)n

=
1

2!

[
(−1)0

(
2

2

)
(2− 0)n + (−1)1

(
2

1

)
(1)n + (−1)2

(
2

0

)
(0)n

]
= 2n−1 − 1

(c) a S(n, n− 1) =
1

(n− 1)!

n−1∑
k=0

(−1)k
(

n− 1

n− 1− k

)
(n− 1− k)n

=
1

(n− 1)!
[(−1)0

(
n− 1

n− 1

)
(n− 1)n + (−1)1

(
n− 1

n− 2

)
(n− 2)n + ...

+ (−1)n−2
(
n− 1

1

)
(1)n + (−1)n−1

(
n− 1

0

)
(0)n]

=
1

(n− 1)!

(
n!(n− 1)!

(n− 2)!2!

)
=

n!

(n− 2)!2!

=

(
n

2

)
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5 Generating Functions

5.1 Introductory Examples

5.2 Definition and Examples: Calculating Techniques

Questions:

1. Given the following sequences, determine the corresponding generating function

as a summation and in closed form (as a formula).

(a) 1, 2, 3, 4, ...

(b) 5, 4, 3, 0, 0, ....

(c) 1,−1, 1,−1, 1,−1, ...

(d)
(
10
10

)
,
(
11
10

)
,
(
12
10

)
,
(
13
10

)
...

(e)
(
10
10

)
,−
(
11
10

)
,
(
12
10

)
,−
(
13
10

)
...

(f) 1, 0, 1, 0, 1, ...

(g) 1,−2, 4,−8, 16,−32, 0, 0, 0, 0, ...

2. Given the following generating functions, determine the sequence that repre-

sents it.

(a) f(x) = 0

(b) f(x) = x

(c) f(x) = 4 + 3x− 10x2 + 55x3

(d) f(x) = (3x− 4)3

(e) f(x) = 3x
1−x

(f) f(x) = 1
(1−3x)2
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3. Determine the coefficient of the specified term in the expansion of the given the

function.

(a) x3 in 1
1−x .

(b) x2 in 1
(1−2x)3 .

(c) x5 in (1−x8)
1−x .

(d) x4 in 1
(1+3x)10

.

4. In how many ways can 1000 identical pamphlets be distributed to five different

counselling centers, where pamphlets are put in stacks of 50, such that each

center receives at least 50 but no more than 500 pamphlets?

5. In how many ways can 20 identical balls be distributed between 3 distinct boxes

such that,

(a) There are at least two balls assigned to box?

(b) There are at least three, but no more than 10 balls assigned to each box?

(c) Using the same condition as in part b, how many distributions are possible

if there were 25 balls instead of 20?

6. Determine the number of ways that $12 in loonies can be distributed between

a father’s three children so that the eldest gets at least four dollars, the middle

and youngest child are both guaranteed at least two dollars, but the youngest

cannot receive any more than $5 since he will spend it all on candy and rot his

teeth.

7. In how many ways can n balls be selected from a supply of pink, orange and

black balls such that the number of black balls selected must be even?

Hint : Partial fractions may come in handy.
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8. A restaurant just closed for the night and they had an extra 12 orders of fries

and 16 mini-desserts left over. The restaurant manger decides to split this left

over food between the four employees closing that night. How can the manager

do this so that the head chef receives at least one order of fries and exactly

three mini-desserts, while the three other closing-staff are guaranteed at least

two orders of fries but less than 5 desserts?

9. Use generating functions to determine the number of four-element subsets of

{1, 2, 3, ...., 15} that contain no consecutive integers.

10. A student is picking out a handful of gummy bears from a large container.

There are red, yellow, and green gummy bears in the container. The student

wishes to pick out an even number of red gummy bears, an odd number that is

at least 3 of yellow gummy bears, and either 4 or 6 green gummy bears.

(a) Determine the appropriate generating function that models this situation.

(b) How many ways can the student pick out gummy bears if they pick out:

i. 15?

ii. 22?

11. Determine the generating function for the following equations, where no xi < 0:

(a) x1 + x2 + x3 + x4 = k, where 2 ≤ x3 ≤ 5, and 4 ≤ x4

(b) x1 + x2 + x3 + x4 = k, where x1 and x2 are even, x3 ≤ 5 and x4 ≤ 2

(c) x1 + x2 + x3 + x4 = k, where xi ≥ i for i = 1, 2, 3, 4

(d) 2x1 + 3x2 + x3 + 3x4 = k
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12. Someone buys a chocolate bar and receives 50 cents in change. Create a gen-

erating function that could determine the number of ways they could receive

their change in any combination of pennies, nickles, dimes, and quarters? The

coefficient of which term will give the desired solution?

Note: You are not being asked to determine how many ways this is possible.

13. A deck of cards has 52 cards in total. Half of the deck is red and half is black. A

quarter of the deck has the symbol hearts, a quarter has the symbol diamonds,

a quarter has the symbol spades, and a quarter has the symbol clubs. How

many ways are there to pick 15 cards if:

(a) You wish to pick an even number of black cards and an odd number of red

cards?

(b) You wish to pick at least two of each symbol, but no more than 5 hearts

and 6 spades?

14. Three students are running for student body president: Krishna, and Jamar,

and Bonnie. Find the generating function used to determine the possible dis-

tribution of n students’ votes

(a) with no further restrictions?

(b) if every student running votes for themselves?

15. How many ways are there to obtain a sum of 7 if 2 distinct 6-sided dice, num-

bered 1, 2, 3, 4, 5, 6, are thrown?
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Solutions:

1. The pattern for both this question and the one below it is, starting from 0, the

ith term in the sequence is the coefficient of xi.

(a) 1 + 2x+ 3x2 + 4x3 + ...+ nxn+1 + ... =
∑∞

k=0

(
k+1
1

)
xk = 1

(1−x)2

(b) 5 + 4x+ 3x2 =
∑2

k=0

(
5−k
1

)
xk.

(c) 1− x+ x2 − x3 + x4 − x5 + ...+ (−1)nxn + ... =
∑∞

k=0(−x)k = 1
1+x

.

(d)
(
10
10

)
+
(
11
10

)
x+

(
12
10

)
x2 + ... =

∑∞
k=0 x

k
(
10+k
10

)
= 1

(1−x)11

(e)
(
10
10

)
−
(
11
10

)
x+

(
12
10

)
x2 −

(
13
10

)
... =

∑∞
k=0(−x)k

(
10+k
10

)
= 1

(1+x)11

(f) 1 + x2 + x4 + ... =
∑∞

k=0 x
2k = 1

1−x2

(g) 1− 2x+ 4x2 − 8x3 + 16x4 − 32x5 =
∑5

k=0(−2x)k = 1−(−2x)6
1−(−2x) = 1−64x6

1+2x

2. (a) 0, 0, 0, ....

(b) 0, 1, 0, 0, 0...

(c) 4, 3,−10, 55.

(d) −64, 144,−108, 27.

Since,

(3x− 4)3 = 27x3 − 108x2 + 144x− 64
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(e) 0, 3, 3, 3, 3, ....

Since,
3x

1− x
= 3x ·

∞∑
k=0

xk = 3x(1) + 3x(x) + 3x(x2) + ..

(f) 1, 6, 27, 108, ...

Since,
1

(1− 3x)2
=
∞∑
k=0

(
k + 1

1

)
(3x)k =

∞∑
k=0

(k + 1)(3x)k

.

3. (a) 1.

We know,
1

1− x
=
∞∑
r=0

xr

Therefore x3 occurs when r = 3 which has a coefficient of 1.

(b) 24.

We know,
1

(1− x)n
=
∞∑
r=0

(
r + n− 1

n− 1

)
xr

So we can determine that,

1

(1− 2x)3
=
∞∑
r=0

(
r + 3− 1

2

)
(−2)rxr

Thus the coefficient of x2 occurs when r = 2 which gives a coefficient of 24.
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(c) 1.

We know,
1− xn+1

1− x
=

n∑
r=0

xr

This gives n+ 1 = 8 hence n = 7. Simply we notice that the coefficient of

x5 in this expansion will be 1.

(d) 57 915.

We know,
1

(1 + x)n
=
∞∑
r=0

(−1)r
(
r + n− 1

n− 1

)
xr

Therefore,
1

(1 + 3x)10
=
∞∑
r=0

(−1)r
(
r + 10− 1

10− 1

)
(3x)r

Thus the coefficient of x4 occurs when r = 4 and is 57 915.

4. 3 246.

We first notice that thinking of this problem in terms of stacks of pamphlets

rather than the pamphlets themselves reduces it to: “In how many ways can
1000
50

= 20 stacks be distributed to five different counselling centers such that

each center receives at least 50
50

= 1 but no more than 500
50

= 10 stacks?”

The generating function that represents this set up is,

g(x) = (x1 + x2 + ...+ x10)5,

and we are interested in determining the coefficient of x20. Alternatively, we
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can identify the coefficient of x15 in,

g′(x) = (1 + x+ ...+ x9)5,

which was obtained by factoring out an x.

We now rewrite this using what we know about series,

g′(x) = (
1− x10

1− x
)5

= (−x50 + 5x40 − 10x30 + 10x20 − 5x10 + 1)
1

(1− x)5

= (−x50 + 5x40 − 10x30 + 10x20 − 5x10 + 1) ·
∞∑
r=0

(
r + 5− 1

5− 1

)
xr.

When this expression is expanded, we are interested in the coefficients of x when

r = 15, 5, which correspond to the coefficients of x15.

When r = 15,
(
15+5−1
5−1

)
= 3 876. When r = 5,

(
5+5−1
5−1

)
= 126. Therefore the

coefficient of x15 in g′(x) is (−5)(126) + (1)3 876 = 3 246, which is the number

of ways these stacks of pamphlets can be distributed.

5. (a) 120.

Note: We have previously solved this using combinations with repetition,

try with a generating function now.

The generating function that represents this problem is,

g(x) = (x2 + x3 + ...)3,

and we are interested in determining the coefficient of x20. Alternatively,
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factoring out some x’s, we can consider finding the coefficient of x14 in,

g′(x) = (1 + x+ x2 + ...)3.

Using what we know about this function we can rewrite it as,

g′(x) = (1 + x+ x2 + ...)3

= [
1

1− x
]3

=
1

(1− x)3

=
∞∑
r=0

(
r + 3− 1

3− 1

)
xr.

The coefficient of x14 occurs precisely when r = 14, which gives the coeffi-

cient
(
14+3−1
3−1

)
= 120.

(b) 48.

This problem boils down to finding the coefficient of x20 in the the gener-

ating function,

g(x) = (x3 + x4 + x5 + ...+ x10)3

Alternatively, we can factor out some x’s and find the coefficient of x11 in,

g′(x) = (1 + x+ x2 + ..+ x7)3.
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Rewriting g′(x),

g′(x) = (1 + x+ x2 + ..+ x7)3

= [
1− x8

1− x
]3

= (1− x8)3 1

(1− x)3

= (−x24 + 3x16 − 3x8 + 1)
1

(1− x)3

= (−x24 + 3x16 − 3x8 + 1)
∞∑
r=0

(
r + 3− 1

3− 1

)
xr.

The coefficient of x11 will occur in the expansion twice, when r = 11, 3.

For r = 11,
(
11+3−1
3−1

)
= 78, and r = 3,

(
3+3−1
3−1

)
= 10. Therefore putting it

all together, the coefficient of x11 is (1)(78) + (−3)(10) = 48.

(c) 21.

As we have already found our generating function for this condition and

number of boxes, we are simply looking for the coefficient of x25 in g(x),

or x16 in g′(x).

From (b),

g′(x) = (−x24 + 3x16 − 3x8 + 1)
∞∑
r=0

(
r + 3− 1

3− 1

)
xr

The coefficient of x16 will occur thrice when r = 16, 8, 0. When r = 16,(
16+3−1
3−1

)
= 153, when r = 8,

(
8+3−1
3−1

)
= 45, and when r = 0,

(
0+3−1
3−1

)
= 1.

Putting it all together, the coefficient of x16, and hence the number of

ways to distribute these 25 identical balls into three distinct boxes while

satisfying the conditions is 1(153) + (−3)(45) + 3(1) = 21.
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6. 14.

We represent the eldest child’s potential share of the money by x4 +x5 +x6 + ....

The middle child’s, x2 + x3 + x4 + .... The youngest child’s, x2 + x3 + x4 + x5.

To determine the number of ways the loonies can be distributed, we are looking

for the coefficient of x12 in the product,

g(x) = (x4 + x5 + x5 + ...)(x2 + x3 + x4 + x5 + ...)(x2 + x3 + x4 + x5)

We can simplify g(x),

g(x) = (x4 + x5 + x5 + ...)(x2 + x3 + x4 + x5 + ...)(x2 + x3 + x4 + x5)

= x8(1 + x+ x2 + ...)(1 + x+ x2 + x3 + ...)(1 + x+ x2 + x3)

= x8(1 + x+ x2 + ...)2(1 + x+ x2 + x3).

Alternatively we can reduce this problem to identifying the coefficient of x4 in,

g′(x) = (1 + x+ x2 + ...)2(1 + x+ x2 + x3)

Using identities and some substitutions we rewrite g′(x) as,

g′(x) = (1 + x+ x2 + ...)2(1 + x+ x2 + x3)

=
1

(1− x)2
· 1− x4

1− x

=
(1− x4)
(1− x)3

= (1− x4)
∞∑
r=0

(
r + 3− 1

3− 1

)
xr.
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The coefficient of x4 will occur when r = 0, 4. When r = 0,
(
0+3−1
3−1

)
= 1, when

r = 4,
(
4+3−1
3−1

)
= 15. Putting this together, there are, 15(1) − 1 = 14 ways to

distribute the loonies.

7. 1
8

+ 1
4

(
n+1
1

)
+ 1

2

(
n+2
2

)
+ 1

8
(−1)n.

The expression, (1 + x + x2 + ...), will help keep track of the pink and orange

balls, while the expression, (1 + x2 + x4 + ...), will keep track of the even black

balls. We are interested in determining the coefficient of xn in the product,

g(x) = (1 + x+ x2 + x3 + ...)2(1 + x2 + x4 + x6 + ...)

From our identities we see that,

g(x) = [
1

1− x
]2 · 1

1− x2

=
1

(1− x)2
· 1

1− x2

=
1

(1− x)2(1− x2)

=
1

−(x− 1)3(x+ 1)
.

We need a different, simpler, way to express g(x), so we use a partial fraction

expansion,

g(x) =
−1

(x− 1)3(x+ 1)

=
A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
+

D

x+ 1
.

Multiplying both the left and right hand sides by the common denominator,

(x− 1)3 · (x+ 1), we obtain,

−1 = A(x− 1)2(x+ 1) +B(x− 1)(x+ 1) + C(x+ 1) +D(x− 1)3.
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Expanding and applying the binomial theorem where necessary we see that,

−1 = A(x3 − x2 − x+ 1) +B(x2 − 1) + C(x+ 1) +D(x3 − 3x2 + 3x− 1)

= Ax3 − Ax2 − Ax+ A+Bx2 −B + Cx+ C +Dx3 − 3Dx2 + 3Dx−D

= (A+D)x3 + (−A+B − 3D)x2 + (−A+ C + 3D)x+ (A−B + C −D).

We know the coefficient of x3, x2, x are 0, so we match the coefficients with each

other and solve for the unknowns:

A+D = 0

−A+B − 3D = 0

−A+ C + 3D = 0

A−B + C −D = −1.

We must now solve this system of equations. Clearly from the first equation,

D = −A. Plugging this into the second equation,

−A+B − 3(−A) = −A+B + 3A = B + 2A = 0,

which implies that B = −2A. Plugging these into the fourth equation we

obtain,

A− (−2A) + C − (−A) = A+ 2A+ C + A = 4A+ C = −1,

which implies that C = −1− 4A. Finally we can plug everything into the third

equation and solve for A,

−A+ (−1− 4A) + 3(−A) = −A− 1− 4A− 3A = −8A− 1 = 0.

Certainly from this, A = −1
8

. We further see that D = 1
8
, B = −2 · −1

8
= 1

4
and

C = −1− 4 · −1
8

= −1 + 1
2

= −1
2

.
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Hence,

g(x) =
−1

8(x− 1)
+

1

4((x− 1)2)
+

−1

2((x− 1)3)
+

1

8(x+ 1)

=
1

8(1− x)
+

1

4(1− x)2
+

1

2(x− 1)3
+

1

8(1 + x)
.

We may now use our identities to express g(x) in terms of sums,

g(x) =
1

8

∞∑
r=0

xr +
1

4

∞∑
r=0

(
r + 2− 1

2− 1

)
xr +

1

2

∞∑
r=0

(
r + 3− 1

3− 1

)
xr +

1

8

∞∑
r=0

(−1)rxr.

The coefficient of xn occurs when n = r, hence there are,

1

8
+

1

4

(
n+ 1

1

)
+

1

2

(
n+ 2

2

)
+

1

8
(−1)n,

ways to select n balls.

8. 336.

We first note that we will need to apply the Rule of Product here, and use

generating functions for the distribution of the fries and then the mini-desserts.

In each of the generating functions, the first term in the product will represent

the share of the head chef, and the other terms the other employees.

We begin by distributing the fries. We obtain the function,

g(x) = (x+ x2 + x3 + ...)(x2 + x3 + x4)3

= x7(1 + x+ x2 + ...)4,

and are interested in the coefficient of x12. Alternatively we could determine
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the coefficient of x5 in,

g′(x) = (1 + x+ x2 + ...)4.

Rewriting,

g′(x) = [
1

1− x
]4

=
1

(1− x)4

=
∞∑
r=0

(
r + 4− 1

4− 1

)
xr.

The term x5 occurs when r = 5, hence there are,
(
5+4−1

3

)
= 56 ways to distribute

the fries.

We now distribute the desserts and obtain the equation,

g(x) = x3(1 + x+ ...+ x5)3,

in attempt to find the coefficient of x16. Alternatively, we may determine the

coefficient of x13 in,

g′(x) = (1 + x+ ...+ x5)3.
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Rewriting,

g′(x) = [
1− x6

1− x
]3

=
(1− x6)3

(1− x)3

= (1− x6)3 · 1

(1− x)3

= (1− x6)3 ·
∞∑
r=0

(
r + 3− 1

3− 1

)
xr

= (−x18 + 3x12 − 3x6 + 1)
∞∑
r=0

(
r + 3− 1

3− 1

)
xr.

Certainly the term x13 occurs when r = 13, 7, 1. When r = 13,
(
13+3−1

2

)
= 105,

when r = 7,
(
7+3−1

2

)
= 36, and when r = 1,

(
1+3−1

2

)
= 3. Therefore there are

exactly, 1(105) + (−3)(36) + 3(3) = 6 ways to distribute the mini-desserts.

Now applying the Rule of Product, 56 ·6 = 336 ways the manager can distribute

the leftovers as outlines by the constraints.

9. First we consider one subset which satisfies our condition, say {2, 5, 9, 14}. Cer-

tainly 1 ≤ 2 < 5 < 9 < 14 ≤ 15. Now consider the differences between adjacent

values in this chain of inequalities,

2− 1 = 1,

5− 2 = 3,

9− 5 = 4,

14− 9 = 5,

15− 14 = 1.
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Notice how the sum of these differences is 14. Consider any other subset that

also satisfies the required conditions and you will see that upon doing the same

calculation, the sum of the differences will be 14 too. In other words, the non-

negative integers that are the differences that arise from the inequality, are a

set of five non-negative integers that sum to 14. This means that there is a

1 − 1 correspondence between these four-element subsets of our set, and the

non-negative integer solutions to,

c1 + c2 + c3 + c4 + c5 = 14,

where 0 ≤ c1, c5 and 2 ≤ c2, c3, c4. The requirement of c2, c3, c4 ≥ 2 ensures

that we have not picked any consecutive integers in the subset as we are now

interested in differences. Now we can express our generating function with

respect to these ci’s. We obtain the function,

g(x) = (1 + x+ x2 + ...)2(x2 + x3 + x4 + ...)3,

and we are interested in the coefficient of x14. Alternatively, by factoring out

x6, we can find the coefficient of x8 in

g′(x) = (1 + x+ x2 + ...)5.

Rewriting,

g′(x) = (1 + x+ x2 + ...)5

= [
1

1− x
]5

=
1

(1− x)5

=
∞∑
r=0

(
r + 5− 1

5− 1

)
xr.

The term, x8 occurs when r = 8 and has a coefficient of
(
8+5−1
5−1

)
= 495. There-
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fore there are 495 four-element subsets that contain no consecutive integers.

10. (a)

g(x) = (1 + x2 + x4 + ...)(x3 + x5 + x7 + ...)(x4 + x6).

(b) i. 9.

We are looking for the coefficient of x15 in g(x). Alternatively we can

look for the coefficient of x8 in

g′(x) = (1 + x2 + x4 + ...)(1 + x2 + x4 + ...)(1 + x2)

.

Rewriting,

g′(x) = (1 + x2 + x4 + ...)2(1 + x2)

= [
1

1− x2
]2 · (1 + x2)

=
1

(1− x2)2
· (1 + x2)

=
1 + x2

(1− x2)2
.

Using a partial fraction expansion we can write (steps omitted),

g′(x) =
1

2(x+ 1)2
+

1

2(x− 1)2
.

Finally we can write g′(x) in terms of summations,

g′(x) =
1

2(x+ 1)2
+

1

2(1− x)2

=
1

2

∞∑
r=0

(−1)r
(
r + 2− 1

2− 1

)
xr +

1

2

∞∑
r=0

(
r + 2− 1

2− 1

)
xr.

The coefficient of x8 occurs when r = 8, hence there are 1
2
· (−1)8 ·
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(
8+1
1

)
+ 1

2

(
8+1
1

)
= 9.

ii. 0.

We can use the generating function from part (i) and this time solve

for the coefficient of x22−7 = x15. This occurs when r = 15. The

coefficient is, 1
2
· (−1)8 ·

(
15+1
1

)
+ 1

2

(
15+1
1

)
= 0.

Logically this makes sense since there is no way to sum to 22 from two

even numbers and one odd number.

11. In each of these questions, the solution would be the coefficient of the term xk.

Recall : You were not asked to solve these problems, only determine the gener-

ating function that could solve them.

(a) The first two terms in the product will represent the possibilities for x1 and

x2. The third term in the product will stand in for x3, and the final term x4.

g(x) = (1 + x+ x2 + ...)(1 + x+ x2 + ...)(x2 + x3 + x4 + x5)(x4 + x5 + ...)

= (1 + x+ x2 + ...)2 · x2(1 + x+ x2 + x3) · x4(1 + x+ x2 + ...)

= x6(1 + x+ x2 + ....)3(1 + x+ x2 + x3)

= x6 · [ 1

1− x
]3 · 1− x4

1− x

=
x6(1− x4)
(1− x)4

.
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(b) g(x) = (1 + x2 + x4 + ...)(1 + x2 + x4 + ...)(1 + x+ ...+ x5)(1 + x+ x2)

= (1 + x2 + x4 + ...)2(1 + x+ ...+ x5)(1 + x+ x2)

= [
1

1− x2
]2 · 1− x6

1− x
· 1− x3

1− x

=
(1− x6)(1− x3)
(1− x)2(1− x2)2

.

(c) g(x) = (x+ x2 + x3 + ...)(x2 + x3 + x4 + ...)(x3 + x4 + x5 + ...)(x4 + x5 + x6 + ...)

= x10(1 + x+ x2 + ...)4

= x10
1

(1− x)4
.

(d) g(x) = (1 + x2 + x4 + ...)(1 + x3 + x6 + ...)(1 + x+ x2 + ...)(1 + x3 + x6 + ...)

= (1 + x2 + x4 + ...)(1 + x3 + x6 + ...)2(1 + x+ x2 + ...)

=
1

1− x2
· [ 1

1− x3
]2 · 1

1− x

=
1

1− x2
· 1

(1− x3)2
· 1

1− x

=
1

(1− x2)(1− x3)2(1− x)
.

12. We are interested in determining the coefficient of x50 in the product,

(1 + x+ x2 + ...)(1 + x5 + x10 + x15 + ...)(1 + x10 + x20 + ...)(1 + x25 + x50 + ...).

The first term of the product represents the pennies used, the second term the

nickels used, third the dimes used, and the last term stands in for the quarters.

We can rewrite this product as,

1

1− x
· 1

1− x5
· 1

1− x10
· 1

1− x25
,
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which is our desired generating function.

13. (a) 8.

We will first set up the generating function. The first term of the prod-

uct represents the even black cards, and the second term the odd red cards.

g(x) = (1 + x2 + x4 + ...)(x+ x3 + x5 + ...)

= x(1 + x2 + x4 + ....)2

= x · 1

(1− x2)2
.

Using a partial fraction expansion (steps omitted) we see that,

g(x) =
1

4(x− 1)2
− 1

4(x+ 1)2

Finally we write this as a series,

g(x) =
1

4(x− 1)2
− 1

4(x+ 1)2

=
1

4

∞∑
r=0

(
r + 2− 1

2− 1

)
xr − 1

4

∞∑
r=0

(−1)r ·
(
r + 2− 1

2− 1

)
xr.

The coefficient of x15 occurs when r = 15. Therefore there are exactly 1
4
·(

16
1

)
−1

4
· (−1)15·

(
16
1

)
= 8 ways to pick 15 cards such that an even number

of black cards and an odd number of red cards from a standard deck.

(b) 90.

First we note that there are 52
4

= 13 cards of each suit (the suit is the

symbol, either hearts, spades, clubs or diamonds), so there may never be

233



more than 13 of each symbol in the 15 cards.

The first term of the function will represent the clubs, the second the

diamonds, the third the hearts and the fourth the spades. Our generating

function is,

g(x) = (x2 + x3 + ...+ x15)(x2 + x3 + ...+ x15)(x2 + x3 + x4 + x5)(x2 + x3 + ...x6)

= (x2 + x3 + ...+ x15)2(x2 + x3 + x4 + x5)(x2 + x3 + ...x6)

= x8(1 + x+ x2 + ...+ x13)(1 + x+ x2 + x3)(1 + x+ x2 + x3 + x4).

We are interested in the coefficient of x15 in g(x), or we may determine the

coefficient of x7 in,

g′(x) = (1 + x+ x2 + ...+ x13)(1 + x+ x2 + x3)(1 + x+ x2 + x3 + x4).

We now rewrite this as,

g(x) = [
1− x12

1− x
]2 · 1− x4

1− x
· 1− x5

1− x

=
1

(1− x)4
· (x33 − x29 − x28 + x24 − 2x21 + 2x17 + 2x16 − 2x12 + x9

− x5 − x4 + 1)

=
∞∑
r=0

(
r + 4− 1

4− 1

)
xr · (x33 − x29 − x28 + x24 − 2x21 + 2x17 + 2x16

− 2x12 + x9 − x5 − x4 + 1)

Clearly when expanding this and attempting to find the coefficient of x7,

we will be interested in r = 2, 3, 7. When r = 2,
(
2+4−1
4−1

)
= 10. When

r = 3,
(
3+4−1

3

)
= 20. When r = 7,

(
7+4−1

3

)
= 120. Therefore the coefficient

of x7 is (−1)(10) + (−1)(20) + 1(120) = 90, so there are 90 ways to pick

up 15 playing cards in this way.
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14. (a) Each student can receive any number of votes, so the generating function

would be as follows.

g(x) = (1 + x+ x2 + x3 + ...)3

To find the number of distributions of n votes, the above generating func-

tion would be used to find the coefficient of xn.

(b) If every student votes for themselves then we know that each student re-

ceives at least one vote. Thus the generating function is:

g(x) = (x+ x2 + x3 + ...)3 = x3(1 + x+ x2 + x3 + ...)3

Similar to in (a), to find the number of distributions of n votes, the above

generating function would be used to find the coefficient of xn.

15. If two distinct dice are rolled, then we can form the following generating func-

tion:

g(x) = (x+ x2 + x3 + x4 + x5 + x6)2

If we are looking to obtain a sum of 7, then we are looking to find the coefficient

of x7 in g(x).

We can do so by expanding g(x):

g(x) = (x+ x2 + x3 + x4 + x5 + x6)2

= x12 + 2x11 + 3x10 + 4x9 + 5x8 + 6x7 + 5x6 + 4x5 + 3x4 + 2x3 + x2

The coefficient of x7 is 6 and thus there are 6 possible ways to throw two dice

in order to obtain a sum of 7.
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5.3 Partitions of Integers

Questions:

1. In your own words, define a partition on a positive integer n.

2. Explain why generating functions are helpful in determining the number of pos-

sible partitions of integers.

3. What is a Ferrers diagram?

4. Give an example of a valid partition of 54.

5. Find all partitions of 5. Which of these partitions use only distinct summands?

6. Find the generating function that represents the number of ways of distributing

an unlimited supply of of balls into 5 identical boxes. What method would be

used to find the ways of distributing 10 balls?

7. Find the generating function for each of the following partitions of the integer

r such that:

(a) the largest summand is equal to k?

(b) the largest summand is equal to (2k + 1) and all summands are odd?

(c) the summands are all odd and distinct?

(d) there is at least one summand of size 2?

(e) if a summand is even it is distinct?

(f) every summand is distinct?

(g) the summands cannot occur more than five times?
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(h) no summand can exceed 12, and summands cannot occur more than five

times?

8. Prove that the number of odd partitions of a natural number, n, is the same as

the number of distinct partitions of n.

9. Prove that, given a positive integer n, the number of partitions of n in which no

even summand is repeated (there may be odd summands that repeat) is equal

to the number of partitions of n where no summand appears more than 3 times.

10. Use a Ferrers diagram to show that the number of partitions of n is equal to

the number of ways to partition 2n into n parts.

11. Use a Ferrers diagram to prove that the number of partitions of n is equal to

the number of ways to partition (n+m) into m parts, where n ≤ m.

237



Solutions:

1. A partition on a positive integer n is a collection of unordered positive integers

that all sum to n.

2. Generating functions are helpful in determining the number of possible parti-

tions of integers as we can use generating functions to represent the number of

summands of each possible size. This makes finding the total number of possible

summands much easier.

3. A Ferrers diagram is a visual representation of a partition of some integer n

where each summand is represented by a vertical row of dots, and the rows

are organized from largest to smallest moving from left to right. In a Ferrers

diagram for an integer n, there will be n total dots.

4. There are many possible solutions. One example is:

54 = 1 + 10 + 20 + 5 + 8 + 7 + 3

5. There are 7 partitions of 5, 3 of which contain only unique summands. The

partitions are:

5 = 1 + 1 + 1 + 1 + 1

5 = 1 + 1 + 1 + 2

5 = 1 + 2 + 2

5 = 1 + 1 + 3

5 = 1 + 4

5 = 2 + 3

5 = 5

6. We can use the following generating function:
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g(x) = (1 + x+ x2 + ...)5.

To solve this problem when 10 balls are distributed, we would determine the

coefficient of x10.

7. (a) g(x) = (1 + x+ x2 + ...)(1 + x2 + x4 + ...)(1 + x3 + x6 + ...)...(xk + x2k + ...)

= xk(1 + x+ x2 + ...)(1 + x2 + x4 + ...)(1 + x3 + x6 + ...)...(1 + xk + x2k + ...)

= xk
1

(1− x)
· 1

(1− x2)
· 1

(1− x3)
...

1

(1− xk)

= xk
k∏
i=1

1

(1− xi)

(b) g(x) = (1 + x+ x2 + ...)(1 + x3 + x6 + ...)(1 + x5 + x10 + ...)...(x2k+1 + x2(2k+1) + ...)

= x2k+1(1 + x+ x2 + ...)(1 + x3 + x6 + ...)(1 + x5 + x10 + ...)...(1 + x2k+1 + ...)

= x2k+1

k+1∏
i=1

1

1− x2i−1

(c) g(x) = (1 + x)(1 + x3)(1 + x5)...

=
∞∏
i=0

(1 + x)(2i+1)

(d) g(x) = (1 + x+ x2 + ...)(x2 + x4 + ...)(1 + x3 + x6 + ...)...

= x2(1 + x+ x2 + ...)(1 + x2 + x4 + ...)(1 + x3 + x6 + ...)...

= x2
1

1− x
· 1

1− x2
· ...

= x2
∞∏
i=1

1

1− xi
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(e) g(x) = (1 + x+ x2 + ...)(1 + x2)(1 + x3 + x6 + ...)(1 + x4)...

=
1

(1− x)
· (1− x4)

(1− x2)
· 1

(1− x3)
· (1− x8)

(1− x4)
1

(1− x5)
· (1− x12)

(1− x6)
...

=
1

(1− x)
·�

����(1− x4)
(1− x2)

· 1

(1− x3)
·�

����(1− x8)
�����(1− x4)

1

(1− x5)
·�����(1− x12)

(1− x6)
...

=
∞∏
i=1

1

1− xi
,where i 6≡ 0 mod 4

(f) g(x) = (1 + x)(1 + x2)(1 + x3)...

=
∞∏
i=1

(1 + xi)

(g) g(x) = (1 + x+ x2 + x3 + x4 + x5)(1 + x2 + x4 + x6 + x8 + x10)(1 + x3 + ...+ x15)...

=
∞∏
i=1

(1 + xi + x2i + x3i + x4i + x5i)

(h) g(x) = (1 + x+ x2 + x3 + x4 + x5)(1 + x2 + x4 + ...+ x10)...(1 + x12 + x24 + ...+ x60)

=
12∏
i=1

(1 + xi + x2i + x3i + x4i + x5i)

8. A distinct partition is one in which all the summands are distinct. For example,

the summands of 3 = 1 + 1 + 1 are not distinct, but the summands of 3 = 1 + 2

are.

We begin by finding the generating function for the partitioning of n into distinct

partitions. Let us denote this generating function by Pd.

Pd(x) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · ....

We rewrite this as:

Pd(x) =
(1− x2)
(1− x)

· (1− x4)
(1− x2)

· (1− x6)
(1− x3)

(1− x8)
(1− x4)

· ..
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We can then cancel common factors:

Pd(x) =
(1− x2)
(1− x)

· (1− x4)
(1− x2)

· (1− x6)
(1− x3)

· (1− x8)
(1− x4)

· ...

= �����(1− x2)
(1− x)

·�
����(1− x4)

�����(1− x2)
·�

����(1− x6)
(1− x3)

·�
����(1− x8)

�����(1− x4)
· ...

=
1

(1− x)
· 1

(1− x3)
· 1

(1− x5)
...

Next we will find the generating function corresponding to the number of odd

partitions of n. Let us denote this generating function by Po.

Po(n) = (1 + x+ x2 + x3 + ...)(1 + x3 + x6 + ...)(1 + x5 + x10 + ...)....

We can rewrite this as:

Po(n) =
1

1− x
· 1

1− x3
· 1

1− x5
· ....

Certainly, we see that Po(n) = Pd(n). Thus, since the generating functions are

equal, the coefficient of xn will be equal as well implying our desired result.

9. We start by obtaining the generating function for the number of partitions of n

in which no even summand is repeated, denoted Pe(n):

Pe(n) = (1+x+x2 +x3 + ...)(1+x2)(1+x3 +x6 + ...)(1+x4)(1+x5 +x10 + ...)...

We can rewrite this as:

Pe(n) =
1

1− x
· 1− x4

1− x2
· 1

1− x3
· 1− x8

1− x4
· ....
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We can now cancel out some terms to simplify the formula:

Pe =
1

(1− x)
·�

����(1− x4)
(1− x2)

· 1

(1− x3)
·�

����(1− x8)
�����(1− x4)

1

(1− x5)
·�����(1− x12)

(1− x6)
...

=
∞∏
i=1

1

1− xi
,where i 6≡ 0 mod 4

Next, we find a generating function to represent the partitions of n where no

summand appears more than three times, denoted P3(n):

P3(n) = (1+x+x2+x3)(1+x2+x4+x6)(1+x3+x6+x9)(1+x4+x8+x12) · .....

Which we rewrite as,

P3(n) =
(1− x4)
(1− x)

· (1− x8)
(1− x2)

· (1− x12)
(1− x3)

· (1− x16)
(1− x4)

· ....

We can again some out some terms to simply our function:

P3 = �����(1− x4)
(1− x)

·�
����(1− x8)

(1− x2)
·�����(1− x12)

(1− x3)
·�����(1− x16)
�����(1− x4)

· ...

=
∞∏
i=1

1

1− xi
,where i 6≡ 0 mod 4

Thus, clearly Pe = P3. As both generating function are equal the coefficient of

xn will be equal as well which implies our desired result.

10. This can be done by creating a one-to-one correspondence between any parti-

tioning of n and any partitioning of 2n into n parts.
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Let us take some partition of 2n, where (arbitrarily) n = 3.

Notice that the top row in this Ferrers diagram has exactly n dots:

Deleting this row would create a Ferrers diagram for a partition of n. Each

unique partition of 2n manipulated in this way will create a unique partition of

n, as there is no way to remove only the top row and have two equivalent dia-

grams as then the top row would have to be what distinguishes two partitions

of 2n. The top row must always be n dots by the way the partitioning of 2n is

defined so this is not possible.

Similarly, we can take an arbitrary diagram of a partition of n, let us again use

n = 3 for simplicity sake.
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We can add a row to the top. This will add n dots and ensure there are eaxactly

n partitions. This converts this diagram into a partition of 2n with exactly n

partitions.

Thus, a one-to-one corresdence exists between the two sets of diagrams and so

the two set sizes are equal.

11. Similar to in question 11, we can prove these two numbers are equal by finding

a one-to-one correspondence between the two sets. Also, notice this is simply a

generalization of question 11.

If n ≤ m, then it follows that the number of summands cannot exceed m.

Let us take an arbitrary Ferrers diagram for the partitions of n. Let us take

n = 3, arbitrarily.
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We can simply add a row to the top of the diagram with m dots. This will

transform this Ferrers diagram into a partition of n+m with exactly m parti-

tions. Let us suppose m = 4.

Thus every unique Ferrers diagram of a partition of n is equivalent to one unique

partition of m+ n into m parts. The partition of m+ n must be unique as else

the two partitions of n could not be unique.

Conversely, let us take some diagram of a partition of m + n with exactly m

summands. Let us again use that n = 3,m = 4.
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Notice that the top row has exactly m dots.

If we remove these dots we are left with a partition of n. Thus we have a relation

between any m+n Ferrers diagram and a unique Ferrers diagram for n. The n

diagram must be unique as if two Ferrers diagrams of partitions of m+n create

two identical partitions of n by removing the top row it must mean that the

top row is what is distinct between them. That is not possible as these Ferrers

diagrams have exactly m summands and so must have the same top row.

Thus there is a one-to-one correspondence between elements in both sets of

partitions and so the size of the two sets must be equal.
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6 Recurrence Relations

6.1 First-Order Linear Recurrence Relations

Questions:

1. In your own words, describe what a recurrence relation is.

2. What does it mean to solve a recurrence relation?

3. Suppose a0 = 2, a1 = 7 and an+1 = −an + 5an−1 for n ≥ 1. Find a6 without

solving the recurrence relation.

Why is it better to solve a recurrence relation rather than just find the desired

terms as necessary?

4. Solve the recurrence relation an = −2an−1, where a0 = 5.

5. Solve the recurrence relation an = 1
3
an−1, where n ≥ 1 and a2 = 101.

6. Solve the recurrence relation 5an + 6an−1 = 0 where n ≥ 1.

7. Solve the recurrence relation 2an − 7an−1 = 0 where n ≥ 1 and a4 = 81.

8. Leora puts money in a high interest savings account to help save for university.

The interest is 8% annually and compounds monthly. If she deposits $1500.00

on the day she opens the account, how much money will she have after 16

months? Use recurrence relations to solve this problem.
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9. By making a substitution, transform the following non-linear recurrence relation

into a linear recurrence relation and then solve it.

a2n+1 = 3a2n,where an > 0 and a0 = 5

10. Given the following geometric progressions, find a recurrence relation with an

initial condition that satisfies the progression.

(a) 0, 2, 6, 12, 20, 30, 42....

(b) 7, 14
5
, 28
25
, 56
125
, ...

11. Given the following recurrence relation and initial conditions, solve for d:

an+1 − d · an = 0, where a3 =
−8

343
and a5 =

−32

16807

12. Suppose the amount of bacteria in a container triples every hour. If initially

there are only 5 bacteria, how many bacteria are in the container after a day

and a half?

13. Solve the following recursive functions:

(a) a0 = 1, an = −5an−1 for n > 0

(b) a1 = 1, an = 4an−1 for n > 1
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Solutions:

1. A recurrence relation is an expression for a function f(n) that is defined in

terms of previous terms, such as f(n − 1), with one or more initial values for

f(k) stated.

2. Solving a recurrence relation means determining a function, whose domain is

the set of non-negative integers, that describes the recurrence relation for all

n ≥ 0 without solving for previous terms.

3. a6 = −(177) + 5(−17) = −262

As we are not solving the recurrence relation, we will use the provided recurrence

formula to find the terms for n = 2, 3, 4, 5 to then find the value for n = 6.

a0 = 2

a1 = 7

a2 = −7 + 5(2) = 3

a3 = −3 + 5(7) = 32

a4 = −32 + 5(3) = −17

a5 = −(−17) + 5(32) = 177

a6 = −(177) + 5(−17) = −262

Solving a recurrence relation is better as you do not need to first find all the

preceding terms in order to find the nth term. As n gets large, computing each

term by hand will become extremely difficult and tedious.
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4. an = 5 · (−2)n

Determining the first few terms we see that:

a1 = −2(5)

a2 = −2[−2(5)] = (−2)2 · 5

a3 = −2[(−2)2 · 5] = (−2)3 · 5.

We can identify the pattern and see that an = 5 · (−2)n for n ≥ 0.

5. an = 909(1
3
)n

We can reindex the function such that an+1 = 1
3
an for n ≥ 0 and a2 = 101. Since

this recurrence relation is a geometric progression we know that the solution to

this is an = a0(
1
3
)n so we have to determine is a0.

We know a2 = 101 = a0(
1
3
)2 = a0

9
. So rearranging we obtain a0 = 909. Thus

the unique solution is an = 909(1
3
)n for n ≥ 0.

6. an = k · (−6
5

)n

First we will rearrange the formula: an = −6
5
an−1 for n ≥ 1. We do not have an

initial condition so we will let a0 = k. Therefore the solution to this recurrence

relation is an = k · (−6
5

)n.

7. an = 1296
2401

(7
2
)n

Let a0 = k. The solution will be of the form an = k · (7
2
)n. We know a4, so we

can find the unique solution by solving for a0.
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As a4 = 81 = a0(
7
2
)4 = a0·2401

16
, it follows that a0 = 81 · 16

2401
= 1296

2401
. Therefore

the solution is an = 1296
2401

(7
2
)n.

8. bn = 25 · 3n

If the annual interest rate is 8% then the monthly rate will be 8%
12

= 0.6% =

0.006. For 0 ≤ n ≤ 16, let an denote the money in the savings account at

the end of the nth month. Certainly a0 = $1500 and we can express an+1 =

an + 0.006an = an(1.006) for n ≥ 1.

Solving this recurrence relation we see that an = ($1500)(1.006)n for n ≥ 0. We

can now simply solve for the 16th month by plugging in n = 16, and we obtain

a16 = ($1500)(1.006)16 = $1668.25.

9. Make the substitution bn = a2n. The recurrence relation now becomes bn+1 = 3bn

where n > 0 and b0 = a20 = 52 = 25.

This is now a first order linear homogeneous recurrence relation. Thus, the

solved recurrence relation is bn = 25 · 3n for n ≥ 0.

10. (a) a0 = 0, and an+1 = an + 2n for n ≥ 1.

(b) a0 = 7, and an+1 = 2·an
5

for n ≥ 1.

11. d = 2
7

We can first rearrange the given recurrence function: an = a0d
n for n ≥ 0.

Thus, we know that a3 = a0d
3 = −8

343
and a5 = a0d

5 = −32
16807

.
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We can solve for a0 in both equations:

a3 = a0d
5 =
−8

343

a0 =
−8

343 · d

a5 = a0d
5 =

−32

16807

a0 =
−32

16807 · d

By equating these equations we have:

−8

343 · d3
=

−32

16807 · d5
−8 · 16807 · d5 = −32 · 343 · d3

134456 · d2 = 10976

d2 =
10976

134456

=
4

49

d =

√
4

49

=
2

7

Thus, d = 2
7

and so our recurrence relation is an = a0 · 27 .

12. 5 · (336)

Let n represent the number of hours the bacteria has been in the container, so

a0 = 5. Thus, we can use the recurrence relation an+1 = 3an where n ≥ 1 to

represent the bacteria growth. The unique solution to this relation is an = 5 ·3n

where n ≥ 0.
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One and a half days is equal to 36 hours, so we compute an for n = 36. Hence,

there are a36 = 5 · (336) bacteria after a day and a half.

13. (a) Determining the first few terms we see that:

a0 = 1

a1 = −5

a2 = 25

a3 = −125

Thus, we can see that an = (−5)n, n ≥ 0.

(b) Determing the first few terms we see that:

a1 = 1

a2 = 4

a3 = 16

Thus we see that an = (4)n−1, n ≥ 1
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6.2 Second Order Linear Homogeneous Recurrence Relations

with Constant Coefficients

Questions:

1. When solving a second order linear homogeneous recurrence relation with con-

stant coefficients, how many initial terms must be known to find its unique

solution? Explain.

2. What is the characteristic equation of

C0an = −C1an−1 + C2an−2

for n ≥ 2?

3. Solve the following recurrence relations.

(a) an = 9an−1 − 20an−2 for n ≥ 2, with a0 = 5, a1 = 6.

(b) an + an−2 = 0 for n ≥ 2, with a0 = 0, a1 = −2.

(c) 5an = −30an−1 − 45an−2 for n ≥ 2, with a0 = 7, a2 = 20.

(d) an = 2an−1 − 2an−2 for n ≥ 2, with a0 = a1 = 0.

(e) an − 2
√

3an−1 + 3an−2 = 0 for n ≥ 2, with a0 = −1, a1 = 5.

(f) a0 = 2, a1 = 6, an = 7an−1 − 12an−2 for n > 1

(g) a0 = 0, a1 = 3, 2an = 12an−1 − 20an−2 for n > 1

(h) a0 = −3, a1 = 1, an = 4an−1 − 4an−2 for n > 1

(i) a0 = 3, a1 = 4, an = 4an−2 for n > 1

4. Suppose a0 = −2, a1 = 5, a2 = 14, and a3 = 39 are initial conditions for a

recurrence relation of the form an+2 + ban+1 + can = 0 for n ≥ 0. Solve for the

constants b and c and then solve the recurrence relation.
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Note: Do not be concerned if you are not getting nice results!

5. Determine a recurrence relation with characteristic equation:

3r2 − 5r + 11 = 0

6. Here are the first 10 terms of the Fibonacci sequence,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

This sequence can be represented by a second order linear recurrence relation

with constant coefficients. Determine and then solve this recurrence relation.

7. Find a recurrence relation for the number of binary sequences of length n that

have no consecutive 0’s.

Note: A binary sequence is sequence made up of only the digits “0” and “1”.

8. Suppose a recurrence relation of the form an = c1an−1 + c2an−2 has a general

solution an = A13
n + A26

n. Find c1, c2.

9. Determine and then solve a recurrence relation that determines the value of a

stock market indicator where the change in value in any given year, from the

previous, is twice the change noticed in the previous year.

10. Find the recurrence relation on for the number of n-letter words made from the

letters O, W, N that contain at least one O using generating functions. Check

your answer using a straightforward counting argument.
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11. Solve the recurrence equation an = 3an−1 + n, n ≥ 1, a0 = 1 using generating

functions.

12. Set up recurrence relation, with initial conditions, for:

(a) un, the number of n-letter words using the letters B,A,R that contain no

consecutive A’s, n ≥ 0

(b) vn, the number of n-letter words using the letters B,A,R such that each B

and each A can only be followed directly by an R.
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Solutions:

1. The solution will be in the form:

an = c1(r1)
n + c2(r2)

n,

for n ≥ 0 and r1, r2 come from factoring the initial function. Since the unique

solution requires knowing c1 and c2, two unknowns, we will need at least two

initial values to solve for these two unknowns. Thus, two initial values are

needed.

2. To determine the characteristic equation of this second order homogeneous re-

currence relation, first we isolate for 0 on one side:

C0an + C1an−1 − C2an−2 = 0

Next, we substitute an = crn to obtain:

C0 · crn + C1 · crn−1 − C2 · crn−2 = 0

And so, by dividing every term by c · rn−2, we arrive at our characteristic

equation:

C0r
2 + C1r − C2 = 0

3. (a) an = 19(4n)− 14(5n), for n ≥ 0

The characteristic equation is

r2 − 9r + 20 = 0

Factoring and solving for r, we obtain r1 = 4 and, r2 = 5. The two char-

acteristic roots are real and distinct, hence 4n and 5n are both solutions.
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Thus our general solution is:

an = c1(4
n) + c2(5

n)

where c1 and c2 are arbitrary constants. We now use our initial conditions

to solve for these constants.

a0 = c1(4
0) + c2(5

0) = c1 + c2 = 5

a1 = c1(4
1) + c2(5

1) = 4c1 + 5c2 = 6

We now solve this system of equations by substituting c1 = 5− c2 into the

second equation:

6 = 4(5− c2) + 5c2 = 20− 4c2 + 5c2

−14 = c2

We can now solve for c1:

c1 = 5− (−14) = 19

Therefore the unique solution to this recurrence relation is:

an = 19(4n)− 14(5n), for n ≥ 0.

(b) an = −2sin(π·n
2

), for n ≥ 0

The corresponding characteristic equation is:

r2 + 1 = 0,

with roots r1 = i, r2 = −i

Since the characteristic roots are complex conjugates, we know the general
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solution of this recurrence relation is given by,

an = c1(i)
n + c2(−i)n,

for n ≥ 0

We now use our initial conditions to solve for constants c1 and c2.

a0 = 0 = c1 + c2,

a1 = −2 = c1i− c2i = i(c1 − c2).

From equation one, c1 = −c2, and plugging this into the second equation

we obtain:

−2 = i(−c2 − c2) = −2c2

Therefore c2 = 1
i

= −i and c1 = i. Thus:

an = i(i)n − i(−i)n = in+1 + (−i)n+1 = (−i)((−i)n − in)

We rewrite this in exponential form, to find the solution:

an = ie
i·π·n

2 − ie
−i·π·n

2 = −2sin(
π · n

2
), for n ≥ 0

(c) an = 7(−3)n + 41n(−3)n−1

The characteristic equation for this recurrence relation is:

r2 + 6r + 9 = 0.

Factoring this we find that r = −3. Thus, there is only one repeated root

and so the general solution to this recurrence relation is:

an = c1(−3)n + c2n(−3)n, for n ≥ 0

259



Using the initial conditions we see that:

a0 = 7 = c1 + 0

We can substitute c1 into our equation now:

a1 = 20 = 7(−3) + c2(−3),

It follows that c2 = 41
−3 . Thus our unique solution for n ≥ 0 is:

an = 7(−3)n +
41n

−3
(−3)n = 7(−3)n + 41n(−3)n−1.

(d) an = (1 + i)n + (1− i)n for n ≥ 0

The characteristic equation for this recurrence relation is:

r2 − 2r + 2 = 0

Using the quadratic formula we identify that the characteristic roots are

complex conjugates, specifically, r1 = 1− i, r2 = 1 + i.

As we have complex roots, the general solution is of the form:

an = c1(1 + i)n + c2(1− i)n
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Using our two initial conditions we can solve for c1, c2:

a0 = 2 = c1 + c2

c2 = 2− c1
a1 = 2 = c1(1 + i) + c2(1− i)

a1 = 2 = c1(1 + i) + (2− c1)(1− i)2 = c1 + ic1 + 2− 2i− c1 + ic1

2 = 2ic1 + 2− 2i1 = c1c2 = 1

Hence, the particular solution to this recurrence relation is:

an = (1 + i)n + (1− i)n for n ≥ 0

. Note: An equivalent solution is:

an = (
√

2
n
[cos(

nπ

4
)+i·sin(

nπ

4
)])+(

√
2
n
[cos(−nπ

4
)+i·sin(−nπ

4
)]) for n ≥ 0

(e) an = −
√

3
n

+ n(3+5
√
3)

3

√
3
n
, for n ≥ 0.

The characteristic equation is:

r2 − 2
√

3r + 3 = 0,

which can be factored as:

(r −
√

3)2 = 0.

Therefore the characteristic roots are r1 = r2 =
√

3. So our function has

repeated real roots. Thus, the general solution is:

an = c1(
√

3)n + c2n(
√

3)n for n ≥

We can solve for our two unknowns by using the given initial conditions:
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a0 = −1 = c1

We can now substitute. c1 = −1 into the equation for a1:

a1 = 5 = −
√

3 + c2
√

3

c2 =
5 +
√

3√
3

=
3 + 5

√
3

3

Hence, the particular solution to this recurrence relation is:

an = −
√

3
n

+
n(3 + 5

√
3)

3

√
3
n
, for n ≥ 0.

(f) an = −2(3n) + 4n+1 for n ≥ 0

The characteristic equation for this relation is:

r2 − 7r + 12 = r

Factoring this equation we have that:

(r − 3)(r − 4) = 0

So the characteristic roots are r1 = 3 and r2 = 4. The two characteristic

roots are real and distinct so our general solution is:

an = c1(3
n) + c2(4

n)

where c1 and c2 are constants. We can solve for c1 and c2 using our initial
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values:

a0 = 2 = c1 + c2

a1 = 6 = 3c1 + 4c2

4 = c2

−2 = c1

Thus, our recurrence relation is equal to:

an = −2(3n) + 4n+1 for n ≥ 0.

(g) an = −3i
2

(3 + i)n + 3i
2

(3− i)n for n ≥ 0

The characteristic equation for this relation is:

r2 − 6r + 10 = 0

Thus, we can solve for the characteristic roots using the quadratic equation:

r1 = 3 + i and r2 = 3− i

Thus the roots are distinct and complex. The general solution then is:

an = c1(3 + i)n + c2(3− i)n

where c1 and c2 are constants. Using the initial values we can solve for c1
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and c2:

a1 = 0 = c1 + c2

= −c1 = c2

a2 = 3 = c1(3 + i)− c1(3− i)

c1 =
−3i

2

c2 =
3i

2

Thus, our recurrence relation is equal to:

an =
−3i

2
(3 + i)n +

3i

2
(3− i)n for n ≥ 0.

(h) an = −3(2n) + 7n(2n) for n ≥ 0

The characteristic equation is:

r2 − 4r + 4r = 0

Factoring this equation we can see that:

(r − 2)2 = 0

And so, r1 = r2 = 2. Thus, we have two repeated roots. This gives that

our general solution is:

an = c1(2
n) + c2n(2n)
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We can find the particular solution using the initial values given:

a0 = −3 = c1

a1 = 1 = −6 + 2c2

c2 = 7

Thus, the recurrence relation is equal to:

an = −3(2n) + 7n(2n) for n ≥ 0.

(i) an = 5
2
(2n) + 1

2
(−2)n for n ≥ 0

The characteristic equation is equal to:

r2 − 4 = 0

Thus, solving for the characteristic roots we can see that we have two

distinct roots r1 = 2 and r2 = −2. Thus, the general solution is: an =

c1(2
n) + c2(−2)n We can solve for the particular solution using our initial

values:

a0 = 3 = c1 + c2

a1 = 4 = 2c1 − 2c2

2 = c1 − c2
5 = 2c1

5

2
= c1

1

2
= c2
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Thus, the recurrence relation is equal to:

an =
5

2
(2n) +

1

2
(−2)n for n ≥ 0.

4. an = (−1− 412
2
√
5423

)(74−
√
5423

53
)n + ( 413

2
√
5423
− 1)(74+

√
5423

53
)n for n ≥ 0

We start by using the 4 initial conditions to solve for b, c. We obtain the system

of equations:

14 + b(5) + c(−2) = 0

39 + b(14) + c(5) = 0

Thus: b = −148
53

and c = 153.

This means that the recurrence relation is:

an +
−148

53
an−1 +

1

53
an−2 = 0 for n ≥ 2

The corresponding characteristic equation is:

r2 − 148

53
r +

1

53
= 0

Using the quadratic equation we find that the characteristic roots are, x1 =
74−
√
5423

53
and x2 = 74+

√
5423

53
.

These are two distinct real roots, hence the general solution to this recurrence

relation is:

an = c1(
74−

√
5423

53
)n + c2(

74 +
√

5423

53
)n for n ≥ 0
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We solve for the constants by using our initial values:

a0 = −2 = c1 + c2

c2 = −2− c1

We substitute this into our other equation:

a1 = 5 = c1(
74−

√
5423

53
) + (−2− c1)(

74 +
√

5423

53
)

rearranging and solving we obtain c1 = −1− 412
2
√
5423

and hence c2 = 413
2
√
5423
− 1.

Thus our unique solution is,

an = (−1− 412

2
√

5423
)(

74−
√

5423

53
)n + (

413

2
√

5423
− 1)(

74 +
√

5423

53
)n for n ≥ 0.

5. 3an = 5an−1 − 11an−2 for n ≥ 2. The initial conditions are a0 = a, a1 = b for

any a, b ∈ R.

6. an =
√
5
5

[(1+
√
5

2
)n − (1−

√
5

2
)n] for n ≥ 0

First, we must determine the recurrence relation. We can do so by trial and error

and examining the sequence. We find that this sequence can be represented by:

an = an−1 + an−2 for n ≥ 2, with a0 = 0, a1 = 1

Now we must solve this, so we obtain the characteristic equation:

r2 − r − 1 = 0

The characteristic roots are r1 = 1+
√
5

2
and r2 = 1−

√
5

2
, which can be seen using
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the quadratic equation. These roots are real and distinct, so the general solution

to this relation is,

an = c1(
1 +
√

5

2
)n + c2(

1−
√

5

2
)n, for n ≥ 0

Finally, we use our initial conditions to find c1, c2:

a0 = 0 = c1 + c2

c1 = −c2

a1 = 1 = c1(
1 +
√

5

2
) + c2(

1−
√

5

2
)

2 = c1 +
√

5c1 + c2 −
√

5c2

2 = −c2 −
√

5c2 + c2 −
√

5c2 = −2
√

5c2

c2 =
−
√

5

5

Thus, c2 = −
√
5

5
and c1 =

√
5
5

.

Therefore the unique solution that describes the Fibonacci sequence is:

an =

√
5

5
[(

1 +
√

5

2
)n − (

1−
√

5

2
)n]forn ≥ 0

7. an = an−1 + an−2 for n ≥ 3 with a1 = 2 and a2 = 3

Let an be the number of binary sequences of length n that have no consecutive

0’s. We will split up an even further into the sequences that end in 0, a0n, and

those that end in 1, a1n. Then certainly an = a0n + a1n, for n ≥ 1.

First, we notice that a1 = 2, as the only possible sequences are “0” and “1”.

We can build each sequence of length n+1 from sequences of length n by adding
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one addition term at the end as since the sequences of length n already satisfy

that there are no consecutive 0’s. Thus, we can see that

an = 2 · a1n−1 + 1 · a0n−1

This is because for any sequence of length n− 1 that ends in “1”, either “1” or

“0” can be added to the end to form a sequence of length n while a sequence

of length n− 1 that ends in “0” can only have “1” added to the end to form a

sequence of length n, else there would be consecutive “0”’s.

Now consider some sequences that belong to an−2. If the sequence y ∈ an−2 then

y1 ∈ a1n−1, and vice versa. Thus, there is a one-to-one correspondence between

the sets and so it follows that an−2 = a1n−1.

We can now find our recurrence relation by putting all of this together:

an = 2 · a1n−1 + a0n−1

= a1n−1 + a1n−1 + a0n−1

= a1n−1 + an−1

= an−1 + an−2

Thus, our recurrence relation is:

an = an−1 + an−2 for n ≥ 3 with a1 = 2 and a2 = 3

8. c1 = 9 and c2 = −18

We know from the general solution that the characteristic roots of the charac-

teristic equation must be r1 = 3, r2 = 6.

The characteristic equation, in terms of c1, c2 is r2 − c1r − c2 = 0. Since we

know that r1, r2 must solve this equation, we can solve for our two unknowns:
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r1: 32 − 3c1 − c2 = 0,

r2: 62 − 6c1 − c2 = 0.

The first equation implies that c2 = 9− 3c1, so we can substitute this into the

second equation: 36− 6c1 − 9 + 3c1 = 27− 3c1 = 0.

Hence, c1 = 9 and c2 = −18.

9. an = c1 + c22
n, for n ≥ 0

This situation can be represented by the following equation:

an − an−1 = 2(an−1 − an−2), for n ≥ 2

We can rearrange this equation to solve for an:

an = 3an−1 − 2an−2

The characteristic equation for this is:

r2 − 3r + 2 = 0

which has the roots r1 = 1, r2 = 2. Therefore the general solution to this

relation is:

an = c1 + c22
n, for n ≥ 0

Note: we are not able to find the particular/unique solution since we were not

provided with initial conditions.

10. on = 3n − 2n

For n = 0, there are no possible words as there is no way to include the letter

‘O’ in a word of length 0. Thus o0 = 0.
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For n = 1, the only possible word is the letter ‘O’ itself. Thus, o1 = 1.

For n = 2, the possible words are: OO, OW, ON, NO, WO. Thus, o2 = 5.

To create a word of length n with with at least one O there are two cases:

(i) The first letter of the word is ‘O’. Then the following n− 1 letters can be

any other letters. Thus, there are 3n−1 words in this case.

(ii) The first letter is either ‘N’ or ‘W’. So, the following n − 1 letters must

include the letter ‘O’. This means the following n − 1 letters must be a

valid word of length n− 1. Thus, there are 2 · on−1 words in this case.

As these cases are disjoint, the recurrence equation is: on = 3n−1 + 2wn−1,

o0 = 0.

Let the generating function for o0, o1, o2, ... be:

g(x) =
∞∑
n=0

onx
n

Multiply the equation on = 3n−1 + 2wn−1 by xn and sum from n = 1:

∞∑
n=1

onx
n = 2

∞∑
n=1

on−1x
n +

∞∑
n=1

3n−1xn

= 2x
∞∑
n=1

on−1x
n−1 + x

∞∑
n=1

3n−1xn−1

= 2x
∞∑
n=0

onx
n + x

∞∑
n=0

3nxn

And so:

g(x)− w0 = g(x) = 2x
∞∑
n=0

onx
n + x

∞∑
n=0

3nxn

= 2xg(x) +
x

1− 3x
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And so:

g(x) =
x

1− 3x

g(x) =
x

(1− 3x)(1− 2x)

And so, using partial fractions, we have that:

g(x) =
x

(1− 3x)(1− 2x)

=
1

(1− 3x)
− 1

(1− 2x)

=
∞∑
n=0

3nxn −
∞∑
n=0

2nxn

Thus on is the coefficient of xn and so: on = 3n − 2n.

We can also solve this problem using a simple counting argument. All possible

words of length n, without restrictions, made with the letter ‘O, W, N’ is 3n.

All words with n letters that do not include ‘O’ are 2n. Thus, the total words

that do contain ‘O’ using PIE is: 3n − 2n, which is the same result we found

using generating functions.

11. an = 7
4
3n − 3

4
− n

2

Let the generating function for a0, a1, a2, ... be:

g(x) =
∞∑
n=0

anx
n

.

Let us multiply the equation for an by xn:
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anx
n = 3xnan−1 + xnn

We can now sum this equation from n = 1, as this is when the equation given

begins:

∞∑
n=1

anx
n =

∞∑
n=1

3xnan−1 +
∞∑
n=1

xnn

= x
∞∑
n=1

3xn−1an−1 +
∞∑
n=1

xnn

= 3x
∞∑
n=0

xnan +
∞∑
n=1

xnn

= 3xg(x) +
∞∑
n=1

xnn

We can refer to the table of generating functions to rewrite
∑∞

n=1 x
nn:

∞∑
n=0

(n+ 1)xn =
∞∑
n=0

(
n+ 2− 1

1

)
xn =

1

(1− x)2
=
∞∑
n=1

xn−1n

Thus:

∞∑
n=1

xn · n = x ·
∞∑
n=1

xn−1n

=
x

(1− x)2
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Thus, we can substitute our values into our summation equation:

∞∑
n=1

anx
n =

∞∑
n=1

3xnan−1 +
∞∑
n=1

xnn

g(x)− g(0) = 3x · g(x) +
x

(1− x)2

g(x)− 1 = 3x · g(x) +
x

(1− x)2

g(x)− 3x · g(x) = 1 +
x

(1− x)2

g(x)(1− 3x) = 1 +
x

(1− x)2

g(x) =
1

(1− 3x)
+

x

(1− x)2(1− 3x)

Now we can rewrite x
(1−x)2(1−3x) using partial fractions:

x

(1− x)2(1− 3x)
=

A

(1− 3x)
+

B

(1− x)
+

C

(1− x)2

And so:

x = A(1− x)2 +B(1− x)(1− 3x) + C(1− 3x)

Thus:

0 = A+ 3B

1 = −2A− 4B − 3C

0 = A+B + C

And so, solving for A, B, C shows:
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x

(1− x)2(1− 3x)
=

3

4(1− 3x)
− 1

4(1− x)
− 1

2(1− x)2

Thus:

g(x) =
1

(1− 3x)
+

3

4(1− 3x)
− 1

4(1− x)
− 1

2(1− x)2

=
7

4(1− 3x)
− 1

4(1− x)
− 1

2(1− x)2

=
7

4

∞∑
n=0

3nxn − 1

4

∞∑
n=0

xn − 1

2

∞∑
n=0

(n+ 1)xn

Hence an which is the coefficient of xn, is:

an =
7

4
3n − 1

4
− 1

2
(n− 1)

=
7

4
3n − 1

4
− n

2
− 1

2

=
7

4
3n − 3

4
− n

2

12. (a) un = 2un−1 + 2un−2, where u0 = 1

There is one valid word for n = 0, namely the empty word. So u0 = 1

For n = 1, any single letter is a valid word (ie ‘B’, ‘A’, ‘R’). So u1 = 3.

There are two possible cases for words of length n:

(i) The word begins with ‘B’ or ‘R’. Then the following n− 1 letters are

a valid word of length n − 1. Thus, there are a total of 2un−1 words

of this case.
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(ii) The word begins with ‘A’. Then the following letter must be ‘B’ or

‘R’. The remaining n − 2 letters are any valid word of that length.

Thus, there are a total of 2un−2 in this case.

Thus: un = 2un−1 + 2un−2, where u0 = 1.

(b) un = 2un−2 + un−1, where u0 = 1

There is one valid word for n = 0, namely the empty word. So u0 = 1.

For n = 1, any single letter is a valid word (ie ‘B’, ‘A’, ‘R’). So u1 = 3.

There are two possible cases for words of length n:

(i) The word begins with ‘B’ or ‘R’. Then the following letter must be ‘R’.

The remaining n− 2 letters are any valid word of that length. Thus,

there are a total of 2un−2 in this case.

(ii) The word begins with ‘R’. Then the following n−1 letters must simply

be a valid word of length n− 1. Thus, there are a total of un−1 words

in this case.

Thus: un = 2un−2 + un−1, where u0 = 1.
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