9 Exponents \(\frac{1}{n} \)

For a positive integer \(n \), a real number \(y \) is an \(n \)-th root of \(x \) if \(y^n = x \).

If \(n \) is odd, every real number \(x \) has exactly one \(n \)-th root.

If \(n \) is even, a real number \(x \) has no \(n \)-th root when \(x < 0 \), exactly one \(n \)-th root when \(x = 0 \), and exactly two \(n \)-th roots when \(x > 0 \). If \(x \) has two \(n \)-th roots, one is positive and the other is its negative.

The symbol \(\sqrt[n]{x} \) is defined to be the \(n \)-th root of \(x \) when \(n \) is odd, or the non-negative \(n \)-th root of \(x \), if one exists, when \(n \) is even.

Notice that if \(n \) is odd, \(\sqrt[n]{x} \) exists and has the same sign as \(x \).

Example 1

- \(\sqrt[3]{64} = 4 \)
- \(\sqrt[3]{-64} = -4 \)
- \(\sqrt[2]{64} = 8 \)
- \(-\sqrt[3]{64} = (-1)\sqrt[3]{64} = -8 \)
- \(\sqrt[2]{-64} \) is not defined.

The expression \(x^{1/n} \) is just another way of writing \(\sqrt[n]{x} \). Notice that if \(x^{1/n} \) is defined, then \((x^{1/n})^n = x \).

If \(n \) is even and \(x \) is non-negative, then \((x^n)^{1/n} = x \), because \(x^n \) is non-negative and \((x^n)^{1/n} \) is the non-negative \(n \)-th root of \(x^n \). If \(n \) is even and \(x \) is negative, then \(x^n \) is positive, so that \((x^n)^{1/n} = |x| \).

For example \(((-3)^2)^{1/2} = 9^{1/2} = 3 \). Notice that, in this case, the expression \(((-3)^{1/2})^2 \) does not make sense because \((-3)^{1/2} \) is not defined.

When \(n \) is odd, \(x^n \) has the same sign as \(x \), so that \((x^n)^{1/n} \) also has the same sign as \(x \). Therefore \((x^n)^{1/n} = x \). For example \(((-3)^3)^{1/3} = (-27)^{1/3} = -3 \) and, since \((-3)^{1/3} \) is defined, \(((-3)^{1/3})^3 = -3 \).

Example 2 Find \(x \) if \(x^{1/2} = \frac{3}{2} \).

Since \(x^{1/2} = \frac{3}{2} \), we know that

\[
x = \left(\frac{3}{2}\right)^4 = \frac{81}{16}.
\]

Example 3 Find \(x \) if \(x^{1/3} = \left(\frac{5}{4}\right)^{1/2} \).
Since \(x^{\frac{1}{3}} = \left(\frac{5}{4} \right)^{\frac{1}{7}} \), we know that
\[
x = \left(x^{\frac{1}{3}} \right)^3 = \left(\left(\frac{5}{4} \right)^{\frac{1}{7}} \right)^3 = \left(\sqrt[7]{\frac{5}{4}} \right)^3 = \sqrt[7]{\frac{125}{64}}.
\]

9.1 Practice Problems

In questions 1 - 5, use the rules of exponents to find an expression equivalent to given expression.

1. \(36^{\frac{1}{2}} \)
2. \((-125)^{\frac{1}{3}} \)
3. \(\left(\frac{9}{4} \right)^{\frac{1}{2}} \)
4. \(x^{\frac{3}{2}}x^{-\frac{1}{2}} \)
5. \((m^{\frac{1}{2}}n^{-\frac{1}{3}})^{-\frac{1}{6}} \)

6. Find \(x \) if \(x^{\frac{1}{5}} = \left(\frac{2}{3} \right)^{\frac{1}{7}}. \)

9.2 Solutions

1. 6 2. -5 3. \(\frac{3}{2} \) 4. \(x^{\frac{1}{20}} \) 5. \(\frac{n^{1/18}}{m^{1/12}} \) 6. \(\frac{32}{243} = \frac{4}{9} \sqrt[3]{\frac{2}{3}} \)