19 Logarithms

From our previous work, we know that if \(b > 0 \) then the range of the exponential function \(f(x) = b^x \) is the positive real numbers. If \(b > 0 \) then the graph of \(f \) increases as we move right on the \(x \)-axis, and if \(0 < b < 1 \) then it increases as we move left on the \(x \)-axis. (The function \(f(x) = b^x \) is not very exciting if \(b = 1 \).) In either case, that means for any positive real number \(y \) there exists a unique real number \(x \) such that \(b^x = y \). This number is the base-\(b \) logarithm of \(y \), and denoted by \(\log_b(y) \). That is, if \(b > 0 \) and \(b \neq 1 \), then \(\log_b(y) \) is the power to which \(b \) must be raised in order to get the positive number \(y \).

It is important to notice that \(\log_b(y) \) is only defined for positive numbers \(y \). Logarithms are exponents. By definition \(b^{\log_b(y)} = y \). Since \(b \) is positive, so is any power of \(b \). Thus \(\log_b(y) \) is undefined when \(y \) is negative because no power of a positive number can give us a negative number.

Logarithms have properties that follow immediately from the fact that they are exponents.

Properties of Logarithms. Suppose \(b > 0 \) and \(b \neq 1 \).

- \(\log_b 1 = 0 \) because \(b^0 = 1 \).
- \(\log_b b = 1 \) because \(b^1 = b \).
- \(b^x = y \) if and only if \(\log_b(y) = x \).
- \(\log_b(xy) = \log_b(x) + \log_b(y) \) because \(b^{\log_b(x)+\log_b(y)} = b^{\log_b(x)} b^{\log_b(y)} = xy \).
- \(\log_b(a^x) = x \log_b(a) \) because \(b^{x \log_b(a)} = (b^{\log_b(a)})^x = a^x \).
- \(\log_b \left(\frac{x}{y} \right) = \log_b(x) - \log_b(y) \) because \(b^{\log_b(x)-\log_b(y)} = b^{\log_b(x)} b^{-\log_b(y)} = b^{\log_b(x)} \cdot \frac{1}{b^{\log_b(y)}} = \frac{x}{y} \).

When the base \(b \) is omitted, as in \(\log(100) \), it is assumed to be 10. Logarithms to base 10 are called common logarithms. Logarithms to base \(e \) are called natural logarithms, and denoted by \(\ln(x) \) rather than \(\log_e(x) \).

Example 1 Evaluate each expression.

- \(\log_2(2) = 1 \)
- \(\log(100) = \log(10^2) = \log_{10}(10^2) = 2 \)
- \(\log_6(12) + \log_6(18) = \log_6(12 \cdot 18) = \log_6(216) = \log_6(6^3) = 3 \)
- \(\log_5(2500) - \log_5(4) = \log_5 \left(\frac{2500}{4} \right) = \log_5(625) = \log_5(5^4) = 4 \)
- \(\log(5b) + \log(2c^2) = \log(10bc^2) = \log(10) + \log(bc^2) = 1 + \log(bc^2) \)
Example 2. Solve \(\log_8(x) + \log_8(x - 12) = 2 \).

We have \(2 = \log_8(x) + \log_8(x - 12) = \log_8(x(x - 12)) \), so that \(8^2 = x(x - 12) \), by the definition of logarithms. Thus \(x^2 - 12x - 64 = 0 \). By factoring (or using the quadratic formula first for help), this is the same as \((x - 16)(x + 4) = 0 \). Therefore \(x = 16 \) or \(x = -4 \). But \(x = -4 \) is not a solution, as \(\log_8(-4) \) is undefined. Hence the solution is \(x = 16 \).

For a positive real number \(b \neq 1 \), the logarithm function with base \(b \) is the function \(f(x) = \log_b(x) \). Its domain is the set of positive real numbers. Its range is the set of all real numbers.

Notice that the functions \(f(x) = b^x \) and \(g(y) = \log_b(y) \) are inverses by definition: \(b^x = y \) if and only if \(\log_b(y) = x \). Thus, if \(b \neq 1 \), the logarithm function with base \(b \) is the inverse of the exponential function with base \(b \). (The function \(f(x) = 1^x \) does not have an inverse because, for example \(1^2 = 1^3 = 1 \).)

Finally, we observe that logarithm functions with different bases are just multiples of each other. We know \(b^{\log_b(x)} = x \). Therefore, \(\log_a(b^{\log_b(x)}) = \log_a(x) \). From one of the properties of logarithms, we know that \(\log_a(b^{\log_b(x)}) = \log_a(x) \log_a(b) \), and so this is the same as \(\log_a(x) \log_a(b) = \log_a(x) \). Since \(\log_a(b) \) is a number, this says that \(\log_a(x) \) is a multiple of \(\log_b(x) \).

The graphs of \(f(x) = \log(x) \) and \(g(x) = \ln(x) \) are shown below.

The same principles as before of shifting graphs or stretching them vertically or horizontally apply.

Example 3 Sketch the graph of \(f(x) = 5 \log(x + 2) + 3 \).

This graph has the same basic shape as the graph of \(y = \log(x) \). It is shifted upwards by 3 and left by 2. Also, it is stretched in the vertical direction by a factor of 5.

After plotting a few well chosen points and sketching a curve of the correct shape through them, one arrives at the graph below.
19.1 Practice Problems

In questions 1 to 5, use the properties of logarithms to to find an equivalent, arguably simpler, expression.

1. \(\log_6 (12) + \log_6 (18) \)
2. \(\log_8 (x) + \log_8 (x - 12) \)
3. \(\log_5 (2500) - \log_5 (4) \)
4. \(\log(5b) + \log(2c^2) \)
5. \(\log_{25} (7) + \log_{5} (3) \)

6. Sketch the graph of \(h(x) = 1 - 5 \log \left(1 - \frac{x}{2} \right) \).
19.2 Solutions

1. 3 2. $\log_8(x^2 - 12x)$ 3. 4 4. $\log(10be^2)$ 5. $\frac{2\log(3)+\log(7)}{2\log(5)}$

6.