On the ergodicity of a class of 1-dimensional probabilistic cellular automata with size-3 neighbourhoods

Speaker: Moumanti Podder, Indian Institute of Science Education and Research (IISER) Pune
Email: moumanti@iiserpune.ac.in

Abstract

Let $S = \{(p, q) \in [0, 1]^2 : 0 < p + q \leq 1\}$. For any fixed $(p, q) \in S$, we consider a 1-dimensional probabilistic cellular automaton (PCA) $F_{p,q}$, with alphabet $A = \{0, 1\}$, neighbourhood $N = \{0, 1, 2\}$, and (stochastic) local update rules that are defined as follows. If $\eta = (\eta(n) : n \in \mathbb{Z})$ is a configuration in $A^\mathbb{Z}$, then, given $\eta(n) = \eta(n + 1) = \eta(n + 2) = 0$, we have

$$F_{p,q}\eta(n) = \begin{cases} 0 & \text{with probability } p, \\ 1 & \text{with probability } 1 - p, \end{cases}$$

and given $(\eta(n), \eta(n + 1), \eta(n + 2)) \in A^3 \setminus \{(0, 0, 0)\}$, we have

$$F_{p,q}\eta(n) = \begin{cases} 0 & \text{with probability } 1 - q, \\ 1 & \text{with probability } q. \end{cases}$$

We show that $F_{p,q}$ is ergodic if and only if the probability of draw in certain suitably defined percolation games on \mathbb{Z}^2 is 0. Next, we establish connections between these games and a different but related PCA, $\hat{F}_{p,q}$, with alphabet $\hat{A} = \{0, ?, 1\}$, that is usually referred to as the “envelope” to $F_{p,q}$. We employ the relatively unexplored technique of weight functions to show that the probability of appearance of the symbol $?$ is 0 under every stationary distribution for $\hat{F}_{p,q}$, which in turn implies that the probability of draw is 0 in each of our games, for every $(p, q) \in S$.

1