MICR302
Molecular Microbiology
Winter 2014

Class time/location: Mon, Thurs, 11:30 – 12:50, ELL 167
Instructor: Dr. Doug Briant
 Office hours: Monday and Thursday, 1:00 – 2:00
 Room: Petch 227
 e-mail: dbriant@uvic.ca
Instructor: Dr. Chris Nelson
 Office hours: TBA
 Room: Petch 270
 e-mail: cjnelson@uvic.ca

Textbook: Since the course material is as up-to-date as possible, there is no course
textbook. Much of the source material (papers) will be provided on-line in
the Moodle site, and will serve as an additional resource. You will need your
UVic NetLink ID and password to access this information.

However, it is recommended that you have easy access to a standard
microbiology textbook.

Lecture Notes: Notes will generally be made available on the Moodle site prior to
lectures. Notes are arranged by topic, and a single topic may span multiple
lectures. Lecture notes are not complete, and students will be responsible
for all materials covered in the lectures.

MICR302 course learning objectives:

• In this course, you will gain the tools to recognize relationships between DNA,
 RNA and protein. Applying these tools, you will be able to evaluate the specific
 contributions of different molecular mechanisms microbes utilize to respond to
 environmental changes.

• You will have the ability to compare microbial communication and signalling
 strategies.

• You will understand the importance of the microbiome in maintaining human
 health.

• You will be able to discuss the utility of budding yeast a model eukaryotic system.

By the end of the course, it is expected that each student will be capable of examining a
biological response and hypothesizing which underlying genetic and/or biochemical
process defines the response. Students will then be able to design experiments,
including all relevant controls, to test their proposed hypothesis.
Important dates and evaluation:

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>there will be no classes from June 3 – June 11</td>
<td></td>
</tr>
<tr>
<td>1% mini assignment 1</td>
<td>in class, electronic group submission, for participation mark only Monday, February 03</td>
</tr>
<tr>
<td>1% mini assignment 2</td>
<td>in class, electronic group submission, for participation mark only Monday, March 10</td>
</tr>
<tr>
<td>8% final assignment</td>
<td>in class, hard copy Monday, March 31</td>
</tr>
<tr>
<td>30% exam 1</td>
<td>in class Monday, January 27</td>
</tr>
<tr>
<td>30% exam 2</td>
<td>in class Monday, March 03</td>
</tr>
<tr>
<td>30% exam 3</td>
<td>2 hrs, set by registrar</td>
</tr>
</tbody>
</table>

no formal mark is awarded for mini assignments. Assignments will be discussed in lecture and electronically submitted for participation marks. Material may appear on exams.

- Students are responsible for ensuring that they are properly registered in the course.
- Students are expected to have met all pre/co-requisites for the course (see above).

Conversion of marks to final letter grades:

PLEASE NOTE CHANGES TO THE GRADING SCALE

The total mark, calculated from the marks on all of the exams according to the weighting scheme above, will be converted to a percentage and then to a letter grade in the following way:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90 - 100</td>
</tr>
<tr>
<td>A</td>
<td>85 - 89</td>
</tr>
<tr>
<td>A-</td>
<td>80 - 84</td>
</tr>
<tr>
<td>B+</td>
<td>77 - 79</td>
</tr>
<tr>
<td>B</td>
<td>73 - 76</td>
</tr>
<tr>
<td>B-</td>
<td>70 - 72</td>
</tr>
<tr>
<td>C+</td>
<td>65 - 69</td>
</tr>
<tr>
<td>C</td>
<td>60 - 64</td>
</tr>
<tr>
<td>C-</td>
<td>55 - 59</td>
</tr>
<tr>
<td>D</td>
<td>50 - 54</td>
</tr>
<tr>
<td>F</td>
<td>< 50</td>
</tr>
</tbody>
</table>
Tentative Class Schedule:

<table>
<thead>
<tr>
<th>topic</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td></td>
</tr>
</tbody>
</table>
| **2 DNA** | a) gene structure and expression
bacterial gene architecture, σ factors, comparison between prokaryotic and eukaryotic systems |
| **3 RNA** | a) stability and processing
mRNA decay, processing stable RNA transcripts
b) riboswitches
overview of riboswitches
c) CRISPR
RNA silencing in prokaryotes |
| **4 Protein** | a) two component systems
introduction to prokaryotic protein signalling
b) protein splicing
inteins and exteins, applications
c) translational surveillance
identification and destruction of aberrant proteins in prokaryotes |
| **5 Environment** | a) heat shock
role of sigma factors, chaperones and proteases
b) envelope stress
antisigma factors
c) stationary phase
rpoS, σ^s
d) stringent response
response to stringent conditions, including σ and ppGpp
e) sporulation
role of phosphorylation and sigma factors |
| **6 Bacterial Signalling** | a) environmental
chemotaxis and two component systems
b) community
quorum sensing and bacterial communication, importance of biofilms |
| **7 Microbiome** | how does the microbiome impact human health? |
| **8 Budding yeast: a model eukaryote** | Lifecycle, examples of conserved signal transduction pathways, molecular methods, genetic techniques and systems level high-throughput methods for insight into eukaryotic biology. |
DEPARTMENT INFORMATION AND POLICIES

1. The Department of Biochemistry and Microbiology upholds and enforces the University’s policies on plagiarism and cheating. These policies are described in the current University Calendar. All students are advised to read this section.

2. Cell phones, computers and other electronic devices must be turned off at all times unless being used for a purpose relevant to the class. Students having a cell phone, tablet, or computer on their person during an exam will be assumed to have it for the purpose of cheating.

3. Any recordings of lectures may only be performed with written permission of the instructor, and are for personal use only. The instructor retains copyright to such recordings and all lecture materials provided for the class (electronic and otherwise); these materials must not be shared or reposted on the Internet.

4. Students are expected to be present for the midterm and final exams. Instructors may grant deferrals for midterm examinations for illness, accident, or family affliction, and students must provide appropriate documentation 48 hours after the midterm exam. The Department of Biochemistry and Microbiology considers it a breach of academic integrity for a student taking a deferred examination to discuss the exam with classmates. Similarly, students who reveal the contents of an examination to students taking a deferred examination are considered to be in violation of the University of Victoria policy on academic integrity (see current University Calendar). Deferral of a final exam must be requested with an Academic Concession form and submitted directly to Undergraduate Records. Deferred final exams for fall term courses will be arranged by the instructor. Deferred final exams for spring term courses will be arranged through Undergraduate Records and must be written before the end of the summer term as stipulated in the University Calendar.

5. Scan sheets for multiple choice exams (bubble sheets) will not be made available for review. Therefore, in addition to filling in answers on the scan sheet, students should also circle their answers in ink on their exam.

6. Professors may refuse to review/remark exams not written in ink. In addition, requests for review/remark of a midterm exam must be made within one week of the exam being returned. Students are expected to promptly pick up midterm exams after marking has been completed, either in class or from the instructor.

7. Examination papers that have pages removed, or are mutilated will not be marked.