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THE CLIMATE SYSTEM
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The Climate is what you expect, the
Weather is what you get.

The Earth:

- 70% of surface
covered by the
ocean, 30% by land
- 10% covered by
ice (land and sea)
- 60-70% covered
by cloud

- The Ocean has a
significant role
moderating on our
climate.

EVERIES AT A CRITICAL TIME



OCEAN RESPONSES TO CLIMATE CHANGE
Outline:
1) The climate system and the ocean’s role in moderating
climate, regionally and globally
2) What we expected climate change might look like:
- Gradual warming and shifting patterns/zones
3) What seems to be actually happening:
- Heat waves, ocean acidification, and hypoxia
- Sudden, abrupt, and significant “synoptic” events
4) Mitigating and Adapting to climate change

- climate scenarios and solutions




THE CLIMATE SYSTEM
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MODELLING THE CLIMATE SYSTEM
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THE HYDROLOGY PART OF THE
We know that the ocean CLIMATE SYSTEM

“moderates” climate, ‘
and is why Victoria and s~ Lo a ot
oy
Winnipeg have different l Toraton o
o H V24
climates”. s

affects both heat and
precipitation.

Proximity to the ocean z@”

Because the specific
heat (or inverse heat
capacity) of water is
roughly 4 times that of
“land”, it warms slowly
per unit of heat energy
absorbed.



THE HYDROLOGY PART OF THE
Subsequently, the ocean CLIMATE SYSTEM

is absorbing “excess” )
heat, but its g e
temperature is rising
only slowly.

As a result the ocean
has already “buffered”
about 30% of the
“forcing” driving climate
change. Long-term
consequences are
thermal expansion (sea
level rise), but also
there are chemical
changes, ocean
acidification and
hypoxia.
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OCEAN RESPONSE
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Climate Change . o Y9 -

A triple threat for the ocean

Burning fossil fuels, deforestation
and industrial agriculture release
carbon dioxide (CO,) and other
heat-trapping gases into our
atmosphere, causing our planet to
warm. The ocean has buffered us
from the worst impacts of climate
change by absorbing more than 90
percent of this excess heat and
about 25 percent of the C0,, but at
the cost of causing significant harm
to marine ecosystems.

MORE
ACIDIC

BLEACHING

Warm-water coral reefs
(marine biodiversity
hotspots) could be lost if
the ;zllanet warms by
2L {3.6°F).

HABITATS

Lower oxygen levels

are suffocating some
marine animals and

shrinking their habitats.

TOXIC ALGAE

Larger and more frequent
blooms are making fish,
birds, marine mammals

and people sick.

FISHERIES

Disruptions in fisheries
affect the marine food
web, local livelihoods, and
global food security.

SEA LEVEL

Sea level rise is
accelerating, flooding
coastal communities

ACIDIFICATION

More acidic water
harms animals that build
shells, such as corals,
clams, and oysters.

and drownin
wetland habitats.

Foscarcnnstte | € Knaru

Source: IPCC, 2019: Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC)



THE CLIMATE “Z0ONES”

Political Map of the World, November 2011
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Climate Change: Gradual shift of climate zones poleward
Recent records suggest warming at about 2°C /century




OCERAN RESPONSE
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Even as little as 20 years ago, most oceanographers assumed that
most of the “changes” (impacts) would be confined to the “upper”
ocean, depths less than 200-300m.

We now know, that is not the case.

But let’s backup and review the prime driver of climate change
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THE GREENHOUSE EFFECT

i 350 W/m3
| Incoming

LIS W3

solar radi

Atmosphere

s-io]

Absorbed by
water vapor
dust, Oj

Absorbed by cluds

Absorbed

{

Ocean, Land 46 C

ation

Backscattered

Outgoing radiation

Long wave (IR)

Reflected
by clouds

Reflected
by surface

=4xC

p-ocean p-land

Net emission
by A
water vapor, .
COy O4

Emission
by clouds

Absorption
105 by clouds
water vapor, Latent
CO,. 03 heat flux

ensible
heat flux

7 24

NETWORKS

WORLD-LEADING DISCOVERIES AT A CRITICAL TIME CANADA



CLIMATE CHANGE: ADDITIONAL CARBON

Atmospheric CO, at Mauna Loa Observatory
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CLIMATE CHANGE: ADDITIONAL CARBON

Recent monthly mean CO, at Mauna Loa Observatory
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The latest (2021) carbon reservoir and exchange rates
(Friedlingstein et al, 2022)
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https://essd.copernicus.org/preprints/essd-2021-386/

CO, Flux (GICO, yr'')

Emissions and their Partitioning since 1850
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The latest (2021) carbon growth rates
(Friedlingstein et al, 2022)
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https://essd.copernicus.org/preprints/essd-2021-386/

Temperature Anomaly w.r.t. 1951-80 (°C)

CLIMATE CHANGE

Global Mean Estimates based on Land and Ocean Data
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Temperature Anomaly (°C)

THE CLIMATE: LAND VS OCEAN
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CLIMATE CHANGE: OCEAN ACIDIFICATION

CO; Time Series in the North Pacific
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Data: Mauna Loa (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt) ALOHA (http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html)
ALOHA pH & pCO, are calculated at in-situ temperature from DIC & TA (measured from samples collected on Hawaii Ocean Times-series (HOT) cruises)
using co2sys (Pelletier, v25b06) with constants: Lueker et al. 2000, KSO4: Dickson, Total boron: Lee et al. 2010, & KF: seacarb
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The Natural Absorption of CO, is Resulting in
Ocean Acidification
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Aragonite Saturation
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[CaCO,]

When Q> 1
(supersaturation) it is
easy to build calcium
shells.

When Q < 1 shells
dissolve.
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52°N
Since the industrial

revolution, 25% of the
excess CO, has been Lt
absorbed by the ocean. 46°N -
Along the NA coast, high
CO,/low pH waters are now
regularly upwelling at the
coast.
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The Warming Ocean: The Blob of 2014
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Typical Condltlons Atmosphere and Ocean NEP
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Typical Aleutian Low Winds and Storms > Good surf along Vancouver Island (Oct-Nov)
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Tofimo, Nov 12, 2005 - Photo:Stephen Mayoi

Surfing competition at Tofino, Vancouver Island, Nov 2005.
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2013-2014

Large Scale Atmospheric Circulations/Strom Tracks
- Arctic Vortex (Weak Arctic Low)
- Omega Blocking (Ridiculously Resilient Ridge)
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y _—

0CEAN
NETWORKS
WORLD-LEADING DISCOVERIES AT A CRITICAL TIME CANADA



The winter of 201 3-
14 had:

Weak Aleutian Low
High pressure ridge,
Reduced winds,
Fewer storms,
Reduced waves,
Poor Surfing ®

The surfers knew
something was
happening (in Nov
'13) before the
oceanographers
(~April "14)

912013 Mikhail Belikov /vwww.focusonwild.com
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NOAA Extended SST V4 (ERSST)
Surface SST (C) Composite Mean
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NOAA Extended SST V4 (ERSST)
Surface SST (C) Composite Mean
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The Blob of 2014
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Sub-Surface Warming? Argo Ocean Drifters
N rEmmeE =T, &

3946 Floats |
25-Jan-2022
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Sub-surface temperatures from Argo floats
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Depth (m)

Argo Profile Temperature Anomalies, 50-40°N, 150-135°W
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Surface signature gone (exported to the coast) by early 2017,

but significant heat remains at depth. Recent observations

(2019-21), anomalous heat (0.5-1.0°C) has penetrated to

depths of 500-700m. In four years, upper 1000m has heated

significantly.
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BY 2019 HEAT IS PENETRATING TO 1000M!

. Temperature Anomaly (19-Ju|-2019 18: 29 25 to 25-Sep-2019 08 40:39)
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So...1) The Ocean is warming (top-down) to significant depths
2) The Ocean is absorbing CO, and becoming more acidic
3) The extra carbon requires more respiration, lowering O,
- Mitigation and Adaptation

Tanom relative to Line P 1959-2012 climatology [°C]
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Annual global CO, emissions (GtCO, /yr)

Fossil fuel phase out
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THE SCALE OF THE PROBLEM

Decarbonization pathway consistent with the Paris agreement
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Global carbon law guiding decadal pathways
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(Top) A deep decarbonization scenario scientifically consistent with the Paris Agreement (3) and its associated carbon fluxes as computed with a simple carbon cycle and climate
model (13). The “carben law” scenario of halving emissions every decade is marginally more ambitious than the scenario presented. Meeting the Paris Agreement goals will require
bending the global curve of CO, emissions by 2020 and reaching net-zero emissions by 2050. It furthermore depends on rising anthropogenic carbon sinks, from bioenergy carbon
capture and storage (BECCS) engineering (yellow) and land use (orange), as well as sustained natural sinks, to stabilize global temperatures. This scenario is broadly consistent



Mitigation (& Adaptation)
Ocean-Based Carbon Removal and Sequestration

Mitigation: Actions (or inactions, e.g. coal, oil, and gas development)
taken to avoid, reduce, and/or minimize the harmful impacts associated
with increasing atmospheric CO, levels and climate change.

0) Reduce CO, Emissions
- Must happen regardless of other mitigation actions
- Mitigation should not provide “a pass” on emission reductions

1) Protection (and possibly enhancement) of natural carbon sinks
(ecosystems)

2) Improve efficiency, distribution, economies, habits, etc.

3) Enhanced carbon capture and long-term storage (sequestration)

4) Change the GHG forcing: albedo, solar shading, geoengineering, etc.
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A recent (2021) report prepared for the US
National Academies of Sciences, Engineering, and Medicine:
“A Research Strategy for Ocean-based
Carbon Dioxide Removal and Sequestration”
- 300 pages (but still limited and incomplete)
- Most urgent issues, for a few likely/proposed solutions
- ldentified the potential costs, benefits, and risks
Reviewed six (6) major categories:
1) Ocean fertilization e
2) Artificial up- and down-welling s et
3) Seaweed cultivation el
4) Recovery of critical ecosystems
5) Alkalinity enhancement
6) Electrochemical approaches
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“Natural processes on land and ocean have removed roughly 55% of emitted CO,,

but it may be possible to enhance both the uptake and longer-term sequestration

potential of these processes” — National Academies of Sciences, Engineering, and

Medicine
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Ocean Negative Emission Technologies (NETs) explored by Ocean Visions

Many NETs approaches are concepts with potentially high disbenefits



https://oceanvisions.org/
https://www.frontiersin.org/articles/10.3389/fclim.2020.575716/full#B15
https://www.nationalacademies.org/our-work/a-research-strategy-for-ocean-carbon-dioxide-removal-and-sequestration

“A Research Strategy for Ocean-based
Carbon Dioxide Removal and Sequestration” | s

Ocean-based Carbon
Dioxide Removal

and Sequestration

While the solutions were taken seriously and
given a fair assessment, there are few without:
1) Significant/critical gaps in knowledge

2) Significant costs/feasibility in scaling

3) Significant environmental side-effect risks

Only “restoring and maintaining key ecosystems” has few
downsides, and should be pursued regardless of net capture
and sequestration potential.

However, despite the “apparent” cost,
we can either pay now or pay more later.
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SUMMARY: CLIMATE CHANGE AND THE OCEAN

We are seeing rapid changes (adjustments) in the atmosphere
and ocean beyond what we might have “expected” (gradual
heating/shifts), resulting in major weather and ecosystem
impacts on time scales of seasons rather than decades.
Measured ocean responses:
- Warming ocean, deep below surface mixed layer!
(thermal expansion may be much faster than thought)
- Increased DIC and ocean acidification (low pH)

- Expanding hypoxic waters upwelling along the coast
Things to watch for:

- More marine heat waves (The Blob 2, it’s a franchise)

- Multiple stressors on marine ecosystems (pH, O,)

- Feed backs between A-O causing changes in weather patterns
- Changes in heat domes and “atmospheric rivers”




CLIMATE CHANGE AND THE OCEAN
Closing thoughts:

Question: Are the weather/ocean patterns we see now
a result of climate change?

Answer: The weather and ocean we observe now has
been influenced by recent changes to the climate.

The climate is what you expect,
the (changing climate influenced) weather
is what you get.




WORLD-LEADING DISCOVERIES AT A CRITICAL TIME
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THANK YOU!

Ocean Networks Canada is funded by the Canada Foundation for Innovation, Government
of Canada, University of Victoria, Government of British Columbia, CANARIE, and IBM Canada.

y@ocean_networks fOceanNetworksCanada visit: oceannetworks.ca

id University
of Victoria
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