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Global wave energy inventories have shown the West Coast of Vancouver Island (WCVI) to possess one of the most ’ '. 1 Gty ; ¥, £ | A West Coast Climate Characteristics
energetic wave climates globally, yet efforts to quantify this resource have been limited. UVic’s West Coast Wave I AR ) 0%
Initiative (WCWI) endeavors to investigate, measure and quantify this resource for wave energy development by
running a SWAN version 40.91AB model executed in non-stationary model using 3 hour time steps. The model
hindcasts wave conditions over the 2005 to 2012 target period.

The WCVI region is an extremely energetic wave environment and

features approximately 45 kW/m of energy transport along the continental
shelf. However, this study reveals the significant spatial variation of wave s _
energy transport in near shore locations. ’
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In order to maintain computational efficiency, while retaining high resolution in near shore when small scale wave
seafloor interaction transformations occur, an unstructured grid of 9,945 points was developed. The spatial grid
distribution was determined a convergence analysis on the basis of Hmo, and has a lower spacing limit of 75m.

SWAN Model Set-up

Unfortunately, directional wave measurements appropriate for boundary conditions are not available for the WCVI
region. The best alternative was to synthesize boundary conditions based on publically available FNMOC and NCEP N - :
Wave Watch 3 (WW3) nodes. Assuming a JONSWAP spectrum, and using the parametric Hmo and Tp WW3 results, ‘ =
30 individual frequency variance density spectrums were synthesized by varying the peakiness factor, y, from 1 to 7, in | » '
0.2 increments. The final JONSWAP spectrum was determined by minimizing the RMSE between the synthesized
spectrums and those directly measured at the Brooks buoy. These were converted into directional spectra by
assuming cos? @ directional spreading - this process was completed for both WW3 models. For wind input conditions
for the SWAN model, the FNMOC WWa3 results are paired with the COAMPS wind model, while the NCEP WW3
results feature their own wind model.

Ucluelet, British Columbia is often noted as an area of high wave energy
transport, due to interaction with the seafloor, and as a result is of great
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The seasonal variability of the wave climate surrounding Ucluelet, BC is dramatic and has significant consequences
on energy production and WEC design. As a result, a detailed understanding of the temporal wave climate is
paramount. From the 8 year hindcast, the mean monthly wave characteristics provide some interesting results:

« Directional wave energy transport has a maximum of 49 kW/m in January, while August features only 10 kW/m.
« Energy period values remain relatively constant throughout the year, varying from 10.2 sec (Dec) - 8.5 sec (Jul)

« Direction of max. directional transport remains constant at ~ 250° throughout the year, while directional spectrum
peak directions vary between 160°- 285°.

« The directionality co-efficient varies very little and remains constant around 0.84.
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& LLLO g - * For all presented tables, the parameter bias (B), scatter index (Sl) and correlation coefficient (r) are used to quantify the accuracy of

the model with respect to buoy measurements. .




