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Abstract

This study proposes a data-driven model for prediction of the energy consumption of

�eet vehicles in various missions, by characterization as the linear combination of a

small set of exemplar travel segments.

The model was constructed with reference to a heterogenous study group of 29 light

municipal �eet vehicles, each performing a single mission, and each equipped with

a commercial OBD2/GPS logger. The logger data was cleaned and segmented into

3-minute periods, each with 10 derived kinetic features and a power feature. These

segments were used to de�ne three essential model components as follows:

� The segments were clustered into six exemplar travel types (called "eigentrips"

for brevity)

� Each vehicle was de�ned by a vector of its average power in each eigentrip

� Each mission was de�ned by a vector of annual seconds spent in each eigentrip

10% of the eigentrip-labelled segments were selected into a training corpus (representing

historical observations), with the remainder held back for testing (representing future

operations to be predicted). A Light Gradient Boost Machine (LGBM) classi�er was

trained to predict the eigentrip labels with sole reference to the kinetic features, i.e.,

excluding the power observation. The classi�er was applied to the held-back test data,

and the vehicle's characteristic power values applied, resulting in an energy consumption

prediction for each test segment.

The predictions were then summed for each whole-study mission pro�le, and compared

to the logger-derived estimate of actual energy consumption, exhibiting a mean absolute

error of 9.4%. To show the technique's predictive value, this was compared to prediction

with published L/100km �gures, which had an error of 22%. To show the level of

avoidable error, it was compared with an LGBM direct regression model (distinct from

the LGBM classi�er) which reduced prediction error to 3.7%.
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1.1 Overview

1.1.1 Problem statement

In the e�ort to reduce operational �eet greenhouse gas (GHG) emissions, one important

tool is the selective replacement of individual vehicles with low-emission alternatives.

Given limited capital, it is important to ensure that the correct vehicles are targeted for

replacement in the course of rightsizing, ongoing �eet turnover, or policy-driven phased

replacement of individual high-emission vehicles.

No clear path is seen to directly modelling the GHG emissions of existing and replace-

ment vehicles. However, a change in operational CO2 emissions can be inferred with

reasonable accuracy from the change in the quantity and type of fuel consumed. It

should be possible to predict the change in GHG footprint by modelling the change

in operational energy consumption caused by vehicle replacement, and applying an

appropriate fuel-speci�c emission intensity factor.

1.1.2 Goals and motivations

Fleet vehicles are typically assigned to perform an ongoing speci�c set of duties, com-

monly referred to as a "mission." In order to more easily predict GHG emission changes

resulting from mission-vehicle replacement, this thesis proposes a data-driven model for
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estimating the change in input energy consumption associated with assigning new ve-

hicles to existing, well-known roles.

In other words, the model will be suitable for estimating the GHG emissions reduction

associated with performing a known mission pro�le with a di�erent vehicle. As discussed

below in �1.2.2, this approach is speci�c to operational emissions, a decision which

is limiting, but appropriate for use with many current policy initiatives, such as the

municipal GHG action plan [1] that inspired this work.

Since one important application is in a decision support tool for non-technical �eet man-

agers, it should be accessible to the end-user without installing custom software. Even

a cloud-hosted service may violate privacy requirements � the movements of individual

vehicles are considered protected private information by many organizations.

The traditional method of predicting vehicle operational energy consumption � apply-

ing distance-based L/100km fuel economy ratings such as those provided by Natural

Resources Canada [2] or the US EPA [3] � is held to be too inaccurate for travel which

does not precisely match the conditions under which the ratings were measured [4, 5].

Conversely, a fully accurate fuel consumption model that infers nonlinear relationships

from a much larger list of operational properties would have impractical data collec-

tion requirements, and would require the distribution and management of specialized

software. The source data may provide information regarding the movements of �eet

users, and there would be signi�cant privacy and security concerns if a model were to

be cloud-deployed [6]. These criteria would make such a model impractical for use as a

�eet procurement decision support tool. Such a model would potentially be so compu-

tationally expensive that the model itself would have a signi�cant GHG footprint.

In short, in order to promote emissions reduction, it is desirable to develop a new

method for predicting operational vehicle energy consumption in �eets, which is:

� simple enough to perform in a spreadsheet

� does not require massive cloud computing overhead

� requires a minimum amount of data collection

2



� is more accurate than distance-based economy ratings

This thesis explores the development of a data-driven model that will meet all of these

criteria, in the context of vehicles with logger data, and mission pro�les which have

been previously logged.

1.1.3 Document outline

This document begins with an extensive Introduction, which (a) lays out the above

overview of the problem, motivation and goals, (b) describes the research context in

terms of municipal partnership that provided the data and informed the motivations,

and (c) explains the structure of the research problem.

The remainder of the document roughly follows the chronology of the research e�ort,

as follows:

�2. The Background section provides a literature review, and a summary of

background material fundamental to understanding the topic and approach.

�3. Data Cleaning and Preparation was a key and challenging element of the work

undertaken, and was su�ciently involved to merit its own section.

�4. The actual machine learning techniques used to build the predictive model

are described in Methodology.

�5. The model's predictive error is evaluated, its value is demonstrated by com-

parison with Le/100km, and avoidable error quanti�ed by comparison to an ML

regression model in Results.

�6. Finally, the �ndings are wrapped up and summarized in the form of a short

section of Conclusions.

�7. Lays out a number of potential topics for further re�nement, exploration and

other Recommendations and Future Work.
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1.2 Project Context

1.2.1 CRD ZEFI project

As a part of the Victoria Capital Regional District (CRD)'s Zero Emissions Fleet Ini-

tiative (ZEFI) project, a number of vehicles in the CRD �eet were equipped with

FleetCarma on-board diagnostic system v2 (OBD2) telematic logging devices at vari-

ous periods for approximately a year starting in early 2018 [7].

A motivating goal in this project was to determine actions needed to meet the orga-

nization's GHG reduction targets, given that 47% of the CRD's baseline 2007 GHG

emissions resulted from �eet fuel consumption [1]. An early �nding was that, at least

on the restricted basis of range requirements, nearly all of the studied vehicle missions

could be executed by current battery electric vehicles (BEVs) [8].

Further detail on the nature of the data collection and the logged data is presented in

�2.3.1.

1.2.2 Operational and embodied emissions

The intent of this research is to address a core accessibility problem for modelling

�eet operational emissions, as needed to address reduction goals similar to those of the

CRD's ZEFI program.

For internal combustion engine vehicles (ICEVs), this reduces to tailpipe emissions,

calculated by estimating the fuel directly consumed by the vehicle � traditionally called

"tank-to-wheel" energy. For gasoline, the GHG emissions of this energy are estimated

at an intensity of 88.1 g CO2e/MJ [9]. For electric vehicles (EVs), this is a re�ection

of the emissions associated with the grid electricity consumed by the drive motor, at

the utility's published carbon intensity. For BC Hydro, this is 10.67 t CO2e/GWh [10]

(2.96 g CO2e/MJ).

The BC GHG Reduction Act [11] references the 2007 baseline GHG inventory report

[12] as a baseline. Emissions in the inventory report are attributed to the jurisdiction
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where emission is generated, rather than the jurisdiction where the bene�t of the emis-

sion accrues. E.g. if H2 gas or lithium-ion batteries are used in BC, the associated

manufacturing emissions are attributed to the foreign H2 steam reformation plant or

battery factory, rather than to the BC point of bene�cial use. This may be seen as

constituting a perverse incentive, insulating end-users from any �nancial costs asso-

ciated the embodied emissions of manufactured goods, and driving manufacturing to

under-regulated jurisdictions.

In the late 2010s there were claims in the US popular press such as [13, 14] that BEVs

have a higher lifetime GHG impact than equivalent ICEVs. Anecdotally, the claims are

sometimes echoed by concerned Canadian citizens. The core argument appears to be

that BEV proponents ignore or under-represent emissions associated with manufactur-

ing the battery pack, and the high carbon intensity of some sources of grid electricity.

Although this probably constitutes an example of the "balance-as-bias" fallacy [15],

a short discussion is warranted regarding the full cradle-to-grave lifecycle analysis for

di�erent light vehicle technologies and their fuel sources.

A 2018 comprehensive comparison by Elgowainy et al [16] summarized full cradle-to-

grave GHG emissions (including fuel cycle and manufacturing cycle), for several di�er-

ent types of light vehicles. The study included ICEVs, hybrid electric vehicles (HEVs),

plug-in hybrid electric vehicles (PHEVs), hydrogen fuel-cell electric vehicles (FCEVs)

and BEVs, as well as other vehicle types excluded from this discussion. Retaining that

study's �gures for manufacturing and fuel e�ciency, but applying current and fore-

casted 2030 intensities for the appropriate fuel pathways for BC as follows, it is clear

that alternative fuel vehicles have a signi�cant and improving advantage, shown in table

1. Some discussion of the assumptions and calculations for this comparison appears in

appendix B.

Ultimately, the scope of this research is constrained to local tailpipe emissions as re-

quired for the planning requirements of organizations like the CRD. It explicitly ex-

cludes a full carbon lifecycle analysis, including all carbon emissions embodied in the

vehicle's manufacture and eventual recycling, as well as all carbon emitted or embodied
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Table 1: Current and 2030 vehicle combined operational and embodied LCA GHG footprint,
at BC fuel carbon intensities

2018 2030
Fuel Intensity Emissions Fuel Intensity Emissions
(g CO2e/MJ) (g CO2e/km) (g CO2e/MJ) (g CO2e/km)

Vehicle

ICEV 88.1 295 70.5 187
HEV 88.1 221 70.5 130
PHEV35 64.9 129 51.1 83.1
FCEV 5. 48.2 1.18 34.5
BEV90 2.5 29.6 1.11 23.1

by associated infrastructure for manufacture, repair, fuelling, and eventual recycling.

1.2.3 Simple distance-based fuel consumption

In Canada, light passenger vehicles are labelled with EnerGuide fuel consumption rat-

ings, re�ecting their expected performance in typical conditions [17]. This program is

similar to the US EPA's fuel economy database, fueleconomy.gov [18]. The EPA's fuel

economy ratings have been found to be quite inaccurate, with recent studies �nding

that they predict consumption ranging from 15.5% too low [4] to 17% too high [5]

relative to real-world consumption.

EnerGuide numbers result from manufacturer tests of vehicles against de�ned drive

cycles [19], in order to provide an apples-to-apples comparison between vehicles. Prior

to 2015, the test platform was a 2-cycle city/highway test (essentially a modi�ed

UDDS/HWFET [20]). In 2015, three additional cycles were added, resulting in a 5-cycle

test (adding tests to re�ect the impacts of cold-weather conditions, aggressive driving,

and air conditioning [21]), with incremental updates in 2016 and 2017 [22]. For acces-

sibility, this rating is expressed in units of litres of fuel consumed per 100km driven:

L/100km. Non-internal combustion engine (ICE) vehicles are rated in litres-equivalent

(Le), at a standard conversion rate of 8.9 kWh per litre of gasoline [23]. Notwithstand-

ing the 2015 change from two to �ve cycles, three separate fuel consumption numbers

are published to re�ect city, highway, and combined performance.

This method of predicting consumption is an important baseline, since the fundamental
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metric for evaluating an individual vehicle replacement will be "avoided emissions�,

which quanti�es the change in operational emissions associated with replacing a current

(incumbent) vehicle, with a lower-emission alternative (replacement) vehicle.

The traditional method of computing avoided emissions is to apply the di�erence in

fuel consumption ratings and fuel carbon intensities between the incumbent (1) vs

replacement (2) vehicles, thus:

∆Emissions = CO2e
(2) − CO2e

(1) (1)

where



CO2e ≈ D × [η × e× I](vehicle)

D = Distance (km)

ηc/h = Vehicle's static tested city/hwy fuel economy (Le/100km)

e = Fuel energy density (kWh/L)

I = CO2 intensity of vehicle's fuel (kg/kWh)

(2)

In other words, each vehicle has a pair of characteristic CO2 emission values per km of

operation, directly related to its standardized rates of fuel consumption.

This approach is an oversimpli�cation, assuming constant values for η, and neglecting

the facts that drivetrains are optimized for speci�c drive cycles, and that e�ciency is

impacted signi�cantly by the nature of the driving undertaken. For example: electric-

drivetrain vehicles have technologies such as regenerative braking and automatic shuto�,

allowing them to perform e�ciently in conditions where conventional internal combus-

tion engine (ICE) vehicles are wasteful, such as stop-and-go tra�c, or conditions re-

quiring extensive idling. Conversely, a conventional diesel ICE drivetrain is designed

speci�cally to optimize e�ciency at constant highway speed, while a series-hybrid in

the same conditions would su�er from avoidable energy conversion losses.
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1.3 Research Structure

1.3.1 Research hypothesis

This study proposes and tests the hypothesis that energy consumption for arbitrary

periods of vehicle travel can be accurately predicted by decomposing the proposed

travel period into a linear combination of characteristic trip segments, each with a

known constant characteristic power consumption for each vehicle type. The prediction

will be the sum of vehicle-speci�c energy consumption totals for that combination of

segments. The prediction should hold for travel periods ranging in duration from a

single trip to a multi-month mission pro�le.

To simplify further discussion, the following terms are de�ned:

�Mission pro�le� refers to the operations typically undertaken by a speci�c vehicle.

Municipal examples include "bylaw supervisor", "meter reader", and pool vehicle".

�Kinetic travel data� refers to a speci�c portion of a vehicle's speed history, or summary

statistics derived from it.

�Eigentrips� are a basis set of vehicle-agnostic travel segments with the following char-

acteristics:

� Each eigentrip is de�ned by characteristic kinetic travel data

� Every vehicle has characteristic energy consumption for each eigentrip

� All historical and predicted travel data can be decomposed into a linear combi-

nation of eigentrips

The primary technical problems addressed in this thesis are:

� Selecting an appropriate basis set of eigentrips using kinetic travel data.

� Evaluating the predictive power of a linear combination of eigentrips, relative to

the observed energy consumption of vehicles on speci�c missions.
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1.3.2 Model validity and predictive power

The new method's validity will be evaluated by comparing its prediction error to the

real-world energy consumption, as inferred from the full raw dataset. This prediction

error will be contrasted with the prediction error of the traditional distance-based fuel

economy statistic described above in �1.2.3.

It is worth noting that the "observed energy consumption" baseline is an estimate of

unknown accuracy derived from the available proxy values (MAF and SOC) as discussed

in �3.3. This assumption is addressed in �7.5.2.

1.3.3 Preliminary validation

The author conducted a preliminary experiment [24] as a coursework project, studying

300 hours of kinetic travel data and fuel �ow rates inferred from MAF (mass-air�ow)

values, for ten similar vehicles.

In that study, the data was partitioned into 10-minute segments by clock time (segment

boundaries were placed at even 10-minute intervals starting at the top of each hour). A

�ngerprint of representative statistics was then calculated for each segment. K-means

clustering [25, �10.4.3] was performed on the resultant dataset to �nd three clusters.

Based on the clustering results, held back test data was classi�ed with a softmax [25,

�6.6.2] logistic classi�er [26], and engine load was predicted. The average engine load

prediction error using this method was approximately 2%.

Although not proven to generalize, the result was su�cient to suggest that the method

warranted further study.

1.3.4 Research contributions

This research explores and validates a new method for predicting the energy consump-

tion of di�erent vehicle types when used to execute a well-known mission pro�le.

The method requires logger data attainable with nearly any commodity OBD2 logger

� although some care must be taken to assure the quality of fuel / energy consumption
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Figure 1: Decision support data-�ow and work-�ow

data. The data will be used to calculate characteristic parameters describing the study

vehicles and mission pro�les. The characteristic parameters can then be used to predict

energy consumption according to a simple linear calculation that can be implemented

in a spreadsheet-based decision support tool. A potential data-�ow is shown in �gure

1, illustrating the path that the data takes from initial capture, through the generation

of the decision-support spreadsheet. This �gure also illustrates the �eet manager's

work�ow, where a known mission is selected from those listed in the tool, along with a

pair of vehicles (presumably the incumbent and a potential replacement), resulting in

a predicted change in energy footprint.

This will allow �eet managers to accurately predict the energy requirements (and hence

GHG emission footprint) of any logger-equipped vehicle, applied to any mission pro�le

which has been previously performed by any other logger-equipped vehicle. In other

words, the characterization of the �eet's various missions can be collected by any ICEV

or BEV. The collection of logger data to compute characteristic energy consumption

for the same or other vehicles of the same type can be collected on entirely di�erent
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routes/missions, and even by entirely di�erent organizations. Sharing real-world vehicle

performance data between organizations would improve estimation of energy consump-

tion based on di�erent procurement scenarios, including new vehicle models of which a

given organization has no direct experience � in much the same manner as Le/100km

�gures are currently used.

Other research contributions include:

� Shapley additive explanations (SHAP) showing the relative importance of various

input features to the prediction of input power.

� a technique for reconstructing serial OBD2 values that have been tabularized

� evaluation of error inherent in traditional L/100km technique

� comparison to direct regression, to gauge e�cacy & accuracy of both proposed

method and L/100km method
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This section addresses background material fundamental to the topic. Quantitative

analysis of travel patterns is typically performed on data comprising drive cycles and

microtrips, so a brief background on these concepts is presented.

The proposed method involves feature selection, clustering, and classi�cation of multi-

dimensional timeseries data, so various tools for these tasks are discussed.

Finally, this section contains a short background of the technology used for data collec-

tion, and limitations around the collection of fuel �ow rates.

2.1 Travel Data

2.1.1 Drive cycles

A drive cycle (or driving cycle) is the speed-time data that describe a portion of a

vehicle's travel history [27], either measured, generated, or synthesized. A large number

of standardized drive cycles have been published by various government agencies and

private organizations, to facilitate optimization and testing to standardized benchmarks

[28].

Two of the most heavily-referenced examples are the urban dynamometer driving sched-

ule (UDDS) and highway fuel economy test (HWFET) cycles [29], de�ned by the United

States Environmental Protection Agency (US EPA), and shown in �gure 2. Elevation
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and grade are not a fundamental part of the generally accepted drive cycle de�nition

and no mention is made of these in UDDS, HWFET, nor the other drive cycles refer-

enced in the EPA's federal test procedure [1]. However, vehicle performance is strongly

impacted by road grade, so an elevation pro�le is often used in parallel for simulations

[30]. As discussed in �7.5.3, the road grade information used in this study was not of

particularly high quality, and the topic merits additional work.

In machine learning, "classi�cation" is the process of labelling an observation with a

discrete nominal label (e.g., a category name) which best corresponds, on the basis of

a set of "training" observations with known labels [25]. Drive cycle classi�cation has

been the subject of a substantial body of work. A frequent topic is the optimization

of HEV battery energy management, such as the work of Wu et al on fuzzy energy

management [31], with the goal of determining whether a vehicle was being operated

in urban, suburban, or highway conditions. This paper used �xed-length partitions of

3 minutes, to match the typical urban stop-go-stop cycle length.

Other papers had goals such as BEV range estimation by Yu et al [32], or optimization

for battery size (Redelbach et al) [33] and battery lifespan (Smith et al) [34].

However, most treatments of the subject do not restrict themselves to easily-logged

kinetic parameters, but include classi�cation features such as engine power, road gradi-

ent, and road-type. Indeed, in many papers, the data was collected by shadowing each

subject vehicle with a chase-car, a method that is prohibitive for any kind of �eet data

collection at scale.

Figure 2: UDDS and HWFET drive cycles
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2.1.2 Microtrips

Microtrips are "the sections of travel between consecutive stops", �rst used for travel

analysis by General Motors Research in 1976 [35], where it was used to demonstrate

that fuel rate varied linearly with average trip speed (true of the automotive technology

of the time). They are used frequently as an aid to the development of new drive cycles,

as per Kamble et al [36], where synthetic geography-speci�c drive cycles were created

from a number of real microtrips.

The microtrip concept has seen very little use in the problem of drive cycle classi�ca-

tion, with only a couple of examples seen in the literature. One example is described

by Shankar and Marco in [37], which applies neural network classi�cation to determine

the road-type (e.g., highway, arterial, or local), as well as a congestion index, for use in

predicting an input power appropriate to the driving conditions. However, the method

was addressed speci�cally to battery vehicles, and presumes that the only factors in-

�uencing energy consumption are derived from road congestion and type. The method

does not consider the possibility that di�erent travel types in the same context might

have di�erent energy requirements, for example because the mission requires regular

stops or extensive idling.

Shankar and Marco's paper does point out an inherent limitation of microtrips: that

they are de�ned from stop to stop. This means that a single microtrip is likely to

encompass more than one type of travel, and/or to unnecessarily segment a single type

of travel that includes stops.

Another relevant example [38] by He et al extracted microtrips from the de�nitions

of several prede�ned drive cycles, calculated the �rst seven of the aggregated velocity-

derived features shown in table 2, and applied principle component analysis (PCA)

to retain four principal components. These principal components were calculated on

segments of actual travel data, in order to classify the segments in an learning vector

quantization (LVQ) neural net, with very good classi�cation results. The �rst seven

features gave excellent classi�cation results and may be expected to provide an excellent

14



Table 2: Studied kinetic features, as derived from logger data

Description Units

Mean speed (km/h)
Max speed (km/h)

Mean acceleration (m/22)
Max acceleration (m/s2)
Mean deceleration (−m/s2)
Max deceleration (−m/s2)
Idle time fraction (%)

Mean climb (m/s)
Mean descent (m/s)

Acceleration reversals (#/s)
Power (kW )

starting point for fuel consumption prediction. However, features were excluded from

that work, which will contribute to fuel consumption in a heterogeneous �eet; road

grade and a count of acceleration reversals were added, and other non-studied examples

include payload, accessory load, and others discussed in �7.5.

He's technique is not directly applicable to �eet fuel prediction, for a number of reasons:

� The technique was only demonstrated on arti�cial drive-cycles, and may not per-

form well on the complexity of real local driving conditions

� The exemplar microtrips are not shown to be predictive of fuel consumption

between vehicle types

� PCA uses the largest eigenvectors to project data onto the lower-dimensional

space that best represents the data's variation [25]. By design, PCA is an unsu-

pervised technique with no relationship to regression; it captures the variance of

the individual input features by weighting them accordingly, but without explicit

regard to their relationship to the target variable. Hence, the weight of a feature

in the principal components is not indicative of whether it has predictive power.

In general, the body of work on microtrips is informative with regards to feature se-

lection and supports the notion of predictive analysis by decomposition. However, the

fundamental de�nition of a micro-trip as a �stop-go-stop� cycle means that it is likely

to mix some types of travel that should be separated, and to arti�cially partion others
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Table 3: Derived ICE features with relative impact on fuel consumption [39]

Relative impact Factor description

5 stop
4 acceleration with strong power demand
2 speed oscillation
2 acceleration with moderate power demand
2 extreme acceleration
-2 speed 50+/-70
-2 moderate engine speeds at gears 2 and 3
1 late gear changing from gear 2 and 3
-1 deceleration
-1 speed 70+/-90
-1 low engine speed at gear 4
-1 low engine speed at gear 5
0 speed 15+/-30
0 speed 90+/-110
0 engine speed > 3500
0 speed > 110

that would more e�ectively be considered as a unit.

2.2 Machine Learning

2.2.1 Feature selection

In machine learning, a �feature� is a measured property of the system under study, and

usually implies a dimension in the system's state-space, either direct or a projection. It

is not always obvious which features are salient for a given problem, so careful considera-

tion of the problem is required with respect to the available data, plus experimentation,

pre-processing, and investigation. There are a number of important problems that can

arise from an improper choice of features for use in a machine-learning model.

When aspects of a feature's behaviour can be probabilistically predicted from knowledge

of another feature (such as when the features are correlated, or otherwise functionally

related), the two features are said to share "mutual information" [25, �A.7.3]. For most

cost or distance functions, error related to given information is redundantly counted for

every additional feature axis on which the information is represented. In many machine
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learning algorithms, this has potential to create a problem wherein the learning system

over-values the importance of the duplicated information.

The curse of dimensionality [40] refers to the counter-intuitive fact that adding addi-

tional features will degrade accuracy for many forms of machine learning. This property

devolves out of two geometric properties of high dimensional spaces.

First, the state-space volume expands exponentially with the addition of dimensions,

quickly leading to a sample density too low for generalizable classi�cation. A second

property, called the �concentration of norms,� refers to the surface area of a hypersphere

expanding faster than its volume with the addition of dimensions � meaning that in

a set of data normally distributed in multiple dimensions, most points will lie in the

tail of at least one dimension. In this situation, it is easy to inadvertently construct

an arbitrary classi�er which works extremely well on the existing data, but which does

not generalize � a situation referred to as over-�tting [41]. Together, these issues mean

that intuition is not informative as to the behaviour of high-dimensional models, and

the feature set should be minimized as much as practical.

The question of which loggable features are most clearly related to fuel consumption

and/or emissions was addressed comprehensively for conventional ICE vehicles in [39].

In this study, 62 logged and derived features were investigated, and reduced to the most

important compound features using PCA and factor analysis (which is similar to PCA

in that it attempts to �nd a lower-dimensional representation, but dissimilar in that it

accounts for correlations among the features [25]). These techniques are problematic

in that PCA selects for high variance but not prediction, and factor analysis corrects

for correlation, but not for any other forms of mutual information. Nevertheless, the

resultant set of factors seems to be an excellent starting point for selecting features that

will describe the fuel consumption rate of ICE vehicles. The relative impact on fuel

consumption (in units of 1/10ths of a standard deviation) of several of the compound

factors found in Ericsson's study are shown in table 3.
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2.2.2 Time-series analysis

Time-series data consists of sequential measurements of the same feature over time,

with the characteristic property that the data are generated by a process, and are

not statistically independent of earlier samples in the process [42]. A drive-cycle is an

excellent example, describing a trip in terms of measurements of the vehicle's speed

over time.

Time-series data is commonly analyzed by the direct application of time-domain anal-

ysis techniques � �nding patterns and behaviours with respect to temporal ordering.

In the context of trip-segment similarity, it seems intuitively obvious that order does

not much matter, relative to many other aspects of the driving patterns. For example:

the segments of the urban drive cycle, driven in reverse order, could be expected to

have energy consumption very similar to that of the forward-ordered version (stipulat-

ing a similar net elevation pro�le), but it is hard to imagine a meaningful time-domain

measure that would expose the similarity. This intuition suggests that time-domain

analysis techniques will miss important commonalities between trips.

Transforming into the frequency domain can address this problem and give insight into

the relative importance of various cyclical behaviours. Applied to segments of kinetic

driving data, it might give insight into the rate of start-stop or speed-slow cycles,

where they exist. However, since acyclic behaviours might be critical di�erentiators,

and would be lost in the transformation out of the time domain, we certainly cannot

rely on frequency analysis alone.

Apart from the inter-sample interval necessary to calculate acceleration, the key features

used in this research draw no useful information from their time sequencing. Thus, for

the insights to be derived from the data, time series techniques do not provide a great

deal of analytical power, and are left as a topic for future investigation (�7.3).
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2.2.3 Binning and segmentation

Data binning is the process of grouping data points with similar values together, such

that they can be referenced by a common value. This is useful to reduce the volume

of data for faster processing, or to improve its comprehensibility, as with histograms.

Segmentation is conceptually similar; it consists of partitioning time series data into

time intervals, allowing each segment to be characterized as a group [43].

A key technique used in this research combines both techniques: partitioning the data

into �xed-length segments, which are thereafter treated as non-time series bins. A selec-

tion of representative summary statistics (a �ngerprint) for each segment are calculated,

after which the time information can be discarded or ignored. Similar segments can then

be binned, allowing the application of simple and intuitive non-time series analytical

techniques.

This has the advantage that the similarity measure between segments can be as simple

as Euclidean distance, or as complex as necessary to capture prior understanding of

"similarity" for the system in question.

The primary disadvantages of using bin �ngerprints are di�culties in (a) determining

appropriate statistics such that if two trips are subjectively similar, then their statistics

will have objectively similar values, and (b) �nding segment boundaries, such that

segments do not encompass multiple types.

2.2.4 Regression analysis

Regression analysis is a branch of mathematical statistics concerned with quantifying

the relationships between some number of variables using statistical data [44]. In the

most general sense, this involves �nding the appropriate parameters for a mathematical

model, which will allow it to calculate predicted values for the dependent variable(s)

based on the input values for the independent variables.

The most commonly used example is linear regression, which consists of �nding the

coe�cients b for the independent variables x that will best predict target variable y,
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typically by minimizing the mean-square error (MSE) for all training values ŷ.

y = b0 + b1x1 + ...+ bnxn + ε (3)

MSE =
1

n

∑
(y − ŷ)2 (4)

If the relationship between the independent and dependent variables is more complex,

nonlinear techniques are used � either by �tting coe�cients to a more complex formula

that better describes the relationship, or by using some other model entirely, such as a

decision tree or arti�cial neural net [41]. These nonlinear techniques result in a better

�t to the observed data, but at the cost of a more complex formula and the risk of

over�tting.

Traditional regression techniques are not a good �t for the primary stated goals of this

research, as it would not be possible to develop a spreadsheet-deployable model that

could clean and process the millions of rows of logger data. Setting aside the unique

requirements of a deployable decision support tool, tree or neural net regression would

be the simplest path to predicting vehicle energy consumption, and will be used in �5

to provide a basis for comparison of the accuracy of the proposed spreadsheet-capable

model.

2.2.5 Clustering

Clustering is the general name for unsupervised techniques that have the goal of group-

ing similar data samples according to an appropriate de�nition of similarity.

For the problem at hand, it is impractical to manually de�ne a basis set of eigentrips

that will (a) adequately represent all travel in the dataset, and (b) be su�ciently dis-

criminatory with regards to fuel consumption between the studied vehicle types. In

this study, the entire corpus of segmented travel data will be clustered, and the char-

acteristics of each group will be considered to represent one eigentrip. This section will

address appropriate methods for clustering.
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The simplest and arguably most intuitive clustering technique is K-means clustering,

most easily understood with an interactive visualization, such as the one linked at

[45]. The technique consists of selecting a number (k) of randomly distributed cluster

centroids, assigning every data point to the cluster de�ned by the nearest centroid, and

then iteratively rede�ning each cluster centroid as the mean of its constituent points.

The technique's simplicity is balanced by two signi�cant limitations. First, it must

be provided with a prede�ned cluster count [25], which is a key tuning parameter.

Second, it presumes clusters in normal, spherical distributions; its cost function is most

appropriate for points which have a Gaussian distribution of equal variance in every

dimension.

The technique can be generalized to data in non-spherical distributions by maximizing

the probabilistic membership in each cluster � this is called expectation maximization

(EM) clustering � or more speci�cally, Gaussian mixture models (GMMs) if the clusters

are normally distributed.

Any clustering technique relies on an appropriate de�nition of distance between points

in the feature space. A common and intuitive choice is the L2 norm � Euclidean

distance � applied to appropriately normalized features. This works well, because non-

discriminatory features are likely to balance themselves by virtue of being equally dis-

tributed between the clusters. However, the measure is sensitive to outliers, and cannot

account for desired similarities that can only be described by nonlinear combinations

of features.

K-means also requires a number of clusters (k) as an input. Typically, this number is

found by inspection (the "elbow" method [46]) or by minimizing a loss function such

as silhouette score [47]) against di�erent values for k.

In addition to the advantage of simplicity, K-means has a well-known implementation

in the Scikit-learn library. Although it presumes spherical, normalized clusters [48], this

requirement is also an advantage, since it allows features to be given relative weights

by the simple expedient of linear scaling.

There is an obvious argument against the use of K-means: that the best clusters (for
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a domain-speci�c de�nition of similarity) may not be normal and spherical. However,

the travel data at hand is continuous, and does not have distinct clusters. For the

immediate goal � selecting "similar" data to train the eigentrip classi�er, we can allow

the clustering algorithm to de�ne the shape of its clusters. Reviewing the impact of

alternate clustering techniques on classi�er accuracy will be an excellent topic for future

re�nement of the model.

2.2.6 Classi�cation

Classi�cation is similar to regression analysis, but with a goal of predicting a discrete

value, rather than a scalar, commonly used for determining which of a �xed number of

categories is the best �t for a particular datum [41].

Classi�cation is a key element of the proposed method: each trip segment will be

classi�ed and labelled with its most similar eigentrip. If the thesis is correct, the

characteristic power of that eigentrip will be similar to the actual power of the trip

segment.

Classi�cation algorithm selection is more art than science, with the "No Free Lunch"

theorem demonstrating that there is no model that is best across domains [41]. In gen-

eral, the researcher must evaluate the characteristics of their data and the requirements

of their model, and attempt to �nd an algorithm that suits both.

In this case, since several of the features have unknown multi-modal distributions,

Bayesian algorithms will not be a good �t. Neural nets require computationally inten-

sive training, have non-explainable results, and do not extrapolate outside their training

volume. The remaining family of classi�ers which seem appropriate are ensemble de-

cision trees. The light gradient boosting machine (LGBM) algorithm is selected for

initial review as demonstrating a good balance between training speed and prediction

accuracy.
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2.2.7 Gradient boost and LGBM

Model selection is arguably the most di�cult aspect of practical, applied ML. The

proposed model has aspects that make it particularly challenging:

� features are multi-modal and do not follow a common distribution

� features may have unknown mutual information

� target feature has no obvious structure

� explanation of feature impact on prediction may be important for future work

� millions of data points

The unknown distribution renders Bayesian methods impractical. The possible shared

information duplicated between features and potential requirement for explainability

comprise good arguments against arti�cial neural nets. Finally, due to the need for iter-

ative evaluation over the relatively large dataset discussed below in �4.6, slow-training

methods would not be practical. Given these exclusions, an ensemble decision tree

method warranted consideration.

Although at risk of running afoul of Maslow's Hammer [49], the common-sense admo-

nition that practitioners are prone to over-application of familiar tools, the popular

LightGBM model meets all of the above criteria, described in more detail in �4.3.

2.3 Data Collection

2.3.1 OBD2 logger implementation

In order to understand a signi�cant primary data collection issue, the reader will require

some background on the technology used for data collection.

The dataset used in this study was collected by FleetCarma Inc., a commercial com-

pany based in Waterloo, Ontario. FleetCarma uses telematics loggers connected to

the vehicles' OBD2 interface. OBD2 is a protocol de�ned by Society of Automotive

Engineers (SAE) standard J1962 for vehicle data access, and speci�es a female 16-pin

electrical connector for access, commonly known as the OBD2 port. It accesses the
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vehicle's controller area network (CAN) bus, a serial hardware layer commonly used to

transport vehicle sensor data between various engine control unit (ECU)s. Information

in this subsection is summarized primarily from an instructional website [50] and the

original Texas Instruments application document [51].

Devices on a CAN bus communicate exclusively by broadcast. Some devices may report

their status at a regular interval, while others only report in response to a request

broadcast, and others may communicate by both methods. In essence, the CAN bus

data stream consists of a sequence of (key, value) pairs.

Fleet Carma's logger has a list of parameter identi�er (PID) values that are to be

collected from the OBD2 system. Whenever any of those PIDs appear on the CAN

bus, the logger records and timestamps it. To ensure a data log meeting the speci�ed

resolution requirements (1 second while moving), the logger periodically sends update

requests for over the CAN bus for appropriate PIDs, requesting that a new value be

returned.

The problem derives from the logger's conversion of the sequential stream of PID-value

pairs, into an analyst-friendly timeseries table format, with one row per timestamp and

one column per PID. In this conversion, a row is generated shortly after an updated

value is received over the CAN bus. Unfortunately, any PIDs which have not reported

updated values appear to have been assigned their last known value for a given row.

Table 4 presents an exaggerated illustration of the problem, showing how a reasonable

acceleration to 5m/s over 10s could generate an apparent acceleration of 50m/s2 :

Table 4: OBD2 Log Problem Example

Seconds ∆T CAN message MAF (g/s) Speed
(m/s)

Acceleration
(m/s2)

30.0 - speed=0 4.3 0 -
30.1 0.1 MAF=11.3 11.3 0 0
39.9 9.8 MAF=10.9 10.9 0 0
40.0 0.1 speed=5 10.9 5 50
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2.3.2 Fuel vs air�ow

Unfortunately, a parameter for fuel-�ow rate is not part of the OBD2 speci�cation [52].

Most vehicle manufacturers supply a proprietary PID for this value, but our FleetCarma

loggers were not con�gured to retrieve it from the individual vehicles. A valuable proxy

for fuel �ow is the standard PID mass-air�ow (MAF), which estimates the mass of air

entering the engine from measurements of airstream temperature and velocity at the

intake. The well-known stoichiometric mass ratio of 14.7 for gasoline combustion is

inferred from the oxidation reaction [53]:

25O2 + 2C8H18 → 16CO2 + 18H2O + E (5)

Since tailpipe emissions are an important design consideration, modern vehicles attempt

to minimize emissions by ensuring good operation of the catalytic converter. One

outcome of this intent is that the vehicle continually modi�es its fuel �ow (a process

referred to as trimming) relative to MAF, in order to maintain clean combustion as

indicated by the oxygen content of the exhaust stream. There do exist standard PIDs

for both the commanded and measured ratios of fuel to air [52], but these values were

unavailable to this study, having not been logged in the CRD's Smart Fleet project.

In any case, a properly operating vehicle should generally have a fuel �ow within 10% of

the stoichiometric ratio relative to the MAF [54]. It is noteworthy that there are certain

events (notably engine-braking) that will be expected to cause signi�cant transient

departures from the stoichiometric ratio. The author's personal experience, having

reviewed trim data logs from �ve personal vehicles, is that short and long-term fuel

trim levels generally remain consistent within 3% for normal driving, outside of a few

minutes for engine warm-up.

The conclusion from this background material is that calculating fuel �ow by applying

the stoichiometric ratio of 14.7 to the measured MAF can be reasonably expected to

have a per-vehicle precision of ±3%, and an absolute accuracy within ±10%.
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Ultimately, the MAF estimate must stand alone as a ground truth for this work, as no

means of validating the MAF estimate was found. The CRD does track �eet fuel con-

sumption under BC's Climate Action Revenue Incentive Program (CARIP) program,

but not in a manner that could be isolated to speci�c vehicles, or even to the subset

of vehicles under observation. A project was underway to implement a card system

that will ultimate track the fuel consumption of individual vehicles, but no data was

available for the study period.
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This section describes the process required to make the timeseries logger data ready

for segmentation and �ngerprinting. This was a key and challenging element of the

research, requiring approximately 4000 lines of python code.

3.1 Raw Data

3.1.1 Collection

As discussed above, the CRD's ZEFI project [7] included telematic loggers installed in

�eet vehicles for approximately a year starting in early 2018. Summary statistics of the

data collection e�ort are shown in table 5, with the distribution of samples between

vehicle-missions shown in �gure 3.

The loggers were capable of logging and transmitting global positioning system (GPS)

locations and a collection of engine data parameters that di�ered from vehicle to vehicle,

but which always included speedometer (wheel) speed. FleetCarma was asked to collect

fuel �ow rates, but as this is not part of the OBD2 standard, FleetCarma instead

collected various proxies for fuel �ow, primarily MAF and AbsLoad.

3.1.2 Parsing and selection

The raw logger data was received in one text �le per trip, where trips comprised periods

of time where the logger was supplied with accessory power from the host vehicle. The
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Table 5: Data Collection Statistics

Value
Feature

Total vehicles 55
Total samples 18356982
Study vehicles 29
Study samples 10617365
First datum 2018-01-29
Last datum 2019-02-20

Figure 3: Sample counts by vehicle, studied and non-studied
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Figure 4: Data collection timespans for individual vehicles

�les were in comma-separated-value (CSV) format, indexed by time or time-o�set (one

row per timestamp, one column per sensor), but did not use consistent �le-formats,

units, column selections, nor column naming conventions, so ingestion of the data into

a standard format was a challenging and time-consuming task.

Only about half of the ICE study vehicles were con�gured to log MAF. The OBD2 PID

AbsLoad was provided for the remainder, but this is not a proxy for fuel consumption

without reference to engine revolutions per minute (RPM), which was not collected.

ICE vehicles without MAF were therefore eliminated from the study group. This was a

signi�cant and disappointing setback, and a stern reminder to attempt a limited model

proof of concept early in the data collection process. However, the remaining data is

su�cient in breadth and depth to demonstrate the core thesis, albeit not so clearly

shown to generalize across many di�erent vehicle and mission types.

The various vehicles were monitored for di�erent time periods, with the length of their

study period shown in �gure 4.

3.1.3 Feature selection

The complete list of attribute names collected by the various loggers is listed in appendix

A, table 14. Several of these features are duplicated with alternate names � e.g., Speed
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and Signal #131 are synonymous. For this work, only various aspects of vehicle speed

(including vertical speed, from GPS altitude) and derived variables were selected as

features, with a target feature of vehicle energy consumption � derived from MAF on

ICE vehicles, and primarily state of charge (SOC) for BEVs.

3.2 Speed Data Cleaning

3.2.1 Speed data problems

Various statistics related to vehicle acceleration were of primary interest to this study.

Accelerations were trivially computed from the measured timeseries speed logs for each

trip, but examination showed a large fraction of impossibly high accelerations.

It seems well-accepted that consumer-grade tires on dry pavement o�er a peak static

friction coe�cient of around 0.7 [55], so all acceleration values in excess of 0.7× 9.8 =

6.9m
s2

are suspect. About 132k (or 1.25%) of the 10.6M speed samples implied accel-

erations above this threshold. Examination of the log data showed 56.2% of log speed

values were unchanged from the previous value, suggesting �sticky� sensor readings at

the OBD2 logger, as described in section �2.3.1.

Since statistics derived from vehicle acceleration comprise the primary features to be

investigated for �ngerprinting travel segments, it was of critical importance to remediate

the speed data collection/integration errors and restore a true re�ection of the vehicles'

speed and acceleration pro�les prior to attempting analysis. This section explains how

the speed data was cleaned.

3.2.2 Recurrent speeds

Since the speed of a moving vehicle is inherently variable, nonzero speed values should

only recur very infrequently. It seems obvious that a large fraction of the recurring

values are invalid data integration artifacts. In the absence of any information about

which recurrent speed values happened to be valid, the author elected to eliminate all of
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Table 6: Impact of data cleaning methods on rate of "impossible acceleration" errors

Samples Errors
Error Rate

(%)
Error reduction

(%)
Rows removed

Nil 10,617,365 132,291 1.25 NaN
Moving recurrent 7,874,102 12,727 0.162 90.4
Impossible starts 7,861,375 69 0.000878 99.5

them. This substantially improved the quality of the data � that is to say, the deletions

removed most of the invalid acceleration values. The number of valid data points also

deleted is believed to be very small, and in aggregate likely to do little harm for the

purpose of this study. The obvious exception is made for periods of zero speed, where

it was to be expected that the vehicle's zero speed was indeed constant for some period

of time.

Accordingly, all recurrent speed samples were deleted, except for zero-speed samples.

This deletion reduced the number of samples by almost 1/3, but reduced the number

of impossible acceleration events from 132k to 12k � a reduction of 91.4%.

A summary of the reduction in error rates from data cleaning is shown in table 6

3.2.3 Stop-start errors

Of these remaining impossible acceleration events, nearly all occur during vehicle starts

� samples where the previous speed was zero.

This comprises an error rate of 5.01% during starts from zero speed. Examination

of the o�ending high-acceleration samples reveals an extraordinarily high number of

short (sub-second) intervals after the �nal zero-speed sample. This strongly implies

that these accelerations are another artifact of the �sticky� value problem discussed in

section 2.3.1.

In the interest of simplicity, these roughly 12,000 impossible-start samples were dropped.

Since the way a vehicle is started may have useful predictive power (e.g., jackrabbit
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starts), future work should be applied to recovering the information in start samples,

as discussed in section 7.2.1.

3.2.4 Other errors

With the above cleaning methods applied, the corpus contained only 69 remaining

samples with impossibly high acceleration values. Inspection showed these to generally

correspond to high rates of change over short sample periods, but with no obvious

cause. These samples could very well be true values, perhaps due to wheels spinning

under high power or wheel-lockup due to hard braking. These samples have been left

intact.

3.3 Power Data Cleaning

Again, the core problem of this thesis is to predict each vehicle's characteristic input

power for each eigentrip. The model's ground truth will be the input power consumed

during each trip segment, so a new power feature was calculated from the available

features.

3.3.1 ICE power

For ICE vehicles, the energy input is fuel consumed. Fuel consumption was approxi-

mated from logged MAF at the stoichiometric fuel:air ratio, an assumption discussed

in �2.3.2 and �7.1. The energy value was then calculated using the LHV of 46.4 MJ
kg

[56].

The MAF PID su�ered from the same "stickiness" problem as the other PIDs discussed

above, and had an e�ective sample period of about 2 s. This was addressed by the same

means as for speed: removing all recurrent values, except zero-value periods.

3.3.2 BEV power

For the BEVs, input power is from the high-voltage (HV) main drive battery.
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Although FleetCarma attempted to provide 1-second resolution power data, the data

su�ered from the same stickiness problem as elsewhere; the real sampling rate was much

lower than expected. SOC was sampled at a median period of 87 s, HV battery current

at 29 s, and HV battery voltage at 30 s. This low sampling frequency complicated

the power calculation; multiplying spot-sampled voltage and current with the elapsed

time would miss transient events, and be unlikely to provide an accurate re�ection of

total consumption. Reported SOC is not perfectly suitable, being unlikely to have been

sampled near a given segment boundary.

A rejected course of investigation was to interpolate SOC along the better-sampled

HV voltage reading, on the assumption that battery voltage would drop linearly with

expended energy. Plots of SOC vs voltage for multiple trips (�gure 5) suggested that

there is a good relationship between these features. However, inspection of a number

of actual time-domain plots of battery voltage and SOC similar to �gure 6 suggest that

the correlation only exists reliably at a scale too broad to be of practical use.

As shown in �gure 6, the HV system's voltage readings are highly variable while the

vehicle is in motion; this reading shows system voltage rather than open-circuit battery

voltage. Furthermore, the system's logging resolution is far too low to estimate energy

consumption (E) from voltage (V) and amperage (I) in the typical manner, as:

∆E =

∫
V (t)× I(t) dt (6)

Fortunately the vehicle's on-board computer has high-resolution access to the electrical

sensors, and can make use of a combination of several methods for establishing the

remaining useful charge in the battery [57]. SOC is therefore a reasonably trustworthy

absolute measurement relative to the vehicle's known battery pack capacity, and a

reasonable estimate of energy consumption over time can be obtained from it.

Ultimately, no better method was found than applying vehicle-reported SOC to

manufacturer-published battery capacity of 27 kWh for the Kia Souls [58, 59], and

12 kWh for the Outlander PHEV [60]. This required linear interpolation of SOC to the
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Figure 5: EV example trips showing the broad relationship of SOC vs the main battery's voltage

Figure 6: One EV example trip showing the rapid changes of voltage readings over time
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Table 7: Number of samples and trips removed by EV data cleaning procedures

EV Samples Removed EV Trips

Nil 817,820 0 2,308
Zero power 817,641 179 2,181
Charging 796,022 21,619 1,762
Zero-time 796,022 0 1,762

segment boundaries as described below in �3.4, a signi�cant assumption that merits

the future work discussed in �7.2.3. Given these assumptions, energy used in a period

is then simply:

∆E = ∆SOC × Capacity (7)

Inspection of the power thus calculated showed a large number of null SOC and V-

I measurements. Nearly all of these were addressed by deleting a small number of

unusable data-logs, presumed to represent data collection artifacts generated by loggers

not well-con�gured for their host BEVs, described in table 7.

3.4 Regularization

In order to reduce the amount of data uploaded over the cellular devices, the supplier

con�gured their loggers to use a sample period of about 1 second while moving, and 30

seconds while stopped. After collection was complete, the "sticky" problem discussed

in �2.3.1 was discovered, and with it the realization that various sensor values were

recorded at di�erent frequencies, and at fractional-second o�sets from each other. The

above process of removing recurrent values adequately eliminated the spurious readings,

but introduced two distinct problems:

1. The longer-than-expected sampling period introduces complexity in handling seg-

ment boundaries � the �nal sample in each segment must be extrapolated across

the boundary in order to be included in the second segment.

2. the sample following a 'stopped' sample may have a non-zero speed; barring the
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Figure 7: Problems caused by linear sample interpolation with and without regularization

introduction of synthetic 0-speed samples to terminate each stop, point-wise in-

terpolation would result in apparent movement during the stop period. This is

illustrated in �gure 7, with sample points in red, direct interpolation in yellow,

and the regularized interpolation shown in black.

To address these problems, the entire dataset was regularized to uniform 1s intervals,

zeroed to clock time. I.e., regularized timestamps are at even multiples of 1 second

from the top of the hour, rather than from the beginning of the trip, which would

likely have been o�set by a fractional second. Zero-speed periods were forward-�lled

to 1s intervals, and all in-motion data was linearly interpolated onto the regularized 1s

interval.
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This section describes the process chosen to build a spreadsheet-compatible energy

prediction model from the cleaned timeseries logger data. In broad terms, the steps

were as follows:

� Divide travel data into segments

� Compute kinetic �ngerprint features and average power

� Select reasonable starting clustering parameters

� Cluster into groups representing eigentrips

� Characterize missions by classifying travel data

� Iteratively re�ne clustering parameters and model hyperparameters

4.1 Feature Preparation

4.1.1 Segmentation

As in Wu's drive cycle classi�er [31], the data was consolidated into 3-minute segments

to match the resolution of a typical urban stop-go-stop cycle. The resampling is relative

37



Figure 8: Timeseries trace of speed and accelerations, overlaid with eigentrip labels

to the top of the hour (IE, segments begin and end at even multiples of 3 minutes past

the hour). This has the advantages of consistency and simplicity with the tools at hand,

but it also results in the �rst and last segment of each trip having shorter durations.

E.g., if a trip began at 15:02:15, its �rst segment will end at 15:02:59 for a duration of

only 45 seconds.

The �xed segment duration, the choice of 3-minute segments, and the clock-time interval

boundaries are all assumptions meriting further investigation as discussed in �7.3.4 and

�7.3.5.

An example period of travel is shown in in �gure 8, with a timeseries plot of the

average speed, acceleration, and deceleration values in each 3-minute segment. The

plot segments are superimposed on blocks representing their eigentrip labels, to give a

sense of the decomposition process.

4.1.2 Feature values

For each 3-minute segment, Wu's vehicle-independent trip features [31] were computed,

including averages and maximums for speed, acceleration, and deceleration, as well as

the fraction of time spent idling (see table 2).

One oversight in Wu's choice of features is road grade � a signi�cant factor in short-term

power requirements. Fully 42% of the data collected in this study lacked GPS altitude,
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and of the non-null data, 61% were repeat values. Where possible however, positive and

negative vertical speed features were calculated. To give some insight into regenerative

braking, an additional feature was computed from the count of acceleration reversals

� the number of times the vehicle changed from acceleration to deceleration, or vice

versa.

Each travel segment was additionally labelled with its mean input power in kW. The

derivation of power from the available log data is described in detail above in �3.3. In

brief, ICEV power is derived from MAF at the stoichiometric ratio, and BEV power

from the time-interpolated SOC.

4.1.3 Assumptions

Re�ning and simplifying assumptions were applied to the feature calculations as follows:

� Null samples indicate that either the logger or CANbus is inactive, which should

typically only happen when the vehicle is at rest and/or the engine is stopped.

Null values were therefore presumed to indicate zero speed and/or energy con-

sumption.

� For maximum values, the 98th percentile (Q98) value was selected to minimize

the e�ect of outliers and incorrectly captured values.

� In spite of using a quantile for maximums, the mean was used to represent average,

since the other measures of central tendency minimize the informational e�ect of

skewness, which is valuable here.

� Information doubly-represented in other statistics (eg, zero-speed samples, also

captured in the idle-fraction statistic) was not excluded.

4.1.4 Data review

Histograms of the feature values plus power consumption rate are visualized stripped

of outliers (beyond 2.5 IQR) in �gure 9, and further stripped of the minimal value and

maximal value in 10.
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Figure 9: Feature value distributions, including end-of-range values

Figure 10: Feature value distributions after removing common end-of-range values
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4.2 Clustering

Having established a clean corpus of �ngerprinted travel segments, the next step was

to perform a preliminary clustering of the segments into similar groups.

The individual features did not exhibit signi�cant modalities other than those obviously

caused by segments where the vehicle was idle; there is no reason to expect that the

data is inherently clustered. Since the clusters will be selected arbitrarily to improve

the model's performance, a simple clusterer using Euclidean distance su�ces for initial

validation. K-means clustering was chosen due to its simplicity and the fact that the

Scikit-learn implementation does not scale its inputs, permitting feature weighting by

scaling. Since K-means greedily minimizes within-cluster sum-of-squares [48],

n∑
i=0

min
µj∈C

(||xi − µj||2) (8)

it tends to result in clusters which are roughly spherical, rather than elongated or

convex. This is a limiting factor deserving additional work (�7.4.1), but it does not

prevent the technique from establishing reasonable cluster centroids, nor from providing

labelled groups which will train a functional classi�er.

4.2.1 Intent

The centroids of these groups de�ne the characteristic travel-type exemplars that we

are calling "eigentrips". The eigentrips are used to estimate a vehicle's input power

according to the vehicle's type, and the kinetic characteristics of the travel it is un-

dertaking. The goal is therefore to �nd a set of eigentrips, each of which represent

a travel regime with both (a) consistent kinetic characteristics, and (b) similar input

power within each vehicle type.
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4.2.2 Key insight

It was desired that the eigentrips represent regimes of travel with similar power within

each vehicle-type, but not necessarily across vehicle-types, so power was added as a

feature for the purpose of clustering, and weighted to emphasize its importance relative

to the individual kinetic features.

The inter-vehicle di�erence in power for a given travel-type would be a confounding

factor, so the power feature is standardized to Mahalanobis distance (shifted to have a

zero mean, and scaled to number of standard deviations) separately for each vehicle.

4.2.3 Cluster visualization

A preliminary K-means clustering operation was performed with K=10 clusters, and

the power feature weighting increased by applying a power-scaling factor (PS) of 2.0.

The kinetic features were reduced to 2 dimensions with PCA as shown in table 8.

The PCA-reduced kinetic features were visualized on a 3D scatter plot, with the Z

axis showing power, and the cluster labels di�erentiated by colour. Clustering for the

complete training datasest is visualized in �gure 11(a), with power standardized within

each vehicle. The similar sub�gure (b) shows the subset of data for a single vehicle,

with non-standardized power.

4.3 Classi�cation Algorithm

4.3.1 Algorithm selection

The core of the proposed model is the classi�cation of travel segments by their kinetic

features, and labelling them with the most-similar eigentrip. This label permits pre-

dicting a likely vehicle-speci�c characteristic power for the segment. In other words,

the clustering process above has de�ned the eigentrips, and now they can be applied.

The feature histograms (�gure 10) showed the bulk of feature data in well-ordered

distributions, but many with a large additional peak at zero (as well as unity, in the case
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(a) Standardized power (all training data) (b) Actual power

(c) Actual power, predicted labels (d) Predicted characteristic power

Figure 11: Visualization of preliminary clustering (K=10, PS=2) and classi�cation, as applied
to one example vehicle
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Table 8: PCA components for 2D visualization of kinetic features(K=10, PS=2)

PCA 1 PCA 2

Speed 0.302 0.0828
Max speed 0.355 0.0551
Acceleration 0.372 -0.100
Max acceleration 0.342 -0.110
Deceleration 0.365 -0.0745
Max deceleration 0.368 -0.0778
Idle -0.39 0.0139
Climb 0.0884 0.684
Descent 0.0878 0.692
Acceleration reversals 0.303 -0.0976

of the idle fraction feature). This modality means that parametric classi�ers assuming

a single distribution will be ill-suited. Since selecting cluster parameters required an

iterative search of K (number of clusters) and PS (power-scaling) combinations, a fast

classi�er was desired.

The LightGBM classi�er [61] meets these requirements. LightGBM is a gradient boost-

ing framework, with several interesting optimizations. The remainder of �4.3 is a short

introduction to some core concepts underlying the LightGBM model: decision trees,

boosting, gradient boosting, and a short description of LightGBM's optimizations.

4.3.2 Decision Trees

The simplest possible decision tree is a single inequality criterion that branches a dataset

into two leaves. Figure 12 illustrates an example, letting records where feature #2 <=

4.85 go into the left leaf, the remainder into the right.

Selecting the best choice for the split criterion requires a method of quantifying the

"purity" of potential splits � the degree to which information is added by by creating

the split. Shannon entropy, mis-classi�cation error rate, and Gini impurity are common

metrics for classi�cation, and sum of squared error for regression [62, �9.2]. In the

simplest illustration, every unique datum is examined as a split point, selecting the one

which results in the lowest total impurity in its leaves.
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Figure 12: Example of a single-node decision tree, or "stump"

4.3.3 Boosting and AdaBoost

Gradient Boosting is the name for a group of methods for building an ensemble of

"weak" learning machines (often small decision trees), each building on the weaknesses

of its predecessors.

It is best illustrated with AdaBoost, the �rst adaptive boosting machine, and arguably

the simplest and best-known [62]. The following pseudocode, derived from [63], uses

the simplest possible real classi�er (a decision tree stump) applied to an input dataset

X with labels y.

1. Start by de�ning the �rst weak learner F1 (a decision tree stump, as discussed in

�4.3.2), trained from the initial input dataset X1 = X, y1 = y

2. Use the F1 to generate predictions ŷ1 against labels y1.

3. Compute loss L1. For classi�cation, this might be the fractional error rate

L1 =
1

N

∑
|ŷ 6= y| (9)

4. Compute performance value α1, a number that is larger if the classi�er performs

well.

α1 = 0.5log(
1− L1

L1

) (10)

5. Halt iteration if stop conditions met (e.g. a predetermined number of iterations).
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6. Create a new input dataset X2, y2, with a larger proportion of records incorrectly

classi�ed by L1. Selection is pseudo-random, using a weight vector

w2 = e−α1s1 (11)

where s1 =


1, ŷ1 = y1

−1, ŷ1 6= y1

(12)

7. Train a new tree F2 from the new dataset X2, y2, and iterate from step 2.

The �nal classi�cation decision takes the form of a weighted vote between the weak

learners, weighted by each learner's performance metric αi.

4.3.4 Gradient Boosting Machines

Gradient Boosting Machines are a generalization of the AdaBoost concept, allowing

di�erent loss functions, and applying a kind of gradient descent in order to reduce error

in a smaller number of iterations. A gradient boost model is super�cially similar to

AdaBoost, in that it consists of an ensemble of weighted weak learners:

F (X) =F0(X) + F1(X) + ...+ Fm(X) (13)

where



Fi = γiri

ri = −g(L)|i−1 (negative gradient of loss function)

γi = argmin
γ

L(Fi−1 − γri)

(14)

Where γi are weights and ri are the pseudo-residuals of the preceding weak learners. In

essence, each element Fm is the output of a decision tree trained to predict the pseudo-

residual rm. In the special case where the loss function is sum of squared errors (SSE),

this is the (true) residual of the prior elements. The output is then scaled by a weighting

factor γm, selected to minimize the overall loss.

In other words, gradient boosting is conceptually di�erent from AdaBoost in that each
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element Fi is a weak learner tuned to directly address a pseudo-residual � an incremental

step in the direction of steepest improvement in the loss function. In other words, the

gradient of loss L with respect to the prediction F : δL
δF

[62, �10.10].

Unsurprisingly, nearly every teaching example (e.g. [64]) of gradient boosting tends to

use the same, extremely convenient loss function; the one which produces the simplest

gradient:

Li =
1

2
(y − ŷi)2 (15)

so... ri =− δLi(X)

δFi(X)
= ŷi − y (16)

Additional weak learners are added until a stop condition is met, typically either (a) a

speci�ed number of estimators have been added, or (b) the loss has been reduced to an

acceptable threshold.

4.3.5 LightGBM

The Light Gradient Boosting Machine (LGBM) is a framework for applying gradient-

boosted decision trees (a specialization of GBM where the weak learners are always

small decision trees), with a number of optimizations to improve training speed and

improve accuracy [65]. In particular, it provides the following [66]:

� gradient-based one-side sampling (GOSS) histogram split �nding: an alternative

method of tree construction which �nds high-performance splits very quickly by

keeping high-gradient rows, as well as samples from rows with small gradients

� exclusive feature bundling (EFB), allowing sparse, mutually exclusive features

(IE, those with few overlapping nonzero values) to be grouped into a single feature

for split evaluation

� best-�rst tree training; for a given maximum number of leaves, this method often

improves overall accuracy by splitting the leaf which most reduces loss

� bagging, helpful to reduce variance [62], and implicitly to reduce the likelihood of

over-�tting
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4.4 Classi�cation Method

An LGBM classi�er was constructed by training with the kinetic features using 10% of

the labelled data for each vehicle, with the remaining 90% held back for testing. This

method is at odds with the apparent industry standard method of 80% training / 20%

hold-back, but given a reasonable quantity of data, a small, well-distributed training set

in conjunction with extensive testing serves to ensure that the model is generalizable

and not over-�tted.

Figure 11 shows the results of classi�cation on the sample vehicle. Sub�gure (c) shows

the eigentrip label (colour) of each segment predicted by the classi�er solely with refer-

ence to the kinetic parameters, and sub�gure (d) shows the as-clustered original labels,

but with the predicted power.

4.4.1 Wrong-class error

In general, a multi-class classi�er returns the set of probabilities that a given element

(in this case, a travel segment) belongs to each possible class (in this case, the various

eigentrips). Typically, the class with the highest probability (the maximum likelihood

class) is selected. Applying this technique, the trained classi�er had a label selection

accuracy of 77.9%. The misclassi�cation rate is not as concerning as it might seem:

since the dataset is not in distinct clusters, segments of indeterminate class can be

expected to have an actual power somewhere between the characteristic powers of its

most probable classes.

It seems possible that the correct power may often fall between the highest and second-

highest probability classi�cations. A re�nement for future work (discussed in �7.4.2)

is for cases where membership is unclear, to attempt selecting the two most probable

classes, and pro-rating the segment's eigentrip membership by probability.
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4.5 Energy Prediction

For the purpose of energy prediction, each travel segment is represented as a time-

weighted vector, where each element represents a time-weighted (and potentially

probability-weighted) count of eigentrips. E.g., if the segment is 180s long, and is best

represented by eigentrip e2, the segment is now represented by S = [0, 180, 0, 0, ...],

where the elements of S represent the number of seconds spent in each of the eigentrip

types. Any period of travel (T ) can now be represented as the sum of its segment

vectors:

T =
∑

Si (17)

Given a vehicle's list of characteristic power values for each eigentripCv = [Pv,e1, Pv,e2, ...],

the predicted energy consumption for that travel is:

E = T ·Cv (18)

Accuracy is assessed relative to the logger estimate of observed power for any given

period of travel, in terms of modi�ed mean absolute percentage error (MMAPE):

MMAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷt1 + yt

∣∣∣∣ (19)

This initial model con�guration (K=10, PS=2) exhibited a per-segment MMAPE of

37.4%, somewhat better than the baseline prediction error of 50.9%, calculated below

in �5.
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(a) MMAPE surface (b) Median MMAPE cross-sections

Figure 13: Two visualizations of prediction error (MMAPE) versus a broad selection of number
of clusters (K) and power-scaling factor (PS)

4.6 Parameter Re�nement

4.6.1 First pass iteration

Having elected to cluster by K-means with a weighted power feature and demonstrated

a process, the next step was to select (a) an appropriate number of clusters (K), and

(b) appropriate weighting with power-scale (PS).

A number of values for K and PS were evaluated by clustering at each combination,

and generating a prediction of average segment power to each con�guration as described

in �4.4 and �4.5. The MMAPE was calculated for each con�guration, shown in �gure

13(a). For clarity, the median of MMAPE values at various levels of PS is plotted for

each value of K and vice-versa in (b). The �gures show substantial random-appearing

variation in error as PS is increased, presumably the result of classi�cation error as

the importance of the kinetic features in the clusters is reduced by over-weighting the

power feature.
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(a) MMAPE (b) Median MMAPE

Figure 14: Local visualizations of prediction error (MMAPE) versus a narrowed selection of
number of clusters (K) and power-scaling factor (PS)

Table 9: LGBM hyperparameters selected for optimization

Value
Hyperparameter

bagging fraction 0.800
feature fraction 0.900
learning rate 0.0100
max bin 60.0
max depth 27.0
min data in leaf 39.0
min sum hessian in leaf 59.0
num leaves 80.0
subsample 0.0100

4.6.2 Second pass iteration

Noise notwithstanding, the �gures show a signi�cant drop in MMAPE in the vicinity of

K=8 and PS=5, so a smaller-scale, higher-resolution iteration was performed in those

regions (�gure 14).

4.6.3 Hyperparameter tuning

As with most ML algorithms, LGBM uses data-nonspeci�c settings called hyperpa-

rameters, which must be adjusted for best performance with the speci�c application.

51



Figure 15: Prediction error and Classi�cation Accuracy for various values of power-scaling
factor (PS) with 10 clusters (K=10)

It is common to select these by iteratively testing the cross-validated performance of

various values, and selecting the set which reliably perform best. A popular method is

implemented in Fernando Nogueira's optimization toolkit [67], which employs an evolv-

ing Bayesian process to home in on a likely minimum value for the loss function in a

shorter number of steps than required by an exhaustive grid search. The technique is

not central to this research; a simple grid search would return similar results at the

cost of time. However, the implementation details are interesting and well illustrated

in the author's github page [68], with an application to LGBM published to Kaggle by

Somang Han [69]. The application of this technique resulted in the hyperparameters

shown in table 9.

4.6.4 Interpretation and parameter selection

A deterministic optimization could be employed to �nd an absolute minimum MMAPE,

but since the results would vary with every new random draw of training data, the

improvement would not be persistent. Instead, parameters were selected from the

region of the plot which appeared to best balance low MMAPE with low randomness.

10 clusters was chosen as a starting point due to the visible trough on the 3D surface

plot.
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Figure 16: Final clustering (K=6 PS=7), PCA kinetic features, and power
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Classi�cation accuracy and MMAPE were plotted at various values of PS that number

of clusters, with results shown in �gure 15. As desired, the increase in PS initially

improves MMAPE, as clusters are de�ned with less internal scatter with respect to

power. Classi�cation accuracy drops rapidly with increasing PS, as clusters are de�ned

which cannot be recalled without reference to the power feature, quickly overriding the

improved prediction accuracy.

The �nal clustering with K=6 and PS=7 is visualized in �gure 16. The noteworthy

visual di�erence relative to the original clustering is that at the same visual Z-axis

scale, the clusters appear "pancaked" � this re�ects the desired strati�cation accord-

ing to power levels. It is important to remember that this is a visual artifact; in the

11-dimensional hyperspace where the clustering operation was performed, the cluster

boundaries still approximate hyperspheres, much as a cluster of soap bubbles approxi-

mate spheres.

This �nal clustering also permits the calculation of characteristic power values for each

vehicle. Figure 17 shows the spread of actual power observations sorted by their cluster

(eigentrip) labels, and divided into the various vehicle categories.

Figure 17: Power distribution of each vehicle category, as divided between the eigentrip labels

The average per-segment MMAPE of the eigentrips model was 32.3%.
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4.7 Comparison Predictions

4.7.1 Published fuel economy

Business-as-usual (BAU) energy consumption prediction was established by applying

published city/highway Le/100km �gures to the logged travel distances for each seg-

ment. The consumption test protocol [17] drive cycles had a mean speed of 34 km/h for

city driving and 78 km/h for highway, so a dividing speed of 56 km/h was established

midway between those means. Travel segments with an average speed at or below

that dividing speed were predicted at the city �gure, and those above predicted at the

highway �gure.

Fuel economy �gures were selected for each vehicle with reference to NRCan's fuel

consumption rating search tool [70]. In each case, the base model was selected unless

the CRD's vehicle database indicated a speci�c sub-model or trim level.

The average per-segment MMAPE of this method was 50.9%.

4.7.2 LGBM regression

Finally, to establish the level of avoidable error with the information available to the

model, a LightGBM regression model [66] was trained on the 10 kinetic features, as

well as three additional features capturing speci�c information about each vehicle: its

�el type (ICE, HEV, BEV), vehicle category (passenger, pickup, SUV, etc), and an

identi�er for each speci�c vehicle.

The decision to include all three of these additional features was not obvious; the

vehicle ID is over-speci�c, and in a wider application would instead use a detailed

model and trim-level speci�cation. Furthermore, much of the predictive information in

the vehicle's fuel and category is shared with the vehicle ID, and as discussed in �2.2

mutual information and unnecessary features are to be avoided.

The core con�ict is that on one side, some vehicle categories spanned a wide range of

power levels (e.g., a modern F-150 base-model vs an older F-150 4x4 super-duty), best
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addressed by permitting the model to modify power based on the observations of speci�c

vehicles. On the other hand, some speci�c vehicles were only observed for a short period

of time, and would not generalize well without reference to the information of other

similar vehicles. On the balance, it was decided to include all three, since boosted tree

models split on a single feature at a time, and therefore do not tend to overemphasize

based on mutual information.

Once the feature-set was selected, the regression model's hyperparameters were tuned

as described in �4.6.3, and power predictions made for each segment. The average

per-segment MMAPE of this method matched that of the eigentrips model, at 32.3%.
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This section presents the predictive error of the proposed "eigentrips" model relative to

the logger-data estimate of actual power. The eigentrips model is compared with two

alternative means of prediction: �rst, business-as-usual prediction based on standard

L/100km fuel economy �gures, and second, an LGBM regression model trained to

directly predict segment fuel consumption. The eigentrips model is piecewise-constant,

so the regression model is presented to give a sense of the eigentrip model's avoidable

quantization error.

Much of the discussion in this section is with regards to the MMAPE for individual

3-minute segments, since that is the most intuitive initial indicator of the model's

accuracy. For the end user's purpose, trip-level or mission-level (ie, for the duration of

the vehicle's participation in the study) aggregate error is likely to be of more interest,

and that is addressed at greater length in the discussion section, �5.3.
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5.1 Presentation of Error

5.1.1 Error measures

The most appropriate intuitive measure for prediction error was not immediately obvi-

ous, for the following reasons:

� Absolute (non-relative) error over-represents error in high-power vehicles.

� Relative (to actual-error) over-represents error when actual power is very low.

� Relative (to vehicle) requires a �xed per-vehicle denominator, resulting in unex-

pected error values for segments unrelated to the selected denominator.

Several measures of prediction error were considered, described below with their short-

comings. For the formulae below, a=actual, p=predicted, q=vehicle max power,

µ=vehicle mean power.

1. MSE (mean squared error)

ε = (a− p)2 (20)

Problem: AlthoughMin(ΣMSE) is the model's actual objective function, it does

not give a good intuitive grasp of the magnitude of the prediction error when

actually applied to a real-world prediction problem. A lay user would expect

that a model described as having 25% error will generate predictions incorrect by

approximately 25%, not by 50%.

2. η (absolute/non-relative error)

η = |a− p| (21)

Problem: Error will be exaggerated in high-power vehicles, and they will dominate

summary results.
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3. εµ (relative to vehicle-mean)

εµ =

∣∣∣∣a− pµv

∣∣∣∣ (22)

Problem: The mean can be di�erent in similar vehicles, depending on operation.

Some mission pro�les are dominated by idle!

4. εq (relative to vehicle-max)

εq =

∣∣∣∣a− pqv

∣∣∣∣ (23)

Problem: Unintuitive at low power. EG: consider a 100kW vehicle, on a segment

where actual power is 1kW and prediction was 2kW. This measure would return

an error of εq = (2 − 1)/100 = 1%, even though the prediction was double the

observed value.

5. TMAPE (true mean absolute-value percent error)

TMAPE =

∣∣∣∣a− pa
∣∣∣∣ (24)

Problem: Segments with zero or near-zero actual power will have excessively high

error. This is of particular concern with EVs and HEVs, which frequently "idle"

at fractional kW power. Almost 1% of EV samples were observed at under 1kW,

causing unreasonably high segment prediction errors.

6. MMAPE (mean absolute-value percent error, modi�ed)

MMAPE =

∣∣∣∣ a− p1 + |a|

∣∣∣∣ (25)

This metric retains much of the intuitive power of TMAPE, while avoiding exces-

sive error at for very small values of actual power.

Problem: The added 1 in the denominator is arbitrary. In the previous example,
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Table 10: Error for various timescales, contrasting eigentrips model vs business-as-usual vs
LightGBM regression

L/100km
(%)

Eigentrips
(%)

Regression
(%)

Segment 50.9 32.0 32.4
Trip 38.5 23.7 20.3
Mission 21.8 9.59 2.90
Study 19.3 7.45 0.120

Table 11: Per-trip error for various vehicle fuels/categories, contrasting eigentrips model vs
business-as-usual vs LightGBM regression

L/100km
(%)

Eigentrips
(%)

Regression
(%)

Fuel Category

Electric Passenger 47.8 64.8 127.
Gas Cargo 43.9 56.0 34.1

Pickup 51.6 35.1 21.0
SUV 17.0 21.9 10.4

PHEV SUV 34.6 38.9 33.5

MMAPE = (2−1)/(1+1) = 50%, which bears no contextual intuitive relationship

to the error.

5.1.2 Chosen error measure

In the remainder of this chapter, modi�ed MMAPE is used to compare and contrast

relative error. The arbitrary 1 added to the denominator is a common means of ad-

dressing the near-zero error problem, while retaining a sensible range of relative error

across the range of actual values.

5.2 Discussion

5.2.1 Error interpretation

Table 10 shows MMAPE at various levels of aggregation, split out for business-as-

usual L/100km prediction, for the proposed eigentrips model, and for direct regression

with the LightGBM comparison model. In general, the prediction performance is as
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Figure 18: Prediction error distribution of segment-level predictions, contrasting eigentrips
model vs business-as-usual vs LightGBM regression

expected: the eigentrips model outperforms traditional L/100km prediction, and is in

turn outperformed by direct regression.

The segment level error for both the Eigentrips and Direct regression models is very

high, and remarkably similar. Since the eigentrips model is expected to have signif-

icantly more error due to quantization inherent in the technique, the behaviour is

anomalous, and suggests that the predictions are missing information relative to the

ground truth. This may re�ect an erratic ground truth (due to error in the MAF ap-

proximation of true fuel �ow), or changes in power requirement disguised by missing

features such as missing or inaccurate road grade, or other features discussed in �7.5.5.

Table 11 shows the per-trip aggregate error, broken down by "fuel" (actually drivetrain

type) and vehicle category. It is noteworthy that the LightGBM regression model and

eigentrips model did not perform particularly well for the various hybrid and battery-

electric vehicles, although they did still tend to outperform traditional fuel economy.

Figure 18 shows the per-segment MMAPE for each fuel and vehicle type. The boxes

show the quartile range of error values (25% and 75%, with a horizontal line to indicate

median), with whiskers to show the extent of the 10th and 90th percentile. The plot

does an excellent job of showing that in general, the LightGBM regression model and

the eigentrips model have lower bias and lower variance than the L/100km technique.
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Figure 19: Example power versus prediction within eigentrips

However, this plot also shows unexpectedly wide variance for HEVs and BEVs, and high

bias and variance for the PHEV, all discussed in detail below. It is also noteworthy

that the Le/100km prediction shows an error of -100% in many cases, since it has no

means to appropriately predict idle power.

Figure 19 uses a single example vehicle to illustrate the variance in actual powers

within each labelled eigentrip, presented in the form of a swarm plot against the power

prediction, taken as the vehicle's characteristic power. The horizontal bar on each

swarm shows the mean actual power, which is seen to be quite close to the quantized

predicted power � which is the vehicle's characteristic power for that eigentrip.

5.2.2 BEV prediction

For the BEVs, this excessive variability is attributed largely to the 90-second low-

resolution power sampling discussed in �3.3. Although the BEVs' onboard SOC com-

putation is presumed to be reliable, it is impossible to know how much power con-

sumption is measured in one segment when it is better attributed to the next. This

lack of accuracy is a key outcome of this research: high-resolution data-driven energy

prediction requires high-resolution input data.

It is noteworthy that since the reported error is relative to actual consumption, the

apparent error of the BEVs is ampli�ed relative to the ICEVs; the 25-75 IQR in �gure
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18 shows that the eigentrip model has about double the relative error for BEVs as for

ICE pickup trucks � but since the BEV's power is so much lower, this in fact represents

a prediction of 35.7± 7.0 kW for the pickup truck, and 3.0± 0.88 kW for the BEV; the

BEV's absolute error range is in fact much smaller.

5.2.3 PHEV prediction

The single PHEV su�ered from the same low-resolution sampling problem as the BEVs,

and additionally had a very short data-collection period, with only 216 travel segments

recorded, totalling about 10 hours of travel.

Furthermore, the PHEV had no mechanism for capturing the likelihood that a given

segment is in ICE-mode. Future work with PHEVs should attempt to create additional

kinetic features to capture that information, such as total distance travelled this trip,

or total distance today.

5.2.4 HEV prediction

The study included 4 Toyota RAV4 mild HEVs, which were predicted with a reasonable

MMAPE, but a wide spread in the segment level predictions. The loggers in the HEVs

were not con�gured to capture HV battery status, so it can be presumed that the short-

term error included a signi�cant amount of energy consumption being shifted between

adjacent segments, EG, by regenerative braking.

Improving HEV energy prediction would be an interesting extension to this work, and

would require additional feature engineering to capture HEV-speci�c behaviour, such

as regenerative braking and any periods of sub-optimal engine operation.

5.2.5 Physical interpretation

Figure 20 shows a box plot for each kinetic feature, showing the distribution of values

broken down by eigentrip label. Examination of these plots may help with understand-
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Figure 20: Per-eigentrip distribution of feature values across all missions
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ing of the physical nature of travel likely to be labelled as most similar to a particular

eigentrip.

5.3 Application

To illustrate the application of the eigentrip model, imagine that a �eet manager has

been allocated budget for three new vehicles, with the explicit goal of minimizing an-

nual carbon-based fuel consumption. The manager is faced with the decision of which

vehicles to replace. Without logger information (and, for this purpose, in the absence of

mission constraints) the decision will be informed by whatever information is at hand.

This section explores the information that the manager might have, the vehicle replace-

ment decisions they might make with various information, and the likely impact of those

decisions in light of the logger data. The impact is given in terms of saved energy in MJ,

and the volume of consumed gasoline for ICEVs. Additionally, to highlight the impact

of high-e�ciency BEVs consuming low-intensity BC grid electricity, the related GHG

emissions are also listed, given global warming potentials (GWPs) of 88.1 g CO2e/MJ

for gasoline [9] and 2.96 gCO2e/MJ for BC Hydro's grid electricity [10].

Fuel consumption in this section is given relative to a power baseline derived from the

logger MAF and SOC data, as described in �3.3. As discussed in �7.5.2, the validity

of this baseline estimate is one of the study's core assumptions � there is no validated

fuelling data from which to calculate error bars.

The prediction estimates are given as maximum likelihood values � given the vehicle's

single characteristic power value for each eigentrip, and a count of the most-probable

eigentrips for the mission, the prediction estimate becomes a simple dot product. As

discussed in �7.3.6, it would be valuable to have a generalized measure of uncertainty

for each mission-vehicle prediction, but this would require characterizing each mission

and vehicle as a probability distribution rather than a singular value, defeating the

model's core goal of simplicity. To give some sense of the prediction reliability and

impact on decision-making, the replacement vehicle's whole-study MMAPE is applied
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Table 12: Whole-mission error averaged for various vehicle fuels/categories, contrasting eigen-
trips model vs business-as-usual vs LightGBM regression

L/100km
(%)

Eigentrips
(%)

Regression
(%)

FuelType

Electric-Passenger 20.7 15.3 19.2
Gas-Cargo 20.1 13.8 9.43
Gas-Pickup 40.2 9.55 11.2
Gas-SUV 9.44 7.15 0.685
PHEV-SUV 40.2 0.0965 2.85

to the resulting prediction. The replacement vehicle in all cases happens to be the Kia

Soul BEV, so an expected error of 10.7% is selected from the Electric-Passenger row of

table 12 and calculated for each prediction.

5.3.1 Replacement by predicted distance

If the �eet manager has accurate mileage records and can predict the mission distances,

then they might choose to predict per-mission energy consumption by multiplying pre-

dicted mission distance by the published fuel economy of the vehicle currently assigned.

The top three energy consumers by this prediction would be two pickup trucks and a

van, predicted to annually drive 58,700 km, and to consume 246 GJ of fuel.

The actual logged consumption of these three vehicles extrapolated to a full year was in

fact 350 GJ (equating to 10300 L of gasoline, and GHG emissions of 30900 kg CO2e) �

an error of 24%, illustrating that this method is not particularly accurate. Applying the

eigentrips model, we �nd that replacing these three vehicles with a BEV similar to one

of the tested passenger vehicles (not actually an appropriate replacement for a cargo

vehicle) would result in a predicted consumption of 26.9 GJ, and cause GHG emissions

equating to about 79.7 kg CO2e. This replacement, if it were possible, would save 321

GJ of energy and avoid 30800 kg CO2e of GHG emissions. The expected prediction

error of 10.7% for this vehicle category equates to an error estimate of ± 2.88 GJ and

± 8.5 kg CO2e.
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5.3.2 Replacement by published fuel economy

Lacking mileage or fuelling records, the �eet manager might select the three vehicles

in the �eet with the worst fuel economy ratings � two pickup trucks and an SUV, in

this example. In the absence of distance or fuelling records, there will be no predicted

consumption better than the manager's educated guess, perhaps by pro-rating the fuel

budget for the entire studied �eet (1167 GJ) by fuel economy numbers, resulting in a

predicted consumption of 203 GJ.

The extrapolated logger data suggests that these vehicles would have a total annual

consumption of 200 GJ (5900 L gasoline, emitting 17600 kg CO2e of GHGs). Their BEV

replacements would result in a new predicted consumption of 14.9 GJ (44.2 kg CO2e)

� a savings of 185 GJ, and avoiding 17600 kg CO2e of GHG emissions. The expected

error of 10.7% equates to an error estimate of ± 1.60 GJ and ± 4.73 kg CO2e.

5.3.3 Replacement by logged energy

In the absence of actual pump-to-tank records, the loggers themselves have the best

record of the energy consumed by each vehicle. Extrapolating each vehicle's actual

logged consumption to a year, the top three consumers will total 388 GJ (11500 litres

gasoline, emitting 34200 kg CO2e). Their BEV replacements would consume 25.7 GJ

(76.3 kg CO2e), saving 362 GJ and avoiding 34100 kg CO2e of GHG emissions. The

BEV's expected error of 10.7% equates to an error estimate of ± 2.75 GJ and ± 8.16

kg CO2e.

5.3.4 Replacement by best savings

The theoretical best solution is to consider all missions, and select the replacements

o�ering the highest predicted savings over the incumbent vehicles. In this case, the

result happens to be the same as the case above: replacing the highest energy consumers

with the most e�cient available alternative. However, this would not be the case if the

highest energy consumers were already relatively e�cient.
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Table 13: Illustration of SHAP for a single prediction

Feature Values SHAP Values

Speed 52.8 18.8
Max speed 64.7 1.01
Acceleration 0.125 -0.382
Max acceleration 1.03 0.0332
Deceleration 0.104 0.797
Max deceleration 1.06 0.195
Idle 0 -0.769
Climb 0.324 0.0151
Descent 0.273 -3.32
Acceleration reversals 0.15 1.85
vid Vehicle 10 23.1
Type Pickup 4.8
Fuel Gas 2.16

5.4 Shapley Additive Explanation

5.4.1 SHAP overview

Shapley additive explanation (SHAP) [71] is a method for understanding the contribu-

tion of each individual feature to a speci�c �nal prediction. The explanation is additive,

because the individual contributions sum to the actual prediction.

To illustrate, consider the lightGBM regression comparison model described above in

�5.2, applied to predict the power of a single segment vector. An example is shown in

the "Feature Values" column of table 13. The SHAP explainer constructs a general null

prediction (an estimate in the absence of any feature information, typically the training

mean), and then computes the individual additive contributions of each feature to

increase or decrease the speci�c prediction under consideration from the general null

prediction. In this case, the sum of the 28.4 kW null prediction and the individual SHAP

values (again, shown in table 13) is equal to the regression model's �nal prediction of

89.0 kW.

The method of computing the individual feature contributions is somewhat involved.

Mazzantzi has written an excellent simpli�ed explanation in [72]. Further summarized,

the method involves creating a directed graph of models for every possible combination
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(a) Regression SHAP, showing feature relationship
to prediction impact

(b) Multiclass SHAP, showing absolute feature im-
pact on individual class membership probabilities

Figure 21: SHAP explanation summaries, showing each feature's contributions to the model's
prediction, across the entire dataset

of available features, arranged such that the edges in the graph imply the addition

of an individual feature relative to the source node. The contribution of a feature is

a weighted average of the change in predicted values along all the edges where that

feature is added.

5.4.2 SHAP summary visualization

A second application of SHAP is to explain the relative importances of the features,

across all samples in a dataset [73]. It is easy to imagine, for example, that the climb

rate feature would have a much larger impact on the visible power requirement of a

heavily loaded ICE cargo vehicle, as opposed to a mild hybrid using its traction battery

to invisibly average its engine power output between climbs and descents.

Figure 21(a) addresses this requirement by showing the distribution of absolute contri-

butions of each feature to the predictions. For numeric values, red implies a high value,

and the right side of the chart indicates a positive impact on the power prediction. EG,

higher mean speed (red) tends to increase the power prediction (i.e., rightward), and

a low mean speed (blue) tends to decrease the power prediction (i.e., leftward). The

categorical features have no scalar values (grey), and this SHAP visualization has no

intuitive way to show which categories shift the prediction in a particular direction; the

only information presented is the range of impact magnitudes caused by various values
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in the feature.

The eigentrip technique centrally uses a multiclass classi�er, not a regression model; the

classi�er's output for each prediction is in fact a vector of class probabilities, rather than

a single predicted value. Plot (a) could at best be used to show the absolute impact of

each feature on the probability of predicting one of six eigentrips. Instead, �gure 21(b)

illustrates the mean absolute impact of each feature on each class probability � in other

words the absolute change on the prediction probability if the feature is known, vs not

known. For example, the �gure shows that knowing the Speed value tends to change

the probability of class 3 by an absolute magnitude of about 1.4; it has a large impact,

although the plot gives no information about whether the impact tends to be positive,

negative, or even mixed.

5.4.3 SHAP implications

On the summary �gure(21a), the features for acceleration reversals (chgacc), maximum

positive acceleration (mpacc), idle fraction (idle), and maximum deceleration (mnacc)

are seen to have relatively small contributions to the prediction.

To illustrate that this is valid, the regression and eigentrip models were re-applied with

reference to only the other features. The impact of deleting these less-important fea-

tures from the direct regression model was indeed quite modest, increasing the average

segment MMAPE by only 0.21% � from 32.7% to 32.9%.

The impact on the Eigentrips model was somewhat more signi�cant, increasing from

32.1% to 39.4% � perhaps highlighting the impact of an increased number of marginal

samples no longer being nudged into the correct classi�cation by the additional features.
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6 Conclusions

The eigentrip approach developed in this research has reasonably good accuracy, and

produces whole-year mission predictions averaging a MAPE of 9.4%. The concept can

be expected in the �eld to give signi�cantly better predictive results than the baseline

(L/100km) method's MAPE of 22%, although there is clearly room for improvement,

as shown by the direct-regression model's average MAPE of 3.7%.

The reduced error of either machine-learning model is balanced against added com-

plexity; adding a new vehicle to the model would require computing the new vehicle's

per-eigentrip characteristic power values. Similarly, adding a new mission pro�le (or

updating a modi�ed one) would require logging some weeks worth of representative

travel data, sanitizing it, and deconstructing it into a combination of eigentrips.

The criterion of spreadsheet-compatibility no longer seems as important as it originally

was, due to the advent of low-barrier options for deploying ML models in the cloud,

such as managed notebook hosting services. Such a model would have better predic-

tive accuracy, and could be designed to facilitate the direct upload of new data � either

representing new vehicles, or in order to better represent the evolution of the �eet's mis-

sion pro�les. That said, a spreadsheet-deployed model would still be helpful to address

potential concerns around the public exposure of individual travel information. This

issue was deeply signi�cant for the CRD, whose requirements informed this research.

The research performed here has been severely limited on several fronts, hampered by

data collection problems and limited by inadequate temporal resolution. One of the

initial goals, choosing the best of several alternative high-e�ciency replacements, has

been rendered impossible by the elimination of alternatives in the source data � the

initial study was intended to include several HFCEVs, PHEVs, and other types of BEV

beyond the Kia Soul EV. None of the desired alternatives were ultimately included in

the logged data, and the single PHEV logged only about 10 hours of travel time before

the data collection phase was terminated.

An important outcome of this research is reinforcement of the idea that any data-driven
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model for predicting per-trip or per-mission vehicle energy consumption will be limited

in accuracy by the quality of the data that informs it. A good model would require

higher-resolution input data, and an exploratory data campaign facilitating iterations

of the experiment with various sampling frequencies and methods would be yet another

excellent subject for further study.

Ultimately, a data-driven model will be an e�ective recommendation tool for selecting

replacement vehicles to minimize energy consumption and carbon footprint. Careful

design of a data collection strategy will be the foundation of any trustworthy model.
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This section discusses a number of limitations, assumptions, and other potential im-

provements to the studied process and model.

7.1 Assumptions

Several simplifying assumptions were made that could bene�t from more rigorous treat-

ment, either to quantify the resultant error, or to �nd a more precise method.

7.1.1 Stationarity and ergodicity

This entire study is predicated on two key assumptions: that the power and kinetic

features are stationary (i.e., that the statistics do not change over time) and that they
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are ergodic (the statistics do not change erratically and inconsistently with respect to

uncontrolled parameters).

All of this is to say that the work assumes that the kinetic features are dictated by the

mission, and not unduly in�uenced by changing factors such as the physical character-

istics of the vehicle, the habits of the driver, and changing tra�c patterns. Future work

should validate and quantify these assumptions by observing the same mission oper-

ated with di�erent vehicles, and con�rming that e.g., a di�erence in power or handling

characteristics doesn't result in a confounding change in the observable kinetic features.

Most power-impacting di�erences in driver habits would likely be captured and ac-

counted for in the speed and acceleration features. However, an exploration of driver-

mission and driver-vehicle stability might be warranted since (a) drivers might a�ect

non-engine power consumption, such as climate control, changing the power character-

ization of a vehicle, and (b) a di�erence in driving technique might be so extreme as to

alter the kinetic pro�le of a measured mission, depending on who is driving it.

The same assumptions apply to the per-vehicle characteristic power values. Future

work should compare data collected from similar or identical vehicles, while driven by

di�erent drivers, in di�erent missions, in di�erent geography, and in di�erent organiza-

tions.

7.1.2 Baseline energy consumption

This thesis evaluates the validity of the new method for predicting energy consump-

tion, as compared to the traditional model-speci�c fuel economy statistic measured in

Le/100km. The validity of the two predictions is compared by measuring error relative

to the best available estimate of "actual" energy consumption, as derived from MAF

and SOC.

It is a signi�cant assumption that the inferred estimate of input energy from logger

values is valid and correct. As discussed in �7.5.2, it would be a signi�cant improvement

to this research to collect actual per-vehicle fuelling records for ICEVs and electrical
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metering for grid-powered BEVs in order to establish the accuracy of the logged energy

consumption estimates.

7.1.3 Standardized GHG intensity

A primary intended use of this work � the prediction of GHG emissions � presumes that

it is possible to easily convert a known quantity of input energy into a speci�c GHG

footprint in kg CO2e, by applying standard GHG intensities such as those published

by the BC Canadian Ministry of Environment & Climate Change Strategy (MOE) or

BC Hydro [74, 10].

Events such as Volkswagen's "Dieselgate" [75] have made it clear that this is a weak

assumption for ICE vehicles, and that there may be a need for model-speci�c intensity

factors. Further investigation will be necessary to quantify the associated error.

Other factors may impact the emissions calculation for grid-powered BEVs, depending

on how grid emissions intensity is to calculated. BC Hydro reports an overall carbon

intensity of 11 gCO2e/kWh, with speci�c renewable and fossil sources rated at 4g and

593g respectively, and conducts a signi�cant bidirectional trade with Alberta, which is

attributed an intensity of 820g [76]. A 2017 paper found that carbon intensity in New

Zealand should be considered as varying between 32g and 188g depending strictly on

time-of-day [77]. It is easy to imagine a dynamic �eet model with reallocates vehicles

according to changing requirements for calculating emissions, or even from the the

time-dependent change in the carbon intensity attributed to their power sources.

7.1.4 Fixed MAF ratio

Fuel consumption rates were inferred from the OBD2 log values for MAF. This is only

accurate if the fuel:air mixture is known. The stoichiometric ratio of 14.7 is commonly

accepted [54], and as described above in �2.3.2, the author's undocumented personal

experience supports it. No peer-reviewed literature nor authoritative texts were found

supporting or refuting this assumption.
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Since fuel �ow is not a standard OBD2 PID, it would be an excellent contribution to

the literature to publish a model or a dataset helping to more accurately infer actual

fuel �ow from MAF and other standard OBD2 parameters.

7.1.5 Clustered eigentrip de�nitions

An early assumption was that the eigentrip de�nitions should be inferred from the

data, rather than synthesized from expert knowledge of how di�erent driving patterns

are likely to in�uence fuel consumption. The basis set was therefore constructed using

unsupervised clustering.

It would be possible to instead construct a set of exemplar trips that are representative

of trip-types which a domain expert intuitively believes are likely to be predictive of en-

ergy consumption variability between vehicle types. Examples might include situations

such as

� point-to-point highway travel, o�-peak hours

� highway travel, rush-hour

� point-to-point city travel

� patrolling and parking enforcement

� idling to supply vehicle-mounted equipment

If the eigentrips were modelled on intuitively understandable travel-type exemplars,

users would be better able to infer the nature of new or blended missions, and be better

able to apply sanity checking to unexpected model results.

It would be interesting to repeat the experiment with such a set of intuitive eigentrips,

and contrast the level of error with that found from the inferred ones.

7.2 Cleaning Decisions

The extensive data cleaning and preparation process required a number of judgement

calls and simpli�cations. The most important of those are listed here.
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7.2.1 Smoothing starts

As discussed above in �3.2.3, a large number of in-motion samples immediately following

an at-rest sample were dropped due to impossibly high accelerations, presumably due

to sampling errors.

Simple rejection of these potentially informative samples was to be avoided. An aborted

attempt was made to impute reasonable speed pro�les to these samples using the fol-

lowing process:

1. Compute a �typical low-speed acceleration� for each vehicle, consisting of the

median of in-motion positive acceleration values at speeds below an arbitrary

threshold of 15 km/h.

2. For vehicle starts with impossibly high logged accelerations, the zero-speed sample

is time-shifted to an earlier time that would re�ect that vehicle's typical acceler-

ation � but never such that it would precede the prior speed sample.

3. If the time-shifting would cause the zero-speed sample to precede a legitimate

logged non-speed sample, then �required acceleration� is computed from that le-

gitimate sample. If that required acceleration is found to have a reasonable mag-

nitude, then the earlier sample time is retained and deemed to be the new start

time.

Unfortunately, many of the error periods were found to bracket other sensor readings,

particularly MAF readings. Inserting an imputed speed value would call into question

the validity of the the subsequent MAF observation, causing irreconcilable discrepancies

between inferred acceleration and inferred fuel �ow. The method has potential, but

requires detailed review of the original datastream to be sure that it was not introducing

more error than it is removing.
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7.2.2 Regularization

As discussed in �3.4, the entire corpus was regularized to 1s intervals to simplify segmen-

tation. This implies linear interpolation and extrapolation � both of which unavoidably

introduce error relative to the actually-measured real samples.

Given the potential to process variable-length segments as discussed in �7.3.5, it would

instead be possible to divide segments precisely at sample times, minimizing the amount

of interpolation required.

7.2.3 BEV power interpolation

Since sampling of the BEV's power was done at a relatively low resolution, a simple

time-interpolation on SOC was performed to help estimate power consumption within

each trip segment.

Hopefully future work will have direct access to higher resolution BEV power data.

With only the data at hand, a number of techniques might do better at predicting SOC

at the segment boundaries, perhaps using a timeseries regression model inferring from

additional other features such as distance travelled and acceleration pro�le.

7.3 Data Structure

7.3.1 Time-domain features

As discussed in �2.2.2, there are good reasons for this model to be structured as a non-

timeseries problem. However, there are likely to be some time-domain or frequency-

domain features with predictive power. Examples for possible exploration include the

e�ects of stop-and-go tra�c and time-of-day. Possibilities to extract predictive features

from these characteristics include spectral power density [42] as a �ngerprint feature,

and the use of time-domain techniques like Kalman �lters, [78] might help to generate

predictions of otherwise unknowable state features such as the vehicle's kinetic energy

78



or a mild hybrid's drive battery SOC. Another possibility is the employment of dynamic

time warping, [79] or wavelet convolutions [80] in order to �nd recurrences of observed

patterns that might characterize driving segments as being similar.

7.3.2 Feature evaluation

The initial short set of features in �4.1 is based on the work of others [38]. It would be

a valuable contribution to compile an exhaustive list of features directly available from

OBD2 or computed from them, and apply a rigorous evaluation for relative predictive

power. A simple example is the selection of the 98th percentile to illustrate the feature

"maximum acceleration". It is possible that some other quantile (or even the un�ltered

maximum observed value) would be more predictive.

One method for this would be to derive an expanded feature set (such as those listed in

�2.1.2), and apply SHAP [73] analysis to determine which features are most predictive

of energy consumption.

7.3.3 Microtrip boundaries

An early assumption was the rejection of stop-go-stop microtrips as the fundamental

trip segment, due to concern about excessive mixing of trip types. The requirement for

�xed-length segments added signi�cant complexity to the data preparation phase.

It is possible that the presumptive concern is unfounded. It would be interesting to

perform the entire experiment again with microtrips to see the impact on prediction

accuracy.

7.3.4 Clock time segment boundaries

For simplicity, the segments were regularized to clock time, beginning at even multiples

of three minutes from 00:00:00 each day. This assumption results in �nal and initial

segment in each trip being shorter by an average of 50%. Since each segment is given

equal weight in the model, this di�erence over-weights the importance of measurements
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in those segments. However, since the �rst and last segments might legitimately have

more predictive power than mid-trip segments, it is possible that over-weighting them

is doing more good than harm.

It would be reasonable to validate this assumption by using only segments of precisely 3

minutes' length, discarding a contiguous period of �leftover� modulus samples between

a random segment-pair.

7.3.5 Iterative segment re�nement

Another simplifying assumption was the use of segments of speci�ed (3-minute) constant

duration. This naturally has the following e�ects at the arbitrary boundaries:

� combines disparate travel types into single segments

� arbitrarily splits similar travel types, creating unneeded additional segments

A re�nement to this approach would be to use the boundaries de�ned by the initial

classi�er in order to re-partition the travel data. Given an initial set of characteristic

travel types, it would instead be possible to segment the trip at "type boundaries",

where travel transitions from one type to another. This would result in segments of

variable length, but of more consistent travel types. It is to be expected that this would

result in more accurate energy consumption prediction within each travel type.

7.3.6 Characterize as distributions

The eigentrips model characterizes each vehicle as a vector of characteristic power values

for each eigentrip, and each mission as a vector containing the sum of time spent in each

eigentrip. The prediction of energy for applying a vehicle to a new mission is the dot

product of the two vectors. This value does not give any re�ection of the prediction's

level of uncertainty, and it would be preferable to have some sense of the variance of

the prediction.

Many regression models (including LightGBM) support so-called "quantile regression",

allowing the model to output a prediction interval � eg, the 90th percentile model will
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return a prediction indicating a value higher than 90% of actual expected values. This

allows the user to intuitively understand the broadness of the prediction, as well as its

central value.

This intuitive simplicity does not transfer to the eigentrips model. Extracting the 90th

percentile energy prediction from a combination of vehicles and missions is not the dot

product of the 90th percentile characteristic powers with the vector of singular mission

times. It would instead require the computing the product of the nonparametric ran-

dom variable representing the distribution of characteristic powers, with the eigentrip

class probabilities, and determining the desired interval limits of the resulting product

distribution.

Given that a primary goal of the eigentrips model is simplicity, this is not a recom-

mended topic for future research. If a prediction interval is required, direct quantile

regression would be a simpler and more reliable path.

7.4 Modeling

7.4.1 Improved clustering

The clustering step was performed by means of the well-known K-means algorithm,

which returned a set of cluster centroids that were e�ective and useful, and which

provided an excellent basis to prove the concept. The number of clusters was selected

by inspection (the "elbow method"), and it would be informative to investigate more

re�ned methods.

Other clustering mechanisms which do not presume spherical, normally distributed

data would be likely to provide more representative centroids, and/or would lead more

directly to an optimal number of clusters. For example, density clustering is a well-

regarded process when the appropriate number of clusters is not known, however it

was deemed unsuitable since the dataset is continuous without sparse regions between

clusters.
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Finally, the simple method used to select centroids predictive of energy consumption

(adding weight to the energy consumption feature) does not necessarily select the op-

timal centroids for the following criteria:

1. minimize error from the selected fuel consumption model, but

2. are maximally discriminatory on fuel consumption for at least some vehicle fea-

tures

3. provide adequate representation for all vehicle-eigentrip pairs

Finding centroids that meet all of these criteria may require developing a clustering

strategy from �rst principles. A good �rst step would be to implement a GMM clusterer

from �rst principles, in such a way as to allow feature-weighting.

7.4.2 Probabilistic class membership

Multiclass classi�ers initially provide a probability of membership in every class, and

only provide a singular prediction by application of maximum likelihood. A preliminary

experiment with pro-rating segment time to *all* eigentrips by class probability was

found to increase segment MAPE by nearly 50%.

However, for segments which fall close to the boundary between two (or more) segments,

it seems reasonable that the segment's power contribution is likely to fall somewhere

between the characteristic powers of the nearest segments. It might therefore be rea-

sonable to assign the segment a blended contribution to energy consumption, weighted

by the fractional probability of its nearest eigentrips. Since there is no requirement that

a travel segment be characterized by whole numbers of eigentrips, it would be entirely

acceptable to use multiple fractional membership, if it were found to reduce error.

7.4.3 Prediction error and missing features

Evaluating the actual operation associated with clusters that have the highest predictive

error will be an excellent starting point for determining whether additional features are
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needed to improve accuracy.

7.4.4 Characteristic power by vehicle model

Predictions are executed by multiplying the number of eigentrips by the characteristic

eigentrip power as calculated for each individual vehicle. It would be valuable to have

an understanding of the model's accuracy when energy consumption is predicted by

vehicle model or category, rather than by speci�c vehicle. Figure 17 shows the spread

of characteristic power values within each vehicle category in the study. It appears

that each category's power is relatively consistent, in spite of each category containing

several models with di�erent performance characteristics.

7.5 Data and Features

7.5.1 Data requirements

This model has been demonstrated to generalize quite well, even when trained on only

10% of the available data. An interesting exploration would be to evaluate how much

log data is required to accurately characterize each mission pro�le.

Additionally, when a new vehicle type is added to the �eet, it would be valuable to

know how much logging (and of what sorts of travel) should be conducted before its

power consumption characteristics are su�ciently well known for use with this model.

7.5.2 High-quality energy input data

As described in sections 2.3.2 and 3.3, the fuel and electrical consumption data logged

for this project was not of ideal quality. It would be an excellent extension to this work

to evaluate its accuracy against target energy data of known accuracy. To that end,

future work would be well-served by a logger-data corpus that includes:

� time-integrated fuel-�ow (IE, total fuel since last sample) OR

� fuel-�ow sampled at 1s resolution or better, OR

83



� all PIDs necessary to accurately calculate fuel �ow, such as MAF and commanded

air-fuel equivalence ratio

Additionally, in �eets where vehicle fuelling is controlled and monitored through a per-

vehicle card system, it would be instructive to cross-check logger consumed-fuel totals

against actual pumped-fuel totals.

For EVs, charging totals could be compared to consumption totals to evaluate accuracy

and charge-discharge e�ciency.

7.5.3 Road grade

Road grade has an obvious impact on power requirements, and can be expected to

illustrate a signi�cant di�erence in energy consumption between conventional vs hybrid

or electric vehicles. A reliable road-grade feature would be an excellent addition to this

study.

Positive and negative vertical speed features were calculated from the available GPS

data. Unfortunately, the altitude feature was completely missing from a signi�cant

fraction of travel data. The feature was informative, improving predictive error from

45% to 35% in spite of large gaps in coverage, and the inherently low precision of the

GPS altitude signal.

Since the horizontal accuracy of GPS is better than vertical, consideration was given to

the idea of extracting elevation data from an open elevation dataset, such as NRCan's

High Resolution Digital Elevation Model [81], based on the vehicle's reported coor-

dinates. A preliminary investigation of this technique showed improvement, but still

yielded an unfortunately high fraction of impossible grades, perhaps due to a failure of

the terrain dataset to account for the signi�cant amount of grade smoothing involved

in road building in the Victoria area. This method showed some potential, but was felt

to be a large source of complexity for an unknown amount of predictive power; it may

merit future study, but is neglected in this work.

The best realistic source for road grade would be a barometric altimeter. For example,
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The Freematics open-hardware logger provides for the direct integration of external

sensors [82]. It would also be an interesting side project to determine whether the

OBD2 PID 0x133 (barometric pressure) [83] has su�cient precision to be used for a

road grade calculation.

7.5.4 Features to support other vehicle types

Prediction was less precise than anticipated for the high-tech, high-e�ciency vehicles.

In particular:

� Prediction was poor for the mild HEVs. Investigation will be required to deter-

mine what additional features are required to capture hybrid performance, such as

HV battery state, or additional kinetic features related to stop-and-go behaviour

that could be impacted by regenerative braking.

� The BEV had a very wide range of error. Higher-resolution power data will be

required, but they might also bene�t from additional features indicating stop-

and-go performance.

� If multi-fuel vehicles become common, a kinetic feature will be needed that can

di�erentiate the circumstances under which they will switch from one energy

source to the other. EG, total travel distance this day, or since last charge would

probably work well for PHEVs.

7.5.5 Other features

There are other known/predictable factors that might be suspected to have a signi�cant

impact on fuel consumption, although most of them would present substantial data-

collection challenges. Examples include:

� payload, particularly in heavy vehicles. It could be estimated given road grade

and high-resolution torque and acceleration.

� di�erent drivers, subject to privacy concerns

� accessory load
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� environmental load

� vehicle maintenance status

� road type, perhaps inferred from GIS data

� tra�c density by location and time-of-day, perhaps from a data source such as

Google Maps

� rigorous collection of vehicle sub-model and trim level

7.6 Applications

The originally envisioned application was evaluating re-allocation of existing vehicles,

and evaluating procurement decisions for additional copies of existing known �eet ve-

hicles. This subsection addresses additional potential applications.

7.6.1 Real-time allocation

It would be reasonable for a booking system to respond to a request for a pool-vehicle

by preferentially assigning the vehicle which is most energy-e�cient (or most GHG-

e�cient) for the speci�c task at hand. The proposed system is simple enough to be

implemented in a browser-based booking application, allowing the back-end to be sim-

pli�ed to a simple database lookup for availability, potentially requiring no additional

custom back-end software development.

7.6.2 Information sharing

If multiple municipalities (or other organizations) established a shared set of eigentrip

de�nitions, it would allow them to share information about their vehicles and their

missions.

Vehicle information sharing would allow organization A to evaluate the local perfor-

mance of a vehicle model owned by organization B.

On the other hand, sharing mission information sharing might highlight opportunities

to improve operational e�ciency. For example, organization A's parking enforcement
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mission might have a much more e�cient eigentrip pro�le, as its new optical license

plate reading equipment allows it to spend a much higher portion of its time cruising

rather than idling. The improved energy performance might be su�ciently impressive

to encourage organization B to acquire the same equipment, solely to save the associated

vehicle emissions.

7.6.3 Connected Vehicles

The advent of fully-connected vehicles (e.g., Tesla and other new EV manufacturers)

has potential to provide a ready source of detailed, high-resolution vehicle performance

data. It would be quite simple for a manufacturer to publish real-world samples of

operations logs, allowing potential buyers to evaluate mission-vehicle energy and GHG

performance without any need to purchase an evaluation copy.

It would also be reasonable to establish a universal set of eigentrips, allowing man-

ufacturers to publish statistically veri�able real-world performance statistics for their

vehicles.

Having new vehicles providing logger information by default would provide other op-

portunities when connected to a power-vs-mission analysis. For example, departure

from manufacturer-published vehicle performance statistics could trigger owner alerts,

as a potential indication of required maintenance.
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A Logger features

Table 14: CRD FleetCarma logger features

Feature Unit Comment

Absolute Load [%]
Air Conditioning Power [W]
Altitude [m] GPS
C2 Input Voltage [V]
Charge Latitude [deg]
Charge Longitude [deg]
Engine RPM [RPM]
GpsAlt (m)
GpsLat (deg)
GpsLon (deg)
HDOP
HV Battery Current [A]
HV Battery SOC [%]
HV Battery Voltage [V]
Heater Power [W]
Is Charging [bool]
Is Driving [bool]
Latitude [deg] GPS
LoggerName
Longitude [deg] GPS
MAF [g/sec]
NumberOfSatellites GPS
OAT [degC]
Pck
Signal #131 Speed
Start Time (UTC)
Time (UTC)
Timestamp (ms)
Vehicle Speed [km/h]
Vin
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B Embodied energy and Fuel Intensity

This is a discussion of assumptions and sources needed to convert life-cycle analysis

(LCA) �gures by Elgowainy et al [16] to apply study-contemporaneous and forecasted

fuel intensities for BC. Detailed column calculations are shown for 2018 in table 15 and

for 2030 in table 16.

B.0.1 Vehicle assumptions

Elgowainy's (reasonable) PHEV e�ciency �gure was not supported; to properly appor-

tion emissions to gasoline and BC grid electricity, Elgowainy's �gure was decomposed

and found to imply an operational regime of 27.1% in BEV mode for 2018, and at

28.0% BEV mode in 2030.

In order to give a fair apples-to-apples comparison, the BEV90 was given the full lifetime

travel distance of 286,000 km, di�ering from Elgowainy's treatment, which amortized

the vehicle' manufacturing emissions over a much shorter lifetime travel distance.

B.0.2 Legend for LCA tables

Legend for tables 15 and 16:

� MPGGE: miles per gallon, gasoline equivalent, taken directly from Elgowainy

� Le/100km: MPGGE directly converted to metric Gasoline-equivalent litres per

100km

� Fuel Intensity: assumptions and sources are discussed in the remainder of this

section

� Tailpipe: total lifetime tailpipe emissions, at Elgowainy's assumption of a 15-year

vehicle life of 286,000 km (178,000 miles)

� Vehicle: total vehicle manufacturing and decommissioning emissions

� Lifetime: sum of Tailpipe and Vehicle �elds

� Amortized: Lifetime emissions, divided by lifetime travel distance.
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Table 15: Calculations to apply BC intensities to 2018 vehicle LCA

ICEV HEV PHEV35 FCEV BEV90

E�ciency (MPGGE) 26.2 36.5 53.7 54.1 100
(Le/100km) 8.98 6.44 4.38 4.35 2.34
(MJ/km) 3.04 2.18 1.48 1.47 0.793

Fuel Intensity (gCO2e/MJ) 88.1 88.1 64.9 5. 2.5
Emission (gCO2e/km) 268 192 96.3 7.37 1.98
Tailpipe (tCO2e) 76.8 55.1 27.6 2.11 0.568
Vehicle (tCO2e) 7.78 8.2 9.4 11.7 7.9
Lifetime (tCO2e) 84.6 63.3 37 13.8 8.47
Amortized (gCo2e/km) 295 221 129 48.2 29.6
Battery-mode (fraction) 0 0 0.271 0 1

Table 16: Calculations to apply BC intensities to 2030 vehicle LCA

ICEV HEV PHEV35 FCEV BEV90

E�ciency (MPGge) 34.5 53.5 72 72 120
(Le/100km) 6.82 4.4 3.27 3.27 1.97
(MJ/km) 2.31 1.49 1.11 1.11 0.667

Fuel Intensity (gCO2e/MJ) 70.5 70.5 51.1 1.18 1.11
Emission (gCO2e/km) 163 105 56.5 1.31 0.74
Tailpipe (tCO2e) 46.6 30.1 16.2 0.375 0.212
Vehicle (tCO2e) 6.9 7.1 7.6 9.5 6.4
Lifetime (tCO2e) 53.5 37.2 23.8 9.88 6.61
Amortized (gCo2e/km) 187 130 83.1 34.5 23.1
Battery-mode (fraction) 0 0 0.28 0 1

� Battery-mode: Fraction of time that PHEV is assumed to be operating from grid

power

B.0.3 Intensity assumptions - 2018

Gasoline: The MOE published a 2018 intensity of 88.1 g CO2e/MJ [84].

BC grid power: BC Hydro's published intensity of 2.50 g CO2e/MJ for grid power

is the average of internal generation, and that purchased from independent power pro-

ducers [85].

Hydrogen fuel: For the small volumes required by the current low adoption rates for

FCEVs, it is reasonable to assume a carbon intensity for H2 gas of 5.0 g CO2e/MJ. This

�gure is based on the energy requirements for small-scale electrolysis [86] at BC Hydro's

grid power intensity, and short-range transportation in high-pressure tube trailers [87].

At higher volumes, it would in the short term likely be necessary to import hydrogen
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produced by steam-methane reformation, at a probable intensity of 85.3 g CO2e/MJ

[88].

B.0.4 Intensity assumptions - 2030

The following forecasts were were used for 2030 fuel carbon intensities.

Gasoline: 70.51 g CO2e/MJ as required under the BC Renewable & Low Carbon Fuel

Requirements Regulation [9].

BC Hydro grid electricity: 1.11 g CO2e/MJ. In the absence of any public goal or

regulatory target, it seems reasonable to expect to use the intensity of BC Hydro's

directly owned facilities; on the assumption that there will be pressure on external

independent power producers to �nd low-carbon power sources, or require them to

purchase o�sets [85]. This will vary depending on the level of import/export trade,

any changes in the associated carbon accounting practices, and the amortized emission

associated with the Site C hydroelectric project.

Hydrogen fuel: Schmidt et al [89] suggest that H2 electrolysis e�ciency will not

improve signi�cantly. However, the same work states that a solid-oxide electrolyser can

take much of its input energy in the form of heat, and can deliver electrical e�ciencies

in excess of 100%. The assumed 2030 intensity of 1.18 g CO2e/MJ for H2 gas [87] is

a best-case assumption, predicated on the existence of an SOEC plant with a source

of zero-impact industrial heat, and fully powered by electricity at BC Hydro's internal

grid power intensity.
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