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Abstract

In this thesis, a general methodology for generating representative load cycles for arbitrary monohull
surface vessels is developed. The proposed methodology takes a hull geometry and propeller placement, vessel
loading condition, vessel mission, and weather data (wind, waves, currents) and, from that, generates the
propeller states (torque, speed, power) and steering gear states (torque, speed, power) necessary to accomplish
the given mission. The propeller states, together with the steering gear states, thus define the load cycle
corresponding to the given inputs (vessel, mission, weather). Some key aspects of the proposed methodology
include the use of a surge-sway-yaw model for vessel dynamics as well as the use of surrogate geometries for
both the hull and propeller(s). What results is a methodology that is lean (that is, it requires only sparse
input), fast, easy to generalize, and reasonably accurate.

The proposed methodology is validated by way of two separate case studies, case A and case B (both
involving distinct car-deck ferries), with case A being a more ideal case, and case B being a less ideal case
given the methodology proposed. In both cases, the load cycle generation process completed in greater than
real time, achieving time ratios (simulated time to execution time) of 3.3:1 and 12.8:1 for cases A and B
respectively. The generated propeller and steering gear states were then compared to data collected either at
sea or from the vessels’ documentation. For case A, the propeller speed, torque, and power values generated
were all accurate to within ±3%, ±7%, and ±10% of the true values, respectively, while cruising, and accurate
to within ±14%, ±36%, and ±42% of the true values, respectively, while maneuvering. In addition, the
steering gear powers generated in case A were consistent with the capabilities of the equipment actually
installed on board. For case B, the propeller speed, torque, and power values generated were all accurate to
within ±2%, ±8%, and ±9% of the true values, respectively, while cruising, and accurate to within ±28%,
±45%, and ±66% of the true values, respectively, while maneuvering. In case B, however, the steering gear
powers generated were questionable. Considering the results of the validation, together with the rapid process
runtimes achieved and sparse inputs given, one may conclude that the methodology proposed in this thesis
shows promise in terms of being able to generate representative load cycles for arbitrary monohull surface
vessels.
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Nomenclature

Aabeam abeam projected area (of the wetted hull)

Ab propeller blade face area

ai amplitude of ith wave component

Aij ijth element of MA (added mass-inertia)

As propeller swept area

Awetted wetted surface area

Axb( ) transverse cut area

Axzw abeam projected area (or sail area) of vessel
superstructure

Ayzw lengthwise projected area (or sail area) of vessel
superstructure

Azb( ) waterplane cut area

B vessel beam

B11V linear damping (surge-surge)

B22V linear damping (sway-sway)

B66V linear damping (yaw-yaw)

{b} body-fixed frame

bsteer steering gear angular damping

CA( ) hydrodynamic Coriolis-centripetal matrix

Cb block coefficient

C2D
d ( ) 2D drag coefficient

Cf friction drag coefficient
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Cfoul,hull hull fouling coefficient

Cinertia inertia scalar

CKQ,fouling( ) propeller fouling scalar on KQ

CKQ,nozzle( ) propeller nozzle scalar on KQ

CKQ,θ( ) inflow angle scalar on KQ

CKT ,fouling( ) propeller fouling scalar on KT

CKT ,nozzle( ) propeller nozzle scalar on KT

CKT ,θ( ) inflow angle scalar on KT

Cm midship section coefficient

Cp prismatic coefficient

CRB( ) rigid-body Coriolis-centripetal matrix

CV viscous drag coefficient

Cw wave-making drag coefficient

Cwp waterplane coefficient

CX wind drag coefficient (surge)

CY wind drag coefficient (sway)

D propeller diameter

D linear damping matrix

Dn( ) non-linear damping matrix

D( ) total damping matrix

D( ) wave spreading function

{e} earth-centered, earth-fixed frame

η vessel position / orientation state vector -OR-
sea surface elevation -OR- Rayleigh damping
coefficient
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E[uS ] expected Stokes drift over vessel draft (relative
to earth)

fi frequency of ith wave component

Fix xb component of propeller i thrust

Fiy yb component of propeller i thrust

fp peak wave frequency

Fr Froude number

~Fthrust solution to linear thrust problem

Fun total non-linear drag force (surge)

FunV non-linear drag force (surge), viscous component

FunW non-linear drag force (surge), wave-making com-
ponent

Fvn total non-linear drag force (sway)

g acceleration due to gravity

H wave height

Hs significant wave height

I3×3 3× 3 identity matrix

Ig vessel inertia tensor about the centre of gravity

Iij ijth element of Ig (inertia tensor)

Ipropshaft propeller shaft moment of inertia

Isteer steering gear moment of inertia

IObxx roll inertia (about Ob)

IObyy pitch inertia (about Ob)

IObzz yaw inertia (about Ob)

J propeller advance ratio
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J∗ critical propeller advance ratio

k wave number

K form factor

KQ propeller torque coefficient

KT propeller thrust coefficient

l longitude

L vessel length

m vessel mass (displacement)

MA added mass-inertia matrix

MRB rigid-body mass-inertia matrix

Mrn total non-linear drag moment (yaw)

µ latitude -OR- dynamic viscosity

N1( ) latitudinal (or vertical) radius of curvature of
the earth

nblades number of blades (propeller)

{n} north-east-down frame

ν body-fixed velocities vector (relative to earth)

νr body-fixed velocities vector (relative to water)

νthruster,fluid velocity vector (thruster relative to fluid)

Nv linear damping (yaw-sway)

Ob origin of {b}

Oe origin of {e}

ω wave angular frequency

ωdesign propeller design speed

xiii



ωprop propeller turning rate

ωsteer steering gear turning rate

On origin of {n}

p roll rate (relative to earth)

P propeller pitch

pc roll rate of water (relative to earth)

φ Euler angle 1

φi phase shift of ith wave component

ψ vessel heading -OR- Euler angle 3

q pitch rate (relative to earth)

qc pitch rate of water (relative to earth)

Qprop propeller torque

Qsteer steering gear torque

r yaw rate (relative to earth)

rc yaw rate of water (relative to earth)

re equatorial radius of the earth

Re Reynolds number

rbg vector (in {b}) from the vessel’s centre of gravity
to Ob

ρ density

rp polar radius of the earth

rps propeller speed [rev/s]

rr yaw rate (relative to water)

rrw yaw rate (relative to wind)

S( ) cross-product operator (or skew operator)
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σ2
η wave height variance

sx x position (in {b}) of the centroid of Axzw

sy y position (in {b}) of the centroid of Ayzw

t time

T vessel draft -OR- period

τcontrol control forces and moments vector

τnldrag non-linear drag forces and moments vector
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θ Euler angle 2 -OR- wave heading

θc current heading

θflow,i propeller i inflow angle

θp dominant wave heading

θsteer,i angle (in {b}) of propeller i thrust

θw wind heading

Tmission mission duration

Tp peak wave period

Tprop characteristic period (propeller dynamics)

Tprop,i magnitude of propeller i thrust

Tsteer characteristic period (steering gear dynamics)

Tsurge characteristic period (surge dynamics)

Tsway characteristic period (sway dynamics)

Tyaw characteristic period (yaw dynamics)

u surge velocity (relative to earth)

uc surge velocity of water (relative to earth)
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Introduction

Motivation and Intent

According to the United Nations 2017 Review of Maritime Transport [Hoffmann and Sirimanne, 2017],
the vast majority of global trade (more than 80% by volume and 70% by value) is still seaborne. In addition,
the most recent International Maritime Organization (IMO) marine pollution (MARPOL) regulations [IMO,
2011] have imposed more stringent restrictions on vessel emissions, thus placing further pressure on the sector
to achieve more efficient means of propulsion and power generation. For example, the Tier III emissions
regulations of MARPOL Annex VI came into effect on 1 January 2016. These regulations restrict, among
other things, nitrogen oxide (NOx) emissions for installed diesel engines (with rated power greater than 130
kW) to between 3.4 and 2.0 g/kWh, depending on engine rated speed [IMO, 2018b]. Even more stringent
restrictions apply in areas defined as an emission control area [IMO, 2018a]. This is a significant reduction
from both the Tier I regulations of 1 January 2000, which limited NOx emissions to between 17.0 and 9.8
g/kWh, and the Tier II regulations of 1 January 2011, which limited NOx emissions to between 14.4 and
7.7 g/kwh. With respect to enforcement, failure to comply with Annex VI can result in denial of an engine
international air pollution prevention certificate (which, in turn, can affect a vessel’s eligibility for certification
under organizations such as Lloyds Register, the American Bureau of Shipping, and Det Norske Veritas -
Germanischer Lloyd) as well as fines [DNV-GL, 2015]. For this reason, design of efficient propulsion and
power generation systems for seagoing vessels is a problem of practical concern.

Unfortunately, the magnitude of the reductions in emissions limits from Tier II to Tier III means that,
in order to be compliant, engine tuning alone will no longer suffice; new technologies must be embraced.
Fortunately, several options exist, such as [DNV-GL, 2015]

� dual fuel technology

� selective catalytic reduction technology

� exhaust gas recirculation technology

� hybrid electric technology

� hybrid fuel cell technology

One such option, hybrid electric, is of particular note since advances in this technology (driven largely
by advances in the automotive sector; see, for instance, [Paykani and Shervani-Tabar, 2011,Alvarez et al.,
2010, Sioshansi and Denholm, 2009, Fontaras et al., 2008]) have led to an increase in its adoption in the
marine sector [Peters, 2017]. In addition, since hybrid electric technology in the automotive sector continues
to exhibit both decreasing cost and increasing performance trends [German, 2015], it stands to reason that
the same trends should emerge in the marine sector as adoption of the technology becomes more widespread.
Indeed, it has already been shown in [Geertsma et al., 2017,Dedes et al., 2012] that hybridization of marine
propulsion can lead to significant reductions in both fuel consumption and emissions. For this reason, an
investigation of the applicability of hybrid electric technology to arbitrary seagoing vessels is immediately
relevant.

Of note in the research cited above is a general structure; that is, “given a load cycle, an optimization of
the plant/controls was performed”, etc. Some examples of current Canadian research having this general
structure are [Chen et al., 2018,Chen and Dong, 2018,Manouchehrinia et al., 2018a,Manouchehrinia et al.,
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2018b]. Given this general structure, it follows that the ability to generate representative load cycles for
arbitrary seagoing vessels would be valuable to researchers as well as industry. Therefore, the intent of this
thesis is to develop a general methodology for generating representative load cycles for arbitrary monohull
surface vessels.

Definitions

Before proceeding further, a number of terms important to this thesis should be clearly defined

1) surface vessel;

2) monohull vessel;

3) mission cycle;

4) drive cycle; and,

5) load cycle

A surface vessel, for the purpose of this thesis, is taken to mean a marine vessel that rides on the surface
of the water by means of buoyancy (i.e., a displacement vessel). This is different from a planing vessel, which
rides by way of hydrodynamic lift. More specifically, a monohull surface vessel is, as the name suggests,
a surface vessel whose submerged geometry is a single hull (that is, the submerged geometry is simply
connected). This differs from examples like a catamaran or a trimaran, as these designs have submerged
geometries consisting of two and three distinct hulls respectively (that is, the submerged geometries are not
simply connected). For illustration, see the following

Figure 1: Transverse views of a monohull, catamaran, and trimaran design (adapted from [Aveek, 2009])

A mission cycle defines a vessel’s mission; that is, where it needs to be and when it needs to be there.
Since the position and orientation of a vessel can be fully defined by latitude, µ, longitude, l, and heading, ψ,
it follows that a vessel’s mission cycle can be described in two ways

1) by a set of three functions, µ(t), l(t), and ψ(t); or,

2) by a sequence of n waypoints and headings, {(ti, µi, li, ψi)}

where, in practice, description 2 is most common.
A drive cycle defines how a vessel must be driven in order to accomplish a given mission cycle. As such,

the drive cycle of a vessel is a set of velocities which define how the vessel must move through space. Since
the mission cycle involves latitude, longitude, and heading, it suffices for the drive cycle to include velocities
in surge (sailing ahead/forward), u, sway (sailing side-to-side), v, and yaw (turning in place), r; see figure 1.1
for illustration. Therefore, a vessel’s drive cycle can be described in two ways

1) by a set of three functions, u(t), v(t), and r(t); or,

2) by a sequence of n vectors,
{[
ui vi ri

]T}
, corresponding to discrete times ti
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A load cycle defines the rate at which a vessel must do work in order to achieve a given drive cycle. This
rate of work, or power, can be broken down into two main components

1) propulsion; and,

2) steering

Propulsion power can be described any number of ways, for example at the main engine(s) or after a particular
gearbox or at the propeller(s). This thesis, however, will focus specifically on the later; that is, describing
propulsion power by way of torque, Qprop, and turning rate, ωprop, at the propeller(s). Steering power is
described in a similar fashion; by way of torque, Qsteer, and turning rate, ωsteer , at the steering gear. Thus, a
vessel’s load cycle can be described in two ways

1) by a set of two functions, Qprop(t), ωprop(t), for each propeller, and a set of two functions, Qsteer(t),
and ωsteer(t), for each steering gear; or,

2) by a collection of sequences of n states, {(ti, Qprop,i, ωprop,i)}, with one sequence per propeller, and a
collection of sequences of n states, {(ti, Qsteer,i, ωsteer,i)}, with one sequence per steering gear

General Methodology

Given the definitions of mission cycle, drive cycle, and load cycle presented above, the following general
methodology for mapping from mission cycle to load cycle is here proposed

1) kinematics; that is, generating an appropriate drive cycle from a given mission cycle; then,

2) kinetics; that is, generating appropriate control forces and moments so as to achieve the given drive
cycle; then,

3) propeller dynamics; that is, generating appropriate propeller states so as to produce the required control
forces and moments; then,

4) steering dynamics; that is, generating appropriate steering gear states from the propeller states

This process can be illustrated, in flowchart form, as per figure 2. In the chapters that follow, the foundational
theory upon which this general methodology is constructed will be presented, the specifics of implementation
will be handled, and then a few case studies, including results, will be summarized.
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Figure 2: General methodology - process flowchart
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Chapter 1

Foundational Theory

In this chapter, the foundational theory, upon which the process illustrated in figure 2 will be constructed,
is presented. First, the theory of mapping from a mission cycle to an equivalent drive cycle is given, including
definitions of a number of requisite frames of reference. The equations governing vessel dynamics are then
stated in six degrees of freedom, as per [Fossen, 2011], before subsequently being reduced to the case of
surge-sway-yaw, which is the case assumed in this thesis. Then, surrogate geometries for a vessel’s hull
and propeller(s) are introduced and a number of relevant general results are derived. Finally, a theory for
extracting wave drift from a given sea state is developed.

1.1 Mapping from Mission Cycle to Drive Cycle

In order to generate a load cycle from a given mission cycle, one must first translate the mission cycle
into an appropriate drive cycle. This section will detail how one can do this in general.

1.1.1 Frames of Reference

In order to express the dynamics of a seagoing vessel in a sufficiently detailed manner, it is necessary
to make use of a number of different frames of reference. In this subsection, the body-fixed frame, {b},
north-east-down frame, {n}, and earth-centered, earth-fixed frame, {e}, will all be defined.

Body-Fixed Frame

The body-fixed frame is, as its name suggests, a Cartesian frame that is affixed to the vessel. This frame
may be illustrated as follows

5



Figure 1.1: Body-fixed frame (adapted from [Brosen, 2006])

where Ob is the frame origin, conventionally placed miships on the waterplane, xb is oriented positive forward,
yb is oriented positive starboard, and zb is generated by xb × yb. These axes are commonly referred to as
“surge”, “sway”, and “heave” respectively. Rotations about these axes are commonly referred to as “roll”,
“pitch”, and “yaw” respectively. Finally, the velocities along/about these axes are denoted by u, v, w, p, q,
and r respectively (see figure 1.1).

North-East-Down Frame

The north-east-down frame (NED) is an earth-fixed Cartesian frame set in the plane tangent to the earth
at the position of the vessel (see figure 1.2 for illustration). Its component axes are defined such that xn is
oriented due north, yn is oriented due east, and zn is generated by xn × yn. Finally, the origin of {n}, On, is
defined such that it is coincident with Ob.

Earth-Centered, Earth-Fixed Frame

The earth-centered, earth-fixed frame (ECEF) is, as its name suggests, an earth-fixed Cartesian frame
with origin, Oe, at the centre of the earth. Its component axes are defined such that ze is the vector from Oe
to the north pole, xe is the vector from Oe to the intersection of the equator and the prime meridian1, and ye
is generated by ze × xe. The following illustrates both the ECEF and NED frames

1The prime meridian is the meridian of longitude which passes through the British Royal Observatory in Greenwich, England
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Figure 1.2: ECEF and NED frames (adapted from [Fossen, 2011])

Figure 1.2 also illustrates two other important concepts, namely

1) any arbitrary position on the surface of the earth can be defined using two angles: latitude, µ, and
longitude, l; and,

2) the earth is not perfectly spherical, but rather is more of an ellipsoid (as evidenced in figure 1.2 by the
fact that span(zn) need not contain Oe). N1( ) in figure 1.2 denotes the latitudinal (or vertical) radius
of curvature of the earth at latitude µ, and is defined as follows

N1(µ) =
r2
e√

r2
e cos2(µ) + r2

p sin2(µ)
(1.1)

where the equatorial and polar radii of the earth are given by

re = 6378137 m

rp = 6356752 m
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1.1.2 Mission to Drive Formula

Suppose one has values for dµ
dt and dl

dt . From this, it follows that2

dxn
dt

= N1(µ)
dµ

dt
(1.2a)

dyn
dt

= N1(µ) cos(µ)
dl

dt
(1.2b)

In addition, suppose one has values for ψ and dψ
dt as well, where ψ is the angle from xn to xb in the plane

span(xn, yn) (i.e., the vessel’s heading). From this, obtaining values for u, v, and r is a matter of rotating
from {n} to {b} as follows [Fossen, 2011]uv

r

 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

dxndtdyn
dt
dψ
dt

 (1.3)

1.2 Vessel Dynamics Equations - Definitions

One of the central objects of this thesis is a means of translating a given drive cycle into the corresponding
forces and moments required to propel the vessel as prescribed. For this purpose, the vessel dynamics equations
of [Fossen, 2011] are here introduced. These equations can be stated, in vector form, as follows

MRB ν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body dynamics

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamics

+ g(η) + g0︸ ︷︷ ︸
hydrostatics

= τcontrol + τwind + τwaves︸ ︷︷ ︸
external forces

(1.4)

where the state vectors η, ν, and νr express

η =
[
xe ye ze φ θ ψ

]T
(1.5a)

ν =
[
u v w p q r

]T
(1.5b)

νr =
[
u− uc v − vc w − wc p− pc q − qc r − rc

]T
(1.5c)

The various equation terms will be clearly defined in the following subsections.

1.2.1 State Vectors

The three state vectors, η, ν, and νr describe, respectively, the global position and orientation of the
vessel, the body-fixed velocities and angular velocities of the vessel, and the body-fixed velocities and angular
velocities of the vessel relative to the water. Their sub-vectors are as follows

1)
[
xe ye ze

]T
is a vector describing the position of Ob in {e};

2)
[
φ θ ψ

]T
is a vector describing the Euler angle sequence to rotate from {n} to {b};

3)
[
u v w

]T
is a vector of body-fixed velocities in surge, sway, and heave (see figure 1.1 for illustration);

4)
[
p q r

]T
is a vector of body-fixed angular velocities about surge, sway, and heave (i.e., roll, pitch,

and yaw, see figure 1.1 for illustration);

5)
[
u− uc v − vc w − wc

]T
is a vector, in {b}, of the velocities in surge, sway, and heave of the vessel

relative to the water, with the ( )c being the respective velocities of the water; and,

6)
[
p− pc q − qc r − rc

]T
is a vector, in {b}, of the angular velocities in pitch, roll, and yaw of the

vessel relative to the water, with the ( )c being the respective angular velocities of the water.
2Of course, inputs here must be given here in terms of rad and rad/s, not deg and deg/s.
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1.2.2 Mass-Inertia Matrices

Rigid-Body Mass-Inertia Matrix

The rigid-body mass-inertia matrix, MRB , is defined as follows

MRB =

[
mI3×3 −mS(rbg)

mS(rbg) Ig −mS2(rbg)

]
(1.6)

where m is the mass (or displacement) of the vessel, rbg is the vector, in {b}, from the vessel centre of gravity
(CG) to Ob, I3×3 is the 3× 3 identity matrix, Ig is the vessel inertia tensor about CG given by

Ig =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (1.7)

and S( ) is the cross-product operator (or skew operator) defined as follows

S(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (1.8)

Note that

S(a)b =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

b1b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 = a× b

and Sn( ) = S( )S( ) . . .S( )︸ ︷︷ ︸
n times

.

Added Mass-Inertia Matrix

The added mass-inertia matrix, MA, is a matrix of the form

MA =


A11 A12 . . . A16

A21 A22 . . . A26

...
...

. . .
...

A61 A62 . . . A66

 (1.9)

The computation of these terms will be detailed in the section concerning the surrogate hull geometry.

1.2.3 Coriolis-Centripetal Matrices

Rigid-Body Coriolis-Centripetal Matrix

The rigid-body Coriolis-centripetal matrix, CRB(ν), can be expressed as follows (Theorem 3.2 of [Fossen,
2011])

CRB(ν) =

[
03×3 −S(mI3×3ν1 −mS(rbg)ω)

−S(mI3×3ν1 −mS(rbg)ω) −S(mS(rbg)ν1 + Ig −mS2(rbg)ω)

]
(1.10)

where ν1 =
[
u v w

]T
and ω =

[
p q r

]T
.
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Hydrodynamic Coriolis-Centripetal Matrix

As per Theorem 3.2 of [Fossen, 2011], the hydrodynamic Coriolis-centripetal matrix, CA(νr), can be
expressed as follows

IF

MA =

[
Aul Aur

All Alr

]
THEN

CA(νr) =

[
03×3 −S(Aulνr1 + Aurνr2)

−S(Aulνr1 + Aurνr2) −S(Allνr1 + Alrνr2)

]
(1.11)

where νr1 =
[
u− uc v − vc w − wc

]T
and νr2 =

[
p− pc q − qc r − rc

]T
.

1.2.4 Damping Matrix

The damping matrix, D(νr), is constructed from the superposition of two component matrices: a linear
damping matrix, D, and a non-linear damping matrix, Dn(νr). That is

D(νr) = D + Dn(νr) (1.12)

Linear Damping Matrix

The linear damping matrix is a matrix of the form

D =


B11V 0 0 0 0 0

0 B22V 0 −Yp 0 −Yr
0 0 B33V +B33 0 −Zq 0
0 −Kv 0 B44V +B44 0 −Kr

0 0 −Mw 0 B55V +B55 0
0 −Nv 0 −Np 0 B66V

 (1.13)

where the diagonal terms are defined by equations 6.76 - 6.81 of [Fossen, 2011]. The off-diagonal terms are
cross-flow terms (for example, Yp is the linear damping coefficient in sway due to relative velocity component
p−pc) and they are not explicitly defined in [Fossen, 2011]. They will need to be either ignored, approximated,
or determined experimentally. More details on how the undefined terms will be handled in this thesis will be
presented later.

Non-Linear Damping Matrix

The non-linear damping matrix is a 6× 6 matrix whose non-zero terms are as follows

Dn11(νr) = X|u|u|u− uc| (1.14a)

Dn22(νr) = Y|v|v|v − vc|+ Y|r|v|r − rc| (1.14b)

Dn26(νr) = Y|v|r|v − vc|+ Y|r|r|r − rc| (1.14c)

Dn33(νr) = Z|w|w|w − wc| (1.14d)

Dn44(νr) = K|p|p|p− pc| (1.14e)

Dn55(νr) = M|q|q|q − qc| (1.14f)

Dn62(νr) = N|v|v|v − vc|+N|r|v|r − rc| (1.14g)

Dn66(νr) = N|v|r|v − vc|+N|r|r|r − rc| (1.14h)
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where each of the X,Y, Z,K,M,N terms are non-linear damping coefficients (for example, X|u|u is the
coefficient in surge due to relative velocity component u− uc). [Fossen, 2011] gives an explicit form for X|u|u
as follows

X|u|u =
1

2
ρAxCx (1.15)

where ρ is fluid density, Ax is the area of the submerged hull cross-section normal to xb, and Cx is the current
coefficient in surge. The current coefficient is related to wetted hull area, S, cross-section area, and friction
coefficient, Cf , in the following way

Cx =
S

Ax
Cf (1.16)

Similarly, Y|v|v and Z|w|w are given by

Y|v|v =
1

2
ρAyCy (1.17a)

Z|w|w =
1

2
ρAzCz (1.17b)

The remaining terms are not explicitly defined in [Fossen, 2011], and thus will need to be either ignored,
approximated, or determined experimentally. More details on how the undefined terms will be handled in
this thesis will be presented later.

1.2.5 Weight-Buoyancy and Trim Vectors

Weight-Buoyancy Vector

The weight-buoyancy vector, as its name suggest, captures the forces in {b} due to weight and buoyancy.
It is given as follows

g(η) =


(W −B) sin(θ)

−(W −B) cos(θ) sin(φ)
−(W −B) cos(θ) cos(φ)

−(ygW − ycbB) sin(θ) + (xgW − xcbB) cos(θ) cos(φ)
(zgW − zcbB) sin(θ) + (xgW − xcbB) cos(θ) cos(φ)
−(xgW − xcbB) cos(θ) sin(φ)− (ygW − ycbB) sin(θ)

 (1.18)

where W is force of weight, B is force of buoyancy, and
[
xcb ycb zcb

]T
is the vector from CB to Ob in {b},

with CB being the vessel’s centre of buoyancy.

Trim Vector

The trim vector captures forces in {b} due to ballast systems and fluid tanks. It is given as follows

g0 = g


0
0

−
∑
i ρiVi

−
∑
i ρiyiVi∑
i ρixiVi

0

 (1.19)

where g is acceleration due to gravity, ρi is the density of the fluid in tank i, Vi is the volume of fluid in tank

i, and
[
xi yi zi

]T
is the vector from the centroid of the fluid in tank i to Ob in {b}.
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1.2.6 External Force-Moment Vectors

The vectors τcontrol, τwind, and τwaves capture, respectively, the external forces and moments upon the
vessel due to thrusters, wind, and waves. Each of these vectors is expressed as follows

τ( ) =


Fu
Fv
Fw
Mp

Mq

Mr

 (1.20)

where the F ’s are forces and the M ’s are moments (for example, Fu is force in surge and Mr is moment in
yaw).

1.3 Vessel Dynamics Equations - Simplification

This thesis will not make use of the full six degrees of freedom of equation 1.4, but will instead reduce to
a three degrees of freedom, surge-sway-yaw model by invoking the following

w ≈ 0 p ≈ 0 q ≈ 0 φ ≈ 0 θ ≈ 0

That is, assume there is negligible motion in heave, roll, and pitch, and, as such, the Euler angles φ and θ
are negligibly small. This choice is made because, as per [Fossen, 2011], a surge-sway-yaw model is generally
used for dynamic-positioning, trajectory-tracking, and path-following applications. For the purpose of this
thesis, it is therefore judged that a surge-sway-yaw model strikes a good compromise between tractability and
accuracy. In addition, the current at any point on the surface of the earth is herein assumed to be irrotational.
As a result, the state vector νr is immediately reduced to

νr =
[
u− uc v − vc w − wc p q r

]T
The effects of these simplifying assumptions will be presented in the following subsections.

1.3.1 State Vectors

Since the dynamics of only surge, sway, and yaw are available under a surge-sway-yaw model, the state
vectors immediately collapse to the following

η∗ =
[
µ l ψ

]T
(1.21a)

ν∗ =
[
u v r

]T
(1.21b)

ν∗r =
[
u− uc v − vc r

]T
(1.21c)

with the reduced form of η∗ being defined as per [Fossen, 2011]. A consequence of these reductions in the
state vectors is that all other matrices and vectors that comprise equation 1.4 must also collapse in order to
remain dimensionally commensurate. That is, all 6× 6 matrices are reduced to 3× 3 by keeping only those
elements that are in the intersections of rows 1, 2, and 6 and columns 1, 2, and 6 (i.e., in the surge, sway, and
yaw rows/columns). In addition, only the 1st, 2nd, and 6th elements of g(η), g0, and the τ ’s are retained.
Finally, note that under a surge-sway-yaw model, the Euler angle ψ and the vessel’s heading (that is, the
angle from xn to xb in the plane span(xn, yn)) are necessarily the same thing.
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1.3.2 Mass-Inertia Matrices

Rigid-Body Mass-Inertia Matrix

Expanding the expression for MRB given in equation 1.6, collapsing to 3× 3 in the manner described
above, and then discarding zero terms yields the following

M∗
RB =

 m 0 −myg
0 m mxg

−myg mxg Izz +m(x2
g + y2

g)

 (1.22)

This can be expressed equivalently by

M∗
RB =

 m 0 −myg
0 m mxg

−myg mxg IObzz

 (1.23)

where IObzz is mass moment of inertia in yaw about Ob.

Added Mass-Inertia Matrix

The matrix MA reduces immediately to the following

M∗
A =

A11 A12 A16

A21 A22 A26

A61 A62 A66

 (1.24)

1.3.3 Coriolis-Centripetal Matrices

Rigid-Body Coriolis-Centripetal Matrix

Expanding the expression for CRB given in equation 1.10, collapsing to 3× 3 in the manner described
above, and then discarding zero terms yields the following

C∗RB(ν∗) =

 0 0 −mv −mxgr
0 0 mu−mygr

mv +mxgr −mu+mygr 0

 (1.25)

Hydrodynamic Coriolis-Centripetal Matrix

Expanding the expression for CA given in equation 1.11, collapsing to 3 × 3 in the manner described
above, and then discarding zero terms yields the following

C∗A(ν∗r ) =

 0 0 −A21ur −A22vr −A26r
0 0 A11ur +A12vr +A16r

A21ur +A22vr +A26r −A11ur −A12vr −A16r 0

 (1.26)

where ur = u− uc and vr = v − vc.

1.3.4 Damping Matrix

Linear Damping Matrix

The linear damping matrix reduces immediately to the following

D∗ =

B11V 0 0
0 B22V −Yr
0 −Nv B66V

 (1.27)
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Non-Linear Damping Matrix

The non-linear damping matrix reduces immediately to the following

D∗n(ν∗r ) =

−X|u|u|ur| 0 0
0 −Y|v|v|vr| − Y|r|v|r| −Y|v|r|vr| − Y|r|r|r|
0 −N|v|v|vr| −N|r|v|r| −N|v|r|vr| −N|r|r|r|

 (1.28)

1.3.5 Weight-Buoyancy and Trim Vectors

Weight-Buoyancy Vector

The weight-buoyancy vector collapses under surge-sway-yaw to

g∗(η∗) =

 (W −B) sin(θ)
−(W −B) cos(θ) sin(φ)

−(xgW − xcbB) cos(θ) sin(φ)− (ygW − ycbB) sin(θ)


However, since φ ≈ 0 and θ ≈ 0, it follows that sin(φ) ≈ 0 and sin(θ) ≈ 0 and therefore

g∗(η∗) ≈

0
0
0

 (1.29)

Thus, g∗(η∗) need not appear in the reduced equations for surge-sway-yaw.

Trim Vector

The trim vector collapses under surge-sway-yaw to

g∗0 = g

0
0
0

 (1.30)

Thus, g∗0 need not appear in the reduced equations for surge-sway-yaw.

1.3.6 External Force-Moment Vectors

The vectors τcontrol, τwind, and τwaves collapse under surge-sway-yaw to

τ∗( ) =

FuFv
Mr

 (1.31)

1.3.7 Reduced Governing Equations

As per the simplifications detailed above, equation 1.4 reduces, under surge-sway-yaw, to the following

M∗
RB ν̇

∗ + C∗RB(ν∗)ν∗︸ ︷︷ ︸
rigid-body dynamics

+ M∗
Aν̇
∗
r + C∗A(ν∗r )ν∗r + D∗(ν∗r )ν∗r︸ ︷︷ ︸

hydrodynamics

= τ∗control + τ∗wind + τ∗waves︸ ︷︷ ︸
external forces

However, for the sake of brevity, these equations will simply be stated as

MRB ν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body dynamics

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamics

= τcontrol + τwind + τwaves︸ ︷︷ ︸
external forces

(1.32)

with all subsequent references being references to the reduced matrices/vectors.
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1.4 Surrogate Geometry I - Wigley N43 Hull

In order to fully determine the environmental forces and moments upon a seagoing vessel, it is necessary
to define the geometry of the submerged hull. This, however, will vary from case to case depending on the
particular design of the vessel under consideration. Since this thesis seeks general results, a compromise
between accuracy, generality, and simplicity will therefore have to be struck. To that end, this thesis will
assume a Wigley N43 hull geometry, defined, in {b}, by the relatively simple equations [Sun et al., 2012]

y+(x, z) =
B

2

(
1−

(
2x

L

)2
)(

1−
( z
T

)2
)(

1 +
1

5

(
2x

L

)2
)

+ · · ·

B

2

( z
T

)2
(

1−
( z
T

)8
)(

1−
(

2x

L

)2
)4

for

{
x ∈

[
−L2 ,

L
2

]
z ∈ [0, T ]

(1.33a)

y−(x, z) = −y+(x, z) for

{
x ∈

[
−L2 ,

L
2

]
z ∈ [0, T ]

(1.33b)

where B is beam at the waterline, L is length at the waterline, T is draft, and y+(x, z) is the half-beam
measure at point (x, z). For example, for the case of a vessel having T < B

2 < L
2 , the N43 hull geometry can

be illustrated as per figures 1.3 - 1.6. Assuming this geometry then allows one to establish a number of useful
geometric properties, as detailed in the following subsections.

Figure 1.3: Wigley N43 hull waterplane cuts
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Figure 1.4: Wigley N43 hull transverse cuts

Figure 1.5: Wigley N43 hull longitudinal cuts
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Figure 1.6: Wigley N43 hull 3D view

1.4.1 Volumes and Areas

The displaced volume of the Wigley N43 geometry can be determined as follows

Vdisp(B,L, T ) =

∫ L
2

−L2

∫ T

0

∫ y+(x,z)

−y+(x,z)

dydzdx =
29144

51975
LBT ∼= 0.56073LBT (1.34)

which implies that the Wigley N43 geometry has a block coefficient, Cb, of about 0.56.
The area of an arbitrary waterplane cut can be determined as follows

Azb(z, L,B, T ) =

∫ L
2

−L2

∫ y+(x,z)

−y+(x,z)

dydx =
4LB

1575T 10

(
273T 10 − 113T 8z2 − 160z10

) ∼= · · ·
LB

T 10

(
0.69333T 10 − 0.28698T 8z2 − 0.40635z10

)
(1.35)

This then yields Azb(0, L,B, T ) ∼= 0.69333LB which, in turn, implies that the Wigley N43 geometry has a
waterplane coefficient, Cwp, of about 0.69.
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The area of an arbitrary transverse cut can be determined as follows

Axb(x, L,B, T ) =

∫ T

0

∫ y+(x,z)

−y+(x,z)

dydz =
2BT (L2 − 4x2)

165L8

(
75L6 − 196L4x2 + 960L2x4 − 1280x6

) ∼= · · ·
BT (L2 − 4x2)

L8

(
0.90909L6 − 2.37576L4x2 + 11.63636L2x4 − 15.51515x6

)
(1.36)

This then yields Axb(0, L,B, T ) ∼= 0.90909BT which, in turn, implies that the Wigley N43 geometry has a
midship section coefficient, Cm, of about 0.91. This then also implies a prismatic coefficient, Cp = Cb

Cm
, of

about 0.62.
The abeam projected area of the hull can be determined as follows

Aabeam(L,B, T ) =

∫ L
2

−L2

∫ T

0

dzdx = LT (1.37)

In order to determine the wetted area of the Wigley N43 hull, consider a differential area element of the
hull

dA = (dwidth)(dheight) =
√
dx2 + dy2

√
dy2 + dz2 (1.38)

Since equation 1.33a gives the half-beam measure at point (x, z), it follows that

dA =

√√√√(1 +

(
∂

∂x
y+(x, z)

)2
)(

1 +

(
∂

∂z
y+(x, z)

)2
)
dxdz (1.39)

And so, due to port-starboard symmetry, the wetted area of the Wigley N43 hull is given by

Awetted = 2

∫ T

0

∫ L
2

−L2

√√√√(1 +

(
∂

∂x
y+(x, z)

)2
)(

1 +

(
∂

∂z
y+(x, z)

)2
)
dxdz (1.40)

Unfortunately, equation 1.40 does not yield a closed-form solution, and so it will have to be evaluated
numerically on a case-by-case basis (although doing this, in general, is made simple by the availability of
equation 1.33a).

Before concluding this subsection, it is worth noting that [Avallone et al., 2017,Tupper, 2013] give the
following typical values for the form coefficients of merchant vessels

Cb ∈ [0.45, 0.85]
Cwp ∈ [0.65, 0.95]
Cm ∈ [0.90, 0.99]
Cp ∈ [0.60, 0.90]

Therefore, the form coefficients for the Wigley N43 geometry are within the typical ranges given by [Avallone
et al., 2017,Tupper, 2013] for merchant vessels (albeit towards the lower bounds for Cwp, Cm, and Cp), and
thus the N43 geometry is a realistic hull geometry.

1.4.2 Mass and Mass Moment of Inertia

The displaced mass of the Wigley N43 geometry can be determined as follows

m = ρVdisp = ρCbLBT (1.41)

where ρ is the density of the fluid displaced by the hull.
The mass moment of inertia (about Ob), in yaw, for the Wigley N43 hull, can be determined in the

following manner. First, suppose the interior of the hull is filled uniformly with seawater having density ρ;
then, by definition
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IObzz =

∫
Vdisp

||~rdV ||22(ρdV ) (1.42)

where ~rdV is the vector from Ob to the differential volume element dV , projected onto the plane span(xb, yb).
Equation 1.42 can be expressed equivalently as follows

IObzz = ρ

∫ T

0

∫ L
2

−L2

∫ y+(x,z)

−y+(x,z)

(x2 + y2)dydxdz (1.43)

Fortunately, this multiple integral does yield the following closed-form expression (expressed approximately,
after simplifying)

IObzz
∼= ρLBT (0.02875B2 + 0.02637L2) (1.44)

Equivalent expressions for IObxx and IObyy can be generated in exactly the same manner; they are given
approximately by

IObxx
∼= ρLBT (0.02875B2 + 0.14246T 2) (1.45)

IObyy
∼= ρLBT (0.02637L2 + 0.14246T 2) (1.46)

Now, in reality, the interior of the hull will not be filled uniformly with seawater, so one might introduce a
correction factor to equation 1.44 in order to compensate for the fact that the term ρ in equation 1.42 should
have been a function of location, ρ(x, y, z), rather than a constant. Therefore, assume there exists a scalar
Cinertia ∈ (0, 1] such that

IObzz
∼= CinertiaρLBT (0.02875B2 + 0.02637L2) (1.47)

It follows that Cinertia is indeed in (0, 1] because an inertia of less than zero makes no physical sense, an
inertia of zero implies that there is no vessel, and a Cinertia > 1 would imply that the net density of the hull
interior is greater than that of seawater, in which case the vessel would sink. Experimentation as part of
the case studies performed in developing this thesis suggest Cinertia ∈ [0.03, 0.07] for car-deck ferries (see
Appendix A for details). At present, no other types of vessel have been investigated as part of this thesis, but
presumably other types would admit different values of Cinertia. For instance, consider a fully-loaded tanker;
the interior of the hull would be mostly filled uniformly with a liquid, and so, depending on the liquid density,
Cinertia could approach 1 in this case.

1.4.3 Added Mass and Added Mass Moment of Inertia

In order to apply the foundational theory presented previously, one must be able to generate appropriate
values with which to populate MA (see equation 1.24). Fortunately, a general method for computing 2D
added masses does exist; Sedov’s technique, which is detailed in [Korotkin, 2009]. This technique can be
described as follows.

Consider a 2D contour γ, and assume there exists a function f(ξ) given by

f(ξ) =
k

ξ
+ k0 + k1ξ + k2ξ

2 + k3ξ
3 + · · · (1.48)

which defines a conformal mapping from the unit disc in the ξ-plane to the exterior (filled with fluid) of the
contour γ. Then, the 2D added masses λ11, λ22, and λ66 can be computed as follows

λ11 = −ρ(Aenclosed − 2πkk + π(kk1 + kk1)) (1.49a)

λ22 = −ρ(Aenclosed − 2πkk − π(kk1 + kk1)) (1.49b)

λ66 =
iρ

2

∮
ω3

(
1

ξ

)
dω3

dξ
dξ (1.49c)
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where Aenclosed is the area enclosed by the contour γ, and ω3 is a complex function of ξ. For the special case
of an ellipse, simple, closed-form solutions have been found. Consider an ellipse as follows

Figure 1.7: Ellipse contour

with x oriented forward, y oriented to starboard, a being the semi-major axis, and b being the semi-minor
axis. The 2D added masses for this contour are [Korotkin, 2009]

λ11 = ρπb2 (1.50a)

λ22 = ρπa2 (1.50b)

λ66 =
ρπ

8
(a2 − b2)2 (1.50c)

λ12 = λ16 = λ26 = 0 (1.50d)

with λ12 = λ16 = λ26 = 0 following from the symmetry of the ellipse. Consider, then, an arbitrary waterplane
section of the Wigley N43 geometry enclosed within a bounding ellipse as follows

Figure 1.8: Waterplane bounding ellipse
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Taking b(z) = y+(0, z) and a(z) ≡ L
2 , as is the case for the Wigley N43 geometry, and integrating equations

1.50 over the vessel draft then yields the following added masses for the bounding ellipsoid3

Aellipsoid
11 =

50ρπ

231
B2T (1.51a)

Aellipsoid
22 =

ρπ

4
L2T (1.51b)

Aellipsoid
66

∼=
ρπT

100
(0.78125L4 − 1.35281L2B2 + 0.63862B4) (1.51c)

Aellipsoid
12 = Aellipsoid

16 = Aellipsoid
26 = 0 (1.51d)

As for correcting equations 1.51 so as to better represent more realistic hull geometries, [Sen and Vinh,
2016] offer the following experimental results for a particular hull having L = 170 m, B = 22.8 m, and T = 9.3
m

A11 = 6.680× 105 kg

A22 = 2.171× 107 kg

A66 = 3.379× 1010 kg.m2

Applying equations 1.51 to this same hull yields the following

Aellipsoid
11 = 3.370× 106 kg

Aellipsoid
22 = 2.164× 108 kg

Aellipsoid
66 = 1.894× 1011 kg.m2

which shows that equations 1.51 are overestimating the added masses (as one might logically expect, since the
ellipsoid is bounding). Therefore, in order to predict A11, A22, and A66 in general, one might scale equations
1.51 as follows

A11
∼=

10ρπ

231
B2T (1.52a)

A22
∼=
ρπ

40
L2T (1.52b)

A66
∼=
ρπT

100
(0.13940L4 − 0.24138L2B2 + 0.11395B4) (1.52c)

As for constructing a means of approximating A26, which one cannot get from the bounding ellipsoid
due to forward-aft symmetry, [Fossen, 2011] gives the following typical values for the added masses of a
“conventional ship”

A11 = 1.4× 106 kg

A22 = 7.5× 106 kg

A26 = 4× 107 kg.m2

A66 = 4.5× 109 kg.m2

If “conventional ship” is taken to mean a merchant vessel on the order of L = 115 m, B = 37.5 m, and T = 7
m, then it is of interest to note that equations 1.52 yield, for this vessel, the following results

3It should be noted that these added masses are zero-frequency added masses, which is deemed appropriate for a surge-sway-yaw
model such as the one applied in this thesis [Fossen, 2011].
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A11
∼= 1.372× 106 kg

A22
∼= 7.453× 106 kg

A66
∼= 4.535× 109 kg.m2

The “conventional ship” results of Fossen then suggest the following approximation scheme for A26

IF vessel has forward-aft symmetry, THEN

A26 = 0

ELSE

A26
∼= A66

10blog10(A66)c × 10blog10(A22)c+1

(1.53)

that is, for vessels lacking forward-aft symmetry, let A26 be the significand of A66 muliplied by 10 raised to
the power order of A22 plus one. A12 and A16 will always be zero due to port-starboard symmetry (which is
present in general). Equations 1.52, along with equation 1.53, thus allow one to rapidly generate approximate
values for added masses in general.

1.5 Surrogate Geometry II - Wageningen B-Series Propeller

In order to fully determine the propeller states for a seagoing vessel, it is necessary to define the geometry
of the propeller(s). This, however, will vary from case to case depending on the particular design of the vessel
under consideration. Since this thesis seeks general results, a compromise between accuracy, generality, and
simplicity will therefore once again have to be struck. To that end, this thesis will assume a Wageningen
B-series geometry. This particular geometry can be illustrated as follows

Figure 1.9: Wageningen B-series propeller, three blade variant (adapted from [Yeo et al., 2014])

This geometry is chosen because the work of [Bernitsas et al., 1981] provides general results for determining
thrust coefficients, KT , and torque coefficients, KQ, given basic propeller properties. Using this work, it is
possible to define general functions4

KT = f1

(
J,
P

D
,
Ab
As
, nblades,ReD

)
(1.54a)

4Indeed, such functions are already defined, in polynomial form, in [Bernitsas et al., 1981]. They are quite long, however, and
so are not re-printed here.

22



KQ = f2

(
J,
P

D
,
Ab
As
, nblades,ReD

)
(1.54b)

where P is propeller pitch, D is propeller diameter, Ab is total blade face area, As is swept area, nblades is
the number of propeller blades, and ReD is Reynolds number at characteristic length D. J is advance ratio,
defined as

J =
Vflow

(rps)D
(1.55)

with Vflow being fluid speed relative to the propeller, and rps being propeller speed in revolutions per second.
Since KT and KQ are defined as

KT =
Tprop

ρ(rps)2D4
(1.56a)

KQ =
Qprop

ρ(rps)2D5
(1.56b)

it follows that one can construct general functions for propeller thrust, Tprop, and propeller torque, Qprop

Tprop = ρf1(· · · )(rps)2D4 (1.57a)

Qprop = ρf2(· · · )(rps)2D5 (1.57b)

It should be noted, however, that equations 1.57 will inherit the same limits of applicability exhibited by
equations 1.54, namely

2 ≤ nblades ≤ 7

0.30 ≤ Ab
As
≤ 1.05

0.5 ≤ P
D ≤ 1.40

1.6 Second-Order Wave Dynamics

As per [Fossen, 2011,Pinkster, 1971], the forces and moments upon a vessel due to wave encounter can be
split into two components

1) a zero-mean oscillatory component (i.e., first-order wave dynamics); and,

2) a slowly varying wave drift component (i.e., second-order wave dynamics)

it is then generally assumed that these components are additive as follows [Fossen, 2011]

τwaves = τwaves1 + τwaves1

where the τwaves1 and τwaves2 terms are the first and second-order components, respectively. However, as
per [Pinkster, 1971], seeking to design a vessel which can counteract the forces and moments due to the
first-order component usually leads to the requirement for impractically large and highly dynamic thruster
forces5; this, in turn, would place a great deal of strain upon the vessel’s machinery. Therefore, the first-order
wave component is generally not considered as part of a dynamic positioning or path following problem and,
as such, is ignored in this thesis. The handling of the second-order component, however, is presented below.

5For example, consider the forces required to restrain a periodic motion in one dimension; let these forces be defined by

F (t) = (m+mA) d
2

dt2
(x0 cos(ωt)) = −(m+mA)x0ω2 cos(ωt). For the case of m+mA = 3.35 × 106 kg, x0 = 1 m, and ω = 2π

9

rad/s, the maximum magnitude of F (t) would be (m+mA)x0ω2 = 1.63× 106 N. For a vessel of about 3100 tonnes displacement,
this amount of thrust is excessive and likely exceeds the capabilities of the vessel’s plant altogether.
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1.6.1 Statistics from Variance Density

Suppose one wishes to describe the sea surface at a point. One way to do so is to observe the change in
surface elevation, η, at that point and then construct from that a cosine series of the form [NDBC, 1996]

η(θ, t) =

∞∑
i=0

aiD(fi, θ) cos(2πfit+ φi)

where θ is wave heading (in {n}), t is time, ai is the amplitude of the ith wave mode, D( ) is a direction and
frequency dependent spreading function, fi is the frequency of the ith wave mode, and φi is the phase shift of
the ith wave mode. By definition, the total variance in η is given by

var(η) = σ2
η = E[η2]− E[η]2

where E[ ] denotes expected value. Assuming E[η] = 0, this then simplifies to

σ2
η = E[η2]

which can be shown (by way of orthogonality), for an appropriately defined spreading function D( ), to
return

σ2
η =

1

2

∞∑
i=0

a2
i

Therefore, the variance in η follows strictly from the wave mode amplitudes. This motivates the introduction
of a wave variance density spectrum, E(f, θ), which encodes the variance density of each (f, θ) component of
the overall sea surface at a point. An example variance density spectrum might look like the following

Figure 1.10: Example directional wave spectrum
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Given a variance density spectrum, one can extract various statistical measures as follows

σ2
η =

∫ 2π

0

∫ ∞
0

E(f, θ) dfdθ (1.58)

fp =
1

σ2
η

∫ 2π

0

∫ ∞
0

E(f, θ)f dfdθ (1.59)

θp =
1

σ2
η

∫ 2π

0

∫ ∞
0

E(f, θ)θ dfdθ (1.60)

Hs = 4
√
σ2
η (1.61)

where equation 1.58 recovers the total variance in mode amplitudes, equation 1.59 gives the peak, or dominant,
wave frequency, equation 1.60 gives the peak, or dominant, wave heading, and equation 1.61 gives the so-called
significant wave height (i.e., the mean height of the highest 1/3 of waves encoded in the spectrum). From the
peak wave frequency, one can define the peak wave period as

Tp =
1

fp
(1.62)

which is a representative measure of the period of the higher wave modes [NDBC, 1996]. From this, it follows
that a condensed description of the sea surface at a point can be given by (Hs, Tp, θp).

1.6.2 Wave Heights as a Random Variable

Given a condensed sea surface description, it is possible to model the probability density of wave heights,
H, according to a Rayleigh distribution as follows6 [Buckham, 2017]

PDF(H) =
H

4σ2
η

exp

(
−H2

8σ2
η

)
(1.63)

Invoking equation 1.61 and simplifying then yields

PDF(H) =
4H

H2
s

exp

(
−2H2

H2
s

)
(1.64)

For example, under this model, the wave height probability density of a sea having Hs = 2.4 m would present
as follows

6Assuming the underlying variance density spectrum is unimodal and narrow, as in figure 1.10 for instance.
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Figure 1.11: Example Rayleigh distribution (Hs = 2.4 m)

In addition, under this model, it can be shown that

Pr[H ≤ 0.02Hs] ∼= 0.001 (1.65a)

Pr[H ≤ 2Hs] ∼= 0.999 (1.65b)

since ∫ Hs
50

0

PDF(H)dH = 1− e− 1
1250 ∼= 0.00080

∫ 2Hs

0

PDF(H)dH = 1− e−8 ∼= 0.99966

Therefore, one can assume 0.02Hs to be a lower bound and 2Hs to be an upper bound on the wave heights
one might reasonably expect to encounter when in a sea having significant wave height Hs.

1.6.3 Determining Wave Number from Condensed Description

One consequence of linear wave theory is the dispersion relation, given as follows

ω2 = gk tanh(kh) (1.66)

where ω is the angular frequency of a wave, defined by

ω =
2π

T
(1.67)

with T being wave period, g is acceleration due to gravity, k is wave number, defined by

k =
2π

λ
(1.68)

with λ being wave length, and h is sea depth. Given a condensed description (Hs, Tp, θp) and the sea depth,
h, at a point, one might solve for the peak wave number, kp, given implicitly by dispersion as follows

26



(
2π

Tp

)2

= gkp tanh(kph) (1.69)

With this kp in hand, one might assume wave number to be a function of wave height as follows

k(H) = cH−0.8

where c is an arbitrary constant. The proposed exponent of -0.8 follows from the average wave length vs
average wave height data provided in [Ellis and Garrison, 2016]. If one then requires that k(Hs) = kp, then
the constant c is defined and the following model results

k(H) = kp

(
Hs

H

)0.8

(1.70)

For example, for a sea surface described by Hs = 2.4 m, Tp = 13 s, and θp = 4.974 rad (i.e., heading 285), at
a point having depth 3200 m, the peak wave number is kp = 0.0238 1/m. Plotting the wave numbers k(H)
over the interval H ∈ [0.02Hs, 2Hs] then yields figure 1.12. The corresponding wave length vs height plot is
illustrated in figure 1.13. Of note is the fact that figures 1.12 and 1.13 both illustrate values consistent with
wave lengths reported as typical in [Sandwell, 2010,FCIT, 2005,Janssen, 2004].

Figure 1.12: Example wave number vs height plot
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Figure 1.13: Example wave length vs height plot

1.6.4 Computing Wave-Drift over Vessel Draft

A classical result due to [Stokes, 1880] defines the horizontal drift velocity of particles throughout the
depth of an ocean wave as follows (with depth, z, oriented positive downward)

uS =
1

8
ωkH2 cosh(2k(h− z))

sinh2(kh)
(1.71)

Given a condensed sea surface description, one can, for any given wave height H, define the corresponding
wave number, k(H), by way of equation 1.70 defined previously. With this value in hand, one can then define
the corresponding angular frequency, ω(H), by way of dispersion as follows

ω(H) =
√
gk(H) tanh(k(H)h) (1.72)

The wave parameters of equation 1.71, ω and k, can therefore be defined entirely in terms of H. Finally, one
might define an expected drift over the vessel draft, T , as follows

E[uS ] =
1

T

∫ T

0

∫ 2Hs

0.02Hs

uSPDF(H)dHdz (1.73)

Note that this is effectively a current with magnitude E[uS ] and heading θp, and so the effect of second-order
wave dynamics can be captured in equation 1.32 by including wave drift within the definition of νr. Equation
1.32 thus reduces to

MRB ν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body dynamics

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamics

= τcontrol + τwind︸ ︷︷ ︸
external forces

(1.74)
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Chapter 2

Practical Implementation

In this chapter, the details of implementing the process illustrated in figure 2 are presented. First, the
handling of the kinematics is summarized, including how to generate the required body-fixed velocities and
accelerations. In addition, the kinematics portion also touches upon the practical concern of necessary filtering
when approximating derivatives using finite differences. The kinetics portion then handles populating the
elements of equation 1.74 in order to allow for the generation of the required control forces and moments.
The kinetics portion also discusses how to correct for the effect of hull fouling on drag. Then, the propeller
dynamics portion discusses how to generate sufficient propeller states from given control forces and moments.
This portion includes several important results, including how to define the propeller thrust vectors for an
arbitrary number and placement of propellers, as well as how to correct for effects, on generated thrust
and required torque, due to oblique inflow, the presence of a propeller nozzle, and propeller fouling. The
steering dynamics portion then discusses how to generate sufficient steering gear states from given propeller
states. This portion also includes the introduction of a generalized steering gear model. Finally, a method for
generating appropriate characteristic periods, in surge, sway, yaw, propeller dynamics, and steering dynamics,
is developed.

2.1 Modelling Kinematics

2.1.1 Defining ν

Recall the formula given by equation 1.3uv
r

 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

dxndtdyn
dt
dψ
dt


For the purpose of this thesis, suppose one has only a partial and discrete mission cycle; that is, a sequence
of n waypoints {(ti, µi, li)} only. In order to begin generating the corresponding drive cycle, one might first
approximate dµ

dt and dl
dt by way of finite differences

dµ

dt
≈ µ(t+ ∆t)− µ(t)

∆t
(2.1a)

dl

dt
≈ l(t+ ∆t)− l(t)

∆t
(2.1b)

for sufficiently small values of ∆t. However, the given mission cycle may be sparse; that is, only a few
waypoints spanning the vessel’s mission. In this case, the mission cycle will have to be filled out in order
to ensure that the max ∆t between any two successive waypoints is sufficiently small for the purpose of
equations 2.1. This can be accomplished by way of cubic spline interpolation over the given mission cycle.
Suppose the vectors t, lat, and long, together defining a sparse and partial mission cycle, are loaded into a
computer. Given these inputs, the following pseudocode describes a process by which one can generate a
sufficiently dense sequence {(ti, µi, li)}.
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guess initial value for interpolation resolution interp_res;

while max(dt_fill) > tolerance_dt

map from t to the interval [0,1] such that t(0) --> 0 and t(end) --> 1;

interpolate over [0,1] --> t to generate t_fill such that t_fill spans t and t_fill

contains interp_res number of points;

end

interpolate over t --> lat in order to generate the mapping t_fill --> lat_fill such

that lat_fill spans lat;

interpolate over t --> long in order to generate the mapping t_fill --> long_fill such

that long_fill spans long;

Assume, then, that a sequence of appropriate values for dµ
dt and dl

dt have been generated by way of finite
differences as follows

for i = 1:(end - 1)

dlat_dt(i) = (lat_fill(i + 1) - lat_fill(i))/(t_fill(i + 1) - t_fill(i));

dlong_dt(i) = (long_fill(i + 1) - long_fill(i))/(t_fill(i + 1) - t_fill(i));

end

use a sliding Hampel filter to remove spikes due to zero-crossing events;

use linear interpolation to generate dlat_dt(end) and dlong_dt(end) values;

By applying equations 1.2, one can then generate appropriate values for dxn
dt and dyn

dt . Finally, if one assumes
that the vessel’s heading is everywhere tangent to its trajectory (that is, v ≈ 0), then one can recover values
for ψ by way of

ψ(t) = arctan

((
dyn
dt

)(
dt

dxn

))
(2.2)

One implementation issue with equation 2.2, however, is spikes due to dxn
dt → 0 or dyn

dt → 0; fortunately, this
can be mitigated as follows. Suppose the vectors dxn dt and dyn dt are loaded into a computer; then

for i = 1:end

head(i) = arctangent(dyn_dt(i)/dxn_dt(i));

end

use a sliding Hampel filter to remove spikes;

One can then generate values for dψ
dt in the same manner as that applied above to generate dµ

dt and dl
dt values.

Finally, given the v ≈ 0 assumption, it follows that the corresponding drive cycle can be generated as follows

u(t) = cos(ψ)
dxn
dt

+ sin(ψ)
dyn
dt

(2.3a)

v(t) ≡ 0 (2.3b)

r(t) =
dψ

dt
(2.3c)

with r being expressed in terms of rad/s.
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2.1.2 Defining νr

Recall that νr is defined, as per equation 1.21c (with v ≈ 0), by

νr =

u− uc−vc
r

 (2.4)

If one then defines the current terms, uc and vc, as follows [Fossen, 2011]

uc = Uc cos(θc − ψ) + E[uS ] cos(θp − ψ) (2.5a)

vc = Uc sin(θc − ψ) + E[uS ] sin(θp − ψ) (2.5b)

where Uc and θc are the magnitude and heading, respectively, of the fluid current at (t, µ, l), and E[uS ]
and θp are as defined previously at (t, µ, l), then it follows that one can generate appropriate values for νr
given sufficient data on weather conditions. Specifically, one would need data on Uc, θc, Hs, Tp, θp, and h
everywhere over the mission cycle of the vessel.

2.1.3 Filtering ν and νr

A practical concern in approximating derivatives by way of finite differences is the amplification of high
frequency noise, generated in this case by the rounding errors inherent in floating point arithmetic. Therefore,
the kinematics generated thus far (that is, ν and νr) will need to be filtered in order to remove this noise.
This thesis will apply a moving average filter in all such cases, but the size of the sliding window is dependent
on characteristic periods of the vessel in question. For now, introduce characteristic periods Tsurge, Tsway, and
Tyaw, for which typical values are on the order of 100 to 250 seconds [Fossen, 2011]. How these characteristic
periods can be determined in general, however, will have to wait until a later section as results for both drag
and propeller dynamics will have to be presented first. Still, how the characteristic periods will be used in
filtering is presented here.

Consider one period of a cosine wave contaminated with white noise (bounded to within +/- 5% of wave
amplitude)
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Figure 2.1: Noisy cosine wave

By applying a moving average filter, with sliding windows varying from one period, T , to one eighth of a
period, T

8 , the results illustrated in figures 2.2 and 2.3 were generated.

Figures 2.2 and 2.3 show that, as the smoothing window was decreased to T
8 , good convergence on the

true signal was achieved. Indeed, at this level of filtering, the maximum error between the true signal and
filtered signal was found to be bounded to within +/- 1.5% of the true signal amplitude. In addition, at this
level of filtering, no evidence of over-fitting was observed; that is, the noise did not present in the filtered
signal. Therefore, it is judged that, for the purpose of this thesis, where filtering is necessary, it suffices to
filter using a window of one eighth of the appropriate characteristic period.
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Figure 2.2: Results of filtering the noisy cosine wave, t ∈ [0, T ]

Figure 2.3: Results of filtering the noisy cosine wave, t ∈ [T4 ,
5T
8 ]
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2.1.4 Defining ν̇ and ν̇r

Values for ν̇ and ν̇r can be generated by way of finite differences, given values for ν and νr, as per the
methodology presented above.

2.2 Modelling Kinetics

The elements of MRB can be either extracted from the vessel’s manual of trim and stability (if available),
or can be approximated using the foundational theory for the Wigley N43 geometry. The elements of MA

can be generated by using equations 1.52 and 1.53. Subsequently, the elements of CRB(ν) and CA(νr), albeit
variable over the mission cycle, follow entirely from the elements of MRB , MA, ν, and νr, and thus are fully
defined if given these.

2.2.1 Damping Matrix

Recall that the damping matrix, D(νr), is constructed from the superposition of a linear damping matrix
and a non-linear damping matrix. This subsection will handle how to determine the elements of D and
Dn(νr).

Defining D

The diagonal elements of D are defined in [Fossen, 2011] as follows

B11V =
m+A11

Tsurge
(2.6a)

B22V =
m+A22

Tsway
(2.6b)

B66V =
IObzz +A66

Tyaw
(2.6c)

with the T( )’s being characteristic periods of surge, sway, and yaw dynamics, respectively (the generation of
these characteristic periods will be handled in a later section). The off-diagonal elements of D can be deduced
from semi-empirical results due to [Bandyk, 2009] as follows

−Yr =
1

2
πρL3

(
T

L

)2(
−1

2
+

11

5

(
B

L

)
− 2

25

(
B

T

))
νr1 (2.7)

−Nv =
1

2
πρL3

(
T

L

)2(
1

2
+

12

5

(
T

L

))
νr1 (2.8)

where νr1 is a measure of mean ship relative speed, given by

νr1 =
1

Tmission

∫ Tmission

0

√
u2
r + v2

rdt (2.9)

with Tmission being mission duration. The linear damping matrix is thus fully defined.

Defining Dn(νr)

For the purpose of this thesis, it is easier to handle the non-linear damping as a force/moment vector,
rather than as a matrix times a relative velocity. The non-linear damping forces/moments Fun, Fvn, and
Mrn can be determined as follows [Fossen, 2011,USNA, 2007]

Fun = FunV + FunW (2.10)
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Fvn = −1

2
ρT

∫ L
2

−L2
C2D
d (x)|vr + xr|(vr + xr)dx (2.11)

Mrn = −1

2
ρT

∫ L
2

−L2
C2D
d (x)x|vr + xr|(vr + xr)dx (2.12)

where FunV is the non-linear component, in surge, due to viscous drag (friction and form), FunW is the
non-linear component, in surge, due to wave-making, and C2D

d is a 2D drag coefficient. Note that equations
2.11 and 2.12 represent cross-flow drag, in sway and yaw, following from a strip theory approach. One can, as
per [Fossen, 2011], approximate the 2D drag coefficients using a generalized curve due to [Hoerner, 1965]
which may be expressed as follows

C2D
d

(
B(x)

2T

)
∼= 1.5949 exp

(
−2.7160

(
B(x)

2T

)2

+ 0.1885

(
B(x)

2T

)
− 0.1462

)
+ 0.6405 (2.13)

plotting this curve over the interval
(
B
2T

)
∈ [0, 4] then yields the following

Figure 2.4: Hoerner curve (C2D
d )

By taking B(x) = 2y+(x, 0) in equation 2.13, one can evaluate equations 2.11 and 2.12 for any given drive
cycle, current conditions, and hull dimensions.

As for Fun, the non-linear viscous drag component can be defined as [Fossen, 2011,USNA, 2007]

FunV = −3

5
ρCVAwetted|ur|ur (2.14)
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where the coefficient 3
5 , as opposed to 1

2 , follows from a 15% - 20% additional drag allowance for typical hull
appendages1 [Hoerner, 1965], and CV is a viscous drag coefficient defined by

CV = (1 +K)Cf (2.15)

with the form factor, K, being defined approximately by [USNA, 2007]

K ∼= 19

(
CbB

L

)2

(2.16)

and the friction drag coefficient, Cf , being a function of Reynolds number, ReL, as follows [Fossen, 2011,USNA,
2007, ITTC, 1957]

Cf =
3

40(log10(ReL)− 2)2
(2.17)

with Reynolds number being given, in this case, by

ReL =
ρurL

µ

with µ being the dynamic viscosity of the fluid.
The non-linear wave-making component can be expressed similarly by

FunW = −1

2
ρCwAwetted|ur|ur (2.18)

where Cw is a wave-making coefficient. The following semi-empirical results due to [bin Tarafder et al., 2007]
give Cw as a function of Froude number, FrL, for a Wigley hull having a rectangular midship section (similar
to the N43 geometry)

1I.e., propeller(s), propeller A-brace(s), rudder(s), stabilizer(s), etc. In marine engineering parlance, this is also often referred
to as a thrust deduction factor [MIT, 2004].
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Figure 2.5: Cw for Wigley hull (rectangular midship section, adapted from [bin Tarafder et al., 2007])

with Froude number being given, in this case, by

FrL =
ur√
gL

By implementing Cw(FrL) as a lookup function, based on the results in [bin Tarafder et al., 2007], one can
fully define FunW . Therefore, one can evaluate Fun for any given drive cycle, current conditions, and hull
dimensions. Finally, if one defines τnldrag as

τnldrag =

FunFvn
Mrn

 (2.19)

then equation 1.74 can be re-written as

MRB ν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body dynamics

+ MAν̇r + CA(νr)νr + Dνr︸ ︷︷ ︸
hydrodynamics

= τcontrol + τnldrag + τwind︸ ︷︷ ︸
external forces

(2.20)

As a general double-check of the methodology proposed above, consider an arbitrary N43 hull sailing
ahead in a straight line, at constant speed, in calm water. Using the above methodology, the following general
plot was produced
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Figure 2.6: N43 hull general surge resistance (constant speed, constant course, calm water)

An inspection of figure 2.6 shows that the method above is qualitatively consistent with the literature
(compare, for instance, with figure 7.6 of [USNA, 2007]). A detailed validation of the above defined drag
equations, using data due to [Rahimpour and McIntyre, 2018], was also carried out as part of the case studies
performed in developing this thesis; see Appendix B for results.

2.2.2 Correcting for Hull Fouling

The drag equations presented above assume a hydraulically smooth hull; in reality, however, this is rarely
the case. For example, [Schultz, 2007] presents the following results derived from studying the increase in
total resistance due to fouling for the case of an Oliver Hazard Perry class frigate

Table 2.1: Predictions of the change in total resistance
Description of Condition % ∆RT

Hydraulically smooth hull 0
Typical as applied anti-fouling coating 2 - 4

Deteriorated coating or light slime 10 - 11
Heavy slime 16 - 20

Small calcareous fouling or weed 25 - 34
Medium calcareous fouling 36 - 52
Heavy calcareous fouling 55 - 80

Therefore, one might capture the increase in total resistance due to fouling by way of scaling the Dνr and
τnldrag terms of equation 2.20 in the following way
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MRB ν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body dynamics

+ MAν̇r + CA(νr)νr + Cfoul,hullDνr︸ ︷︷ ︸
hydrodynamics

= τcontrol + Cfoul,hullτnldrag + τwind︸ ︷︷ ︸
external forces

(2.21)

with Cfoul,hull ≥ 1 being a hull fouling coefficient taking values as follows

Table 2.2: Hull fouling coefficient values
Description of Condition Cfoul,hull

Hydraulically smooth hull 1.00
Typical as applied anti-fouling coating 1.03

Deteriorated coating or light slime 1.11
Heavy slime 1.18

Small calcareous fouling or weed 1.30
Medium calcareous fouling 1.44
Heavy calcareous fouling 1.68

the values in table 2.2 being derived from the midpoints of the ranges given in table 2.1.

2.2.3 Wind Forces and Moments

The method for handling winds is essentially the same as that for handling currents. Let νw be given by
(assuming irrotational winds)

νw =

urwvrw
r

 =

u− uwv − vw
r

 (2.22)

If one is given wind conditions (Uw, θw), where Uw is wind magnitude and θw is wind heading, then it follows,
by the same procedure applied to currents, that

νw =

u− Uw cos(θw − ψ)
v − Uw sin(θw − ψ)

r

 (2.23)

The forces and moments due to winds can then be expressed by [Fossen, 2011]

τwinds =

FuwFvw
Mrw

 =

− 1
2ρaCXAyzw |urw − syr|(urw − syr)
− 1

2ρaCYAxzw |vrw + sxr|(vrw + sxr)
sxFvw − syFuw

 (2.24)

where ρa is air density, Ayzw is the lengthwise projected area (or sail area) of the vessel superstructure, sy is
the displacement, along yb, from Ob to the centroid of Ayzw , Axzw is the abeam projected area (or sail area)
of the superstructure, and sx is the displacement, along xb, from Ob to the centroid of Axzw . The C( ) are
directional wind drag coefficients, in surge and sway, which may be tabulated as follows (underlying data
from [Blendermann, 1994]) for select vessel types
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Table 2.3: Directional wind drag coefficients
Vessel Type CX CY

Car Carrier 0.60 0.95
Cargo Vessel, loaded 0.65 0.85

Cargo Vessel, container on deck 0.55 0.85
Container Ship, loaded 0.55 0.90

Destroyer 0.65 0.85
Driving Support Vessel 0.80 0.90

Drilling Vessel 0.93 1.00
Ferry 0.50 0.90

Fishing Vessel 0.70 0.95
Liquefied Natural Gas Tanker 0.65 0.70

Offshore Supply Vessel 0.80 0.90
Passenger Liner 0.40 0.90
Research Vessel 0.65 0.85

Speed Boat 0.60 0.90
Tanker, loaded 0.90 0.70

Tanker, in ballast 0.75 0.70
Tender 0.55 0.85

Thus, one can evaluate τwinds for any given drive cycle, wind conditions, vessel type, and superstructure
geometry.

2.2.4 Control Forces and Moments

Determining the required control forces and moments, τcontrol, everywhere over the vessel’s mission cycle
is thus a matter of solving equation 2.21 for τcontrol

τcontrol = MRB ν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body dynamics

+ MAν̇r + CA(νr)νr + Cfoul,hullDνr︸ ︷︷ ︸
hydrodynamics

− (Cfoul,hullτnldrag + τwind)︸ ︷︷ ︸
weather forces

(2.25)
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2.3 Modelling Propeller Dynamics

2.3.1 Linear Thrust Problem

In order to determine propeller states from τcontrol, one must know how the fitted thrusters will work
together to generate the required control forces and moments. To that end, consider an arbitrary arrangement
of n thrusters set in the plane span(xb, yb) as follows

Figure 2.7: Arbitrary thruster arrangement

where each thruster, generating forces Fix and Fiy as illustrated, is located at position (xi, yi). From this
illustration, the following linear thrust problem can be constructed

 1 1 · · · 1 0 · · · 0 0
0 0 · · · 0 1 · · · 1 1
−y1 −y2 · · · −yn x1 · · · xn−1 xn





F1x

F2x

...
Fnx
F1y

...
F(n−1)y

Fny


= τcontrol (2.26)

Now, for cases in which n ≥ 2, equation 2.26 may admit an infinitude of solutions; denote the solution set to
equation 2.26 by Ω. Therefore, it is physically meaningful to seek a solution

~Fthrust =



F1x

F2x

...
Fnx
F1y

...
F(n−1)y

Fny


(2.27)

in Ω such that the norm of ~Fthrust is minimized. This, in essence, corresponds to the laziest possible thruster
solution; a solution of interest, given the practical concerns of minimizing fuel consumption and wear on the
vessel’s plant. Therefore, given values for τcontrol, one can generate corresponding minimal-norm thruster
states ~Fthrust.
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2.3.2 Defining Thruster Magnitude and Angle

If one assumes that the thrusters have the freedom to generate thrust in any direction (in essence, they
are azimuthing thrusters), then it follows that the magnitude, Tprop,i, and angle (in {b}), θsteer,i, of each

thruster can be computed from ~Fthrust by way of

Tprop,i =
√
F 2
ix + F 2

iy (2.28)

θsteer,i = arctan

(
Fiy
Fix

)
(2.29)

2.3.3 Defining Fluid Flow at Thruster

Consider the motion of a thruster relative to the fluid

Figure 2.8: Thruster motion relative to fluid

Figure 2.8 then suggests the following expression for the velocity of the thruster relative to the fluid

νthruster,fluid =


ur − r

√
x2
i + y2

i sin
(

arctan
(
yi
xi

))
vr + r

√
x2
i + y2

i cos
(

arctan
(
yi
xi

))
0

 (2.30)

Relative fluid speed is therefore given by

Vflow = ||νthruster,fluid||2 (2.31)
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since ||νthruster,fluid||2 = ||νfluid,thruster||2. Correcting for the fact that a thruster is operating in the vessel’s
wake, rather than in the free stream, can be achieved by applying a wake ratio, w, as follows

Vflow = (1− w)||νthruster,fluid||2 (2.32)

where w = 0.1 is a typical value in general [MIT, 2004,Andersen, 2016]. Finally, the angle between
[
Fix Fiy

]T
and the line of fluid flow at the thruster is given by

θflow,i = arccos

(
(1− w)νthruster,fluid ·

[
Fix Fiy 0

]T
VflowTprop,i

)
(2.33)

To illustrate this, consider the following

Figure 2.9: Flow angle at thruster

2.3.4 Defining Propeller Speed

Given a required thrust, Tprop,i, propeller dimensions, and local conditions Vflow and θflow,i, one can
determine the necessary propeller speed as follows.

Defining Base KT Value

One can define a base value for KT by way of equation 1.54a, given an initial guess for the propeller speed;
say

rps =
Vflow

(J∗)D

where J∗ is the advance ratio at which the propeller obtains maximum efficiency. This value varies in
pitch-diameter ratio, P

D , as follows [Techet, 2005]
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Table 2.4: J∗ values for the Wageningen B-series geometry
P/D J∗

0.5 0.400
0.6 0.475
0.7 0.550
0.8 0.650
0.9 0.725
1.0 0.825
1.1 0.900
1.2 1.025
1.3 1.075
1.4 1.200

The data in table 2.4 can be visualized by referring to figure 6.3.10 of [Techet, 2005].

Correcting for Oblique Inflow

Suppose the effect of oblique inflow on KT can be captured by way of scaling KT as follows

K∗T = CKT ,θ(J, θflow,i)KT (2.34)

where CKT ,θ( ) is a scalar dependent upon J and θflow,i. Computational results due to [Rahimpour, 2018]2

suggest the following values for CKT ,θ( )

Table 2.5: Effect of oblique inflow on KT (CKT ,θ(J, θflow,i) values)
J \ θflow,i 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.01314 1.00000 1.02818 1.02414 1.03127 1.03285 1.01975 1.03778 1.02153 1.04070 0.96719 1.01287 1.01375 0.99857
0.02629 1.00000 1.02882 1.03191 1.03586 1.04078 1.04165 1.04886 1.06198 1.07908 1.04211 0.98016 1.01532 1.01108
0.03943 1.00000 1.02934 1.03393 1.04053 1.04866 1.05855 1.06816 1.06493 1.08646 1.07682 0.99059 1.03446 1.02336
0.05257 1.00000 1.03005 1.03593 1.04538 1.05694 1.07118 1.08804 1.08900 1.03687 1.08911 0.95433 0.96145 1.05281
0.07886 1.00000 1.03170 1.04169 1.05599 1.07487 1.09504 1.11334 1.13192 1.17497 1.07887 1.09256 1.07400 1.06488
0.10515 1.00000 1.03351 1.04711 1.06740 1.09338 1.12379 1.15143 1.18170 1.17178 1.11826 1.07898 1.05945 1.07907
0.13144 1.00000 1.03550 1.05310 1.07964 1.11410 1.16407 1.17281 1.20609 1.21974 1.19278 1.26780 0.95142 1.12123
0.15772 1.00000 1.03742 1.05988 1.09312 1.13574 1.18267 1.23057 1.25505 1.31468 1.20893 1.29400 1.14723 1.14989
0.21030 1.00000 1.04258 1.07450 1.12398 1.18141 1.24579 1.30861 1.40576 1.42228 1.35057 1.44230 1.06033 1.20411
0.26287 1.00000 1.04870 1.09249 1.15557 1.23109 1.32064 1.41583 1.50817 1.62083 1.66162 1.55334 1.40576 1.27947
0.31545 1.00000 1.05623 1.11314 1.19112 1.29337 1.40801 1.53037 1.64835 1.80927 1.84466 1.70761 1.14788 1.35380
0.36802 1.00000 1.06498 1.13507 1.23433 1.36785 1.52113 1.69977 1.83961 2.04903 2.07561 1.93021 1.12821 1.34478
0.42060 1.00000 1.07422 1.15139 1.28313 1.45200 1.64614 1.83119 2.04431 2.30286 2.28485 1.86309 1.24127 1.48123
0.47317 1.00000 1.08452 1.16997 1.33506 1.55029 1.76099 2.03175 2.24847 2.53368 2.40802 1.69535 1.40654 1.13579
0.52575 1.00000 1.09767 1.19012 1.40065 1.66419 1.92195 2.26837 2.52631 2.86087 2.60383 1.90017 1.57320 1.30489
0.57832 1.00000 1.07719 1.21230 1.47120 1.79895 2.18657 2.57354 2.85803 3.26412 3.08341 2.12513 1.75754 1.53606
0.63090 1.00000 1.07682 1.24646 1.56928 1.98578 2.43962 2.94080 3.06586 3.73266 2.84952 2.43080 1.96922 1.79284
0.68347 1.00000 1.07749 1.28916 1.69661 2.23173 2.74212 3.35229 3.88008 4.00482 3.05548 2.58879 2.19925 2.10185
0.73605 1.00000 1.11072 1.38599 1.92039 2.61086 3.23531 4.08893 4.68023 5.04324 3.51792 3.13866 2.68918 2.58720
0.78862 1.00000 1.14906 1.51623 2.24342 3.18368 3.94362 4.68274 5.81404 5.93295 4.34380 3.92932 3.56597 3.25330
0.84120 1.00000 1.21870 1.74381 2.78432 4.15548 5.12407 6.74042 7.59324 7.55230 5.78111 5.23996 4.57528 4.27136
0.89377 1.00000 1.58357 2.52053 4.44221 6.90508 8.59515 10.93467 11.78011 12.15350 9.92038 8.89855 7.57851 7.23576
0.94635 1.00000 2.77917 5.34981 10.67973 17.13883 21.27308 27.94706 29.82969 30.94209 25.68558 22.50929 17.77430 19.03004

One might then assume that the above tabulated CKT ,θ( ) values are invariant with respect to propeller
geometry in order to apply them in general. In such case, one can simply use table 2.5 as a general look-up
table.

2These results are for a propeller having D = 1.9 m, P = 2.275 m, nblades = 4, Ab = 1.8429 m2, and a design speed of 309
rpm.
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Correcting for Fitted Propeller Nozzle

Suppose the effect on KT due to the presence of a propeller nozzle can be captured by way of scaling K∗T
as follows

K∗∗T = CKT ,nozzle(J)K∗T (2.35)

where CKT ,nozzle( ) is a scalar dependent upon J . Computational results due to [Rahimpour, 2018], together
with an application of equation 1.54a, yield the following values for CKT ,nozzle( )

Table 2.6: Effect of propeller nozzle on KT

J (θflow,i = 0◦) KT No Nozzle KT Nozzle CKT ,nozzle(J)

0.00000 0.52946 0.67736 1.27933
0.01314 0.52636 0.67122 1.27521
0.02629 0.52318 0.66195 1.26524
0.03943 0.51992 0.65285 1.25566
0.05257 0.51658 0.64372 1.24612
0.07886 0.50967 0.62563 1.22751
0.10515 0.50246 0.60778 1.20962
0.13144 0.49511 0.59020 1.19206
0.15772 0.48729 0.57290 1.17568
0.21030 0.47083 0.53916 1.14512
0.26287 0.45333 0.50663 1.11756
0.31545 0.43486 0.47505 1.09242
0.36802 0.41548 0.44432 1.06941
0.42060 0.39526 0.41459 1.04892
0.47317 0.37426 0.38559 1.03027
0.52575 0.35254 0.35709 1.01291
0.57832 0.33018 0.32856 0.99511
0.63090 0.30723 0.29749 0.96829
0.68347 0.28376 0.26526 0.93481
0.73605 0.25983 0.22544 0.86763
0.78862 0.23552 0.18599 0.78969
0.84120 0.21088 0.14400 0.68285
0.89377 0.18598 0.08662 0.46574
0.94635 0.16088 0.03446 0.21419
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The data in table 2.6 can be illustrated by the following figure

Figure 2.10: Effect of propeller nozzle on KT

That is, KT is higher for the nozzled propeller over a significant range of J (J ∈ [0,∼ 0.55]); the effect of
this is that a nozzled propeller is more efficient at lower values of Vflow (see figure 2.13).3 One might then
assume that the above tabulated CKT ,nozzle( ) values are invariant with respect to both θflow,i and propeller
geometry in order to apply them in general. In such case, one can simply use table 2.6 as a general look-up
table.

3Assuming a fixed value for rps.
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Correcting for Propeller Fouling

The effect of propeller fouling on propeller performance was investigated, using CFD, by [Owen et al.,
2018]4. A summary of results follows

Table 2.7: Effect of propeller fouling on KT (% ∆KT values)
Description of Condition % ∆KT

Hydraulically smooth propeller 0

Typical as applied anti-fouling coating

−1.16 (J = 0.6)
−1.65 (J = 0.8)
−2.58 (J = 1.0)
−4.52 (J = 1.2)

Deteriorated coating or light slime

−3.17 (J = 0.6)
−4.25 (J = 0.8)
−6.08 (J = 1.0)
−10.00 (J = 1.2)

Heavy slime

−6.15 (J = 0.6)
−7.97 (J = 0.8)
−11.74 (J = 1.0)
−19.37 (J = 1.2)

Small calcareous fouling or weed

−10.30 (J = 0.6)
−12.11 (J = 0.8)
−15.85 (J = 1.0)
−23.32 (J = 1.2)

Medium calcareous fouling

−10.89 (J = 0.6)
−13.05 (J = 0.8)
−17.27 (J = 1.0)
−25.50 (J = 1.2)

Heavy calcareous fouling

−10.89 (J = 0.6)
−13.05 (J = 0.8)
−17.27 (J = 1.0)
−25.50 (J = 1.2)

Suppose, then, that the effect on KT due to propeller fouling can be captured by way of scaling K∗∗T as follows

K∗∗∗T = CKT ,fouling(J)K∗∗T (2.36)

where CKT ,fouling( ) is a scalar dependent upon J . Table 2.7 might then be transformed as follows

4The propeller studied had dimensions D = 0.25 m, P = 0.41 m, nblades = 5, Ab = 0.04 m2, and a design speed of 900 rpm.
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Table 2.8: Effect of propeller fouling on KT (CKT ,fouling(J) values)

Description of Condition CKT ,fouling(J) (θflow,i = 0◦)

Hydraulically smooth propeller 1

Typical as applied anti-fouling coating

0.9884 (J = 0.6)
0.9835 (J = 0.8)
0.9742 (J = 1.0)
0.9548 (J = 1.2)

Deteriorated coating or light slime

0.9683 (J = 0.6)
0.9575 (J = 0.8)
0.9392 (J = 1.0)
0.9000 (J = 1.2)

Heavy slime

0.9385 (J = 0.6)
0.9203 (J = 0.8)
0.8826 (J = 1.0)
0.8063 (J = 1.2)

Small calcareous fouling or weed

0.8970 (J = 0.6)
0.8789 (J = 0.8)
0.8415 (J = 1.0)
0.7668 (J = 1.2)

Medium calcareous fouling

0.8911 (J = 0.6)
0.8695 (J = 0.8)
0.8273 (J = 1.0)
0.7450 (J = 1.2)

Heavy calcareous fouling

0.8911 (J = 0.6)
0.8695 (J = 0.8)
0.8273 (J = 1.0)
0.7450 (J = 1.2)

The data in table 2.8 can be illustrated by the following figure

Figure 2.11: Effect of propeller fouling on CKT ,fouling
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That is, the thrust produced at a given J value generally decreases as the propeller fouling gets worse. This,
in turn, results in a loss of efficiency, as one might logically expect. One might then assume that the above
tabulated CKT ,fouling( ) values are invariant with respect to both θflow,i and propeller geometry in order to
apply them in general. In such case, one can simply use table 2.8 as a general look-up table.

Solving for Propeller Speed

The final KT value, after all relevant corrections, is thus given by

KT = CKT ,fouling(J)CKT ,nozzle(J)CKT ,θ(J, θflow,i)f1

(
J,
P

D
,
Ab
As
, nblades,ReD

)
(2.37)

where f1( ) refers to equation 1.54a. Using equation 2.37, one can solve iteratively for the propeller speed
necessary to deliver the required thrust, Tprop,i; an algorithm for doing so follows

make initial guess rps = V_flow/(J_star*D);

while abs(thrust_error) > tolerance_error

J = V_flow/(rps*D);

Re_D = (density_fluid*V_flow*D)/viscosity_fluid;

K_T = C_foul(J)*C_nozzle(J)*C_theta(J,theta_flow)*f1(J,P/D,A_b/A_s,n_blades,Re_D);

thrust_gen = density_fluid*K_T*rps^2*D^4;

thrust_error = T_prop - thrust_gen;

drps = thrust_error/(2*density_fluid*K_T*rps*D^4);

rps = rps + (1/2)*drps;

end

where the drps term follows from differentiating equation 1.56a while treating KT as a constant

drps =
dTprop

2ρKT (rps)D4
(2.38)

2.3.5 Defining Propeller Torque

Given a propeller speed, propeller dimensions, and local conditions Vflow and θflow,i, one can determine
the corresponding propeller torque as follows.

Defining Base KQ Value

A base value for KQ follows from equation 1.54b.

Correcting for Oblique Inflow

One can correct for effects on KQ due to oblique inflow in the same manner by which it is accomplished
for KT . The relevant scalar values, due to [Rahimpour, 2018], are as follows
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Table 2.9: Effect of oblique inflow on KQ (CKQ,θ(J, θflow,i) values)
J \ θflow,i 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.01314 1.00000 0.99993 0.99807 0.99917 0.99894 1.00703 1.00852 1.00710 0.99292 0.96289 0.96768 1.03823 1.05686
0.02629 1.00000 1.00042 0.99859 0.99981 0.99968 1.00251 1.00574 1.00273 1.00973 0.96982 1.00125 1.03430 1.06708
0.03943 1.00000 1.00090 0.99913 1.00050 0.99759 1.00071 1.00020 0.99036 0.99432 0.97777 0.93316 1.04541 1.07845
0.05257 1.00000 1.00123 0.99819 1.00122 1.00133 1.00101 1.00963 0.99639 0.97278 0.96666 0.94852 1.24394 1.08324
0.07886 1.00000 1.00168 1.00037 1.00136 1.00272 1.00195 0.99626 0.99335 1.01538 0.92566 0.93699 1.06633 1.10363
0.10515 1.00000 1.00205 1.00090 1.00087 0.99461 0.99804 0.99437 0.99594 1.00918 0.91929 0.86608 1.44332 1.09091
0.13144 1.00000 1.00232 1.00070 1.00019 0.99373 0.99552 0.98324 1.01276 0.95841 0.91757 1.00228 1.01042 1.14207
0.15772 1.00000 1.00236 1.00064 0.99899 0.98855 0.99693 0.99414 1.00310 0.97583 0.89117 0.94345 1.11869 1.16244
0.21030 1.00000 1.00243 1.00061 0.99965 1.01447 0.99599 0.98165 1.00475 1.33278 0.89945 1.02079 1.07724 1.18806
0.26287 1.00000 1.00227 0.99929 1.00094 0.98223 1.00146 0.99858 0.99473 1.01389 0.98687 1.10105 1.24989 1.23744
0.31545 1.00000 1.00195 1.00042 1.00308 0.99747 1.00930 1.01038 1.01575 1.07243 1.02669 1.17217 1.09907 1.27445
0.36802 1.00000 1.00183 1.00253 1.00780 1.01890 1.02913 1.06113 1.08430 1.16459 1.10017 1.27395 1.15233 1.24212
0.42060 1.00000 1.00150 1.00073 1.01394 1.03147 1.06408 1.09644 1.16970 1.25742 1.17348 1.40237 1.26805 1.34109
0.47317 1.00000 1.00085 0.99842 1.01842 1.05390 1.10828 1.17770 1.25120 1.31399 1.34819 1.53040 1.43681 1.21723
0.52575 1.00000 1.00195 0.99775 1.02715 1.09818 1.17504 1.29830 1.35339 1.44382 1.49161 1.67771 1.58050 1.39864
0.57832 1.00000 0.98784 0.99689 1.03849 1.13588 1.25468 1.43154 1.47418 1.59321 1.48685 1.82557 1.69720 1.59104
0.63090 1.00000 0.98359 1.00052 1.05885 1.16078 1.34119 1.55251 1.56381 1.73224 2.01824 1.98151 1.79457 1.76750
0.68347 1.00000 0.98246 1.00784 1.08819 1.23582 1.42618 1.69579 1.85327 1.77903 2.13644 2.13718 1.97429 1.96086
0.73605 1.00000 0.99073 1.02826 1.13473 1.31670 1.56360 1.93208 2.07381 2.04997 2.35200 2.37418 2.20232 2.19796
0.78862 1.00000 0.99627 1.04902 1.19026 1.45678 1.72963 2.34938 2.31733 2.21693 2.60381 2.63819 2.57982 2.44146
0.84120 1.00000 0.99800 1.07225 1.25234 1.53074 1.91294 2.42368 2.49924 2.48002 2.92436 2.96206 2.81666 2.70352
0.89377 1.00000 1.02207 1.11891 1.35613 1.79194 2.16619 2.84133 2.72586 3.08255 3.38725 3.42204 3.31665 3.12495
0.94635 1.00000 1.03946 1.17021 1.48530 2.00594 2.41452 3.25020 3.26822 3.71032 3.95568 3.96984 3.73419 3.70792

Correcting for Fitted Propeller Nozzle

One can correct for effects on KQ due to the presence of a propeller nozzle in the same manner by which
it is accomplished for KT . The relevant scalar values, due to [Rahimpour, 2018], are as follows
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Table 2.10: Effect of propeller nozzle on KQ

J (θflow,i = 0◦) 10KQ No Nozzle 10KQ Nozzle CKQ,nozzle(J)

0.00000 0.92715 0.67620 0.72933
0.01314 0.92213 0.67866 0.73597
0.02629 0.91700 0.67807 0.73945
0.03943 0.91176 0.67747 0.74303
0.05257 0.90642 0.67688 0.74676
0.07886 0.89542 0.67559 0.75450
0.10515 0.88400 0.67397 0.76240
0.13144 0.87157 0.67195 0.77097
0.15772 0.85843 0.66957 0.77999
0.21030 0.83143 0.66367 0.79823
0.26287 0.80328 0.65629 0.81701
0.31545 0.77390 0.64750 0.83668
0.36802 0.74327 0.63695 0.85696
0.42060 0.71138 0.62498 0.87854
0.47317 0.67829 0.61126 0.90119
0.52575 0.64400 0.59540 0.92453
0.57832 0.60858 0.57727 0.94856
0.63090 0.57204 0.55463 0.96956
0.68347 0.53445 0.52766 0.98730
0.73605 0.49583 0.49308 0.99444
0.78862 0.45626 0.45759 1.00293
0.84120 0.41576 0.42089 1.01234
0.89377 0.37439 0.37483 1.00117
0.94635 0.33219 0.32968 0.99245

The data in table 2.10 can be illustrated by the following figure

Figure 2.12: Effect of propeller nozzle on KQ
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That is, KQ is lower for the nozzled propeller over a significant range of J (J ∈ [0,∼ 0.75]); the effect of this
is that a nozzled propeller is more efficient at lower values of Vflow, as is illustrated by the following5

Figure 2.13: Effect of propeller nozzle on propeller efficiency

where propeller efficiency is as defined by equation 2.41.

5Assuming a fixed value for rps.
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Correcting for Propeller Fouling

One can correct for effects on KQ due to propeller fouling in the same manner by which it is accomplished
for KT . The relevant scalar values, due to [Owen et al., 2018], are as follows

Table 2.11: Effect of propeller fouling on KQ (CKQ,fouling(J) values)

Description of Condition CKQ,fouling(J) (θflow,i = 0◦)

Hydraulically smooth propeller 1

Typical as applied anti-fouling coating

1.0026 (J = 0.6)
1.0016 (J = 0.8)
0.9999 (J = 1.0)
0.9959 (J = 1.2)

Deteriorated coating or light slime

1.0074 (J = 0.6)
1.0066 (J = 0.8)
1.0068 (J = 1.0)
1.0036 (J = 1.2)

Heavy slime

1.0024 (J = 0.6)
1.0037 (J = 0.8)
0.9991 (J = 1.0)
0.9859 (J = 1.2)

Small calcareous fouling or weed

1.0092 (J = 0.6)
1.0246 (J = 0.8)
1.0405 (J = 1.0)
1.0654 (J = 1.2)

Medium calcareous fouling

1.0120 (J = 0.6)
1.0264 (J = 0.8)
1.0426 (J = 1.0)
1.0690 (J = 1.2)

Heavy calcareous fouling

1.0120 (J = 0.6)
1.0264 (J = 0.8)
1.0426 (J = 1.0)
1.0690 (J = 1.2)
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The data in table 2.11 can be illustrated by the following figure

Figure 2.14: Effect of propeller fouling on CKQ,fouling

That is, the torque required at a given J value generally increases as the propeller fouling gets worse. This, in
turn, results in a loss of efficiency, as one might logically expect.

Solving for Propeller Torque

The propeller torque corresponding to a given propeller speed, propeller dimensions, and local conditions
Vflow and θflow,i can thus be computed by way of the following

KQ = CKQ,fouling(J)CKQ,nozzle(J)CKQ,θ(J, θflow,i)f2

(
J,
P

D
,
Ab
As
, nblades,ReD

)
(2.39)

Qprop = ρKQ(rps)2D5 (2.40)

where f2( ) refers to equation 1.54b.

2.3.6 Defining Propeller Design Speed

Take the propeller design speed to be that speed at which the propeller obtains maximum efficiency under
Vflow = vessel cruise speed,6 and θflow = 0◦. Since propeller efficiency, ηprop, is defined as [MIT, 2004]

ηprop =
TpropVflow

2π(rps)Qprop
=

KTJ

2πKQ
(2.41)

it follows that one can determine propeller design speed by way of solving an optimization problem of the
form “seek rps ∈ (0,+∞) such that ηprop is maximized”. Given equations 1.55, 2.37, and 2.39, the above
stated optimization problem is fully defined and thus can be solved.

6This will need to be either known or guessed. If one must guess, one might assume vessel cruise speed to be roughly 60% of
hull speed; that is, vessel cruise speed [kts] ∼= 0.804

√
L [ft] (with speed being returned in knots, given a length, on the waterline,

in feet).
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2.4 Modelling Steering Dynamics

2.4.1 Governing Equation

The sum of moments acting on a rotating body obey the classical equation∑
M = I

d2θ

dt2
(2.42)

where I is the mass moment of inertia of the body about the axis of rotation, and d2θ
dt2 is the angular

acceleration of the body. If one considers the steering gear for an azimuthing thruster, then equation 2.42 can
be expanded to (assuming zero spring stiffness)

Isteer
d2θsteer

dt2
+ bsteer

dθsteer

dt
= Qsteer (2.43)

where Isteer is the mass moment of inertia of the steering gear, bsteer is the angular damping of the steering
gear, and Qsteer is the moment driving the steering gear.

2.4.2 Generating Values for Isteer and bsteer

One can roughly approximate Isteer by way of modelling the steering gear as an assemblage of primitive
geometries. For instance, consider the following assemblage

Figure 2.15: Steering gear model
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The mass moments of inertia, about the tower axis, for each of the primitive geometries is then given by

Iprop = mpropL
2
shaft (2.44a)

Ishaft =
1

3
mshaftL

2
shaft (2.44b)

Iazipod =
1

12
mpod

(
3

2
D2

pod + L2
pod

)
(2.44c)

Itower =
1

4
mtowerD

2
tower (2.44d)

If one then assumes proportional dimensions as follows7

Lshaft =
5

2
P (2.45a)

Dshaft =
1

3
D (2.45b)

Lpod = 5P (2.45c)

Dpod =
3

5
D (2.45d)

Ltower =
4

5
T (2.45e)

Dtower =
3

5
D (2.45f)

with D and P being the diameter and pitch of the propeller, respectively, and T being the vessel draft, then
equations 2.44 can be re-written as (assuming cylinder wall thicknesses of about 2% of cylinder diameter)

Iprop =
25

4
mpropP

2 (2.46a)

Ishaft
∼= 0.45451ρD2P 3 (2.46b)

Iazipod
∼= ρD2P (0.01385D2 + 0.64141P 2) (2.46c)

Itower
∼= 0.00443ρD4T (2.46d)

with ρ being an appropriate material density (presumably that of steel). Isteer is then given by

Isteer = Iprop + Ishaft + Iazipod + Itower (2.47)

As for bsteer, one might assume that it is proportional to Isteer as follows (i.e., Rayleigh damping)

bsteer = ηIsteer (2.48)

Since a value for η is not immediately obvious, however, this thesis will simply assume that η = 1 1
s .

2.4.3 Generating Values for d2θsteer
dt2

and dθsteer
dt

Recall that, as a consequence of solving the linear thrust problem for a given τcontrol and thruster
arrangement, one generates everything needed to produce a sequence of θsteer values (see equation 2.29).

Therefore, one can produce corresponding values for dθsteer
dt and d2θsteer

dt2 by way of the same finite differences
scheme presented earlier.

7These choices are entirely arbitrary, as what exactly these proportions should be, in general, is not handled in this thesis.
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2.4.4 Solving for Qsteer

With all necessary components in hand, one need only evaluate equation 2.43 in order to generate an
appropriate sequence of Qsteer values for the steering gear of interest.

2.5 Generating Characteristic Periods

2.5.1 Generating Tsurge

If one considers the surge-sway-yaw control of a vessel on a flat, infinite sea, then it seems reasonable to
assume that the system response, to a non-oscillatory input, will be non-oscillatory in all of these degrees
of freedom. Therefore, one might determine appropriate characteristic periods by way of observing the
step-response of the vessel in each of these degrees of freedom and then extracting rise time (say, from 0% to
99% of steady state). Therefore, in order to determine a value for Tsurge specifically, consider a one-dimensional
problem, in surge, as follows8

(mdisp +A11)
du

dt
+ Cfoul,hull

(
3

5
CV +

1

2
Cw

)
ρAwettedu

2 = Fu(u) (2.49)

with Fu( ) corresponding to the maximum sustainable thrust that the vessel can produce at speed u, and
initial condition u(0) = 0.9 Given appropriate values for the various scalars and coefficients present in equation
2.49, one can solve the above stated problem by way of the well-known Runge-Kutta fourth order algorithm.
For example, the solution curve for an arbitrary case will look something like

Figure 2.16: Step response in surge

from which one can extract Tsurge.

8Assume no wind, waves, or current.
9The maximum sustainable thrust at a given speed can be determined from modelling the propeller dynamics at that speed.

That is, Fu(u) = ρKT (u)(rps)2D4, since KT ( ) varies with u. Assume rps ≡ propeller design speed.
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2.5.2 Generating Tsway

In order to determine a value for Tsway, consider a one-dimensional problem, in sway, as follows

(mdisp +A22)
dv

dt
+ Cfoul,hull

(∫ L
2

−L2
C2D
d (x)dx

)
ρT

2
v2 = Fv(v) (2.50)

with Fv( ) corresponding to the maximum sustainable thrust that the vessel can produce at speed v, and
initial condition v(0) = 0. From the solution to this problem, one can extract Tsway in the same manner as
for Tsurge.

2.5.3 Generating Tyaw

In order to determine a value for Tyaw, consider a one-dimensional problem, in yaw, as follows

(IObzz +A66)
dr

dt
+ Cfoul,hull

(∫ L
2

−L2
C2D
d (x)x3dx

)
ρT

2
r2 = Mr(r) (2.51)

with Mr( ) corresponding to the maximum sustainable moment that the vessel can produce at speed r, and
initial condition r(0) = 0. From the solution to this problem, one can extract Tyaw in the same manner as for
Tsurge.

2.5.4 Propeller and Steering Gear Periods

In order to determine appropriate propeller and steering gear periods, Tprop and Tsteer, one might assume
constant values for maximum sustainable propeller torque and steering moment, Qprop and Qsteer. Assuming
this, one can solve a pair of one-dimensional problems as follows.

Propeller Period

Model the propeller by way of an assemblage of primitive geometries as follows

Figure 2.17: Propeller model

The total mass moment of inertia of the propeller and shaft, about the shaft axis, can thus be approximated
by (taking proportional dimensions as previously)

Ipropshaft
∼=

1

8
mpropD

2 + 0.00303ρD4P (2.52)

Using this, define the following one-dimensional problem
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Ipropshaft
dωprop

dt
+ ηIpropshaftωprop = Qprop (2.53)

with ωprop(0) = 0, and η as defined previously. The solution to equation 2.53 is given by

ωprop(t) =
Qprop

ηIpropshaft

(
1− e−ηt

)
(2.54)

If one then takes Tprop to be the time needed to accelerate the propeller from ωprop = 0 to ωprop = ωdesign

(that is, the design speed of the propeller, in rad/s), then

Tprop =
1

η
ln

(
Qprop

Qprop − ηIpropshaftωdesign

)
(2.55)

Steering Gear Period

Consider the following one-dimensional problem

Isteer
d2θsteer

dt2
+ ηIsteer

dθsteer

dt
= Qsteer (2.56)

with dθsteer
dt |t=0 = θsteer(0) = 0. The general solution to this problem is as follows

θsteer =
Qsteer

η2Isteer
(e−ηt − 1) +

Qsteer

ηIsteer
t (2.57)

If one then takes Tsteer to be the time needed for the steering gear to complete one full revolution (i.e.,
θsteer(Tsteer) = 2π), then

Tsteer =
2πηIsteer

Qsteer
+

1 +W

(
−e−

Qsteer+2πη2Isteer
Qsteer

)
η

(2.58)

where W ( ) is the Lambert W function.
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Chapter 3

Case Study Results

In this chapter, two case studies are considered as a means of validating the proposed load cycle generation
process. Both cases are car-deck ferries, with case A being a more ideal candidate, given the proposed
generation process, than candidate B. For each case, the hull geometry and propeller placement is introduced,
along with some basic measures of the vessel. In addition, the vessel’s mission is defined, in terms of distance
transited, transit time, and the number of waypoints passed as input to the generation process. Results are
then presented and compared to data collected either at sea or from the vessel’s documentation. Finally, after
both case studies have been presented, a general discussion of the results is offered.

3.1 Case Study A - Set-up

For this case study, a car-deck ferry having the following hull geometry and thruster arrangement was
considered

Figure 3.1: Car-deck ferry A - transverse and waterplane view

Of note in figure 3.1 is the fact that this case exhibits both forward-aft symmetry and no bulbous bow/stern.
It is therefore an ideal candidate for approximation by way of the Wigley N43 geometry. In addition, this case
is fitted with four, symmetrically placed, azimuthing thrusters (fitted with nozzled propellers), and so it is
also an ideal candidate with respect to the methodology of propeller dynamics modelling presented previously.
The basic measures of this hull are, roughly, length 105 m, beam 20 m, and draft 2.5 m. Displacement is on
the order of 2500 tonnes given the loading condition considered.

A waypoint set, consisting of 16 waypoints, was generated from data collected at sea. The mission cycle
considered spans 5 nautical miles in 27 minutes. Weather data was also collected from local stations in order
to model currents and winds over the mission cycle. Waves were neglected, however, since this vessel operates
in sheltered waters. Hull and propeller conditions were both assumed to be “deteriorated coating or light
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slime”. Finally, vessel specific hull and propeller parameters, derived from the vessel’s drawings and manual
of trim and stability, where used in all cases for which they were available.

3.2 Case Study A - Results

The process illustrated in figure 2 was implemented programmatically and then executed given the case
of car-deck ferry A. Total runtime was 8 minutes 20 seconds on a 3.40 GHz quad-core processor, and thus the
proposed methodology achieved a time ratio1 of about 3.3:1 in this case.

3.2.1 Kinematics Results

A selection of the kinematics generated in this case can be plotted as as per figures 3.2 - 3.6. These
kinematics were selected for presentation here because data collected at sea is available for each of them, and
thus individual comparisons can be made. In addition, the latitude and longitude values are suppressed for
privacy reasons.

Figure 3.2: Vessel path (case A)

Figure 3.2 illustrates the mission cycle, as defined for this case (i.e., the waypoints), along with the path
interpolated through the waypoints. The start and end points of the mission are defined so as to illustrate
the directionality of this mission. Note that the waypoints are most densely packed in the intervals where the
vessel is maneuvering in and out of dock, and least densely packed in the interval where the vessel is cruising
(roughly constant heading, constant speed). This is done purposely, as the more dense the waypoints are over
an interval of the mission, the smaller the timesteps used in simulating the dynamics over that interval.

1I.e., simulated time to execution time.
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Figure 3.3: Vessel latitude vs time (case A)

Figure 3.3 also illustrates the given mission cycle and interpolated path, but instead vessel shows latitude
versus time.
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Figure 3.4: Vessel longitude vs time (case A)

Figure 3.4 also illustrates the given mission cycle and interpolated path, but instead shows vessel longitude
versus time. Note also that the interval where both figures 3.3 and 3.4 exhibit a roughly constant slope is the
interval over which the vessel is cruising. Since most of figures 3.3 and 3.4 exhibit a cruising state, one can
conclude that this particular mission cycle is fairly static.
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Figure 3.5: Vessel heading vs time (case A)

Figure 3.5 illustrates vessel heading versus time as generated by equation 2.2. Note that the interval over
which the vessel heading is roughly constant is the interval over which the vessel is cruising.
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Figure 3.6: Vessel speed vs time (case A)

Figure 3.6 illustrates the vessel’s speed over ground throughout the mission. For this mission, the vessel
accelerates out of dock, cruises from the start point to the finish point, and then decelerates into dock.
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3.2.2 Propeller Results

The propeller states generated in this case can be plotted as per figures 3.7, 3.8, and 3.9. Note that
in figure 3.7, the results agree well with the propeller design speed (generated by way of section 2.3.6)
while the vessel is cruising. The results in figure 3.9 are rather less than the propeller design power, but
subsequent comparison will show this to be fairly accurate nonetheless. In the absence of data, however, one
can immediately conclude that the results in figures 3.7 and 3.9 are feasible in that the propeller design values
are nowhere exceeded.

Figure 3.7: Propeller speeds vs time (case A)
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Figure 3.8: Propeller torques vs time (case A)

Figure 3.9: Propeller power vs time (case A)
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3.2.3 Steering Gear Results

The steering gear states generated in this case can be plotted as per figures 3.10 and 3.11. Note that
figure 3.10 indicates that the steering gear torques are bounded by about ±90 kN.m everywhere over the
mission cycle. In addition, figure 3.11 indicates that the steering gear powers are bounded by about 85 kW
everywhere over the mission cycle. It is interesting to note, then, that the steering gears fitted on the vessel
considered in this case are each driven by a 75 kW hydraulic pump, according to the vessel’s equipment list;
this is consistent with the results illustrated in figure 3.11. No further comparison of steering gear results will
be possible here, however, since operational data for the steering gear was not collected.

Figure 3.10: Steering gear torques vs time (case A)

68



Figure 3.11: Steering gear power vs time (case A)

3.2.4 Work Done and Fuel Required

The work done by the vessel’s propellers, in order to accomplish the given mission, can be determined
by integrating the results of figure 3.9 over the mission cycle; this yields a result of 2185 MJ. Similarly, the
work done by the vessel’s steering gear can be determined by integrating the results of figure 3.11 over the
mission cycle; this yields a result of 1.34 MJ. Therefore, the total work done by the vessel in accomplishing
its mission is given almost entirely by the propeller work alone (as one might logically expect, given the fairly
static mission cycle). From this, one can estimate a lower bound on the fuel required to accomplish the given
mission. Assuming an energy density of about 38.5 MJ/L, which represents distillate fuel oil, 2185 MJ of
energy is equivalent to about 60 litres of fuel. Assuming a transmission efficiency of 95% and an average
engine thermal efficiency of, say, 15% over the mission cycle2, the estimated lower bound on fuel consumption
can be adjusted to about 420 litres. This is comparable to the fuel consumption recorded at sea, which for
case A was about 435 litres per mission cycle. More accurate results could be obtained by mapping the
propeller states to corresponding engine states and then referring to the engine’s specific fuel consumption
map. This approach could also yield emissions over the mission, if one has access to the engine’s specific
emissions map.

2This vessel is propelled by a classical mechanical plant.
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3.3 Case Study A - Comparison

For this case, data was collected at sea for each of the kinematics and propeller results presented
above [Grant and Zhu, 2017a]. A comparison between the generated results and the collected data follows.

3.3.1 Kinematics Results Comparison

A comparison of the kinematics results to the corresponding data is illustrated in figures 3.12 - 3.16, with
the “cruising” partition being defined by those times for which vessel speed and heading are both relatively
constant; all other times are considered “maneuvering”.

As illustrated in figures 3.12, 3.13, and 3.14, the vessel path generated from the given waypoint set is in
good agreement with the actual path traversed by the vessel. Figure 3.15 shows reasonably good agreement
between generated vessel headings and recorded headings, with errors while cruising of about ±2.5◦, and
errors while maneuvering of about ±10◦. These errors in heading are likely due to non-zero sway velocities
(i.e., side-slipping), especially during maneuvering, which constitutes a violation of the heading tangent to
path assumption made previously. In addition, the heading errors are worst towards the beginning and end of
the mission (errors on the order of ±35◦), where dxn

dt and dyn
dt become small thus leading to instability in the

output of equation 2.2.
Figure 3.16 shows good agreement between the generated and recorded speeds of the vessel, with errors

while cruising of about ±1% of the true speed, and errors while maneuvering of about ±6% of the true speed.
The larger errors in maneuvering are likely due to differences in how the actual vessel is controlled versus
how the simulated vessel is controlled. Recall that the control of the simulated vessel is defined by the linear
thrust problem introduced previously (see, for instance, equation 2.26). This control scheme evidently differs
from how the vessel is controlled in practice, especially during maneuvering. This will become even more
evident once the propeller results are presented.

Figure 3.12: Vessel path (case A), comparison
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Figure 3.13: Vessel latitude vs time (case A), comparison

Figure 3.14: Vessel longitude vs time (case A), comparison
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Figure 3.15: Vessel heading vs time (case A), comparison

Figure 3.16: Vessel speed vs time (case A), comparison
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3.3.2 Propeller Results Comparison

A comparison of the propeller results to the corresponding data is illustrated in figures 3.17, 3.18, and
3.19, which all show reasonably good agreement between the generated and recorded values for propeller
dynamics. With respect to propeller speeds, the generated values are within about ±3% of the true values
while cruising, and within about ±14% of the true values while maneuvering. With respect to propeller
torques, the generated values are within about ±7% of the true values while cruising, and within about
±36% of the true values while maneuvering. Finally, with respect to propeller power, the generated values
are within about ±10% of the true values while cruising, and within about ±42% of the true values while
maneuvering. Of note, however, is that both the generated and recorded propeller powers are less than half
of the propeller design power; this would indicate that a good deal of redundant power is installed in case A.
This, fortunately, is normal and is due to a design practice following from the legal obligation to respond,
with all haste, to marine emergencies when one is nearest and able [CSA, 2001].

Once again, the generated results are quite good while cruising, but not as good while maneuvering. The
larger errors while maneuvering can, as before, likely be attributed to differences in how the actual vessel
is controlled versus how the simulated vessel is controlled. For example, consider figure 3.17. The recorded
propeller speeds show the propellers mostly operating at a few discrete speeds, with changes occurring only
to move from one discrete speed to another.3 In contrast, the generated propeller speeds show the propellers
changing speed smoothly and continuously throughout the mission cycle. The same control differences present
in figures 3.18 and 3.19 as well. It is therefore important to distinguish between the recorded values, which
represent how the vessel is actually controlled, and the generated values, which represent how the vessel
should be controlled according to the linear thrust problem.

Figure 3.17: Propeller speeds vs time (case A), comparison

3The only exception to this behaviour is toward the end of the mission cycle, where the propellers are more finely controlled
during docking.
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Figure 3.18: Propeller torques vs time (case A), comparison

Figure 3.19: Propeller power vs time (case A), comparison
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3.4 Case Study B - Set-up

For this case study, a car-deck ferry having the following hull geometry and thruster arrangement was
considered

Figure 3.20: Car-deck ferry B - transverse and waterplane view

Of note in figure 3.20 is the fact that this case does not exhibit forward-aft symmetry and is fitted with a
bulbous bow. In addition, the vessel is propelled by two fixed propellers (no nozzles fitted), with steering
achieved by way of rudders and a bow-thruster (or tunnel thruster). Therefore, this particular case is not as
well suited to the methodology presented in this thesis as is case A. Still, this case is of interest as it more
closely resembles the general architecture of large merchant vessels, such as tankers and carriers, than does
case A. The basic measures of this hull are, roughly, length 45 m, beam 15 m, and draft 2.6 m. Displacement
is on the order of 750 tonnes given the loading condition considered.

As an experiment, it was decided to modify the vessel under consideration from that illustrated in figure
3.20 to the following
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Figure 3.21: Car-deck ferry B, modified - transverse and waterplane view

That is, replace the propulsion and steering equipment with two, centreline, azimuthing thrusters (each fitted
with the same propeller as in figure 3.20), and then modify the submerged hull geometry so as to eliminate
the bulbous bow and accommodate the thrusters such that they are placed in the vicinity of the true propeller
and bow-thruster positions. Figure 3.21 thus illustrates a vessel better suited to the methodology presented in
this thesis. The question, then, is how well will this modified vessel represent the true vessel when simulated?

A waypoint set, consisting of 14 waypoints, was generated from data collected at sea. The mission cycle
considered spans 6.2 nautical miles in 45 minutes. Weather data was also collected from local stations in
order to model currents and winds over the mission cycle. Waves were neglected, however, since this vessel
operates in sheltered waters. Hull and propeller conditions were both assumed to be “deteriorated coating or
light slime”. Finally, vessel specific hull and propeller parameters, derived from the vessel’s drawings and
manual of trim and stability, where used in all cases for which they were available.
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3.5 Case Study B - Results

The process illustrated in figure 2 was executed given the case of car-deck ferry B (modified). Total
runtime was 3 minutes 30 seconds on a 3.40 GHz quad-core processor, and thus the proposed methodology
achieved a time ratio of about 12.8:1 in this case.

3.5.1 Kinematics Results

A selection of the kinematics generated in this case can be plotted as per figures 3.22 - 3.26. These
kinematics were selected for presentation here because data collected at sea is available for each of them, and
thus individual comparisons can be made. Again, the latitude and longitude values are suppressed for privacy
reasons.

Figure 3.22: Vessel path (case B)

Figure 3.22 illustrates the mission cycle, as defined for this case (i.e., the waypoints), along with the path
interpolated through the waypoints. The start and end points of the mission are defined so as to illustrate
the directionality of this mission. One feature of this case that makes it different from case A is that, instead
of being partitioned into one cruising interval and two maneuvering intervals, this case can be partitioned
into two cruising intervals separated by maneuvering intervals.
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Figure 3.23: Vessel latitude vs time (case B)

Figure 3.23 also illustrates the given mission cycle and interpolated path, but instead shows vessel latitude
versus time.
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Figure 3.24: Vessel longitude vs time (case B)

Figure 3.24 also illustrates the given mission cycle and interpolated path, but instead shows vessel longitude
versus time. Figures 3.23 and 3.24 together also illustrate the maneuvering-cruising-maneuvering-cruising-
maneuvering structure present in the mission cycle for this case. Like case A, however, the vessel spends most
of the mission in a cruising state, so case B is also fairly static.
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Figure 3.25: Vessel heading vs time (case B)

Figure 3.25 illustrates vessel heading versus time as generated by equation 2.2. Note that the interval over
which the vessel heading is roughly constant is the interval over which the vessel is cruising.
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Figure 3.26: Vessel speed vs time (case B)

Figure 3.26 illustrates the vessel’s speed over ground throughout the mission. For this mission, the vessel
accelerates out of dock, cruises from the start point to the finish point, and then decelerates into dock.
Speedwise, case B exhibits the same structure as case A.
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3.5.2 Propeller Results

The propeller states generated in this case can be plotted as per figures 3.27, 3.28, and 3.29. The results,
so far, look about the same as they did for case A.

Figure 3.27: Propeller speeds vs time (case B)

Figure 3.27 illustrates propeller speeds vs time, and shows good agreement with the propeller design
speed (generated by way of section 2.3.6) while the vessel is cruising.
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Figure 3.28: Propeller torques vs time (case B)

Figure 3.28 looks similar to figure 3.8, with a fairly steady increase in propeller torques until cruising,
then constant, then steady decrease into dock.
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Figure 3.29: Propeller power vs time (case B)

Figure 3.29, like figure 3.9, shows propeller powers that are rather less than the propeller design power.
Nonetheless, this will also be shown to be accurate.
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3.5.3 Steering Gear Results

The steering gear states generated in this case can be plotted as per figures 3.30 and 3.31. Note that
figure 3.31 indicates that the steering gear powers are bounded by about 850 kW everywhere over the mission
cycle. This, however, is excessive since the steering gear actually fitted on board in case B is driven by a pair
of 3.75 kW hydraulic pumps, according to the vessel’s equipment list.

Figure 3.30: Steering gear torques vs time (case B)
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Figure 3.31: Steering gear power vs time (case B)

3.5.4 Work Done and Fuel Required

The work done by the vessel’s propellers, in order to accomplish the given mission, can be determined
by integrating the results of figure 3.29 over the mission cycle; this yields a result of 1025 MJ. From this,
one can estimate a lower bound on the fuel required to accomplish the given mission. Assuming, once again,
an energy density of about 38.5 MJ/L, 1025 MJ of energy is equivalent to about 28 litres of fuel. Assuming
a transmission efficiency of 95% and an average engine thermal efficiency of, say, 30% over the mission
cycle4, the estimated lower bound on fuel consumption can be adjusted to about 100 litres. This is roughly
comparable to the fuel consumption recorded at sea, which for case B was about 105 litres per mission cycle.
Once again, more accurate results could be obtained by mapping the propeller states to corresponding engine
states and then referring to the engine’s specific fuel consumption map. One could also approximate emissions
over the mission using this approach, if one has access to the engine’s specific emissions map.

4This vessel is propelled by a mild hybrid plant.
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3.6 Case Study B - Comparison

For this case, data was collected at sea for each of the kinematics and propeller results presented
above [Grant and Zhu, 2017b]. A comparison between the generated results and the collected data follows.

3.6.1 Kinematics Results Comparison

A comparison of the kinematics results to the corresponding data is illustrated in figures 3.32 - 3.36, with
the “cruising” partition being defined, once again, by those times for which vessel speed and heading are
both relatively constant; all other times are considered “maneuvering”.

As illustrated in figures 3.32, 3.33, and 3.34, the vessel path generated from the given waypoint set is in
good agreement with the actual path traversed by the vessel. Figure 3.35 shows reasonably good agreement
between generated vessel headings and recorded headings while cruising, with errors in this state of about
±1.7◦. Heading errors while maneuvering, however, are quite large; about ±66◦ on average (at times, even
worse). In this case, this is due to the lack of forward-aft symmetry, which, in turn, means that this vessel is
not bi-directional as in case A. At the beginning of its mission, the vessel is in dock, bow towards the shore,
and thus needs to back out and turn around before commencing its transit. In addition, the vessel performs a
somewhat aggressive maneuver in order to dock at the end of its mission (this maneuver is not visible at the
scale of figure 3.32); this maneuver is illustrated in figure 3.37. That is, the vessel slows, and then backs into
the dock at the end of its mission cycle. The heading errors at the beginning and end of the mission cycle,
therefore, can only be alleviated by fully defining the mission cycle (i.e., latitude, longitude, and heading)
ahead of time. This, however, was not attempted as part of this thesis.

Figure 3.36 shows good agreement between the generated and recorded speeds of the vessel, with errors
while cruising of about ±1% of the true speed, and errors while maneuvering of about ±6% of the true speed.
The larger errors in maneuvering are again likely due to differences in how the actual vessel is controlled
versus how the simulated vessel is controlled (compounded further by the modification made).

Figure 3.32: Vessel path (case B), comparison

87



Figure 3.33: Vessel latitude vs time (case B), comparison

Figure 3.34: Vessel longitude vs time (case B), comparison
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Figure 3.35: Vessel heading vs time (case B), comparison

Figure 3.36: Vessel speed vs time (case B), comparison
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Figure 3.37: End of mission docking maneuver (case B)

3.6.2 Propeller Results Comparison

A comparison of the propeller results to the corresponding data can is illustrated in figures 3.38, 3.39, and
3.40. Figures 3.38, 3.39, and 3.40 all show reasonably good agreement between the generated and recorded
values for propeller dynamics. With respect to propeller speeds, the generated values are within about ±2%
of the true values while cruising, and within about ±28% of the true values while maneuvering. With respect
to propeller torques, the generated values are within about ±8% of the true values while cruising, and within
about ±45% of the true values while maneuvering. Finally, with respect to propeller power, the generated
values are within about ±9% of the true values while cruising, and within about ±66% of the true values
while maneuvering.

It is pleasing to see that, given the modified vessel, the process illustrated in figure 2 was still able to
generate results comparable to those measured on the actual vessel, although the maneuvering errors in this
case are rather larger than in case A. Still, these results indicate that if the vessel in question spends most of
its mission cycle in a cruising state, then one can generate meaningful results even if one modifies the vessel
architecture from its original state to an equivalent state composed strictly of azimuthing thrusters.
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Figure 3.38: Propeller speeds vs time (case B), comparison

Figure 3.39: Propeller torques vs time (case B), comparison
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Figure 3.40: Propeller power vs time (case B), comparison
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3.7 Discussion

The results generated for cases A and B show that, for a vessel having a ramp up, cruise, ramp down
type mission, which can be illustrated, in general, as follows

Figure 3.41: Ramp up, cruise, ramp down type mission

the process illustrated in figure 2 works well in terms of predicting propeller states and can also work well in
terms of predicting steering states. Since this type of mission is typical for many vessel types (ferries, tankers,
carriers, etc.), it follows that the process illustrated in figure 2 covers, in terms of applicability, a large subset
of all possible monohull surface vessel designs. Still, the errors between the generated and recorded values
were noticeably higher while maneuvering than they were while cruising; this implies that the process, as
implemented in this thesis, may not yet be able to handle more dynamic mission types in a satisfactory
manner.

The achieved runtimes for each case study are encouraging, with time ratios of about 3.3:1 and 12.8:1 for
cases A and B respectively. It is interesting to note, however, that despite the fact that the mission in case B
was significantly longer than the mission in case A (45 minutes compared to 27 minutes), the simulation of
case B finished in less than half the time it took to simulate case A. Since case A and case B both exhibit
about the same ratio in cruising time to maneuvering time, it cannot be a matter of one case having a more
dynamic mission than the other. One might conclude instead that runtime is strongly influenced by the
number of propellers being modelled. Recall the iterative process for generating appropriate propeller speeds
(see, for instance, the algorithm following equation 2.37). Clearly, the generation of propeller states is the most
computationally expensive part of the process illustrated in figure 2, so increasing the number of propellers
being modelled causes the number of required operations to grow rapidly. Given this, it follows that one can
expect simulations involving fewer propellers to run much faster than those involving more propellers, and
this is precisely what was observed in the case studies.
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Conclusion

Research Contributions

The research contributions of this work can be separated into two distinct categories: global (that is,
contributions to the related global research in marine engineering) and local (that is, contributions to the
related research in marine engineering being undertaken at the University of Victoria in particular). These
contribution categories will be discussed individually in the following sub-sections.

Global Contributions

A survey of the related, global research into marine engineering reveals no work having a comparable
mission→ drive→ load approach (see figure 2) as is employed in this work. The majority of related, published
works focus on one particular aspect of mission, drive, load, or controls assuming that all other information is
given (see, for instance, [Caccia et al., 2008, Breivik and Fossen, 2004, Perez and Blanke, 2002, Taghipour
et al., 2008,Phillips et al., 2009]). The most similar published work that could be found was [Theotokatos,
2007], which focuses on the coupled propeller-engine dynamics (and so has more of a drive ↔ load structure,
although steering dynamics is not captured). In addition, [Theotokatos, 2007] also uses a surrogate propeller
geometry, namely the Wageningen B-series, to facilitate analysis. The work of [Theotokatos, 2007], however,
defines the propeller state (ordered speed) ahead of time and it considers only a one-dimensional surge model
in calm seas, so while it is comparable to this thesis, it does not offer the same level of generality.

Local Contributions

Vessel modelling work carried out at the University of Victoria has led to the development of a number of
distinct vessel modelling approaches, namely

1) general empirical model (based on classical textbook methods; see [Jaster, 2013]);

2) reduced-order hydrodynamics model (see [Andersen, 2016]); and,

3) low-order regression model (see [Rahimpour, 2017])

These modelling approaches each have individual strengths and weaknesses. First, the general empirical model
uses empirical equations for all elements of the hull and propeller dynamics, and so it avoids the need for
computationally expensive fluid dynamics and/or potential flow modelling. However, setting up the empirical
model means providing a large number of coefficients, each of which are contained within a typical range of
values. This means that the general empirical model requires a large input set and is exposed to a good deal
of subjectivity in that the user needs to choose coefficient values. As a result, the general empirical model can
lead to modelling errors on the order of ±20% - ±40%, even during cruising.

By comparison, the reduced-order hydrodynamics model is significantly more accurate than the general
empirical model (errors of less than ±20%). It requires, however, a good deal of pre-computation in order
to quantify the hydrodynamics of the vessel being modelled. This means potentially time-consuming fluid
dynamics and/or potential flow modelling needs to be undertaken before the model can even be run. In
addition, the reduced-order hydrodynamics model, as presently implemented, is only a one-dimensional surge
model which requires the driver input to be fully defined ahead of time.
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The low-order regression model seeks to achieve the accuracy of the reduced-order hydrodynamics model
without having to first perform expensive pre-computation every time it is employed. This is achieved by
summarizing a broad set of fluid dynamics and potential flow results, together with vessel-specific results
detailed in the vessel’s manual of trim and stability, by way of best-fit equations which, in turn, can be used
to quickly generate the hydrodynamical properties of the vessel of interest. What results is a model that is
less time consuming to employ than the reduced-order hydrodynamics model, and more accurate than the
general empirical model.

The methodology presented in this thesis differs from all three of the methods discussed above, and
might be classified as a generic mathematical model. First, expensive pre-computation is avoided entirely by
way of using a surrogate geometry for the hull. The existence of a closed-form expression for the surrogate
hull geometry then allows one to determine the hull hydrodynamics analytically, as per the hull surrogate
geometry section presented previously. In addition, a surrogate propeller geometry is also used, namely the
Wageningen B-series, for which the general dynamics have already been expressed empirically [Bernitsas
et al., 1981]. The results achieved in this thesis, therefore, demonstrate the credibility of using surrogate
geometries to facilitate an analytical approach to vessel modelling. Furthermore, this method takes in a
mission, select vessel properties (which can be extracted from the vessel’s manual of trim and stability), and
weather conditions, and generates, from that alone, both propeller and steering gear states everywhere over
the mission. It is therefore more all-encompassing than the previously developed modelling methodologies,
in that it considers mission, drive, and load altogether, and it generates both propeller and steering gear
dynamics. This method is also fast and easy to generalize, and so it better allows one to play “what-if?”
games regarding considerations such as vessel routing, choice of plant architecture, degree of hybridization,
etc. than the previously developed methods; this, arguably, makes it more useful in practice.

Recommendations

If one considers the case studies performed, then the observed accuracy, together with the rapid runtimes
achieved and sparse inputs given, leads one to conclude that the methodology presented in this thesis shows
promise in terms of being able to generate representative load cycles for arbitrary monohull surface vessels.
Therefore, from its current state, the methodology presented in this thesis should be extended to handle both
more dynamic mission types and non-monohull vessels (catamarans, trimarans, etc.). In terms of handling
more dynamic mission types, this might be achieved by implementing some kind of driver model. Indeed, good
results (prediction errors of less than ±20%) were achieved in [Andersen, 2016], where a driver model based
on control input data collected at sea was implemented. Therefore, it stands to reason that implementing a
generalized driver model, which approaches the behaviour of practical vessel control, would lead to more
accurate results while the vessel is in a maneuvering state. In addition, maneuvering, even in perfectly
calm seas, tends to introduce non-negligible roll motions, and so extending the surge-sway-yaw model to a
surge-sway-roll-yaw model would also contribute to reducing maneuvering errors (see, for instance, [Perez and
Blanke, 2002]), albeit at the expense of complicating equation 1.32 somewhat (as the simplifying assumptions
p ≈ 0 and φ ≈ 0 would no longer be valid).

In terms of handling non-monohull vessels, one might immediately achieve this using the same Wigley
N43 surrogate geometry by simply assembling the hull of interest from a number of N43s. For example,
the submerged geometry of a catamaran might be modelled as two N43s, side-by-side, separated abeam by
some distance. Hull parameters (wetted area, added masses, etc.) could then be computed by only slightly
modifying the theory presented in section 1.4 of this thesis. As for other non-monohull vessels lacking ship-like
architecture altogether (an oil rig, for example), one could still apply the same hull modelling approach, only
this time using a different, more suitable surrogate geometry (perhaps just a cylinder would suffice for the
case of an oil rig).

Finally, more representative surrogate geometries than those employed in this thesis might be sought. For
example, the KCS hull geometry (see, for instance, [Van et al., 1997] or [Miao et al., 2016]) exhibits a bulbous
bow and no forward-aft symmetry (i.e., more similar to figure 3.20 than the Wigley N43), and so would be
more applicable to vessels having this general architecture, which many vessels do. However, moving to more
realistic geometries such as the KCS would also likely mean giving up a closed-form expression for y+(x, z),
as such hull geometries are typically defined only by a point set or a body plan (i.e., a series of transverse
cuts spanning the length of the vessel). This loss of generality would have to be mitigated somehow (perhaps
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by fitting a polynomial surface to the point set). More representative propeller geometries could be sought as
well, especially since the KT and KQ polynomials presented in [Bernitsas et al., 1981] model only propeller
technology advanced to the point of 1981 at the latest. In order to compensate for advances in propeller
technology since then, new KT and KQ models would have to be generated for a more modern propeller
geometry.
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Appendix A

Mass Moment of Inertia
Experimentation

Car-Deck Ferry A

For car-deck ferry A, access to the vessel’s manual of trim and stability was available. Therefore, IObzz was
calculated in the classical manner using the vessel’s mass table, for deep departure condition, as follows

Table 1: Car-Deck Ferry A - Mass Table (deep departure)
Part Mass [kg] xi [m] yi [m] ||~rdm||22 [m] Izz,i [kg.m2]

Light Ship 1927800 0.237 -0.057 0.0594 114546.020
Crew & Effects 3000 0 0 0 0

Stores 5000 0 0 0 0
Private Vehicles 180000 0 0 0 0

Passengers 44500 0 0 0 0
Day-Tank 21580 13.744 0 188.898 4076408.827

Fuel-Oil Tank 74930 16.91 -0.002 285.948 21426091.433
Potable Water Tank 31470 -17.498 6.885 353.583 11127264.217

Non-Potable Water Tank 31470 -17.498 -6.885 353.583 11127264.217
Emergency Generator Tank 5270 -3.75 9 95.063 500.979.375∑

Izz,i 48372554.088

Applying equation 1.44, with ρ = 1025 kg/m3, L = 105.44 m, B = 19.11 m, and T = 2.36 m then yielded
the following

ĨObzz = 1480144620.862 kg.m2

And so, the appropriate value for Cinertia in this case is

Cinertia =
IObzz

ĨObzz

∼= 0.033
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Car-Deck Ferry B

For car-deck ferry B, access to the vessel’s manual of trim and stability was available. Therefore, IObzz was
calculated in the classical manner using the vessel’s mass table, for deep departure condition, as follows

Table 2: Car-Deck Ferry B - Mass Table (deep departure)
Part Mass [kg] xi [m] yi [m] ||~rdm||22 [m] Izz,i [kg.m2]

Light Ship 602903.7 -0.506 0.043 0.258 155647.429
Stores & Provisions 4064.2 0.763 0 0.581 2362.951

Crew & Effects 711.235 3.05 0 9.303 6616.264
Passengers 10770.13 3.05 0 9.303 100189.134

Cars 25198.04 0 0 0 0
Trucks 64011.15 -1.098 0 1.206 77172.098

Freshwater Tank 12487.25 15.503 0 240.348 3001282.398
Fuel-Oil Tank STBD 13086.72 -11.261 1.168 128.166 1677268.939
Fuel-Oil Tank PORT 13086.72 -11.261 -1.168 128.166 1677268.939

Day-Tank 2021.94 -7.976 0 63.613 128620.805
Dirty Oil Tank 0 -8.873 3.407 90.327 0
Sewage Tank 0 -16.192 -1.934 265.935 0

Dirty Water Tank 0 -8.409 -3.376 82.108 0
Lube Oil Tank 2296.273 -6.417 -4.511 61.529 141287.670∑

Izz,i 6967716.687

Applying equation 1.44, with ρ = 1025 kg/m3, L = 45.87 m, B = 14.63 m, and T = 2.63 m then yielded the
following

ĨObzz = 111505935.815 kg.m2

And so, the appropriate value for Cinertia in this case is

Cinertia =
IObzz

ĨObzz

∼= 0.062
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Appendix B

Validation of Hull Drag Equations

Set-up

A Wigley N43 hull having dimensions length 105 m, beam 19 m, and draft 2.4 m, (i.e., corresponding to
car-deck ferry A) was simulated, using StarCCM+, in order to determine total fluid resistance at a variety
of Froude numbers [Rahimpour and McIntyre, 2018]. Since the cruising speed of this particular vessel is 7.46
m/s (about 14.5 knots), which corresponds to a Froude number of 0.2324, it was decided to simulate the
vessel at discrete Froude numbers spanning the interval [0.10,0.40]. The simulation results would then be
compared to theoretical results obtained by way of the following

RT =
1

2
ρ(CV + Cw)Awettedu

2 (1a)

CV = (1 +K)Cf (1b)

Cf =
3

40(log10(ReL)− 2)2
(1c)

K ∼= 19

(
CbB

L

)2

(1d)

with Cw = f(FrL), as defined in [bin Tarafder et al., 2007]. This expression for theoretical drag was used, for
the purpose of validation, because it represents a hydraulically smooth hull with no appendages, precisely
what was simulated.
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Results

Simulation Results

The results of the simulation follow

Table 3: Total fluid resistance - simulation
FrL u [m/s] RT [N] ReL CV + Cw Cf Fr4

L/Cf (CV + Cw)/Cf

0.10 3.216 12929 3.218E+08 0.00151 0.00177 0.05646 0.85283
0.11 3.538 15678 3.540E+08 0.00151 0.00175 0.08372 0.86557
0.12 3.859 19835 3.861E+08 0.00161 0.00173 0.11995 0.93079
0.13 4.181 24879 4.183E+08 0.00172 0.00171 0.16697 1.00530
0.14 4.503 31648 4.505E+08 0.00189 0.00169 0.22677 1.11342
0.15 4.824 39860 4.827E+08 0.00207 0.00168 0.30153 1.23262
0.20 6.432 87207 6.436E+08 0.00255 0.00162 0.98895 1.57416
0.23 7.397 131538 7.401E+08 0.00290 0.00159 1.76065 1.82752
0.25 8.040 168916 8.045E+08 0.00316 0.00157 2.48364 2.00736
0.30 9.648 288980 9.653E+08 0.00375 0.00154 5.26887 2.43985
0.35 11.257 474973 1.126E+09 0.00453 0.00151 9.94924 3.00301
0.40 12.865 732862 1.287E+09 0.00535 0.00148 17.25328 3.60612

The last two columns of table 3 allow one to extract a value for the form factor, K, as per [ITTC, 1957], in
the following manner. First, plot CT /Cf vs Fr4

L/Cf , and then construct a line of best fit

Figure 42: Form factor plot

The line of best fit for figure 42 is given by

CT
Cf

= 0.1606
Fr4
L

Cf
+ 1.1876 (2)
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from which one can conclude that 1 +K = 1.1876. Therefore, the results in table 3 can be separated into
viscous and wave-making components, RV and Rw (with RT = RV +Rw), as follows

Table 4: Viscous and wave-making resistance - simulation
FrL u [m/s] RT [N] ReL Cf CV RV [N] Rw [N]

0.10 3.216 12929 3.218E+08 0.00177 0.00210 18005 -5075
0.11 3.538 15678 3.540E+08 0.00175 0.00208 21511 -5833
0.12 3.859 19835 3.861E+08 0.00173 0.00205 25307 -5472
0.13 4.181 24879 4.183E+08 0.00171 0.00203 29390 -4511
0.14 4.503 31648 4.505E+08 0.00169 0.00201 33756 -2108
0.15 4.824 39860 4.827E+08 0.00168 0.00199 38404 1456
0.20 6.432 87207 6.436E+08 0.00162 0.00192 65792 21415
0.23 7.397 131538 7.401E+08 0.00159 0.00189 85479 46059
0.25 8.040 168916 8.045E+08 0.00157 0.00187 99935 68982
0.30 9.648 288980 9.653E+08 0.00154 0.00183 140661 148319
0.35 11.257 474973 1.126E+09 0.00151 0.00179 187838 287135
0.40 12.865 732862 1.287E+09 0.00148 0.00176 241353 491509

Of note in table 4 are the negative Rw values for the lower Froude numbers. It is not entirely clear why this is
happening (perhaps an error in the simulation?), but negative wave-making resistance at any speed makes no
physical sense (a moving vessel will always generate a wave, which will always cost some amount of energy).
By interpolation, it was found that the simulated Rw values dropped to zero by about FrL = 0.146, which is
consistent with both figure 2.6 and the general results presented in [USNA, 2007]. Therefore, one might trim
table 4 to the following

Table 5: Viscous and wave-making resistance - simulation (trimmed)
FrL u [m/s] RT [N] ReL Cf CV RV [N] Rw [N]

0.146 4.696 36512 4.698E+08 0.00168 0.00200 36512 0
0.150 4.824 39860 4.827E+08 0.00168 0.00199 38404 1456
0.200 6.432 87207 6.436E+08 0.00162 0.00192 65792 21415
0.230 7.397 131538 7.401E+08 0.00159 0.00189 85479 46059
0.250 8.040 168916 8.045E+08 0.00157 0.00187 99935 68982
0.300 9.648 288980 9.653E+08 0.00154 0.00183 140661 148319
0.350 11.257 474973 1.126E+09 0.00151 0.00179 187838 287135
0.400 12.865 732862 1.287E+09 0.00148 0.00176 241353 491509

From table 5, one can generate the following plot
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Figure 43: Simulation viscous and wave-making resistance

which is comparable to figure 2.6.

Theoretical Results

By way of equation 1d, and using the Wigley N43 block-coefficient of Cb = 0.56073, it was found that
(1 + K) = 1.1962. This, together with the wave-making results in [bin Tarafder et al., 2007], allowed the
following theoretical results to be generated

Table 6: Viscous and wave-making resistance - theoretical
FrL u [m/s] ReL RV [N] Rw [N] RT [N]

0.146 4.696 4.698E+08 36774 3889 40663
0.150 4.824 4.827E+08 38680 4333 43014
0.200 6.432 6.436E+08 66265 13696 79960
0.230 7.397 7.401E+08 86093 28882 114976
0.250 8.040 8.045E+08 100653 48149 148802
0.300 9.648 9.653E+08 141673 192594 334267
0.350 11.257 1.126E+09 189188 125828 315016
0.400 12.865 1.287E+09 243088 438258 681347

From table 6, one can generate the following plot
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Figure 44: Theoretical viscous and wave-making resistance

which is comparable to figure 2.6.

Comparison

From the simulation and theoretical results for RV , one can conclude that the theoretical results match
the simulation results very well. This follows from the fact that there is only about a 5% error in applying
equation 1d in this case, which results in errors in the theoretical RV values of less than 1%. The simulation
and theoretical results for Rw, however, show rather more discrepancy

Table 7: Wave-making resistance - comparison
FrL u [m/s] ReL Rw (sim.) [N] Rw (theory) [N] Error [N] % Error

0.146 4.696 4.698E+08 0 3889 3889 -
0.150 4.824 4.827E+08 1456 4333 2878 198%
0.200 6.432 6.436E+08 21415 13696 -7720 -36%
0.230 7.397 7.401E+08 46059 28882 -17176 -37%
0.250 8.040 8.045E+08 68982 48149 -20833 -30%
0.300 9.648 9.653E+08 148319 192594 44275 30%
0.350 11.257 1.126E+09 287135 125828 -161307 -56%
0.400 12.865 1.287E+09 491509 438258 -53251 -11%
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Table 7 suggests that, for FrL ≥ 0.20, the theoretical Rw values tend to under-predict the simulation values
by about 35%. This then contributes to the following errors in RT

Table 8: Total fluid resistance - comparison
FrL u [m/s] ReL RT (sim.) [N] RT (theory) [N] Error [N] % Error

0.146 4.696 4.698E+08 36512 40663 4151 11%
0.150 4.824 4.827E+08 39860 43014 3154 8%
0.200 6.432 6.436E+08 87207 79960 -7247 -8%
0.230 7.397 7.401E+08 131538 114976 -16562 -13%
0.250 8.040 8.045E+08 168916 148802 -20115 -12%
0.300 9.648 9.653E+08 288980 334267 45287 16%
0.350 11.257 1.126E+09 474973 315016 -159957 -34%
0.400 12.865 1.287E+09 732862 681347 -51516 -7%

Table 8 then suggests that the theoretical RT values tend to be within about +/- 15% of the simulation values.
In addition, the theoretical RT values tend to over-predict for FrL < 0.20, and under-predict for FrL ≥ 0.20.

Conclusion

Given how rapidly one can generate, RV , Rw, and RT values using equations 1, it is concluded that a +/-
15% error in RT is acceptable for the purpose of general vessel modelling. Therefore, for the case of car-deck
ferry A, the proposed drag equations are valid.
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