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ABSTRACT 

There is increasing imperative to reduce emissions from global energy systems to avoid 

catastrophic climate impacts.  Much of the work on how countries can meet their emissions 

reduction targets assumes perfect knowledge of the emissions from energy technologies.  This 

dissertation first implements a model that takes into account emissions uncertainties and 

evaluates the impacts that uncertainty has on the long term system build out.  It is found that an 

early build out of wind energy reduces the risk of exceeding emissions targets.  Given the 

requirement of high penetrations of wind energy for reducing emissions risk, the second part of 

this dissertation evaluates the impact that high penetrations of wind energy have on system 

operations, and the value that storage and dispatchable loads can provide.  Finally, this 

dissertation evaluates the impact that synchronous generation constraints have on system 

operation, and the optimal operation of storage.  All three models are applied to the Alberta, 

Canada electricity system as a case study. 
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It is found that building out wind five years earlier for Alberta decreases the risk of missing 

emissions targets.  Allowing nuclear energy in the system results in a lower overall cost and a 

reduced risk of missing emissions targets.  To evaluate the impact that an early and large build 

out of wind has on the system a medium term model is developed that incorporates curtailment 

costs into the system operation.  This shows that storage and dispatchable loads have the 

potential to reduce curtailment in the system and that including curtailment costs increases the 

value provided by between 10 and 60%.  The value provided by storage for Alberta is very high 

at small installed capacities and diminishes with increased capacity while the value provided by 

dispatchable loads has a much more consistent value at different installed capacities.  Finally, 

when the instantaneous penetration of renewable energy in the system is restricted, it is found 

that storage for integration of wind generation does not operate in a pre-defined manner but 

switches between peak shaving and wind shifting depending on the wind resource available in 

any given week. 



v 
 

CONTENTS 

Supervisory Committee .................................................................................................................. ii 

Abstract .......................................................................................................................................... iii 

Contents .......................................................................................................................................... v 

List of Figures .............................................................................................................................. viii 

List of Tables .................................................................................................................................. x 

Nomenclature ................................................................................................................................. xi 

Acknowledgements ...................................................................................................................... xiii 

Dedication .................................................................................................................................... xiv 

1. Introduction ............................................................................................................................. 1 

1.1 Previous Work .................................................................................................................. 3 

1.1.1 The Risk of Increased Emissions .............................................................................. 3 

1.1.2 The Value of Infrastructure to Reduce Curtailment ................................................. 4 

1.1.3 Synchronous Generation Constraints ........................................................................ 5 

1.1.4 OSeMOSYS model ................................................................................................... 6 

1.1.5 Contribution from Colleagues................................................................................... 8 

1.2 Overview and Outline ...................................................................................................... 9 

2. Hedging the risk of increased emissions in long term energy planning ............................... 11 

Preamble .................................................................................................................................... 11 

2.1 Introduction .................................................................................................................... 12 

2.2 Literature review ............................................................................................................ 13 

2.2.1 Sources of Uncertainty ............................................................................................ 14 

2.2.2 Environmental Performance Uncertainty ............................................................... 16 

2.2.3 Risk methods in energy system models .................................................................. 17 

2.3 Methodology .................................................................................................................. 19 

2.4 Case Study – Methods .................................................................................................... 24 

2.5 Case Study – Results ...................................................................................................... 28 

2.5.1 System without Nuclear .......................................................................................... 28 

2.5.2 Nuclear Available as a Generation Option ............................................................. 34 

2.5.3 Cost and Risk Comparison...................................................................................... 41 

2.6 Discussion ...................................................................................................................... 42 



vi 
 

2.7 Future Work ................................................................................................................... 44 

3. Valuing infrastructure investments to reduce curtailment .................................................... 46 

Preamble .................................................................................................................................... 46 

3.1 Introduction .................................................................................................................... 46 

3.2 Literature Review ........................................................................................................... 47 

3.2.1 Integration of VR generation in Power Systems ..................................................... 48 

3.2.2 Integration Costs and Model Frameworks .............................................................. 50 

3.2.3 Model Time Scales ................................................................................................. 52 

3.3 Methods .......................................................................................................................... 54 

3.3.1 System Representation ............................................................................................ 54 

3.3.2 Numerical Model .................................................................................................... 55 

3.3.3 Model Implementation and Data ............................................................................ 58 

3.3.4 Case Studies ............................................................................................................ 59 

3.4 Results ............................................................................................................................ 63 

3.4.1 Valuing Investments in Storage .............................................................................. 63 

3.4.2 Valuing Investments in Dispatchable Load ............................................................ 68 

3.5 Discussion ...................................................................................................................... 74 

3.5.1 Limitations .............................................................................................................. 76 

3.6 Conclusions .................................................................................................................... 77 

4. Impact of instantaneous renewable penetration limits on grid operations and storage value79 

Preamble .................................................................................................................................... 79 

4.1 Introduction .................................................................................................................... 79 

4.2 Literature Review ........................................................................................................... 81 

4.2.1 Synchronous Generation ......................................................................................... 81 

4.2.2 Allowable Non-synchronous Generation Penetration ............................................ 82 

4.2.3 Options for Mitigating System Challenges ............................................................. 85 

4.3 Methods .......................................................................................................................... 87 

4.3.1 System Representation ............................................................................................ 88 

4.3.2 Numerical Model .................................................................................................... 88 

4.3.3 Model Implementation and Data ............................................................................ 91 

4.3.4 Wind Resource ........................................................................................................ 93 



vii 
 

4.3.5 Ramping and Synchronous Generation Constraints ............................................... 94 

4.3.6 Scenarios ................................................................................................................. 95 

4.4 Results ............................................................................................................................ 97 

4.4.1 Costs, Emissions and Curtailment .......................................................................... 98 

4.4.2 Impact of Storage .................................................................................................. 102 

4.4.3 Value provided by Storage .................................................................................... 107 

4.5 Discussion .................................................................................................................... 110 

4.6 Limitations ................................................................................................................... 112 

4.7 Conclusions .................................................................................................................. 112 

5. Summary, Contributions and Future work ......................................................................... 114 

5.1 Contributions ................................................................................................................ 114 

5.2 Future Work ................................................................................................................. 117 

References ................................................................................................................................... 118 

Appendix A:  OSeMOSYS Code for Incorporating Risk ........................................................... 131 

Sets .......................................................................................................................................... 131 

Variables.................................................................................................................................. 131 

Parameters ............................................................................................................................... 131 

Objective ................................................................................................................................. 132 

Constraints ............................................................................................................................... 132 

Appendix B:  OSeMOSYS Code for Costing Curtailment ......................................................... 133 

Parameters ............................................................................................................................... 133 

Variables.................................................................................................................................. 133 

Objective Function .................................................................................................................. 133 

Constraints ............................................................................................................................... 134 

Appendix C:  Base Cost Parameters ........................................................................................... 135 

 



viii 
 

LIST OF FIGURES 

Figure 2.1: Diagram of generation options in the modeled Alberta system. Generators on the left 
contribute to the reserve margin. Generators on the right (i.e. wind and solar) do not. ... 24 

Figure 2.2:  Distribution of emission intensity for various generation technologies (after [47]) 
The boxes show the 25th to 75th percentiles while the whiskers show the 95% probability 
limits of the lognormal distribution. ................................................................................. 27 

Figure 2.3:  Installed generation capacity over time for system with no consideration of risk. ... 29 

Figure 2.4:  Installed generation capacity over time for system with 5% risk premium. ............. 30 

Figure 2.5:  Installed capacity by technology at various levels of risk premium in the year 2050.
........................................................................................................................................... 31 

Figure 2.6:  Generation by technology at various levels of risk premium in the year 2050. ........ 33 

Figure 2.7:  Total model period emissions for each random realization at various levels of risk 
premium. ........................................................................................................................... 34 

Figure 2.8:  Installed generation capacity over time for system with no consideration of risk and 
nuclear as a generation option........................................................................................... 35 

Figure 2.9:  Installed generation capacity over time for system with 5% risk premium and nuclear 
as a generation option. ...................................................................................................... 36 

Figure 2.10:  Installed capacity by technology at various levels of risk premium in the year 2050 
for system with nuclear available. .................................................................................... 37 

Figure 2.11:  Generation by technology at various levels of risk premium in the year 2050 for 
system with nuclear available. .......................................................................................... 39 

Figure 2.12:  Total model period emissions for each random realization at various levels of risk 
premium for system with nuclear available. ..................................................................... 40 

Figure 2.13:  Model calculated risk versus system cost for all risk premium levels for the system 
with and without nuclear. .................................................................................................. 41 

Figure 3.1: Diagram of generation options in the modeled system.  The wind resource is the VR 
in the system and the installed capacity of wind is varied. ............................................... 55 

Figure 3.2:  Implementation of dispatchable load in OSeMOSYS (other generators omitted for 
clarity). .............................................................................................................................. 62 

Figure 3.3:  Generation over time for system with 60% wind, no storage. .................................. 64 

Figure 3.4:  Generation over time for system with 60% wind, 35 hours of storage. .................... 65 

Figure 3.5:  Energy production/curtailment vs. storage size, 60% wind ...................................... 66 

Figure 3.6:  Value of storage vs storage size, 25 year storage life. .............................................. 67 

Figure 3.7:  Generation over time for system with 30% wind, 1 GW dispatchable load. ............ 69 

Figure 3.8:  Generation over time for system with 60% wind, 3 GW dispatchable load. ............ 70 

Figure 3.9:  Energy production/curtailment vs. dispatchable load, 60% wind. ............................ 71 



ix 
 

Figure 3.10:  Value of dispatchable load, per year. ...................................................................... 73 

Figure 4.1: Generation options in the system.  Wind is the VR in the system. ............................ 88 

Figure 4.2:  Generation with no SG restriction active (60% renewables, $65 curtailment cost, no 
storage). ............................................................................................................................. 98 

Figure 4.3:  Generation with SG restriction active (60% renewables, $65 curtailment cost, no 
storage). ............................................................................................................................. 99 

Figure 4.4:  System cost increases due to synchronous generation requirements. ..................... 101 

Figure 4.5:  Reduction in operational costs, total emissions and wind energy penetration for 60% 
wind and a $65/MWh curtailment cost with various levels of storage. .......................... 103 

Figure 4.6:  Generation with SG restriction active and 14 GWh of storage but no restriction on 
storage power (60% renewables, $65 curtailment cost). ................................................ 104 

Figure 4.7:  Generation with SG restriction active and 14 GWh of storage and storage power 
restricted to 0.1 MW/MWh (60% renewables, $65 curtailment cost). ........................... 105 

Figure 4.8:  Generation with SG restriction active and 14 GWh of storage and storage power 
restricted to 0.1 MW/MWh (60% renewables, $65 curtailment cost) for a low wind week.
......................................................................................................................................... 106 

Figure 4.9:  Generation with SG restriction active and 14 GWh of storage and storage power 
restricted to 0.1 MW/MWh (60% renewables, $65 curtailment cost) for a more variable 
wind week. ...................................................................................................................... 107 

Figure 4.10:  Value provided by storage per unit of storage capacity for nominally 60% 
renewable energy, $65 curtailment cost with and without a 50% synchronous generation 
requirement. .................................................................................................................... 109 

Figure 4.11:  Value provided by storage for 60% renewable energy, $65 curtailment cost with 
and without a power limit on storage. ............................................................................. 110 

 



x 
 

LIST OF TABLES 

Table 2.1:  Uncertainty studies in the literature ............................................................................ 16 

Table 3.1:  Generator Capacity for 30% Renewables [117] ......................................................... 59 

Table 3.2:  Combinations of VR Capacity and Curtailment Cost Modelled ................................ 60 

Table 3.3:  Maximum Storage Sizes and Hours of Storage .......................................................... 61 

Table 3.4:  Maximum dispatchable load power and percent of average load............................... 63 

Table 3.5:  Energy production and curtailment vs. storage size, $65 curtailment cost ................ 67 

Table 3.6:  Energy production and curtailment vs. storage size, $65 curtailment cost ................ 72 

Table 4.1:  Summary of Allowable Levels of Non-synchronous Generation in the Literature .... 85 

Table 4.2:  Existing Capacity in the Model [117] ......................................................................... 92 

Table 4.3:  Statistics of 10 minute wind power capacity factor.  Six years for Alberta are 
compared to the Nordic Countries as reported by Holttinen [194]. .................................. 94 

Table 4.4:  Synchronous generators in the Alberta system and their 10 minute ramping capability
........................................................................................................................................... 95 

Table 4.5:  VR Capacity and Curtailment Cost Combinations Modelled..................................... 96 

Table 4.6:  Operational costs, emissions and percent of available wind generation curtailed for 
each level of wind penetration with no storage in the system ........................................ 100 

 



xi 
 

NOMENCLATURE 

𝑎𝑎𝑖𝑖,𝑗𝑗 Performance parameters of technologies in the model. 

𝑏𝑏𝑖𝑖 Limits on installed capacity and operating parameters. 

𝑐𝑐𝑗𝑗 Vector of all cost parameters considered by the model. 

𝐵𝐵𝐵𝐵𝑗𝑗 Balancing costs as defined by Hirth et al. 

𝑐𝑐𝑗𝑗𝑐𝑐 Curtailment cost per unit energy for generator j 

𝐵𝐵�𝑥𝑥𝑗𝑗� Total cost of system for a given decision vector, xj. 

𝐵𝐵�𝑥𝑥𝑗𝑗∗� 
Total minimum cost of the system as determined by deterministic 
optimization method. 

𝐵𝐵𝐶𝐶 Total curtailment cost 

CFi,j Capacity factor for generator j in time slice i 

𝐵𝐵𝑇𝑇 Total system cost with curtailment costs included 

𝐷𝐷𝑖𝑖  Adjusted demand in time slice i to model dispatchable load 

𝐷𝐷𝑖𝑖0 Initial demand in time slice i 

𝐸𝐸𝑖𝑖,𝑗𝑗𝐴𝐴  Energy available from generator j in time slice i 

𝐸𝐸𝑖𝑖,𝑗𝑗𝐶𝐶  Amount of energy constrained for generator j in time slice i 

𝐸𝐸𝑖𝑖𝐷𝐷 Total demand in each time slice, i 

𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺  Total generation for generator j in each time slice i 

𝐺𝐺𝐵𝐵𝑗𝑗 Grid related costs as defined by Hirth et al. 

𝑖𝑖 Index of time slices in the model 

𝐼𝐼𝐵𝐵 Installed capacity of storage 

Ij Installed capacity of generator j 

𝑗𝑗 Index of decisions (generators) in the model 

𝑃𝑃 Amount of energy the dispatchable load must provide 

𝑃𝑃𝑖𝑖  Power of the dispatchable load in time slice i 

𝑃𝑃𝐵𝐵𝑗𝑗 Profile costs as defined by Hirth et al. 

�̅�𝑟𝑗𝑗 Mean, or expected, value of the uncertain parameter. 

𝑟𝑟𝑗𝑗(𝜔𝜔𝑛𝑛) Random sample of the uncertain parameter. 

𝑓𝑓 Risk premium. The extra amount that society is willing to pay to minimize 
risk. 



xii 
 

𝐹𝐹�𝑥𝑥𝑗𝑗� Sum of the system cost, 𝐵𝐵�𝑥𝑥𝑗𝑗�, and weighted risk. 

𝑀𝑀𝑎𝑎𝑥𝑥𝐼𝐼𝐵𝐵 Maximum installed capacity of storage 

𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑖𝑖𝑛𝑛 Maximum charge rate for storage 

𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 Maximum discharge rate for storage 

N Number of samples to consider when determining the risk vector. 
R Power produced by a given technology in a given time slice 

𝑀𝑀𝑖𝑖𝑛𝑛 Rate of charging of storage 

𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 Rate of discharging of storage 

𝑀𝑀𝑎𝑎𝑅𝑅𝑅𝑅𝐷𝐷𝑜𝑜𝐷𝐷𝑛𝑛 Amount a given generator can ramp down between time slices 

𝑀𝑀𝑎𝑎𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈 Amount a given generator can ramp up between time slices 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 The maximum risk allowable. 

𝑀𝑀�𝑥𝑥𝑗𝑗 ,𝜔𝜔𝑛𝑛� 
Risk for a given decision, xj, for a single random draw from the probability 
space, 𝜔𝜔𝑛𝑛. 

𝑀𝑀�𝑥𝑥𝑗𝑗� Total risk for a given decision vector, xj. 

𝜌𝜌r Risk aversion parameter.  Used to convert risk into an equivalent cost. 

𝑆𝑆(𝑡𝑡) Storage starting level for a given time slice 

𝑆𝑆𝑉𝑉 Size of infrastructure investment 

𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 Minimum storage level 

𝑆𝑆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 Percentage of synchronous generation required in each time slice 

𝑡𝑡 Index to indicate the time slice 

∆𝑡𝑡 Size of a given time slice 

𝑣𝑣 
Specific value of infrastructure investment to the system, scaled to size of 
infrastructure investment 

𝑣𝑣𝐶𝐶  
Component of the specific value attributable to the inclusion of curtailment 
cost 

𝑉𝑉 Value of an infrastructure investment to the system 

𝑥𝑥𝑗𝑗 Vector of installed capacities and operating parameters. 

𝑥𝑥𝑗𝑗∗ 
Optimal (lowest cost) decision vector as identified by deterministic 
optimization method. 

 



xiii 
 

ACKNOWLEDGEMENTS 

I thank Andrew Rowe and Peter Wild for their guidance, Bryson Robertson for his 

organizational skills and all the members of the 2060 Project group for their questions and ideas.  

A special thank you goes to Benjamin Lyseng who did a significant amount of the initial data 

gathering and model building for the Alberta system. 

10 minute wind, load and hydro data for Alberta for 2011 through 2016 was kindly provided by 

the Alberta Electricity System Operator.  The work Malcolm MacRae did to gather and provide 

this data made the work on synchronous generation possible. 

I am grateful to Pauline Shepherd and Susan Walton for the administrative support. 

A special thank you needs to go to the University of Victoria library for access to resources 

required to complete this dissertation. 

I thank my wife, Sunni and my daughter, Kiran for their patience with the time it took to do this 

research. 

Funding from the Pacific Institute for Climate Solutions and the British Columbia Institute of 

Technology is gratefully acknowledged. 

Finally, the computing facilities of Westgrid (www.westgrid.ca) and Compute Canada 

(www.computecanada.ca) were invaluable, as was the GNU Parallel1 software for running many 

serial runs in parallel on full nodes of the Compute Canada cluster. 

                                                 
1 Tange O. GNU Parallel: The Command-Line Power Tool. Login USENIX Mag 2011;2011:42–7. 



xiv 
 

DEDICATION 

 

I dedicate this dissertation to the memory of my father, Johannes Henri Gaston Niet.  He 

challenged and inspired me and, without his belief in me, I would never have reached the point 

of starting, let alone completing, a Ph.D. 

 



1 

1. INTRODUCTION 

There is clear evidence that human caused carbon dioxide and other climate changing emissions 

need to be reduced to prevent catastrophic climate impacts.  Under the Conference of the Parties 

21 (COP21) agreement, 195 countries affirmed their intentions to put in place measures to meet 

global emissions targets.  These countries have provided the United Nations Framework 

Convention on Climate Change (UNFCCC) with Nationally Determined Contributions (NDCs) 

committing to specific emissions reductions post 2020 [1].  Much of the work on how countries 

intend to meet these NDCs is performed using optimization models that are deterministic and 

assume that newly installed technologies will have performance characteristics similar to 

existing technologies or that assume exogenous cost reductions [2].  These assumptions are 

questionable for a number of reasons.  For renewable energy sources, sites with the highest 

availability resource that are near transmission lines tend to be developed first.  Future sites may 

have higher emissions per unit of energy as they may be built with a lower quality resource or 

will require more capital to access the resource, resulting in either higher embedded emissions or 

lower amounts of generation.    As more renewable energy is brought on board, existing fossil 

powered generators will cycle more often and operate more often at less than ideal operating 

points leading to increased emissions from these generators.  On the other hand some 

technologies may become more efficient and newer plants may use updated technology.  These 

factors cause significant uncertainty in the expected emissions of future power systems. 

The first part of this work directly addresses the risk of increased emissions due to this 

uncertainty for the electricity system in Alberta, Canada.  Chapter 2 applies a ‘risk premium’, an 

acceptable increase in the overall system cost that society must pay, to the Alberta electricity 

system.  With the risk premium applied, the model optimizes to determine the system that has the 
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lowest risk of missing the set emissions targets.  As detailed in Chapter 2, this work shows that, 

to reduce the risk of increased emissions, an early and large build out of wind and other 

renewable energy is required, in addition to other system generation mix changes. 

As the amount of energy from wind and other renewables increases, a number of challenges 

arise.  One such challenge is over-generation which occurs when the available renewable energy 

in the system cannot be absorbed by the current demand.  At this point, curtailment of generators 

occurs.  This curtailment increases costs for a variety of reasons including the amortization of 

capital costs over fewer units of generation and renewable energy credits that cannot be claimed 

for un-generated energy.  Chapter 3 implements a one year operational model to evaluate the 

impact of high penetrations of wind power and the ability of storage and dispatchable loads to 

reduce curtailment when wind penetrations are high. 

Another challenge associated with high penetrations of wind power is the potential for the 

instantaneous penetration of wind power, at short time scales, to be too high.  This can cause 

challenges in the grid related to frequency regulation.  Though some studies show that 

renewables, in some circumstances, can provide synchronous generation for frequency 

regulation, many studies show that there are significant challenges with high penetrations of 

renewables operating in the system [3–10].   To address the impact of constraining the 

instantaneous penetration of variable renewable energy on system operation, Chapter 4 presents 

a study based on a model of a system that has a minimum synchronous generation requirement of 

50%. 

All three of these studies use adapted versions of the Open Source Energy Modelling System 

(OSeMOSYS) [11,12] and apply it to the Alberta, Canada electricity system.  The Alberta 
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system is similar to many US states and countries such as China in that it is mainly fossil-based 

with increasing amounts of wind generation in the mix.  For Chapter 2 the model is adapted to 

incorporate a stochastic risk framework.  Chapter 3 uses a version that is adapted to calculate and 

optimize when curtailment costs are included, and Chapter 4 uses a version in which 

synchronous generation constraints apply.  OSeMOSYS code for each of these variations is 

included in the appendices. 

1.1 Previous Work 

This section provides an overview of the prior works for each chapter.  Detailed literature 

reviews are provided in each chapter to provide full context for the contribution of that chapter.  

Here we summarize the literature on incorporating risk into energy systems models, then 

summarize the literature on reducing curtailment and finally review the literature on synchronous 

generation constraints. 

1.1.1 THE RISK OF INCREASED EMISSIONS 

There are many sources of uncertainty in energy systems modelling, including costs, availability, 

demand projections and uncertainty in emissions of a given technology [13–17].  These 

uncertainties create risk.  The financial risk of increased costs and of changes in carbon pricing 

and other government policies are well studied [18–26].  A number of other studies consider the 

risk posed by uncertainty in the availability of resources [27–29], the risk due to variations in the 

sensitivity of the earth system to carbon emissions [30–32] and the risks associated with policy 

uncertainty [33–35].  Various combinations of risks have also been studied [36–46].  None of 

these studies evaluate the impact that uncertain environmental performance, namely carbon 



4 

emissions, has on the system and therefore do not consider the potential for the system to exceed 

identified carbon dioxide emissions targets. 

The few studies that do consider environmental performance risk consider the impact on 

expected carbon dioxide emissions.  Parkinson and Djilali [47] use a stochastic programming 

approach to investigate the risk of increased emissions and how a changing energy mix can 

hedge against increased emissions.  Other studies have used a combined fuzzy logic and 

stochastic approach to reduce the risk of increased emissions [48], a multi-objective optimization 

technique to investigate the risks for South Africa [49] and a multi-scenario approach to evaluate 

the impact of uncertainty in future policies on future emissions [50].  None of these studies 

consider the potential of nuclear energy to mitigate risk although nuclear is considered a very 

low emissions technology that could contribute to the reduction of global energy systems 

emissions. 

1.1.2 THE VALUE OF INFRASTRUCTURE TO REDUCE CURTAILMENT 

Having shown, in Chapter 2, that a large build out of wind is required to reduce emissions risks, 

it is important to consider the impact that large amounts of wind energy have on the system.  One 

major impact on the ability to integrate this generation into the system is the potential for 

curtailment to occur.  Many long term optimization studies investigate the integration of variable 

renewable (VR) generation into the system mix and consider demand side management, storage 

and transmission expansion, amongst other flexibility methods [51–69].  These long term studies 

include costs for integrating VR generation into the system in various ways.  Ueckerdt [70] and 

Hirth et al. [71] have formalized a framework for including integration costs into long term 

models. 



5 

Numerous short and medium term studies have addressed the impact of demand side 

management [72–75], transmission expansion [74,76] and storage [77,78] on the ability of the 

system to absorb high penetrations  of VR energy.  The potential for solar thermal storage [79–

81] and power to gas technologies [82–88] have also been studied.  These studies focus on the 

ability of these technologies to reduce variability and/or curtailment in the system but none of 

these studies consider the cost to the system of curtailing VR energy.  Quoilin [89] provides a 

method for forcing the model to accept any energy generated by VR, thereby not permitting 

curtailment.  This model structure does not allow curtailment and does not allow for costing any 

curtailment that occurs should the system not be capable of accepting this energy.  Ignoring the 

cost of curtailment potentially under-estimates the challenges associated with integration and 

also under-values the potential of storage and dispatchable loads for system operation. 

1.1.3 SYNCHRONOUS GENERATION CONSTRAINTS 

Another potential impact that large amounts of VR generation has on system operations is the 

impact on frequency regulation in the system.  The maintenance of the grid frequency within a 

narrow range is important for effective operation of modern electricity grids [90].  This is usually 

performed by ensuring adequate synchronous generation, such as large thermal or natural gas 

plants, is operational in the system at all times.  As more VR generation enters the system, there 

are questions about how the grid will maintain frequency regulation and whether or not VR 

generators can contribute to this frequency regulation [3–10]. 

Section 4.2.2 provides a literature review of the amount of synchronous generation required in a 

system to maintain frequency regulation.  The range of values in the literature varies from 

between 25% and 75% but are typically close to 50%.  If the instantaneous availability of VR 
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generation in the system exceeds this level the VR generation is commonly curtailed [91,92].  

Vithayasrichareon et al. [93] studies the requirement for synchronous generation and finds that 

this requirement increases costs of up to 20% when large amounts of renewable generation are 

available in the system.  As an alternative to curtailing, many studies consider storage [68,78,94–

97].  Unfortunately most studies that consider storage as an alternative to curtailing do not 

include a synchronous generation constraint and, therefore, over-estimate the potential of storage 

for integrating VR generation.  McKenna et al. [98] apply a synchronous generation constraint to 

a system with large amounts of wind generation and enable storage for this system.  They 

operate the storage in a number of ‘typical’ ways and do not optimize the operation of the 

storage system. 

1.1.4 OSEMOSYS MODEL 

The research conducted in this dissertation is performed using the OSeMOSYS Energy 

Modelling System [11,12].  The model is a bottom-up energy-economy model that is 

technologically explicit and has been applied in many analysis and planning situations.  The 

open source nature of the model and the solver for the model make it accessible and ensures that 

research done with OSeMOSYS can be reproduced by third parties which is important for 

informing public policy [99,100].  Initial developments with OSeMOSYS included validation 

against similar modelling tools such as MARKAL [11] and TIMES-PLEXOS [101].  The model 

has been applied to a large variety of energy systems analyses including Africa [102,103], Saudi 

Arabia [104], Bolivia [105], Cypress [106] and many others, and has been used for both 

electricity and whole system analysis.  More recently, the model has been expanded to allow for 

the modelling of the Climate, Land, Energy and Water nexus and this ‘CLEWs’ model has been 

applied to a variety of analyses for countries and regions around the globe [107–111]. 
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As with any complex model, validation is an important consideration.  As noted above, the 

OSeMOSYS model structure and equations have been validated against the MARKAL and 

TIMES-PLEXOS framework and found to be functionally similar [11,101].  The validation of a 

specific model and its parameters has, however, not been addressed fully in the literature.  

Compared to a model of a physical system, where experiments can be used to validate the model, 

energy systems models are, by definition, models of a potential future.  Since future policies, 

energy prices, climate, weather, etc. are all uncertain, energy systems models will, by definition, 

not perfectly predict the future.  It is also not possible to delay system level decisions until we 

see what the future holds. 

The literature on validation of energy systems models falls into two broad categories.  First, there 

is historical back casting, where the model is compared to historical data to see if it accurately 

predicts the historical ‘future’.  For example van Sluisveld et al. [112] model system rates of 

change and compare the historical rates of change with future required rates of change to meet 

climate targets.  A similar process is used for models that predict demand for systems such as 

district heating, etc. [113,114].  These validations are more similar to physical system models 

where the model can be validated with measurements of the real system parameters. 

The final class of model validation in the literature consists of using a short term unit 

commitment model to check if the generator mix suggested by the long term build out plan can 

match the predicted future demand and resource cycle over a few selected days or weeks in the 

predicted future.  For example Bistline et al. [115,116] compare two different model temporal 

resolutions and then use a short term model to ‘validate’ and compare the performance of the two 

proposed future systems.  Again, the predicted future cannot be validated directly but a 
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comparison of two model structures can hopefully identify errors or flaws that may exist in a 

given long term model output. 

In this dissertation the long term model results from Chapter 2 are not validated directly, but the 

work in Chapters 3 and 4 with a medium and short term model, respectively, provides some 

validation of the long term results.  Other than such validation against similar models as was 

done in this dissertation there is little literature on how to properly validate energy systems 

models. 

1.1.5 CONTRIBUTION FROM COLLEAGUES 

As noted in the acknowledgements and the published papers, other members of the 2060 Project 

contributed to parts of the modelling efforts in this dissertation.  Specifically, the base Alberta 

model was developed and published by Benjamin Lyseng in his 2016 paper [117].  Ben gathered 

the required input parameters for the base Alberta model, including the cost data summarized in 

Appendix C, and I built a stochastic framework on this base model for the work in Chapter 2.  

The curtailment cost framework in Chapter 3 was likewise implemented on the Alberta base 

model and was inspired by a conversation Benjamin Lyseng and I had over a beer in Ireland.  

Other than having Benjamin present that work for me at the Energy Systems Conference in 

London, UK in 2017, the entire contribution to this chapter was mine.  For Chapter 4, other than 

some minor inputs from the group on model ideas and building off the same base model of 

Alberta, the entire work was mine. 
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1.2 Overview and Outline 

In Chapter 2 we extend the work on risk by Parkinson and Djilali [47] to evaluate a system that 

is mainly fossil based rather than the hydro generation based system that they evaluated.  The 

fossil-based system in Alberta is similar to many other jurisdictions making our work more 

applicable in a broader context.  We also implement the method in the OSeMOSYS Open Source 

Energy Modelling System and provide the code in Appendix A, making it available to other 

researchers using the OSeMOSYS model.  We also include the potential of nuclear power to 

reduce the emissions risk and evaluate the system implications of allowing nuclear as nuclear is a 

technology that is generally considered to have very low carbon dioxide emissions. 

Having found that large amounts of renewable energy, namely wind, are required to reduce the 

risk of future emissions, we evaluate the impact this has on system operations in Chapter 3.  We 

first consider the impact that curtailment costs have on system operation and evaluate the value 

that storage and dispatchable loads provide in reducing these costs.  As noted in the literature 

review, Ueckerdt [70] and Hirth et al. [71] provide a structure to include curtailment costs in 

long term models but the inclusion of these costs in short and medium term models has not 

previously been considered.  Although other studies have evaluated the benefits that VR 

generation owners can obtain from reduced curtailment [118] or how curtailment works in the 

marketplace [59,119], we take a systems level view of the value that storage and dispatchable 

loads can provide to evaluate the overall impact that curtailment costs have on system operation. 

Finally, we consider the impact that synchronous generation requirements have on system 

operation in Chapter 4.  Specifically, while other studies have evaluated storage when 

synchronous generation constraints are active in the system [98], the optimal operation of storage 
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has not previously been studied.  We implement a model where the optimal operation of storage 

over one week periods, with 10 minute resolution, is evaluated and determine how this impacts 

the system operating costs, both with and without a synchronous generation constraint.  This 

allows us to evaluate optimal system operation rather than considering exogenous operation of 

the storage system, providing insights into where storage best provides value. 

The last chapter provides a summary of the key contributions and future work. 
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2. HEDGING THE RISK OF INCREASED EMISSIONS IN LONG TERM ENERGY PLANNING2 

Preamble 

The feasibility of meeting emission targets is often evaluated using long range planning 

optimization models in which the targets are incorporated into the system constraints.  These 

models typically provide one ‘optimal’ solution that considers only a deterministic representative 

value of emissions for each technology and do not consider the risk of exceeding expected 

emissions for a given optimal solution.  Since actual emissions for any given technology are 

uncertain, implementation of an optimal solution carries inherent risk that emissions will exceed 

the given target.  In this chapter, we implement a stochastic risk structure into the OSeMOSYS 

optimization model to incorporate uncertainty related to the emissions of electricity generation 

technologies.  For a given risk premium, defined as the additional amount that society is willing 

to pay to reduce the risk of exceeding the cost optimal system’s predicted emissions, we 

determine the generation technology mix that has the lowest risk of exceeding this baseline.  We 

focus on emissions risk since the literature on emissions risk is sparse while the literature on 

other risks such as policy risks, financial risks and technological risks is extensive. 

We apply the model to a case study of a primarily fossil based jurisdiction and find that, when 

risk is incorporated, solar and wind technologies are built out seven and five years earlier, 

respectively, and that carbon free technologies such as coal with carbon capture and storage 

(CCS) become effective alternatives in the energy mix when compared to the ‘optimal’ solution 

without consideration of risk, though this does not include the risk of carbon leakage from CCS 

                                                 
2 The body of this chapter was published in T. Niet, B. Lyseng, J. English, V. Keller, K. Palmer-Wilson, I. Moazzen, 
B. Robertson, P. Wild and A. Rowe, Energy Strategy Reviews, vol. 16, pp. 1–12, Jun. 2017. 
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technologies.  If nuclear is included as a generation option, we find that nuclear provides an 

effective risk hedge against exceeding emissions. 

2.1 Introduction 

At the Conference of the Parties 21 (COP21), 195 countries affirmed their intentions to put in 

place measures to meet global emissions targets.  The feasibility of meeting emission targets is 

often evaluated using long range planning models in which the targets are incorporated into the 

system constraints.  This is typically done either by implementing a cap on CO2 emissions [120–

122] or by adding constraints, such as renewable energy portfolio standards, renewable energy 

credits or carbon taxes, that push the system to meet a given emissions target [84,122–124].  In 

all cases, an ‘optimal’ solution is found that meets the target at the lowest cost.  Most of these 

studies do not incorporate uncertainty in the levels of emissions from the modelled technologies.  

As a result, the risk of exceeding the emissions target is not quantified, leaving a gap in the 

literature as discussed in Section 2.2.1.  There are a number of methods that have been used to 

incorporate uncertainty into long term energy planning models, as discussed in detail in Section 

2.2.3. 

In this study we apply a stochastic risk enabled version of the Open Source Energy Modelling 

System (OSeMOSYS) [11,12] to the Alberta, Canada electricity system.  The Alberta system is 

fossil fuel based, similar to many US states and countries such as China and India, making our 

results more broadly applicable than those Parkinson and Djilali [47] obtained for a hydro based 

jurisdiction.  In addition, we consider how nuclear, a low carbon technology that is often ignored 

due to political and social considerations, impacts the emissions risk for the Alberta, Canada 

electricity system. 
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The stochastic risk enabled version of OSeMOSYS is developed using the stochastic risk 

framework described by Krey and Riahi [125] and adapted by Parkinson and Djilali [47].  We 

use this framework to incorporate uncertainty in environmental performance of technologies into 

OSeMOSYS and assess the risk that emission targets will be exceeded.  While Parkinson and 

Djilali use a custom linear programming model to apply the risk framework we implement this 

framework in OSeMOSYS.  We use OSeMOSYS as it is a widely used energy system model 

that is open source and, by using this model, we contribute to the code base available for 

modellers using OSeMOSYS. 

Although this study focuses on climate impact emissions risk, there are many other 

environmental impact risks posed by energy technologies that could be included in a risk 

framework including air pollution, water use and/or contamination, waste stewardship, wildlife 

impacts and land use.  This study focuses on climate change emissions risk as this is an area that 

has not been thoroughly studied, as discussed in our literature review, and which has a global 

impact. 

2.2 Literature review 

Uncertainty is of concern in energy planning because uncertainty creates risk.  Uncertain 

parameters in energy planning include: capital cost of generation technologies; operation and 

maintenance costs; fuel prices; availability of imported fuels; construction schedules for new 

plants; demand projections; and uncertainty in the emissions of a given generation technology or 

generation mix [13–17].  These uncertainties are compounded by the uncertainty of projecting 

over decadal time frames, as is typical in energy system planning.  Quantifying the risk 

associated with these uncertain parameters requires an understanding of both the methods 
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available for addressing risk in models, as discussed in Section 2.2.3, and of the sources of 

uncertainty as discussed in Section 2.2.1.  One rarely considered source of uncertainty is 

environmental performance risk, defined as the risk that a given technology’s environmental 

impact is greater than the expected impact.  We discuss this in Section 0. 

2.2.1 SOURCES OF UNCERTAINTY 

As in all modelling, there are many sources of uncertainty in energy system modelling.  These 

include financial uncertainty, resource availability, sensitivity of the climate system to emissions 

and uncertainty in climate policies as well as uncertainty in future demand for energy services.  

There has been significant work in each of these areas. 

Szolgayová et al. [18] use a portfolio analysis approach to investigate financial uncertainties in a 

model that considers a simplified set of four technology options.  Hunter et al. [19] extend the 

modelling tool TEMOA to include cost uncertainty.  Other examples of models using portfolio 

analysis methods to consider financial risks include work done by Krey et al. [20], Usher and 

Strachan [21], Messner et al. [22], Webster et al. [23], Leibowicz [24] and Arnesano et al. [25].  

Each of these papers considered the financial risks associated with future energy prices, carbon 

policies and/or social costs and determined an energy system buildout that hedged the risk of 

financial losses in the system.  Wu and Huang [26] consider the potential for zero marginal cost 

technologies such as wind and solar to hedge against fossil fuel price risk using a similar method. 

Variability in resource availability is a significant source of system uncertainty, both in terms of 

the ability of renewable resources to meet demand in the short term and in terms of resource 

constraints on generators in the longer term.  Stoyan and Dessouky [27] use a mixed integer 

programming approach to evaluate various scenarios of resource availability to enhance system 
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planning.  Tan [28] provides a method for incorporating inoperability risks into a linear 

programming model in which the resource mix is optimised to reduce the risk that demand is not 

met when energy sources become inoperable due to supply constraints.  Martienez-Mares and 

Fuerte-Esquivel [29] use a robust optimization approach to consider the impact of wind resource 

variability on the optimal system.  Each of these three studies is based on a stochastic evaluation 

of the cost of this variability. 

Studies by Loulou et al. [30], Ekholm [31] and Syri et al. [32] investigate uncertainty due to 

variability in the sensitivity of climate to carbon emissions, and calculate the costs associated 

with meeting specified climate change temperature targets.  Each of these studies use a stochastic 

programming model to determine the financially optimal system given this uncertainty in climate 

sensitivity. 

Uncertainties in climate policy also create risks for investors and a number of studies have 

investigated how decision makers will react to these risks [33–35].  These studies find that 

uncertainty in policy can undermine the potential benefits of a policy, in particular when policy 

decisions are short-term or if policy makers do not consider the potential reaction of investors. 

There are also a number of studies that consider a combination of uncertainties.  Most of these 

studies combine cost uncertainty with policy uncertainty and evaluate the financial risk 

associated with these uncertainties [36–46], either with stochastic programming or interval 

programming. 

However, none of these studies considers uncertainty related to the environmental performance 

of energy technologies in fossil based jurisdictions nor do any of these studies consider nuclear.  
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This is summarized in Table 2.1.  It is important to fill this gap in the literature since ignoring 

this uncertainty could lead to systems with higher than predicted emissions, meaning 

jurisdictions could miss their emissions targets. 

Table 2.1:  Uncertainty studies in the literature 

Uncertainty Considered Hydro Based 
Jurisdiction 

Fossil Based 
Jurisdiction 

Consideration 
of Nuclear 

Financial Yes [23] Yes [18–26] Yes [24] 
Resource Availability Yes [28] Yes [27–29] No 
Climate Sensitivity Yes [30,32] Yes [30–32] No 
Climate Policy No Yes [33–35] Yes [33] 
Emissions Levels Yes [47] This study This study 

 

2.2.2 ENVIRONMENTAL PERFORMANCE UNCERTAINTY 

As outlined above, few studies consider uncertain environmental performance of alternative 

energy system realizations.  In this chapter we define environmental performance uncertainty as 

the uncertainty in the environmental impact of a given technology.  This could be due to 

variability in pollutant emissions such as carbon dioxide, uncertainty in the amount of water use, 

uncertainty about the impact of construction to name a few. 

There are a small number of studies in the literature that address environmental performance 

risk.  Parkinson and Djilali [47] investigate the impact of uncertain environmental performance 

of energy technologies, as defined by their carbon dioxide emissions, on the potential of these 

technologies to hedge against climate impact risk in British Columbia, Canada, using a stochastic 

programming approach.  Li et al. [48] use a combined fuzzy and stochastic approach to consider 

uncertain environmental performance, again as defined by greenhouse gas emissions, in 

combination with other uncertainties, to reduce the risk that a generic energy system would fail 
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to meet specified emission targets.  Heinrich et al. [49] use a multi-objective optimization 

technique to investigate how uncertain technological parameters in their model influence 

environmental impact risks for the South African energy system.  They specifically consider the 

uncertainty in emissions from power plants for each technology as well as the efficiency of each 

technology and include these in their multi-objective optimization model.  Kanudia et al. [50] use 

a multi-scenario framework to evaluate the impact of uncertainty in future policy on the overall 

climate impact of the energy system in Quebec, Canada. 

2.2.3 RISK METHODS IN ENERGY SYSTEM MODELS 

Ascough et al. [126] provide an overview of different methods of addressing risk in energy-

economic models.  Krey and Riahi [125] note that most of these approaches are for ‘stylized 

models’ that lack an explicit technology representation as defined as the ability to model the 

efficiency and operating parameters of a specific technology.  Examples of models that include 

technology-explicit representations include multi-objective optimization [49], near optimal 

techniques [127,128], monte-carlo simulation [129] and stochastic optimization methods 

originally developed for financial portfolio analysis [125]. 

Incorporating risk in a multi-objective optimization model requires defining objectives for the 

model that are expected to reduce the perceived risk.  The multi-objective optimization then 

determines a set of possible decisions that meet these policy objectives.  Near optimal 

techniques, including model generated alternatives (MGA), do not explicitly take into 

consideration risk and uncertainty, but allow for the policy decision maker to choose from a 

number of near optimal options that are all unique.  These unique solutions allow the decision 

maker to choose which of the near optimal solutions meets non-specified constraints or 
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objectives of the decision maker.  Neither multi-objective optimization and near optimal 

techniques take uncertainty and risk into consideration endogenously; therefore, this method was 

not chosen for this study. 

Monte-Carlo simulation techniques do allow the modeller to take risk into consideration 

endogenously, similar to financial portfolio risk methods.  However, Monte-Carlo methods find 

an optimal solution to large number of random problems but do not guarantee that all of these 

solutions are feasible and can be implemented.  This approach is useful for many energy system 

modelling questions but is not directly applicable to the consideration of increased risk of 

emissions. 

Portfolio analysis uses a stochastic approach to develop expected distributions for the future 

value of the potential investments.  A risk model is then used to choose an investment portfolio 

that balances the financial risk of this uncertainty with the initial cost of the investment.  When 

applied to energy systems modelling, this approach considers the uncertainty in the cost of future 

energy supply rather than the uncertainty in future value of investments.  Krey and Riahi [125] 

demonstrate that the risk methods applied to portfolio analysis can be incorporated into energy-

economic models. They provide three alternative formulations of a risk-based stochastic linear 

programming problem and show that these formulations are numerically equivalent.  Parkinson 

and Djilali [47] argue that, for policy decisions, the formulation that minimizes risk for a given 

risk premium provides the greatest benefit to the policy maker by providing a direct link between 

the risk and the cost of a policy decision.  The risk premium is a factor that indicates the 

additional cost that society is willing to pay to reduce the exposure to risk.  Parkinson and Djilali 

adapt the financial risk structure to the quantification of environmental performance risk and, 
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more specifically, the risk of increased carbon dioxide emissions.  As this method has already 

been applied to the risk of increased carbon dioxide emissions it fits well with the purpose of this 

study. 

Based on this review of the literature, we find that financial portfolio analysis, as presented by 

Krey and Riahi [125], provides an effective method for addressing risk in energy systems 

models.  It allows the modeller to quantify risks in the model structure and determine generation 

portfolio decisions that hedge against these risks endogenously.  Furthermore, although many 

authors have investigated cost and other uncertainties, little work has been done to quantify the 

risk of excess emissions.  Parkinson and Djilali [47] adapt the financial portfolio analysis 

methodology to address the risk of excess emissions.  In this study, we extend the work of 

Parkinson and Djilali by implementing the method they use in the OSeMOSYS Open Source 

Energy Modelling System, making it available to anyone wishing to consider risk in energy 

systems modelling.  We apply the methods to a case study of the electricity system in Alberta, 

Canada to investigate strategies by which the risk of excess emissions can be reduced.  While 

Parkinson and Djilali focus on British Columbia, Canada, a jurisdiction with large hydro 

resources, we look at Alberta, Canada, a jurisdiction that has predominantly fossil generation in 

the energy mix that is similar to many US states and countries such as China and India.  In 

addition, we expand the analysis to consider the risk mitigation potential of nuclear energy and 

investigate how that impacts both risk and cost. 

2.3 Methodology 

We implement a techno-economic linear programming model to investigate uncertainty and risk 

hedging strategies and technologies following the work by Krey and Riahi [125] and Parkinson 
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and Djilali [47].  Such models are based on the generic linear programming problem 

formulation: 

𝑀𝑀𝑖𝑖𝑀𝑀 𝐵𝐵�𝑥𝑥𝑗𝑗� = ∑ �𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗�𝑗𝑗  (1) 

𝑠𝑠. 𝑡𝑡.∑ (𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗)𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖 ∀ 𝑖𝑖 (2) 

      𝑥𝑥𝑗𝑗 ≥ 0 ∀ 𝑗𝑗 (3) 

The objective of the problem, as defined in Equation 1, is to find the solution vector, xj, that 

minimizes the sum of cjxj, where j represents the set of all possible decisions.  In energy systems 

models, cj, the vector comprising the cost parameters, is often separated into capital, fixed and 

operating costs while xj, the vector comprising the decision variables, is often separated into new 

capacity and operating decision vectors.  The subscript j then represents new capacity and 

operating decisions for each technology in the model.  The performance parameters for the 

technologies are ai,j and the activity or installed capacities are restricted by bi as shown in 

Equation 2. 

This general formulation has been implemented in a number of techno-economic energy system 

modeling tools, including MESSAGE [130,131], Times/MARKAL [132] and, more recently, the 

Open Source Energy Modelling System (OSeMOSYS) [11,12]. 

The optimal deterministic system cost, 𝐵𝐵�𝑥𝑥𝑗𝑗∗�, is defined as the total minimized system cost, as 

determined by Equation 1, for the system realization, 𝑥𝑥𝑗𝑗∗, with no consideration of risk.  A risk 

measure, R(xj), is then introduced that represents the total risk that a given decision vector, xj, 

will result in higher total cost than 𝐵𝐵�𝑥𝑥𝑗𝑗∗�.   Three different approaches to incorporate risk into 

linear programming models are described by Krey and Riahi [125]: 



21 

1. Minimize the weighted sum, F(xj), of the total system cost and the risk measure.  This is 

the approach implemented in MESSAGE by Messner [22] and discussed by Dantzig 

[133].  A risk aversion factor, ρr, is introduced that, when multiplied by the risk, R(xj), of 

the solution vector converts the risk into an equivalent cost, as shown in Equation 4. 

min𝐹𝐹�𝑥𝑥𝑗𝑗� = 𝐵𝐵�𝑥𝑥𝑗𝑗� + 𝜌𝜌𝑟𝑟𝑀𝑀(𝑥𝑥𝑗𝑗) (4) 

2. Minimize the risk measure subject to a maximum expected total system cost.  In this 

case, a risk premium, f, is introduced that represents the extra amount that society is 

willing to pay, above the optimal deterministic system cost, 𝐵𝐵�𝑥𝑥𝑗𝑗∗�, to reduce risk below 

that which is associated with the optimal deterministic solution.  

min𝑀𝑀�𝑥𝑥𝑗𝑗�  𝑠𝑠. 𝑡𝑡.  𝐵𝐵�𝑥𝑥𝑗𝑗� ≤ (1 + 𝑓𝑓)𝐵𝐵�𝑥𝑥𝑗𝑗∗� (5) 

3. Minimize the total system cost under constrained risk.  In this case, the cost of the system 

is minimized subject to a maximum acceptable level of risk, Rmax. 

min𝐵𝐵�𝑥𝑥𝑗𝑗�  𝑠𝑠. 𝑡𝑡.  𝑀𝑀�𝑥𝑥𝑗𝑗� ≤ 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 (6) 

All three approaches use a risk parameterization that is stochastically determined by successive 

draws from the probability space, as discussed by Hazell [134].  Hazell’s approach is based on 

cost uncertainty, where the total absolute deviation of cost for a single draw, from the expected 

value for each set of draws, is used to measure the financial risk of the solution associated with 

that draw. 

Krey and Riahi [125] show that these three approaches are numerically equivalent in that one can 

choose a risk aversion factor, a risk premium or a limit on the level of risk which will result in 

the same decision vector.  For financial risk, the risk measure and the cost parameter in the 

model are both monetary, so the structure with the risk aversion factor provides insights for 
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financial decisions.  For energy systems analysis, where the risk measure may correspond to non-

monetary risks, the structure with the risk premium allows for a clear connection between the 

reduction of a given risk and the monetary cost.  Parkinson and Djilali [47] observe that the risk 

premium can be considered the cost of hedging to reduce risk.  The third structure, where cost is 

minimized for a given level of risk, allows the modeller to obtain marginal costs from the model 

which is not possible with the first two formulations, but does not allow for a direct link between 

increased costs and reduced risk [125].  As we are interested in the increased cost to mitigate 

climate impact risk, we utilize the risk premium structure to obtain insights into climate impact 

risks. 

To incorporate the risk premium model structure into a linear programming model, Krey and 

Riahi provide a risk metric, the “upper mean absolute deviation”, as defined in Equations 7 and 

8.  Equation 7 provides a measure of the risk for a given decision vector, xj, for one random draw 

from the probability distributions of the performance variable, 𝑟𝑟𝑗𝑗(𝜔𝜔𝑛𝑛), for each element in the 

decision vector.  This risk measure is then summed, in Equation 8, to give the risk based on N 

random draws from the probability distributions of each performance variable.  This overall risk, 

as given by Equation 8, corresponds, for financial risk, to the expected underestimation of the 

system cost [22].  For our purposes, this can be considered as the expected underestimation of 

the system emissions of the deterministic model, which we term “risk” in the remainder of this 

chapter. 

𝑀𝑀�𝑥𝑥𝑗𝑗 ,𝜔𝜔𝑛𝑛� = max �0,∑ �𝑟𝑟𝑗𝑗(𝜔𝜔𝑛𝑛) − �̅�𝑟𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗 � (7) 

𝑀𝑀�𝑥𝑥𝑗𝑗� = 1
𝑁𝑁
∑ 𝑀𝑀�𝑥𝑥𝑗𝑗 ,𝜔𝜔𝑛𝑛�𝑛𝑛  (8) 
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When applied to the risk of increased carbon dioxide emissions, as we do in this chapter, �̅�𝑟𝑗𝑗 is the 

vector of average values of carbon dioxide emissions for each technology and 𝑟𝑟𝑗𝑗(𝜔𝜔𝑛𝑛) is the 

vector of random draws from the probability distribution of carbon dioxide emissions for each 

technology. The difference between these two parameters is multiplied by the decision vector, xj, 

to find the risk for that decision vector and random draw.  Equation 8 gives the risk based on N 

random draws from the probability distributions of the emissions of each generation technology.  

A sufficient number of random draws must be taken to ensure convergence of the model while 

keeping it to a minimum to reduce computation time. 

As discussed earlier, the decision vector, xj, for most energy system models is comprised of new 

capacity and operating decisions.  Here, we consider only the portion of the decision vector, xj, 

which corresponds to the operation decisions.  �̅�𝑟𝑗𝑗 is then the vector of average lifecycle emissions 

per unit of generation for each technology while 𝑟𝑟𝑗𝑗(𝜔𝜔𝑛𝑛) is the vector of predicted lifecycle 

emissions per unit of generation for a technology for random draw n. 

For each random draw, n, we sum only the downside risk (i.e. the chance that the emissions are 

higher than expected) to obtain 𝑀𝑀�𝑥𝑥𝑗𝑗 ,𝜔𝜔𝑛𝑛�, the risk of emissions exceeding the expected level.  

The risk for each of the random draws are then summed to find the risk based on N random 

draws, 𝑀𝑀�𝑥𝑥𝑗𝑗�.   A single optimization is then performed to minimize this risk. 

For the linear programming GNU MathProg code, as implemented in OSeMOSYS, please refer 

to Appendix A. 
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2.4 Case Study – Methods 

The risk framework described above is incorporated into the Open Source Energy Modelling 

System (OSeMOSYS) [11,12].  We then implement into this risk-enabled version of 

OSeMOSYS a model of the electrical energy system for Alberta, Canada.  The Alberta model 

was originally developed in OSeMOSYS by Lyseng et al. [117] and was recently updated to 

include policy announcements made by the Alberta government in late 2015 [135,136].  This 

section provides a brief description of the general model structure.  For those parameters not 

described here please refer to Lyseng et al. [117]. 

Figure 2.1 shows the general structure of the Alberta model, with generators that contribute to 

the reserve margin shown on the left.  The reserve margin ensures that there is enough 

dispatchable generation in the generation mix to meet the demand for times when non-

dispatchable generation such as wind and solar are not available.  It is also used to ensure the 

system has energy available to meet projected peak loads since the time slice structure for long 

term optimization averages out some of these peaks. 

 

 

Figure 2.1: Diagram of generation options in the modeled Alberta system. Generators on 
the left contribute to the reserve margin. Generators on the right (i.e. wind and solar) do 
not. 
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The generation options that contribute to the energy mix in Alberta include coal fired generation 

(COAL), natural gas fired combined cycle turbines (CCGT), simple cycle natural gas fired 

turbines (SCGT), and natural gas fired cogeneration with heat production plants for industrial 

loads (COGEN).  Carbon capture and sequestration (CCS) can be implemented on either a 

CCGT natural gas plant or a coal plant and is implemented as two additional technologies 

available in the model.  Generator performance and cost data are taken from the U.S. Energy 

Information Agency [137] while capacity limits are based on data from the Alberta Electricity 

System Operator (AESO) [138].  Biomass is limited in the amount of energy available each year 

while the other forms of generation are limited in terms of maximum installed capacity. 

Nuclear is currently not considered a generation option by the Alberta Electricity System 

Operator (AESO), as outlined in their long term plan [138].  Accordingly, a first set of model 

runs was performed without nuclear as a generation option.  A second set of model runs with 

nuclear enabled was then performed to compare the risk profiles with and without nuclear. 

The current Alberta system is reliant on coal and natural gas with smaller amounts of wind and 

hydro making up the balance.  The natural gas in Alberta is split between cogeneration providing 

heat and power to industry and conventional natural gas generators, both simple cycle and 

combined cycle, meeting much of the remaining load.  The model structure implemented by 

Lyseng et al. is a lumped system model, with no consideration of transmission which follows 

from the Alberta Electricity System Operator (AESO) mandate to, “plan for a transmission 

system that is free of constraints” [139].  We optimize over the period 2010 through 2060 using a 

high-demand, average-demand and low-demand time slice for each season based on the AESO 

demand growth forecast [138].  Each season is three months long, for a total of 12 time slices per 
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year.  The size of the time slices varies from 283 hours for the shortest peak time slice to 1201 

hours for the longest off peak time slice. 

In fall 2015, Alberta made the announcement that existing coal generation will be retired and that 

30% of all generation will be from renewable sources by 2030 [136].  A $30/ tCO2 carbon tax 

will be implemented and will be used to fund incentives for renewable sources.  The carbon tax 

will apply to any emissions from a generator that exceeds the level of emissions of a theoretical 

best in class, high efficiency natural gas plant, expected to be 0.4 tCO2/MWh in 2018, decreasing 

to 0.3 tCO2/MWh in 2030. 

We implement this policy by eliminating residual coal capacity in 2030 and applying the $30 

carbon tax on emissions above the best in class standard, starting in 2018 at 0.4 tCO2/MWh and 

decreasing linearly to 0.3 tCO2/MWh in 2030.  With these policies in place, we increase the 

renewable energy credit (REC) until the 30% generation level is met.  Lyseng et al. [135] found 

that a REC of $25/MWh was sufficient to obtain 30% generation from renewable sources by 

2040 and we, therefore, implement a $25/MWh REC in this study.  Although there is no 

specified overall emissions limit applied, there are emissions targets implied by these policies.  

Our model similarly does not apply a specific emissions limit on the system but determines the 

level of emissions with these policies in place. 

Distributions of the emission intensities were created based on the review of lifecycle emissions 

performed by the IPCC [140, Annex II], as shown in Figure 2.2.  Lognormal distributions were 

fit to the percentiles published by the IPCC following the work by Parkinson and Djilali [47].  

For each random draw, n, we obtain the predicted lifecycle emissions per unit of generation for 

each technology from these distributions. 
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Figure 2.2:  Distribution of emission intensity for various generation technologies (after 
[47]) The boxes show the 25th to 75th percentiles while the whiskers show the 95% 
probability limits of the lognormal distribution. 

Three technologies shown in Figure 2.2 require elaboration.  First, the emissions from solar are 

based on the IPCC study findings for Solar Photovoltaic (PV) rather than Concentrated Solar 

Power (CSP).  This is consistent with the expectations that Alberta will have distributed PV 

rather than CSP.  Neither the Alberta Energy System Operator (AESO) nor the Canadian Solar 

Energy Industries Association mention CSP in their plans for the foreseeable future, while both 

mention Solar PV as a viable technology [138,141]. 

The IPCC study provides only a single emissions distribution for each of coal and natural gas, 

although there are multiple generating technologies for each of these fuels.  We assume that the 

IPCC figures are for the worst generator using a given fuel, namely existing coal plants and 
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typical SCGT plants.  Emissions from other plants that use the same fuel are scaled down based 

on their relative conversion efficiency. 

Data for carbon capture and storage (CCS) provided by the IPCC is sparse since there are few 

systems in operation to quantify the emissions.  The IPCC provides simply a minimum and 

maximum value for these technologies rather than a distribution.  We assume that the 

distribution of emissions from plants with CCS follow a similar shape as for those without CCS.  

We linearly scale the distribution for plants without CCS such that the minimum of the resulting 

distribution matches the minimum provided by the IPCC for plants with CCS. 

2.5 Case Study – Results 

As noted above, two sets of analyses were performed.  First, following the Alberta Electricity 

System Operator projections, we consider the case without nuclear as a generation option.  We 

then allow nuclear as a generation option and compare the results.  In both cases, we constrain 

our model to meet the newly announced Alberta policies discussed earlier. 

2.5.1 SYSTEM WITHOUT NUCLEAR 

The analysis is first performed without implementation of the risk framework. Figure 2.3 shows 

the resulting installed capacity for each technology, over time, as a stacked area plot. 
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Figure 2.3:  Installed generation capacity over time for system with no consideration of 
risk. 

As shown in this figure, coal is mostly pushed out of the system in 2020 by CCGT with only a 

small amount of residual coal capacity lasting until 2030.  Due to reserve margin requirements, 

SCGT is installed as backup for the large amounts of renewable generation being installed.  A 

large build out of wind begins in the year 2019, with solar entering the generation mix in 2050. 

When a 5% risk premium is applied, there is a clear shift in generation technologies, as shown in 

Figure 2.4.  The build out of wind starts four years earlier, and the build out of solar starts eight 

years earlier.  Co-generation expands slowly in the first 20 years, then remains flat until 

approximately 2040, when it starts to be slowly reduced due to coal with CCS entering the 

system, eliminating CCGT entirely. 
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Figure 2.4:  Installed generation capacity over time for system with 5% risk premium. 

Figure 2.5 shows the installed capacity in the year 2050 for each of the modelled risk premiums.  

The increase in solar capacity is clearly seen – each increase in risk premium causes a clear 

increase in the amount of solar installed.  Also notable in this figure is that small increases in risk 

premium cause coal with CCS to become more attractive while combined cycle natural gas and 

co-generation become less attractive.  The use of SCGT to meet the reserve margin is less 

prevalent at higher risk premiums due to installation of coal with CCS. 
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Figure 2.5:  Installed capacity by technology at various levels of risk premium in the year 
2050. 

The large amount of SCGT capacity installed by the model is rarely used for generation, as 

shown in Figure 2.6.  It is installed to ensure that generation for peak periods is always available 

even when variable resources such as wind or solar are unavailable.  It is important to highlight 

that our model lacks the short time-scale resolution to show the operational characteristics for 

short term peak generators but does include the requirement to install peaking generation.  Other 

than the clear absence of any generation by SCGT, as shown in Figure 2.6, the operational 

capacity factor for each generator remains approximately the same for each risk premium level. 

As the risk premium increases, the amount of potentially asynchronous generation such as PV 

and Wind in the system increases to nearly 50% of the total generation.  We expect that, if there 

was such a large build out of wind and PV in Alberta, that many of the wind turbines installed 

would be installed with synchronous generators as this is both technically feasible and done in 
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some existing wind turbine installations [142].  In addition, PV installations could be connected 

to the grid with synchronous inverters, further mitigating this impact.  Finally, the SCGT 

installations, though not used for significant generation, would likely be called upon for grid 

balancing duties which should allow for grid stability even with such a large amount of wind and 

PV generation. 

The current risk framework considers only the risk associated with generation emissions, and not 

the risk associated with construction emissions.  Given the large quantity of new construction 

predicted by the model, these emissions and their associated risk may be significant.  In addition, 

our model does not quantify all of the uncertainty related to the technical potential of carbon 

capture technologies nor the long term stability of the stored carbon. 

The Alberta average load in 2050 is under 19 GW, with a peak near 30 GW, whereas the total 

installed capacity in 2050 varies from approximately 55 GW for the base model to over 60 GW 

for the 5% risk premium.  This apparent over-building results from the requirement for 

dispatchable generation to meet the reserve margin combined with the lower risk of carbon 

dioxide emissions from wind and solar.  To reduce the emissions risk, more solar is installed, but 

the same level of dispatchable generation is installed to ensure system reliability. 
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Figure 2.6:  Generation by technology at various levels of risk premium in the year 2050. 

Figure 2.7 shows the distribution of realized emissions for each of the risk premiums simulated, 

showing a clear trend of reduced emissions with increased risk premium.  The distribution of 

emissions is compressed at higher risk premium, indicating a reduced risk of exceeding expected 

emissions. 
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Figure 2.7:  Total model period emissions for each random realization at various levels of 
risk premium. 

2.5.2 NUCLEAR AVAILABLE AS A GENERATION OPTION 

Figure 2.8 shows the installed capacity for each technology on a stacked area graph with no 

consideration of risk, but with nuclear enabled. 
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Figure 2.8:  Installed generation capacity over time for system with no consideration of 
risk and nuclear as a generation option. 

When compared with Figure 2.3, the major change with nuclear available is the absence of solar 

generation from the mix.  Other notable changes include the reduction of SCGT buildout after 

2040 which is replaced by nuclear capacity and the complete elimination of CCGT capacity by 

2055. 

When a 5% risk premium is applied, there is a significant shift in the generation mix, as shown in 

Figure 2.9, relative to the model with no consideration of risk.  Wind comes on line 

approximately five years earlier while nuclear replaces cogeneration and coal entirely.  The 

additional nuclear is installed and has very low emissions and very low variability in terms of the 

predicted emissions.  This means it is a cost effective risk hedge for the model to choose.  

Additional SCGT is installed to meet the reserve margin. 
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Figure 2.9:  Installed generation capacity over time for system with 5% risk premium and 
nuclear as a generation option. 

Figure 2.10 shows the installed capacity in 2050 for each of the risk premiums considered.  In 

the existing AESO projections case, where nuclear is unavailable, the installation of solar 

increases steadily with the risk premium, as shown in Figure 2.5.  When nuclear is available, 

solar is installed in 2050 and only when the risk premium rises to 4%. 

Figure 2.10 shows that the generation mix changes little with increases in the risk premium over 

1%.  The generation mix, once coal and natural gas are pushed out, remains largely nuclear and 

wind, with SCGT meeting the reserve margin.  Small amounts of other technologies comprise 

the remaining generation mix. 
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Figure 2.10:  Installed capacity by technology at various levels of risk premium in the year 
2050 for system with nuclear available. 

In comparison to the case where nuclear is not available in the model, the total installed capacity 

for the system is quite different with nuclear available.  As shown in Figure 2.5, the 2050 

installed capacity rises from 55 GW for the base model to over 60 GW for the 5% risk premium 

under the current no nuclear policy.  When nuclear is available the total amount of generation is 

reduced to around 50 GW, and an increase is seen only when the risk premium rises to 5%.  With 

nuclear available it is more sensible to use nuclear to replace natural gas generation up to a 4% 

risk premium rather than installing more wind and/or solar.  Since nuclear meets the system 

reserve margin, it can replace natural gas rather than adding to the installed capacity of the 

system. 

As is the case without nuclear in the mix, when nuclear is enabled, SCGT technologies are 

installed to meet the reserve margin, but do not significantly contribute to the energy produced, 
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as shown in Figure 2.11.  This figure shows that two types of generation, nuclear and wind, 

dominate across all risk premium levels.  For the case with no consideration of the emissions 

risk, co-generation remains as a generation option meeting a portion of the heat demand for the 

oil sands.  However, this is pushed out with only a 0.5% risk premium and is replaced by 

nuclear.  Nuclear would likely also be able to supply this heat demand, so would be a reasonable 

replacement for co-generation.  As the risk premium increases, small amounts of other 

technologies such as biomass and solar come in to the mix, but wind and nuclear comprise the 

majority of the generation in the system in all cases. 

One consideration for this generation mix would be the interaction between nuclear and wind 

generation.  Nuclear is not generally considered agile, so the coupling with variable wind 

generation might be technically challenging.  Figure 2.10 shows that there is a significant amount 

of SCGT installed to meet peaking loads, but this generation is never used in the model due to 

the low resolution of the time slices, as seen in Figure 2.11.  In actual operation the SCGT might 

be called upon to meet the ramping requirements in the system.  It is also possible that, with new 

nuclear technologies, that nuclear could meet the ramping requirements.  Adaptations in existing 

plants and design features of new plants promise to allow nuclear to follow loads or find ways of 

using excess energy from nuclear for other uses [143,144].  In addition, reactors in France have 

been used for load following to an extent for many years and upgrades and new technologies will 

increase these capabilities over time [145,146]. 
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Figure 2.11:  Generation by technology at various levels of risk premium in the year 2050 
for system with nuclear available. 

Figure 2.12 shows the distributions of realized emissions for all 2000 random realizations of the 

generation emissions profiles.  As was the case with the current no nuclear AESO projection, 

there is a clear trend of reduced average emissions with an increased risk premium.  There is, 

however, notable difference between the trend with nuclear available and the trend with the 

current AESO projections without nuclear (Figure 7). 
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Figure 2.12:  Total model period emissions for each random realization at various levels of 
risk premium for system with nuclear available. 

For the case with no nuclear (Figure 2.7), as the risk premium increases, average emissions and 

the high emission outliers follow the same decreasing trend and the maximum high emissions 

case is approximately 3500 MtCO2.  When nuclear generation is available (Figure 2.12), the 

trend of average emissions show this same decreasing trend, with the average at each risk 

premium around 500 MtCO2 lower than that without nuclear available.  However, there are a 

number of high emissions outliers, which are as high as 4500 – 6000 MtCO2.  Both risk and 

average emissions are reduced, but there is a low probability (i.e. less than 10 in 2000 or less 

than 0.5%) that the emissions are higher.  This is because the system relies on only two 

generation technologies.  If either of the technologies produces emissions toward the upper end 

of its distribution, for a given random realization, the total emissions for that realization are high. 
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2.5.3 COST AND RISK COMPARISON 

It is illustrative to compare the cost and risk for each risk premium for the systems with and 

without the option of nuclear generation.  Figure 2.13 shows the Pareto optimal risk versus cost 

curves with and without nuclear available.  This figure shows that the risk and cost are 

significantly lower for all situations where nuclear is available. 

 
Figure 2.13:  Model calculated risk versus system cost for all risk premium levels for the 
system with and without nuclear. 

Figure 2.13 shows that the risk with nuclear, at a 0.5% risk premium, is lower than the risk 

without nuclear at a 5% risk premium.  Although there is much public controversy about nuclear 

safety, nuclear generation provides a cost effective hedge against climate emissions risk. 
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2.6 Discussion 

We have used a stochastic risk framework and applied it to carbon emissions in an electrical 

system represented by the province of Alberta, Canada, a predominantly fossil based system, and 

have included nuclear as a risk mitigation technology. 

We find that, for the system without the availability of nuclear in the generation mix, a 5% risk 

premium starts the build out of wind 5 years earlier, and the build out of solar photovoltaic 7 

years earlier than the base model, ending up with significantly more installed solar in 2050 than 

without the risk premium.  In the year 2040, coal with carbon capture and storage comes into the 

energy mix and replaces co-generation as a less risky alternative.  Parkinson and Djilali [47] did 

not include carbon capture technologies in their model so the results cannot be compared 

directly, but their model also showed an increase in wind generation with increased risk premium 

and, similar to our results, they found an increase in SCGT to meet the reserve margin.  Their 

model showed run of river and pumped hydro taking up the bulk of the generation while, in our 

model, CCS came in at higher risk premiums and pushed out CCGT.  Since they analysed a 

primarily hydro based jurisdiction, using pumped storage and run of river technologies is 

possible.  In the Alberta context, there is no significant potential for either run of river or pumped 

storage.  This shows that jurisdictions with different potential energy sources need to be analysed 

separately.  Our analysis could be extrapolated to similar fossil based jurisdictions such as many 

US states and countries such as India and China. 

Although current climate policies eventually incent additions of renewables, additional policies 

that provide for earlier adoption of solar power and wind could provide a risk hedge against 

future emissions if nuclear is not considered an option.  A policy to encourage earlier wind 



43 

adoption would need to be implemented almost immediately, while the policy to encourage solar 

adoption would need to take effect in the early 2040s.  Investments in the development of coal 

with CCS or other unproven low carbon technologies that can meet baseload with lower 

emissions risk could provide future benefits.  Although this technology is not installed by the 

model until the early 2040s, similar to solar, the potentially lengthy research and development 

timelines would indicate that policy action sooner rather than later is needed.  Using a risk 

framework to look at carbon dioxide emissions could allow decision makers to implement 

policies that are more effective, given the timelines for some technologies. 

With nuclear available for the system there is little power generated by any technology other 

than wind and nuclear, though some flexible generation in the system would be needed for 

system stability.  This could be met by building nuclear generation able to ramp and follow load, 

though we acknowledge that this could increase costs.  If nuclear is considered an option for 

Alberta, the focus should be on getting the best performance out of the combination of wind and 

nuclear.  Even without a risk premium applied, allowing nuclear reduces costs and reduces the 

risk of increased emissions and is installed starting around 2040.  With a significant shift in 

social/political will, having nuclear generation operational in Alberta as early as 2020, and 

contributing significantly by 2030 reduces the emissions risk significantly if a 5% risk premium 

is applied.  This is consistent with the results found by Kanudia et al. using a multi-scenario 

framework [50], who found that, when nuclear was available, it was always fully utilized in their 

model.  We realize that a significant political and social shift would be required to allow nuclear 

to contribute to the Alberta power system in 2020, so early policy action would be needed to 

realize the full benefit of nuclear as a risk hedge if a 5% risk hedge is implemented as policy. 
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Our results show that nuclear is a cost effective risk hedge against increases in carbon dioxide 

emissions even without a risk premium applied.  The 0% risk premium with nuclear case has the 

same emissions risk as the 3% risk premium without nuclear case, but at a 5% lower cost.  As 

discussed in the literature review, there has been significant research into the cost uncertainty of 

nuclear but our results indicate that there is room for capital cost escalation in nuclear and it 

would still provide an effective risk hedge against increased emissions. 

As noted in the literature review, very little work has been published on the risk of increased 

emissions in energy system modelling.  More studies that investigate this space would provide 

more comparisons and allow for more detailed policy direction. 

2.7 Future Work 

The model described above has a number of limitations that could be addressed in future work.  

The main limitation is that emissions from a number of technologies such as wind and solar 

occur only at the installation phase and not when the technology generates electricity.  The 

current implementation of the model uses expected emissions per kWh generated, or levelized 

emissions, and therefore disadvantages these technologies.  Separating out the risk associated 

with construction emissions will allow us to address this limitation. 

The model implementation above uses Coal with CCS as a proxy for a low-emissions 

dispatchable/baseload generator.  At this point CCS technology is still developing and there are 

unknown risks with the technology including the possibility of leakage from the stored carbon.  

Incorporating this risk into the model could alter the results and provide interesting insights. 
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In this study we investigated how to hedge against the risk of increased emissions while most 

studies on risk consider only financial risks.  Developing a framework for incorporating both 

financial and emissions risks into the model would potentially provide insights into how to 

mitigate both financial and emissions risks and allow for more nuanced policy decisions. 

Finally, expanding the study to include the entire energy system, not just the electricity system, 

would make the analysis more general.  There may be some interesting trade-offs in terms of 

how to meet the given demand for these three services within this model framework. 
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3. VALUING INFRASTRUCTURE INVESTMENTS TO REDUCE CURTAILMENT3 

Preamble 

Curtailment due to high penetrations of variable renewable (VR) capacity leads to increased 

costs borne by the electricity system.  These curtailment costs can be implicitly included as 

integration costs in long term models but to date have not been included in short or medium term 

models in the literature.  We implement curtailment cost tracking into a medium term version of 

the OSeMOSYS linear programming model and show how the inclusion of curtailment costs 

adds to the value proposition when considering infrastructure investments to reduce curtailment.  

Infrastructure investments such as storage and dispatchable load technologies are considered for 

a system with high wind penetration. 

We find that including curtailment costs in the value of storage and dispatchable loads adds 

significantly to the value of that infrastructure to the system, depending on the curtailment cost 

and the penetration level of wind power.  Ignoring curtailment costs potentially under-values 

investments to reduce curtailment.  No other works compare the value of curtailment to 

investment in storage or dispatchable load technologies. 

3.1 Introduction 

High penetrations of variable renewable (VR) capacity, such as wind and solar, can lead to 

curtailment of the VR generator due to the limited ability of the electricity grid to receive this 

power [51]. Curtailment leads to increased costs that are either borne by the electricity system 

operator, if the contract with the VR generator is must take, or by the owner of the generator.  

                                                 
3 The body of this chapter was published in T. Niet, B. Lyseng, J. English, V. Keller, K. Palmer-Wilson, B. 
Robertson, P. Wild and A. Rowe, Energy Strategy Reviews, vol. 22, pp. 196–206, November 2018. 



47 

These costs, which we term curtailment costs, include: contractual requirements for direct 

payment to the  operator of the generator; loss of renewable energy credits (RECs); and 

increased life cycle cost of the VR energy because capital and fixed costs are amortized over a 

lower amount of generation.  As an example, in Germany in 2015, wind generators were paid an 

average of €53/MWh to curtail their generation [147]. 

Previous studies such as Ueckerdt [70] and Hirth et al. [71] implicitly include curtailment costs 

within integration costs in long term models but the explicit inclusion of curtailment costs in a 

short and medium term optimization models is not present in the literature.  With the increased 

penetration of VR generation, and the corresponding increase in VR curtailment, this can no 

longer be justified. 

In this study, we use a curtailment-enabled model to value infrastructure investments that reduce 

curtailment.  Two types of infrastructure investment are used to demonstrate the applicability of 

the method:  storage and dispatchable loads.  Other studies have evaluated how VR generation 

owners can benefit from reduced curtailment [118] or how curtailment schemes work in the 

marketplace [59,119].  We take a system-level view and consider the overall system value that 

specific infrastructure investments provide when curtailment costs are included in a one year 

system model.  This allows us to value investments in storage or dispatchable load technologies 

when curtailment costs are included in the model. 

3.2 Literature Review 

We first review the literature on integration of VR generation into power systems and find that, 

although integration costs are considered in some long term studies, short and medium term 

studies focus primarily on reducing curtailment and not on the cost that curtailing imposes on the 
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system.  Model frameworks that have been used to evaluate VR energy integration costs are then 

presented and we show how integration costs for long term models can implicitly include 

curtailment costs, but that shorter term studies do not include curtailment costs.  Finally, a 

discussion of model time scales is provided. 

3.2.1 INTEGRATION OF VR GENERATION IN POWER SYSTEMS 

There is much research on integrating VR generation into power systems.  Much of this work 

focusses on long term optimization of the generation mix rather than on short and medium term 

impacts of curtailment.  These studies address the efficacy of demand side management and grid 

enhancements, such as storage, transmission expansion or increased flexibility, to increase the 

long term penetration of VR generation.  We provide a brief review of these studies before 

reviewing the literature on curtailment in short and medium term studies. 

In long term studies, the effect of demand side management, transmission expansion and storage 

on the penetration of VR energy have been addressed.  Salpkari et al. [66] model demand side 

management of heating loads and other flexibility solutions to increase VR penetration for a 

system in Finland.  Lamadrid et al. [67] assess the effects of investments in transmission on the 

ability of the grid to integrate VR generation and find a corresponding increase in VR 

penetration with transmission expansion.  Denholm and Hand [68] study the effect of ramping 

capability of non-VR generators on VR penetration and show that a more flexible system allows 

more VR generation in the system.  Studies of storage often optimize the size of the storage 

system and, in some cases, other generators to meet a given demand with specified costs for both 

the generators and the storage system [51–65].  Braff et al. [69] present a method for sizing 

hybrid wind/storage installations to obtain the highest market value from the power sold.  As 
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noted above, these long term studies can include integration costs using the framework presented 

by Ueckerdt [70] and Hirth et al. [71]. 

As in long term studies, short and medium term studies have addressed the effect of demand side 

management, transmission expansion and storage on the penetration of VR energy.  Arteconi et 

al. [72] evaluate the use of active heating demand response to deal with VR variability and find 

that demand response reduces system operating costs and curtailment.  Xiong et al. [73] consider 

controlled heating loads in Northeast China to enable reduced wind curtailment.  Brouwer et al. 

[74] compare the system cost when the system is permitted to curtail VR generation with the 

system cost of adding demand response, storage or interconnection for a system with high 

penetrations of intermittent resources.  They find that only curtailment and demand response are 

economically viable.  Denholm et al. [75] investigate load shifting, demand response and 

increased ramping flexibility in a system with 50% solar energy penetration and show that 

implementing these technologies reduces curtailment.  Although each of these studies considers 

demand response investments to reduce curtailment, none place an economic value on the 

curtailment when it occurs. 

Only two studies were identified that consider transmission expansion in short or medium term 

models and the impact on curtailment.  Lamy et al. [76], rather than considering transmission 

expansion explicitly, compare potential VR generation locations when transmission constraints 

are included and find that different locations have different levels of curtailment.  As noted 

above, Brouwer et al. [74] compare the system cost when the system is permitted to curtail VR 

generation with the system cost of interconnection and find that transmission expansion to 
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reduce curtailment is not economically viable.  Neither of these studies consider the cost to the 

system of curtailing generation. 

There are many studies of the impacts of storage investments on the curtailment of VR 

generation.   Johnson et al. [77] evaluate storage batteries to determine the value of reducing 

curtailment and transmission requirements.  This value is used to determine storage cost curves 

based only on the value of the additional revenue from energy sales that is enabled by including 

battery storage.  Denholm [78] evaluates energy storage to reduce curtailment and shows that 

even medium duration storage, on the order of 4 – 8 hours, results in significantly reduced 

curtailment.  The value of the thermal storage that is integral to concentrated solar power plants 

and its effect on VR curtailment has also been studied [79–81].  Other works evaluate the 

potential for power-to-gas technologies to reduce curtailment [82–88].  All these studies 

optimize the size of storage infrastructure but none explicitly considers the value of resulting 

curtailment reduction. 

To summarize, integration costs for VR generation have been included in some long term energy 

planning models, but the cost of curtailment can, at best, be only implicitly included in these 

models.  In the short and medium term, most studies have only considered the reduced 

curtailment that can be achieved with infrastructure investments but not the cost of curtailing this 

generation. 

3.2.2 INTEGRATION COSTS AND MODEL FRAMEWORKS 

To show how long term models implicitly include curtailment costs but that shorter term studies, 

to date, have not included them we first provide a review of the major work on integration costs 

in long term models.  This is followed up with a review of the few papers that discuss integration 
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costs in shorter term models and shows how our addition of curtailment costs into shorter term 

modelling contributes to the energy modelling literature. 

For long term energy planning, Hirth et al. [71] provide a summary of VR integration costs, 

noting that these costs are a combination of increased requirements for balancing services, 

increased cycling of thermal plants, reduced utilization of capital stock and other system level 

impacts.  They organise these costs into three categories: 

1. Balancing costs reduce the value of VR generation due to deviations of actual VR 

generation from forecast generation.  These costs include the requirement to have standby 

generators available should the VR generation not meet the forecast and the costs of 

curtailing generators should the VR generator produce more than forecast. 

2. Profile cost is the differential market value of VR generation due to the timing of the 

generation.  At times of high VR penetration, the price of energy may be depressed due to 

the effect of VR energy on the market.  VR generators, therefore, may provide lower 

value on average than dispatchable generators. 

3. Grid related costs are the differential market value of VR generation due to the location 

of the generation and restrictions and losses in transmission. 

Ueckerdt et al. [70] shows how these costs vary with different penetrations of VR generation in 

the system.  Ueckerdt et al. also mention the costs of over-generation, acknowledging that 

curtailment in the system increases costs.  However, they do not explicitly include this cost in 

their models as long term systems modelling, with long time slices, average the availability of 

the VR generator, meaning that curtailment rarely occurs. 
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In long term optimizations the integration costs, as defined by Ueckerdt [70] and Hirth et al. 

[71], are added exogenously to account for the costs associated with high penetrations of VR 

energy in the system.  The total cost, as defined by Ueckerdt [70] and Hirth et al. [71], becomes: 

𝐵𝐵 = ∑ �𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑃𝑃𝐵𝐵𝑗𝑗 + 𝐵𝐵𝐵𝐵𝑗𝑗 + 𝐺𝐺𝐵𝐵𝑗𝑗�𝑗𝑗  (9) 

where 𝑃𝑃𝐵𝐵𝑗𝑗 are the profile costs, 𝐵𝐵𝐵𝐵𝑗𝑗 are the balancing costs and 𝐺𝐺𝐵𝐵𝑗𝑗 are the grid related costs for 

each technology as defined by Hirth et al. [71] and 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗 is the cost implication for each decision, 

𝑥𝑥𝑗𝑗.  The general model structure is discussed in more detail in Section 3.3.2.  Curtailment of VR 

generation is rarely represented in these long term optimizations because, in typical time slice 

frameworks, the availability of VR generation is averaged over long time periods. 

When the optimization framework is used on shorter time frames, with shorter time slices, the 

optimization structure can be modified to include most integration costs explicitly, by adding 

transmission constraints, ramping restrictions, etc., as presented by Quoilin et al. [89].  Profile 

costs, other than the over-production cost, are accounted for by the supply stack with increasing 

costs as VR generation is less available.  Balancing costs are included in the model by 

parameters such as the reserve margin and ramping restrictions while grid related costs are 

incorporated with transmission restrictions in the model formulation.  The model formulation of 

Quoilin et al. restricts curtailment, by requiring the system to take all VR energy but does not 

allow curtailment or include the cost of any curtailment. 

3.2.3 MODEL TIME SCALES 

As discussed above, shorter term models that consider curtailment have, to date, only considered 

the reduction of curtailment in the system, and not the costs that this curtailment imposes.  There 
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are generally two classes of shorter term models in the literature, dispatch models that consider 

the balancing of the grid on a very short term basis of a day or two and others that consider 

medium term load shifting and storage systems using multi-hour time scales. 

Dispatch models that consider balancing of the grid on very short time frames, on the order of 

minutes, are used to model the operation of the grid on short time frames.  Due to computational 

complexities, these models generally simulate periods of 24 hours or less [148–151].  Due to this 

24 hour period these models are unable to capture optimal operation of medium term (i.e. daily 

or weekly) storage or longer term load shifting across days. 

Models that consider medium term storage or load shifting usually use yearly model periods with 

hourly or multi-hour time steps.  This approach allows them to capture load shifting of tens of 

hours as contemplated by Kousksou et al. [152].  Ellison et al. use a medium term scheduling 

model to determine impacts of outages on the Oahu, Hawaii electricity system and use “temporal 

simplification” over a one year period.  Combined with other model approaches they find that 

load shifting provides value from energy storage [153].  Stenzel et al. discuss using battery 

electrical storage on Graciosa Island in the Azores to reduce diesel use with an hourly model and 

find that they can reduce environmental impacts by over 40% [154].  Komarnicki et al. model the 

use of energy storage over varying time scales including multi-hour load shifting applications to 

demonstrate how storage can be used to increase flexible operation of smart grids [155]. 

For this work we use a one-year model period and three hourly time slices to enable our model to 

evaluate daily and weekly load shifting. 
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3.3 Methods 

We model an electricity system whose generation mix is comprised primarily of must-run natural 

gas co-generation, natural gas combined cycle and natural gas simple cycle generation and wind 

generation with lesser amounts of other renewable generation, namely hydro, geothermal and 

biomass.  The system is based on the electricity system in Alberta, Canada, which is a fossil fuel 

dominated jurisdiction in which wind energy penetration is significant and growing.  This 

generation mix is similar is to the energy systems of many US states and countries such as China 

and India. Unlike some of these other systems, however, in Alberta, large-scale cogeneration is a 

significant fraction of capacity and, because of thermal demands, the flexibility of the system is 

limited. 

The following sections describe the system representation, numerical methods, data sources and 

implementation details and, finally, the case studies considered in the analysis. 

3.3.1 SYSTEM REPRESENTATION 

Figure 3.1 is a representation of the system model in which dispatchable generation types are 

grouped together and wind is the only VR generation type. Additional options to manage system 

variability and cost are storage and dispatchable load.  The conventional generation technology 

mix in terms of capacity is assumed to be fixed. The penetration of VR is varied independently 

from the available storage and dispatchable load. System operation is determined for a range of 

capacities of curtailment reducing technology, using a fixed demand profile. The resulting 

dispatch and operating costs are determined by cost minimization. 
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Figure 3.1: Diagram of generation options in the modeled system.  The wind resource is 
the VR in the system and the installed capacity of wind is varied. 

3.3.2 NUMERICAL MODEL 

A linear programming model is chosen to optimize the overall system cost and provide the 

optimal operation of the system.  This model minimizes the overall system cost, including 

curtailment cost, based on the generic problem formulation: 

𝑀𝑀𝑖𝑖𝑀𝑀 𝐵𝐵 = ∑ �𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗�𝑗𝑗  (10) 

𝑠𝑠. 𝑡𝑡.∑ (𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗)𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖 ∀ 𝑖𝑖 (11) 

      𝑥𝑥𝑗𝑗 ≥ 0 ∀ 𝑗𝑗 (12) 

The objective of the problem, as defined in Equation 10, is to find the solution vector, xj, that 

minimizes the sum of cjxj, where j represents the set of all possible decisions.  In energy systems 

models, cj, the vector comprising the cost parameters, is often separated into capital, fixed and 

operating costs while xj, the vector comprising the decision variables, is often separated into new 

capacity and operating decision vectors.  The subscript j then represents new capacity and 

operating decisions for each technology in the model.  The performance parameters for the 
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technologies are ai,j and the activity or installed capacities are restricted by bi , as shown in 

Equation 11.  This general formulation has been implemented in a number of techno-economic 

energy system modeling tools, including MESSAGE [130,131], Times/MARKAL [132] and, 

more recently, the Open Source Energy Modelling System (OSeMOSYS) [11,12]. 

The basic model formulation, as shown in Equations 10 through 12 explicitly excludes 

curtailment costs as the amount of generation in each time slice is permitted to exceed the 

demand due to the inequality in Equation 11.  This is implemented in most models as an 

inequality that ensures that the sum of the generated energy, 𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺 , for each generator, 𝑗𝑗, is greater 

than or equal to the total demand, 𝐸𝐸𝑖𝑖𝐷𝐷, in in each time slice, i, as shown in Equation 13. 

𝐸𝐸𝑖𝑖𝐷𝐷 ≤  ∑ 𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺𝑗𝑗  (13) 

This works when there is no curtailment cost in the model as the optimization algorithm will 

reduce the variable costs and therefore not over-generate.  When curtailment costs are included 

in the model the inequality in Equation 13 must be changed to an equality to prevent over-

generation as shown in Equation 14.  This is computationally less efficient, but ensures that the 

sum of the generated energy, 𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺 , for each generator, 𝑗𝑗, is equal to the total demand, 𝐸𝐸𝑖𝑖𝐷𝐷, in in 

each time slice, i, thereby eliminating any excess generation. 

𝐸𝐸𝑖𝑖𝐷𝐷 =  ∑ 𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺𝑗𝑗  (14) 

With this modification, the model is no longer permitted to over-generate energy above the 

demand curve.  We can then calculate the cost of curtailment with an additional cost term in the 

objective function, namely the average curtailment cost.  Thus, cj, the vector comprising the cost 

parameters, includes capital, cj,c, fixed, cj,f, operating, cj,o, and curtailment costs, cj,e.  To calculate 
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curtailment cost, we start by defining the available energy, 𝐸𝐸𝑖𝑖,𝑗𝑗𝐴𝐴 , from generator j in time slice i 

as: 

𝐸𝐸𝑖𝑖,𝑗𝑗𝐴𝐴 = 𝐼𝐼𝑗𝑗𝐵𝐵𝐹𝐹𝑖𝑖,𝑗𝑗 (15) 

where Ij is the installed capacity of generator j and CFi,j is the capacity factor for generator j in 

time slice i. 

The amount of constrained energy for generator j in time slice i, 𝐸𝐸𝑖𝑖,𝑗𝑗𝐶𝐶 , can then be calculated as: 

𝐸𝐸𝑖𝑖,𝑗𝑗𝐶𝐶 = 𝐸𝐸𝑖𝑖,𝑗𝑗𝐴𝐴 − 𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺  (16) 

where 𝐸𝐸𝑖𝑖,𝑗𝑗𝐺𝐺  is the utilized energy from generator j in time slice i, as determined by the model.  The 

total curtailment cost, CC, for this amount of energy is then calculated as: 

𝐵𝐵𝐶𝐶 = ∑ �𝑐𝑐𝑗𝑗𝑐𝑐𝐸𝐸𝑖𝑖,𝑗𝑗𝐶𝐶 �𝑖𝑖,𝑗𝑗  (17) 

Where 𝑐𝑐𝑗𝑗𝑐𝑐 is the average curtailment cost per unit of energy for generator j, the portion of the 

cost, cj, that is associated with curtailing.  The costs for each generator in each time slice, i, are 

summed to get the total curtailment cost over the model period.  This term is added to Equation 

10 to yield a total system cost that includes curtailment cost, 𝐵𝐵𝑇𝑇. 

𝐵𝐵𝑇𝑇 = ∑ �𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗� + 𝐵𝐵𝐶𝐶𝑗𝑗  (18) 

Equations 14 through 18 are implemented in the OSeMOSYS energy modelling system [11,12]. 

To illustrate the benefit of including curtailment costs in a medium term model, we investigate 

the impact of installing technologies that reduce the need for curtailment.  More specifically, we 

consider a dispatchable load and an energy storage system.  We do not include the costs of the 
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additional technology in the objective function; instead we determine the reduced system cost 

with the technology installed.  We then post calculate the value of this infrastructure to the 

system as: 

𝑉𝑉 = 𝐵𝐵𝑇𝑇0 − 𝐵𝐵𝑇𝑇 (19) 

where 𝐵𝐵𝑇𝑇0is the cost without the infrastructure and 𝐵𝐵𝑇𝑇 is the reduced cost with the infrastructure. 

We then normalize Equation 19 for the installed capacity of the infrastructure, 𝑆𝑆𝑉𝑉, to get the 

value per unit of installed capacity, 𝑣𝑣, as: 

𝑣𝑣 = 𝐶𝐶𝑇𝑇
0−𝐶𝐶𝑇𝑇
𝑆𝑆𝑉𝑉

 (20) 

The proportion of the value that is contributed by the curtailment cost, 𝐵𝐵𝐶𝐶, is calculated as: 

𝑣𝑣𝐶𝐶 = 𝐶𝐶𝐶𝐶
0−𝐶𝐶𝐶𝐶
𝑆𝑆𝑉𝑉

 (21) 

Equations 19 through 21 are not implemented in OSeMOSYS but are used to analyse the model 

outputs. 

3.3.3 MODEL IMPLEMENTATION AND DATA 

The curtailment cost framework described above is implemented into the Open Source Energy 

Modelling System (OSeMOSYS) [11,12], a freely available energy systems model.  This model 

was chosen due to its availability and its general acceptance in the energy modelling community.  

The GLPK model equations, as implemented in OSeMOSYS, are included in the Appendix.  

Using this framework, we develop a model of an electricity system whose generation mix is 

comprised primarily of must-run natural gas co-generation, natural gas combined cycle and 
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natural gas simple cycle generation and wind generation with lesser amounts of other renewable 

generation, namely hydro, geothermal and biomass. 

The model is based on a generation mix for Alberta for 2030 as determined using a long term 

optimization of the Alberta system by Lyseng et al. [117] and updated to include policy 

announcements by the Alberta government in late 2015 [135,136] which include 30% of energy 

from renewable resources by 2030.  Table 3.1 shows the generation capacities included in the 

existing generation portion of the model, as shown in Figure 3.1.  These capacities are as 

determined by Lyseng et al. [117,135] to meet an average load of 14.3 GW, which is the 2030 

load projected by the Alberta Electricity System Operator (AESO) [138].  Generator 

performance data are taken from the U.S. Energy Information Agency [137].  The load profile is 

taken from the 2013 Alberta system load and is scaled to the AESO predicted 14.3 GW average 

load [56]. The model is based on 2920 3-hour timeslices that cover a one year period. 

Table 3.1:  Generator Capacity for 30% Renewables [117] 

Generator Acronym Installed 
Capacity 

Simple Cycle Gas Turbine SCGT 6.7 GW 
Combined Cycle Gas Turbine CCGT 4.3 GW 

Co-generation (heat and power) COGEN 5.53 GW 
Biomass BIOMASS 0.24 GW 

Hydropower HYDRO 0.9 GW 
Geothermal Power GEOTHERMAL 0.5 GW 

Wind WIND 10.6 GW 
 

3.3.4 CASE STUDIES 

For each infrastructure investment we consider nine cases, each comprised of a unique 

combination of installed wind capacity and curtailment costs as shown in Table 3.2.  Curtailment 
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cost values are assumed to fall within the range of US$15/MWh to US$100/MWh, as found in 

the literature [71,147,156–158].  Three levels of wind capacity are considered, representing 75%, 

110% and 150% of the 14.3 GW average projected load for 2030.  This corresponds 

approximately to obtaining 30%, 45% and 60% of the yearly energy from wind power, 

respectively. 

Table 3.2:  Combinations of VR Capacity and Curtailment Cost Modelled 

Case Study Name Wind Capacity Curtailment Cost 
30%, $35 10.6 GW $35/MWh 
30%, $65 10.6 GW $65/MWh 
30%, $100 10.6 GW $100/MWh 
45%, $35 15.9 GW $35/MWh 
45%, $65 15.9 GW $65/MWh 
45%, $100 15.9 GW $100/MWh 
60%, $35 21.2 GW $35/MWh 
60%, $65 21.2 GW $65/MWh 
60%, $100 21.2 GW $100/MWh 

 

Two infrastructure investments cases are modeled.  First, a storage system with 80% round trip 

efficiency is used to illustrate avoided curtailment cost for investments in storage.  Second, a 

dispatchable/interruptible load is modelled to illustrate the avoided curtailment costs for flexible 

demand.  In both cases the infrastructure investment is assumed to have no cost such that the 

difference in the total system cost can be used to estimate the value of the infrastructure 

investment for the system.  The curtailment costs are determined for each installed capacity of 

storage or dispatchable load. 

3.3.4.1 INFRASTRUCTURE INVESTMENT IN STORAGE 
To model storage, the OSeMOSYS storage equations described in [12] are used with two 

modifications.  First, a constraint is added that requires the net energy transferred into storage to 
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match the net energy transferred out of storage, ensuring that the storage system is refilled to its 

starting level at the end of the model period.  A second modification, a restriction on the 

maximum stored energy, is added to restrict the installed capacity. 

A round trip efficiency of 80% is assumed and is implemented as 89.44% efficiency for both the 

input and the output.  This efficiency is within the typical range of both battery and pumped 

hydro storage systems [159].  Table 3.3 shows the maximum storage size and the corresponding 

time that this amount of storage could meet the average load.  No constraint is placed on the 

maximum power input or output to storage as we are considering medium term storage capacities 

and the expected charging and discharging power of these technologies, at the scale we are 

considering, would easily meet the power needs in the system at any given time [160–162]. 

Table 3.3:  Maximum Storage Sizes and Hours of Storage  

Run number Storage capacity 
(GWh) 

Hours of storage at 
average load 

1 0 0 
2 250 17 
3 500 35 
4 750 52 
5 1000 70 
6 1500 105 
7 2000 140 
8 2500 175 

 

3.3.4.2 INFRASTRUCTURE INVESTMENT IN DISPATCHABLE LOAD 
To implement a dispatchable load we increase the overall demand, Di, by a capacity that 

represents the power of the dispatchable load, Pi, in each time slice as shown in Equation 22. 

𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖0 + 𝑃𝑃𝑖𝑖 (22) 
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This allows excess wind power to be utilized to meet the demand as shown in green in Figure 

3.2. 

We then introduce a generator that is constrained to produce the additional annual energy added 

to the demand by Equation 22, P, as shown in Equation 23. 

𝑃𝑃 = ∑ 𝑃𝑃𝑖𝑖𝑖𝑖  (23) 

This generator will reduce the operation of the other generators in the system in that time slice, 

as shown in yellow in Figure 3.2.  This implicitly addresses the bounce back effect that often 

occurs with demand response initiatives. 

 
Figure 3.2:  Implementation of dispatchable load in OSeMOSYS (other generators omitted 
for clarity). 
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Table 3.4 shows the maximum power of the dispatchable load and the corresponding percent of 

average load that is modelled as flexible in the system. 

Table 3.4:  Maximum dispatchable load power and percent of average load  

Run number Dispatchable Load 
(GW) 

Percent of Average 
Load (%) 

1 0 0.0% 
2 0.1 0.7% 
3 0.2 1.4% 
4 0.3 2.1% 
5 0.4 2.8% 
6 0.5 3.5% 
7 0.75 5.2% 
8 1 7.0% 
9 1.5 10.5% 
10 2 14.0% 
11 2.5 17.5% 
12 3 21.0% 
13 4 28.0% 
14 5 35.0% 

 

3.4 Results 

The inclusion of curtailment costs adds between 10% and 60% to the value that storage and 

dispatchable loads provide to the system depending on the combination of curtailment cost and 

wind penetration level.  This value comes from both a reduction in curtailment and a reduction in 

operating costs for other generators in the system.  We first present the results for investments in 

storage, and then for investments in a dispatchable load. 

3.4.1 VALUING INVESTMENTS IN STORAGE 

Figure 3.3 shows generation for 480 hours (20 days) of the year with 60% installed wind 

capacity and no storage installed.  It can be seen that, with this much wind installed, and no 
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storage capability, there is a large amount of curtailment, shown in red, where the available wind 

exceeds the demand. 

 
Figure 3.3:  Generation over time for system with 60% wind, no storage. 

Figure 3.4 shows the same information, but with 35 hours of storage installed and the reduced 

curtailment that occurs with storage available.  The wind generation in dark green above the 

demand line is used to charge the storage system while the bright green areas under the demand 

line indicate times when the storage system is meeting the demand.  Storage reduces both the 

requirement to curtail wind and the reliance on fossil generation. This can be seen by comparing 

the difference between the natural gas generation shown in Figure 3.3 and that shown in Figure 

3.4. 
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Figure 3.4:  Generation over time for system with 60% wind, 35 hours of storage. 

Figure 3.5 shows the annual generation by each generator with 60% wind for each level of 

storage modelled.  As expected, with increased storage there is decreased curtailment.  The 

reduction in fossil generation (OCGT and CCGT) is also apparent.  Generation above the 

demand line occurs as there is wind power that would have been curtailed that is used to charge 

the storage system at times of high wind.  The demand is then met, at times with low wind, by 

the stored energy, as shown in light green in Figure 3.5. 
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Figure 3.5:  Energy production/curtailment vs. storage size, 60% wind 

Table 3.5 shows the amount of wind curtailment as a percent of available wind energy for the 

different installed storage capacities as well as the reduction in natural gas use for each case with 

a $65 curtailment cost.  Smaller amounts of storage, on the order of a few days, decreases the 

curtailment and natural gas use significantly but that there are diminishing returns with larger 

amounts of storage capacity. 

Figure 3.6 shows the value of storage, as a function of storage capacity, for the three wind 

penetration levels, as defined in Equation 35.  The value of storage is higher with higher 

curtailment costs and higher wind penetration levels, with a diminishing benefit as the storage 

capacity is increased. 
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Table 3.5:  Energy production and curtailment vs. storage size, $65 curtailment cost 

Storage 
Hours 

30% Wind 45% Wind 60% Wind 
% 

Curtailed 
NG 

Reduction 
% 

Curtailed 
NG 

Reduction 
% 

Curtailed 
NG 

Reduction 
0 1.51% 0.00% 15.67% 0.00% 36.22% 0.00% 
17 0.03% 1.96% 0.64% 11.17% 9.31% 17.14% 
35 0.01% 1.97% 0.19% 11.93% 4.36% 20.43% 
52 0.00% 1.97% 0.03% 12.29% 2.69% 21.75% 
70 0.00% 1.97% 0.08% 12.45% 1.54% 22.79% 
105 0.00% 1.97% 0.03% 12.54% 0.89% 23.99% 
140 0.00% 1.97% 0.03% 12.54% 0.80% 24.22% 
175 0.00% 1.97% 0.03% 12.54% 0.50% 25.11% 

 

 
Figure 3.6:  Value of storage vs storage size, 25 year storage life. 

This figure can be used to determine storage size for given cost of a storage technology.  For 

example, if the curtailment cost is $65, and our storage technology costs $50/kWh, there is no 

value to the system with only 30% wind penetration.  At 45% wind penetration, it would be cost 
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effective to install approximately 40 hours of storage, while at 60% wind penetration it is cost 

effective to install significantly more, around 75 hours.   

For Figure 3.6 we have amortized over a 25 year period as a typical storage lifetime.  The actual 

amortization time required to assess a given storage system would depend on the lifetime of that 

specific technology. 

The proportion of the value that is contributed by the curtailment cost was found to have almost 

no sensitivity to the installed storage capacity.  The proportion was found to be as low as 12% of 

the total value for the 30% wind, $35 curtailment cost case and as high as 50% of the total value 

for the 60% wind, $100 curtailment cost case.  For all cases ignoring the curtailment cost would 

significantly underestimate the value that storage could provide to the system. 

3.4.2 VALUING INVESTMENTS IN DISPATCHABLE LOAD 

Figure 3.7 shows the results for a 1 GW dispatchable load and 30% wind penetration.  In this 

figure the original demand line is shown in black.  Wind generation that is used by the 

dispatchable load is shown as generation above the original demand line.  The corresponding 

times when the dispatchable load is turned off are shown unshaded under the original demand 

line. 
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Figure 3.7:  Generation over time for system with 30% wind, 1 GW dispatchable load. 

Figure 3.8 shows the same information as Figure 3.4, but for 60% wind penetration and a 3 GW 

dispatchable load.  There are much larger periods where excess wind can be utilized as shown by 

the larger green band above the demand line.  The amount of time when the demand is reduced 

due to this demand shifting is correspondingly larger as well. 
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Figure 3.8:  Generation over time for system with 60% wind, 3 GW dispatchable load. 

Figure 3.9 shows the generation by technology for the dispatchable load for 60% wind.  The 

shape of this graph is notably different than the graph in Figure 3.5, the corresponding figure for 

storage.  With storage, the initial installation allows wind to generate above the demand and 

therefore the total generation increases since there are losses in the storage system.  For the 

dispatchable load, the curtailment decreases with increasing dispatchable load.  The generation 

by OCGT and CCGT decrease correspondingly. 
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Figure 3.9:  Energy production/curtailment vs. dispatchable load, 60% wind. 

Table 3.6 shows the amount of wind curtailment as a percent of available wind energy for the 

different installed dispatchable load capacities as well as the reduction in natural gas use for each 

wind capacity with a $65 curtailment cost.  Increasing amounts of dispatchable load provide 

increasing reductions in curtailment and use of natural gas, especially for high installed wind 

capacities.  This is in contrast to storage, where additional capacity past a certain point does not 

provide any benefit to the system. 

Figure 3.10 shows the value of dispatchable load as a function of capacity.  For the low wind 

penetration the diminishing rate of return for increased investments is clearly seen.  There is 

more variability in the shape of these curves when compared to the value of storage curves.  The 

value still has a declining benefit with high penetration, but the curves are generally flatter, and 

there are shifts in the curve as the dispatchable load displaces different value generation. 
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As with Figure 3.6, Figure 3.10 can be used to determine the capacity of dispatchable load that 

would provide value to the system.  If the operating cost of a dispatchable load is $300 per kW 

per year, and we expect a $65 curtailment cost, at 60% wind we might want to install as much of 

this dispatchable load as possible, in the 45% wind case, it would be cost effective to install 

around 2.5-3 GW of dispatchable load and in the 30% wind case it is not clear any value to the 

system can be obtained. 

Table 3.6:  Energy production and curtailment vs. storage size, $65 curtailment cost 

Dispatchable 
Load 

30% Wind 45% Wind 60% Wind 
Wind 

Curtailed 
NG 

Reduction 
Wind 

Curtailed 
NG 

Reduction 
Wind 

Curtailed 
NG 

Reduction 
0 1.51% 0.00% 15.67% 0.00% 36.22% 0.00% 

0.1 1.35% 0.28% 15.03% 0.67% 35.24% 0.90% 
0.2 1.21% 0.56% 14.42% 1.33% 34.28% 1.79% 
0.3 1.08% 0.82% 13.82% 1.97% 33.35% 2.59% 
0.4 0.95% 1.08% 13.25% 2.61% 32.43% 3.08% 
0.5 0.84% 1.33% 12.68% 3.23% 31.55% 3.57% 
0.75 0.61% 1.92% 11.34% 4.74% 29.41% 4.75% 
1.0 0.43% 2.46% 10.11% 5.56% 27.42% 6.22% 
1.5 0.19% 3.43% 7.94% 6.83% 23.79% 9.01% 
2.0 0.08% 3.94% 6.17% 7.96% 20.57% 11.58% 
2.5 0.04% 3.97% 4.71% 8.93% 17.71% 13.94% 
3 0.02% 3.98% 3.49% 9.68% 15.17% 16.13% 
4 0.00% 3.99% 1.78% 10.99% 10.94% 19.91% 
5 0.00% 3.99% 0.78% 11.72% 7.61% 23.05% 
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Figure 3.10:  Value of dispatchable load, per year. 

The proportion of the value of a dispatchable load that is contributed by the curtailment cost was 

found to have somewhat more sensitivity to installed dispatchable capacity than to installed 

storage capacity, but the variation was still small.  The proportion was found to be as low as 10% 

of the total value for the 30% wind, $35 curtailment cost case and as high as 60% of the total 

value for the 60% wind, $100 curtailment cost case.  For all cases ignoring the curtailment cost 

would significantly underestimate the value that a dispatchable load could provide to the system. 
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3.5 Discussion 

Curtailment cost inclusion in the model adds anywhere from 10% to 60% to the value provided 

by infrastructure investments in storage and dispatchable loads.  The proportion provided from 

the curtailment cost is higher with higher curtailment costs and higher wind penetration levels.  

Inclusion of the cost of curtailment in an energy system model allows calculation of the benefit 

an infrastructure investment might have in reducing this cost and can incentivize the installation 

of curtailment reducing technologies.  Ignoring this cost potentially under-values the benefits 

that these infrastructure investments provide. 

Two recent papers have done similar work, but from a different perspective.  Johnson et al. [77] 

perform a valuation for storage in a system but do not include curtailment costs and Braff et al 

[69] calculate the return on investment for a given storage cost and size. 

Johnson et al. [77] consider the delivered value of the energy from a wind farm with and without 

storage and calculate the value that the storage system can provide in both reducing curtailment 

and reducing transmission costs.  They find that up to 8 hours of storage attached to a wind farm 

and priced at between $50 and $75/kWh would provide value by reducing transmission costs and 

reducing curtailment.  Although our results are not directly comparable, our results would imply 

that Johnson et al. underestimate the value of the storage system by anywhere from 10% to 50%.  

We find that, at a cost of $75/kWh for storage, as much as 25 hours of storage would be cost 

effective for a $65 curtailment cost and over 40 hours of storage would be cost effective with a 

$100 curtailment cost.  Our curve for $35 of curtailment cost does not extend above $30/kWh at 

17 hours of storage but is curving sharply upwards.  We expect that future work at shorter time 

scales will show a higher value for storage than Johnson et al. found. 
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Braff et al. [69] consider the size of storage for a wind farm that would provide a positive return 

on investment and find that, for investments in storage between 0 and 4 hours, there is often a 

return on investment but, as the storage size increases past 4 hours, the return rapidly becomes 

negative.  Braff et al. studies the wind farm perspective in a similar way to Johnson et al. above 

so it is not unexpected that they find value of storage to be much lower than either Johnson et 

al.’s or our work.  If a system perspective and the curtailment cost was included in Braff’s work 

we expect they would find higher amounts of storage would provide value. 

The variation in value for storage compared to dispatchable load is also interesting.  The value of 

a dispatchable load is fairly constant across a large range of installed capacities while the value 

of storage infrastructure diminishes with increased installed capacity.  In a market based 

electricity system like Alberta and many others around the world this has policy implications for 

investors.  For dispatchable loads it makes no significant difference if your competitor also 

installs a dispatchable or controllable load system as you can still recoup the investment.  For 

storage, on the other hand, the value of the investment depends significantly on the other storage 

available in the system.  As such, getting investment and financing for storage would be much 

more difficult as it is more risky to invest in storage. 

The ability of OSeMOSYS to incorporate calculation of curtailment costs allows for the 

consideration of infrastructure investments that reduce curtailment and the calculation of the 

value that these infrastructure investments provide.  Lund [163] provides a review of methods of 

enhancing system flexibility to reduce VR curtailment.  Each of the methods they discuss would 

reduce the curtailment cost to the system and the method we describe could be used to value any 

of these methods.  Some specific methods that enhance system flexibility and could be assessed 
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with our curtailment cost model include demand side management/resources and active demand 

response [164], load management and responsive loads such as hot water tanks, and electricity 

storage  [159]. 

3.5.1 LIMITATIONS 

We model the medium term value of an infrastructure investment with the consideration of 

curtailment costs.  Since our model is a medium term model it was not possible to optimize the 

generation mix in the model as is done in a long term model.  The long term value of an 

infrastructure investment such as storage or dispatchable load will change based on the changes 

in the generation mix.  We see our method being applied to evaluate the projected generation 

mix found with a long term model to see if storage or dispatchable load would provide additional 

value that a long term model cannot incorporate. 

Although we utilize average curtailment costs that have been seen in various locations for the 

current study, corresponding to a curtailment payment contracted to the system, the method can 

easily be adapted to incorporate different levels of curtailment cost.  This could be done by 

implementing a curtailment cost ‘supply stack’ similar to the way a supply stack is incorporated 

into OSeMOSYS for generation technologies.  The specifics of a given curtailment cost structure 

would depend on the contracts, ownership and impacts of constraining in a specific system. 

Our model optimizes infrastructure operation as part of the overall system.  It is not possible to 

include the market dynamics of the Alberta, Canada market and how storage or dispatchable 

loads would interact with the market in such an optimization model.  The return on investment 

for the infrastructure owner was therefore not considered as part of this study.  Although we find 

that storage and dispatchable loads provide value to the overall system, we do not model how the 
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infrastructure owner would benefit from this value or how the savings would be transferred to 

the owner. 

The storage system modelled did not consider maximum power of the storage inputs and outputs 

but just the capacity of the storage system to maintain the average load.  Adding a constraint on 

storage power and other operating constraints is easy to incorporate using the existing 

OSeMOSYS storage equations but was not done for this chapter due to the medium term nature 

of the storage system modelled.  For medium term storage technologies such as batteries, at the 

scale contemplated in this chapter, the available power would exceed that required based on 

existing battery technologies.  For different technologies incorporating this into the model would 

require characterization of the specific storage system being contemplated. 

Finally, dispatchable loads provide significant benefit to the system but, again, the specifics of a 

real dispatchable load were not modelled in this paper, but a generic dispatchable load was 

modelled to illustrate the approach.  The OSeMOSYS equations presented by Welsch et al. [12] 

could be used to model a dispatchable load to match a specific application, and the features of 

this specific application could be programmed into the model. 

3.6 Conclusions 

We have used a curtailment cost enabled model and applied it to two case studies, one 

considering the value of storage and one considering the value of a dispatchable load. This 

method provides an effective method for calculating the value of avoided curtailment costs for an 

investment in infrastructure such as storage and dispatchable loads.  Investments in storage and 

in dispatchable loads are effective ways to reduce constrained wind energy in the system 

modelled and to provide value to infrastructure investments.  This finding confirms that of other 



78 

published works.  Other published works, however, do not consider the cost of constraining these 

generators while we include this cost into our model.  To date no other works have compared the 

value of curtailment in the valuation of storage and dispatchable loads in an energy system with 

high penetration of variable renewable energy. 

As governments set higher and higher targets for wind and renewable energy, the curtailment of 

these generators will become more and more common.  As discussed in the literature review, 

existing works mainly consider ways of reducing curtailment without considering the added 

value that reduced curtailment costs have for the system.  By enabling OSeMOSYS to include 

the calculated cost of constraining in the model structure we allow for the consideration of the 

value of avoided curtailment cost to the system operator.  This model structure will allow for 

more effective valuation of infrastructure investments such as storage and dispatchable loads 

from a system perspective. 
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4. IMPACT OF INSTANTANEOUS RENEWABLE PENETRATION LIMITS ON GRID OPERATIONS 

AND STORAGE VALUE 

Preamble 

High penetrations of renewable energy are causing system management challenges such as 

maintaining adequate frequency regulation and the forced curtailment of variable renewable 

energy.  These challenges increase operational costs and reduce the environmental benefits 

provided by renewable energy.  Many future scenario modelling studies, including some calling 

for 100% renewable energy powered systems, take no consideration of these challenges.  In this 

study the operational characteristics of a generation portfolio with high penetrations of wind 

power is evaluated with consideration of a minimum synchronous generation constraint.  

Performance of the system is evaluated with and without storage.  The restrictions on 

instantaneous penetration of renewable energy such as wind increases costs, decreases the energy 

penetration of the renewable energy source and increases carbon emissions.  Including storage 

allows for increased wind utilization, decreased operating costs and increased penetration of 

renewable energy with diminishing returns as the storage capacity is increased.  Storage power 

has little impact on the value that storage provides to the system.  Technologies that allow high 

instantaneous penetrations of variable renewable energy would reduce the impact of these system 

limitations. 

4.1 Introduction 

The continuing reduction in the cost of variable renewable energy (VRE) generators has 

forecasters predicting that a significant share of new generation coming online worldwide will 

come from renewables such as wind and solar [165].  There are some studies that suggest that it 

would be feasible to build systems powered entirely by VRE generation [166–169].  As the 
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penetration of VRE generation increases, challenges to the operation of the grid become more 

significant including increased ramping events [170] and increased need for maintaining 

synchronous generation for frequency regulation [93,171].  This has implications for system 

costs for integrating these generators and, when not integrated effectively, can reduce the 

emission reductions provided by these technologies [98]. 

Another challenge posed by high penetrations of VRE generation is curtailment.  With high 

penetrations, the ability of the grid to absorb VRE generation can be limited.  This can lead to 

curtailment of VRE generators, reducing the environmental benefits [172,173] and imposing 

costs on the system such as lost renewable energy credits or reduced generation over which to 

amortize capital costs [174].  Electricity storage is often considered for reducing curtailment and, 

thereby, increasing utilization of VRE generation [78,96,97].  Many studies that evaluate storage 

as a tool to reduce curtailment consider neither the effects of synchronous generation 

requirements that impose a limit on the instantaneous penetration of renewables nor the impacts 

of curtailment costs.  Omission of these factors can result in over-estimation of the emission 

reductions and operational advantages of storage. 

In this study we utilize an optimization model to evaluate the impact of synchronous generation 

requirements and curtailment costs on the operation and emissions reductions that storage 

provides in a system with a high penetration of wind power.  We utilize a modified version of the 

Open Source Energy Modelling System (OSeMOSYS) [11,12] that has been adapted for short 

time step modelling and that incorporates the cost of curtailment [174].  We implement ramping 

and synchronous generation constraints into this model.  We evaluate systems with nominal VRE 
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energy penetration levels of 30%, 45% and 60% and assess the impact that synchronous 

generation constraints and curtailment costs have on the system with and without storage. 

4.2 Literature Review 

Before reviewing the literature we need to define the term penetration as used in the literature.  

There is the energy penetration of the renewable resource, as the percent of total generation over 

the full model period provided by renewable generation, and the instantaneous penetration at a 

given time which impacts grid frequency regulation.  In this chapter we will use the term energy 

penetration when referring to the percentage of generation from renewables over the model 

period, and the term penetration will generally refer to instantaneous penetration. 

The literature on renewable penetration can be divided into three broad areas.  First the ability of 

wind power to contribute to synchronous generation, then the literature on the amount of 

synchronous generation required for frequency regulation, and finally, the use of storage as a 

flexibility option. 

4.2.1 SYNCHRONOUS GENERATION 

In modern electricity grids there is a requirement to keep the frequency within a narrow range to 

ensure reliability.  This is most often achieved by having large conventional synchronous 

generators such as coal or natural gas turbines providing the bulk of the electricity.  These 

generators operate at a fixed speed and, due to their mechanical inertia, can absorb and 

compensate for variations in demand and adjust if there are outages, ensuring that the frequency 

does not vary outside of the permitted range. 



82 

As the penetration of VRE in a system increases, there are uncertainties about how the grid will 

respond [10].  Some studies conclude that wind turbines can provide primary frequency response 

and that modern, variable speed wind turbines are able to provide system inertia [3–6]. Other 

studies show that having high penetrations of wind power in the system puts the system at risk of 

frequency variations outside of the allowable bounds even with modern wind turbines [7–10].  

For this study we consider wind generation to be non-synchronous and implement a synchronous 

generation constraint on the system to evaluate the impact this has on system operation. 

4.2.2 ALLOWABLE NON-SYNCHRONOUS GENERATION PENETRATION 

There are numerous studies that evaluate the minimum level of synchronous generation required 

to ensure adequate frequency regulation.  Wang et al. [171] find that there is a requirement to 

restrict the amount of non-synchronous variable renewable generation in the European 

interconnect to as low as 25% during times of low load and as high as 60% during periods of 

high load due to the risk of frequency variations should a generator outage occur.  The 

permissible penetration is lower during periods of low load as fewer generators are operating on 

the system so a potential generator outage has a larger impact during periods of low load.  For 

periods of average load, the VRE penetration that could be accommodated is 40-50%. 

Nahid-Al-Masood et al. [7] estimate the permissible non-synchronous penetration level based on 

frequency regulation contingency and the ability of the grid to handle generator outages.  For the 

grid in south-east Australia, they find that the allowable non-synchronous penetration level is in 

the 5-20% range with a maximum allowable level of 45% in situations where there was high load 

and therefore large amounts of synchronous generation were running.  This is somewhat lower 

than the results from Yan et al. [8] who investigate the impact of high penetrations of non-
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synchronous generation in the Australian National Energy Market and find that in certain 

circumstances a 59% penetration of non-synchronous generation can cause severe 

interconnection trips and some load shedding.  A case where 71% of the generation was non-

synchronous was associated with an unacceptable frequency drop when a synchronous generator 

tripped and it was noted that this was not an acceptable operational configuration for the system. 

O’Sullivan et al. [175] studied the impact of very high non-synchronous penetration in Ireland 

and finds that above around 40% penetration there were a number of situations where frequency 

regulation of the grid under existing operating strategies was not maintained.  McGarrigle et al. 

[176] finds that high levels of non-synchronous penetration, up to 75%, reduced curtailment of 

wind capacity, but did not evaluate the impact on the frequency of the grid.  For the 75% 

penetration, they cite an EIRGrid study [177] that found that a 60-80% penetration level is 

technically achievable but states, “the integrity of the frequency response and the dynamic 

stability of the power system are compromised at high instantaneous penetrations of wind” above 

about 50-60%.  This is consistent with the EIRGrid system non-synchronous penetration (SNSP) 

requirement of 50%, which was temporarily increased to 55% in a 2015 test [178]. 

There are several studies that discuss requirements for 100% renewable systems.  Papaefthymiou 

et al. [179] state that, “in order to reach higher shares of variable renewables, specific actions 

should be taken to ensure that there is sufficient system inertia.”  They continue by stating, “Key 

strategies for tackling this challenge is to enable converter-connected units to provide inertia, or 

to keep synchronous units online to provisions system services”.  Delucchi and Jacobson 

[169,180,181] have published a number of papers considering 100% renewable energy systems 

but do not discuss the requirements for frequency regulation.  These studies have caused some 
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significant discussions in the literature as to the feasibility of these high levels of renewable 

energy penetration [182,183]. 

Some studies have much lower restrictions on variable renewable penetration.  Gevorgian et al. 

[184] conclude that the US Western Interconnection should require wind generation to provide 

primary frequency response (PFR) services usually provided by synchronous generators even 

with current wind penetration levels.  The current instantaneous level of wind penetration in 

WECC is approximately 15% during periods of light load [185] and FERC requirements provide 

a frequency response exception for wind power unless the system integration study identifies a 

specific requirement [186].  Ledesma et al. [187] model the optimal curtailment of non-

synchronous wind generation on the island of Tenerife and find that, to reduce curtailment, the 

system must either be strengthened with additional synchronous generation or by allowing the 

voltages to fluctuate more than currently accepted in the system, even with the current generation 

mix.  Neither system is near the 50% non-synchronous penetration level. 

The range of allowable non-synchronous generation in the grid required to maintain operational 

stability and frequency regulation reported in the literature varies from as low as 25% to as high 

as 75%, as summarized in Table 4.1.  The variation in values depend mostly on the assumed 

acceptable variation in frequency and voltage that the system operator can accept, with higher 

permissible variation in frequency and voltage allowing for more non-synchronous generation in 

the generation mix.  Some grid operators have hard limits for allowable non-synchronous 

generation but in many systems this is an emerging problem as the penetration of wind power in 

most large systems is relatively small.  As shown in Table 4.1, for most modern grids, a 50% 

limit is typical without significant investments in infrastructure to provide frequency regulation. 
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Table 4.1:  Summary of Allowable Levels of Non-synchronous Generation in the 
Literature 

Study Author(s) System Studied Low Typical Max Ref. 
Wang et al. European Interconnect 25% 40-50% 60% [171] 

Nahid-Al-Masood et al. SE Australia  5-29% 45% [7] 
Yan et al. Australia   59% [8] 

O’Sullivan et al. Ireland  40%  [175] 
EIRGrid Ireland  50-60% 60-80% [177] 

Gevorgian et al. WECC North America  15%  [184] 
 

4.2.3 OPTIONS FOR MITIGATING SYSTEM CHALLENGES 

A number of options are discussed in the literature for mitigating the impact of high levels of 

non-synchronous generation in the system.  Miller et al. [91] study the use of wind curtailment to 

maintain grid frequency and find that wind in the eastern US interconnect could provide 

frequency regulation if governor control of the generators was implemented.  Olson et al. [92] 

perform a similar study for California and find that curtailment should be the ‘default’ solution 

against which other solutions can be compared.  Neither study considers the cost of curtailment 

nor do they consider the environmental impact of curtailing renewable generation. 

Storage is discussed in the literature as a method for mitigating the impact of high penetrations of 

renewable energy in the grid, but few of these studies include synchronous generation 

requirements as part of their evaluation.   Barnhart et al. [94] evaluate the energy return on 

energy invested for systems with variable renewables and energy storage and find that storage 

systems can increase the energy return if batteries are able to provide over 10,000 charge 

discharge cycles.  O’Dwyer and Flynn [95] explore the system costs associated with ramping and 

conventional plant cycling and find that storage can benefit the system but that energy only 

markets often make storage uneconomical.  Root et al. [96] evaluate how storage can reduce 

curtailment in the electricity grid and increase payback of variable renewable costs.  Bitaraf and 
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Rahman [97] evaluate the ability to use demand response and storage to reduce wind curtailment 

and find that the combination of demand response and storage allows for reduced curtailment.  

Denholm [78] also evaluates energy storage to reduce curtailment and finds that storage can 

increase grid flexibility and reduce curtailment while Denholm and Hand [68] find that energy 

storage in the Texas, US system can increase variable renewable penetration above 50% with 

curtailment less than 10% when storage is included.  All of these studies consider storage in the 

context of reducing variable renewable curtailment but none include synchronous generation 

constraints as part of their evaluation. 

Overall, the literature on reducing curtailment rarely considers the synchronous generation 

requirements for frequency regulation.  Only two systems level studies have been found that 

consider the impacts of synchronous generation constraints on overall system operation.  

Vithayasrichareon et al. [93] consider the impact of ramping constraints and minimum 

synchronous generation constraints on operational costs of the system.  They find that ramping 

constraints have a minimal impact on overall operational costs but that minimum synchronous 

generation constraints have a large impact of up to 20% when renewable penetration reaches 

85%.  Their study uses 30 minute time steps and does include the cost of curtailment, nor do they 

consider storage and how that would impact system operation. 

McKenna et al. [98] considers both synchronous generation and storage in the same system.  

They study the impact of storage on the CO2 emissions of the Ireland electrical grid with high 

penetrations of wind power under synchronous generation constraints.  They assume ‘typical’ 

storage operation in three ways:  operation of storage for peak demand shifting, operation of 

storage for peak wind shifting, and operation of storage following the existing operation of 
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pumped hydro storage in the Ireland system.  They compare this to a ‘base case’ with purely 

random operation of the storage system.  They do not optimize the operation of storage but 

simulated how the storage would operate under these assumptions.  They find, with low wind 

penetration in the system, that storage could actually increase CO2 emissions but with high 

penetrations of wind that emissions decrease.  They evaluate the system operation on a 30 minute 

time step. 

To evaluate the value of storage we implement a 50% synchronous generation constraint as well 

as implementing a cost for curtailment of wind energy and evaluate the optimal operation of a 

system.  Following the recommendation of Deane et al. [188] and Hidalgo Gonzáles et al. [189], 

who both note that sub-hourly resolution is necessary to capture the full impact of variable 

renewable generation, and therefore storage, we model down to 10 minute resolution. 

4.3 Methods 

We model an electricity system where most of the demand is met by natural gas and fossil fired 

generators based on the electricity system in Alberta, Canada projected to 2030.  High 

penetrations of wind energy are forecast to be built and this is included in our model along with 

small amounts of other renewables, namely hydro, geothermal and biomass.  A significant 

portion of the load is met by natural gas co-generation that must run to meet industrial heating 

loads.  Similar to the projected future energy systems of many US states and countries such as 

China, the system is fossil-dominated with high energy penetrations of wind energy of around 

50%.  Unlike other systems, however, the Alberta system includes large scale cogeneration 

which, due to thermal demands of industry reduces the flexibility. 
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The following sections describe the system representation, numerical methods, data sources and 

implementation details and, finally, the scenarios considered in the analysis. 

4.3.1 SYSTEM REPRESENTATION 

Figure 4.1 shows the system representation with existing dispatchable generation grouped 

together and VR generation grouped separately.  The VR generation could be any technology but 

the most common are wind and solar and, for this study, we consider a system with only wind 

power in the mix.  Technologies to manage system variability are shown in a third group and 

include storage and dispatchable loads, though for this study we consider only storage.  

Conventional generation capacity and demand are fixed while the capacity of VR generation and 

storage are varied independently.  For each case, optimal system operation is determined using 

cost minimization over a period of one week assuming perfect foresight and 10 minute temporal 

resolution. 

 
Figure 4.1: Generation options in the system.  Wind is the VR in the system. 

4.3.2 NUMERICAL MODEL 

Three new numerical methods are incorporated into the model.  First, the structure for valuing 

curtailment as presented in Chapter 3, second a new set of storage constraints are developed and 

third, ramping constraints are added to the model.  For details of the structure for valuing 
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curtailment please refer to our previous work [174].  This section describes the storage and the 

ramping constraints developed for this work. 

4.3.2.1 STORAGE MODELLING 
OSeMOSYS comes with a set of equations for the modelling of storage for long term energy 

planning [12].  These equations create a simplified version of a daily load profile within a series 

of long term time slices to model cyclic daily nature of storage usage.  As we are modelling short 

term storage with consecutive short term time slices these equations are computationally 

inefficient and were replaced for this work with a simpler storage system model. 

We start by tracking the starting storage level for each time slice based on the charging and 

discharging rates for each time slice as shown in Equation 24. 

∀𝑜𝑜: 𝑆𝑆(𝑡𝑡) = 𝑆𝑆(𝑡𝑡 − 1) + [𝑀𝑀𝑖𝑖𝑛𝑛(𝑡𝑡 − 1) − 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡 − 1)]∆𝑡𝑡 (24) 

where S is the starting level of storage for a given time slice, t, and Rin and Rout are the rate at 

which the storage system is being charged or discharged, respectively, and Δt is the size of the 

time slice. 

To reduce the impact of end effects on the model, and to prevent the model from dumping stored 

energy at the end of the model period, we constraint the storage system to refill back to the 

starting level at the end of the model period as in Equation 25.  This is done by requiring that the 

total amount of energy stored over the full model period must match the amount of energy 

removed from storage. 

∑ 𝑀𝑀𝑖𝑖𝑛𝑛(𝑡𝑡) 𝑜𝑜 − ∑ 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) 𝑜𝑜 = 0 (25) 
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Equation 26 constrains the storage level, S, at the start of each time slice to be above the 

minimum storage charge percentage, Smin, and below the overall installed storage capacity, IC, 

respectively. 

∀𝑜𝑜: 𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑆𝑆(𝑡𝑡) (26) 

∀𝑜𝑜: 𝑆𝑆(𝑡𝑡) ≤ 𝐼𝐼𝐵𝐵 (27) 

We need to also include a restriction on the maximum installed capacity, MaxIC, to ensure the 

installed capacity does not exceed the exogenously determined maximum capacity, as 

implemented in Equation 28. 

∀𝑜𝑜: 𝐼𝐼𝐵𝐵 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥𝐼𝐼𝐵𝐵 (28) 

And finally, we need to restrict the maximum rate at which we can charge and discharge the 

storage system, as in Equations 29 and 30, where MaxRin and MaxRout are the exogenously 

determined maximum charging and discharging rates, respectively. 

∀𝑜𝑜:𝑀𝑀𝑖𝑖𝑛𝑛(𝑡𝑡) ≤ 𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑖𝑖𝑛𝑛 (29) 

∀𝑜𝑜:𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) ≤ 𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 (30) 

4.3.2.2 RAMPING CONSTRAINTS 
We implement ramping constraints by restricting the change in generator output, R, between 

time steps for specified technologies, as shown in Equations 31 and 32. 

∀𝑜𝑜:𝑀𝑀(𝑡𝑡) − 𝑀𝑀(𝑡𝑡 + 1) ≥ 𝑀𝑀𝑎𝑎𝑅𝑅𝑅𝑅𝐷𝐷𝑜𝑜𝐷𝐷𝑛𝑛 × 𝐼𝐼𝐵𝐵 (31) 

∀𝑜𝑜:𝑀𝑀(𝑡𝑡) − 𝑀𝑀(𝑡𝑡 + 1) < 𝑀𝑀𝑎𝑎𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈 × 𝐼𝐼𝐵𝐵 (32) 

where RampDown and RampUp are the maximum percentage change in output for a given 

generator per time slice with installed capacity IC. 
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4.3.2.3 SYNCHRONOUS GENERATION CONSTRAINT 
Synchronous generation is constrained to 50% of the operating capacity to ensure system 

stability.  This is implemented by first calculating the total generation operating in the system 

and then requiring that 50% comes from generators that are tagged as providing synchronous 

generation, as shown in Equation 33. 

∀𝑜𝑜:∑ 𝑀𝑀(𝑡𝑡) 𝑔𝑔,𝑆𝑆𝐺𝐺=1 ≥ 𝑆𝑆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 ∑ 𝑀𝑀(𝑡𝑡) 𝑔𝑔  (33) 

where g is the index of generators, SG is the tag indicating if the generator provides synchronous 

generation, and SGreq is the required level of synchronous generation.  This constraint is active 

for every time slice, ensuring that for every period there is sufficient synchronous generation 

operating in the system. 

4.3.3 MODEL IMPLEMENTATION AND DATA 

The simplified storage equations, the ramping constraints described above, and the synchronous 

generation constraint, along with the curtailment cost framework from Chapter 3, are 

implemented into the Open Source Energy Modelling System (OSeMOSYS) [11,12].  Using this 

tool, we model an electricity system whose generation mix is primarily must-run natural gas co-

generation, natural gas combined cycle and natural gas simple cycle generation and wind 

generation with lesser amounts of other renewable generation, namely hydro, geothermal and 

biomass. 

The base model for this study is from a long term optimization of the Alberta, Canada electricity 

system by Lyseng et al. [117] that was updated with policy announcements by the Alberta 

government in 2015 [135,136].  The 2015 policies included a 30% renewable energy target by 

2030.  We consider the system as a single node system with no interconnections to other 
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jurisdictions.  Although there are some transmission restrictions within the Alberta system, in 

general the system is built to reduce these restrictions to a minimum [139].  The interconnections 

that Alberta has with other jurisdictions are generally small other than a 1.2 GW line to British 

Columbia [190].  Gevorgian et al. [184] note that the current wind penetration level in the 

western interconnect is already causing challenges with frequency regulation in the 

interconnected system.  We therefore assume that, as with other NERC regulations that are 

applied to each balancing authority in the western interconnect, any synchronous generation 

constraint that is applied in the future would also be applied to each balancing authority.  As 

such, we consider Alberta as a stand alone system. 

We project to the year 2030 to obtain a system with large amounts of renewable capacity.  

Generation capacities as determined by Lyseng et al. [117] to meet the average 14.3 GW load, as 

projected by the Alberta Electricity System Operator (AESO) for 2030 [138], are included as 

existing generation in the model (see Table 4.2).  Performance data for generators are taken from 

the U.S. Energy Information Agency [137].  We obtained 10 minute resolution load data from 

AESO [191].  We use this to model one week periods using the profiles from 2011 to 2016, 

scaled to the 14.3 GW average load, for a total of 312 separate model runs per scenario 

evaluated. 

Table 4.2:  Existing Capacity in the Model [117] 

Generator Acronym Installed 
Capacity 

Simple Cycle Gas Turbine SCGT 6.7 GW 
Combined Cycle Gas Turbine CCGT 4.3 GW 

Co-generation (heat and power) COGEN 5.53 GW 
Biomass BIOMASS 0.24 GW 

Hydropower HYDRO 0.9 GW 
Geothermal Power GEOTHERMAL 0.5 GW 

Wind WIND 10.6 GW 
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4.3.4 WIND RESOURCE 

We construct 10 minute wind profile data following the same method presented in our previous 

work [192].  The province of Alberta has a total land area of 662,000 km2, approximately twice 

the size of Germany.  Due to the influence of the Rocky Mountains to the south west, there are 

essentially four wind regimes in the province, one in the northern half of the province and three 

in the south where the mountains impact the geography.  To effectively model the dispersed 

wind regime we start with per wind farm 10 minute resolution wind generation data from AESO 

for the period from 2011 – 2016 [191].  We choose four newer, high capacity factor, wind farms, 

one located in each wind region of the province, as typical for that region and assume equal build 

out in each region.  Specifically, we use Soderglen, Magrath, Chin-Chute and Wintering Hills as 

the typical wind farms in each region as they have the high capacity factor expected from wind 

farms in the future with larger, high capacity wind turbines [193]. 

The four wind farms are chosen as they have geographic dispersion which has been shown to be 

beneficial in high VRE penetration scenarios [194,195].  Wintering Hills was commissioned in 

2012 so no generation data for that location is available for 2011.  In place of Wintering Hills we 

use the generation data from Ghost Pine for 2011 and scale it to adjust for the fact that Ghost 

Pine is an older wind farm and has a lower average capacity factor than Wintering Hills. 

Table 4.3 shows characteristic statistics for the Alberta 2011-2016 10 minute wind data 

compared to hourly 2001-2004 data for Nordic countries as published by Holttinen [194].  The 

higher mean and median values for Alberta are justifiable for newer, larger turbine designs being 

installed [193].  The standard deviation is also higher when compared to most of the Nordic 

countries which is likely due to the smaller geographic region of Alberta and the higher, larger 
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turbines being installed.  The mean over the standard deviation, minimum and maximum values 

seem to fall within the range expected when compared to Holttinen’s work, indicating that the 

results of our study would be applicable in other jurisdictions. 

Table 4.3:  Statistics of 10 minute wind power capacity factor.  Six years for Alberta are 
compared to the Nordic Countries as reported by Holttinen [194]. 

Statistic Mean Median Std. Dev. Std.Dev./
Mean 

Minimum Maximum 

Denmark 22.2 14.6 21.2 0.95 0 92.7 
Finland 22.3 17.5 17.6 0.79 0 91.1 
Norway 32.3 29.2 19.6 0.61 0 93.1 
Sweden 23.5 18.6 18.3 0.78 0 95 
Nordic Combined 25.1 22.4 14.5 0.58 1.2 86.5 
2011 Alberta 36.3 31.5 27.9 0.77 0 107 
2012 Alberta 36.2 23.2 27.3 0.75 0 99.9 
2013 Alberta 33.6 28.5 26.4 0.79 0 97.6 
2014 Alberta 33.4 27.5 26.6 0.80 0 97.6 
2015 Alberta 34.2 27.6 27.6 0.80 0 99.1 
2016 Alberta 36.0 31.4 27.7 0.77 0 99.7 
2011-2016 Alberta 35.0 29.8 27.3 0.78 0 107 

4.3.5 RAMPING AND SYNCHRONOUS GENERATION CONSTRAINTS 

To implement ramping constraints AESO generation data is used for the year 2016 and the 85th 

percentile ramp event for one of each type of generator (i.e. open cycle gas turbine, biomass, 

etc.) is used as an estimated ramping ability for that type of generator [196].  The 85th percentile 

is used to avoid unexpected outages and errors in the data skewing the results.  This provided the 

ramping restriction values shown in Table 4.4 for cogeneration, open cycle and combined cycle 

natural gas turbines as well as for biomass power plants.  We model the combined generation 

capacity by type of generator rather than individual generator to provide an upper bound for the 

case when all the generators of that type ramp together.  All other generators are assumed to be 

able to ramp 100% of their output within a 10 minute period. 
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Alberta does not state a specific synchronous generation constraint in their Generation Standard 

for Planning [197].  However, as discussed above, a 50% synchronous generation constraint is 

consistent with the requirements in many jurisdictions.  Table 4.4 shows the technologies that 

contribute as synchronous generation in the Alberta grid.  Other generators in the system, namely 

wind, are considered not to provide synchronous generation. 

Table 4.4:  Synchronous generators in the Alberta system and their 10 minute ramping 
capability 

Generator Ramp Up 
(%/10 min) 

Ramp Down 
(%/10 min) 

Gas Fired Co-generation 3.8 3.7 
Combined Cycle Gas Turbine 3.8 3.7 
Open Cycle Gas Turbine 83 83 
Biomass (based on Coal) 3.0 2.2 
Hydro Generation Unlimited Unlimited 
Geothermal Unlimited Unlimited 

4.3.6 SCENARIOS 

We consider nine scenarios, as shown in Table 4.5, and evaluate the impact of the synchronous 

generation constraint on the system costs, emissions and renewable penetration level.  The 

impact of storage is also evaluated for each scenario.  Costs for curtailing wind generation are 

assumed to fall within the range of US$15/MWh to US$100/MWh, as found in the literature 

[71,147,156–158].  As discussed in our previous work [174], these could be capital costs that are 

amortized over lower amounts of generation, renewable energy credits that are not achieved, or 

other operational costs associated with curtailing. 

The base installed capacity of wind is 10.6 GW which, in the base model, allowed for 30% of the 

generated energy to be produced by renewables.  We scale the installed capacity up to 15.9 GW 

and 21.2 GW and, since these are 1.5 and 2 times the installed capacity we name these scenarios 



96 

45% and 60% as the nominal amount of generation expected from renewables in these scenarios.  

For the wind profiles used, this corresponds to wind, if fully utilized, providing up to 26%, 39% 

and 52% of the total system load, respectively, with the remaining renewable energy coming 

from hydro and biomass. 

Table 4.5:  VR Capacity and Curtailment Cost Combinations Modelled 

Scenario Name Wind Capacity Curtailment Cost 
Theoretical 

Maximum Wind 
Energy Penetration 

30%, $35 10.6 GW $35/MWh 25.8% 
30%, $65 10.6 GW $65/MWh 25.8% 
30%, $100 10.6 GW $100/MWh 25.8% 
45%, $35 15.9 GW $35/MWh 38.7% 
45%, $65 15.9 GW $65/MWh 38.7% 
45%, $100 15.9 GW $100/MWh 38.7% 
60%, $35 21.2 GW $35/MWh 51.6% 
60%, $65 21.2 GW $65/MWh 51.6% 
60%, $100 21.2 GW $100/MWh 51.6% 

 

Following on Denholm and Hand’s work on flexibility and its value to the system [68], we 

model a storage system with 80% round trip efficiency to illustrate the ability of investments in 

storage to reduce curtailment.  We assume the storage system will be installed at no cost to the 

system and use the reduction in total system cost with storage available as compared to the 

baseline cost without storage to estimate the value for the system. 

4.3.6.1 INFRASTRUCTURE INVESTMENT IN STORAGE 
We model a storage system with 80% round trip efficiency.  This is implemented by assuming 

losses are evenly split between the charging and discharging systems. Each is modelled as 

having an 89% efficiency.  This is within the typical performance range of battery storage 

systems and pumped hydro storage systems, the two systems most likely to be deployed for grid 
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scale storage [159].  When discharging, the storage system can contribute to the amount of 

synchronous generation on the system. 

Komarnicki et al. [155] provide a summary of technologies for grid scale electrical storage.  

They identify two technologies that would provide storage capacity at the scale necessary to 

reduce VRE curtailment:  batteries and pumped hydro storage.  They also provide a summary of 

the power to capacity ratios of these technologies.  Even though there is some variation in the 

power to capacity ratio for these technologies, their data shows that most generators of these 

types fall within a relatively narrow band.  Based on their data we model the storage power at 0.1 

MW/MWh of storage to represent typical pumped hydro storage power to capacity ratios and at 

1 MW/MWh of storage to represent typical battery storage power ratios.  We compare these two 

cases with the situation where storage power is unconstrained for each of the scenarios in Table 

4.5.  We model storage capacity from 3 GWh to 250 GWh, corresponding to 0.2 to 17.5 hours of 

storage. 

4.4 Results 

We first present the impact of the synchronous generation constraint on the system in terms of 

cost, carbon dioxide emissions from the system and the amount of wind curtailment without 

storage.  We then evaluate the impact that storage has on the system and the operation of storage 

in the system.  We finish with a discussion of the value that storage provides and how 

constraining the storage power impacts this value. 
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4.4.1 COSTS, EMISSIONS AND CURTAILMENT 

Figure 4.2 shows the operation of the system for a week with large amounts of wind available 

and with synchronous generation constraint removed.  There is a large amount of wind 

generation, shown in green, and there is so much wind in the system that during much of the 

week wind is curtailed, as shown in red above the demand line.  Hydro, geothermal, CCGT and 

OCGT fill in the few gaps that are not powered by wind.  It can be seen that, for most of this 

week the only synchronous generation in the system is the cogeneration which would likely not 

be adequate to maintain frequency regulation in the system.  The significant amount of curtailed 

wind is an added cost to the system. 

 
Figure 4.2:  Generation with no SG restriction active (60% renewables, $65 curtailment 
cost, no storage). 
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Figure 4.3 shows the same week, but with the synchronous generation constraint applied.  Two 

major changes are visible in this figure when compared to Figure 4.2.  First, there is significant 

additional generation by CCGT throughout the entire week to meet the synchronous generation 

constraint.  This increases both the variable costs incurred and the emissions from burning fossil 

fuels.  Second, the amount of wind generation curtailed is much higher as it is not possible to 

absorb that extra energy in the system while maintaining the synchronous generation.  This 

impacts the cost effectiveness of the wind generation. 

 
Figure 4.3:  Generation with SG restriction active (60% renewables, $65 curtailment cost, 
no storage). 

Table 4.6 shows the operational costs, emissions and percent of wind generation curtailed for the 

three different wind penetrations modelled, with and without the synchronous generation 
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constraint applied for the system without storage.  The remainder of this section provides 

insights into the results provided in Table 4.6. 

Table 4.6:  Operational costs, emissions and percent of available wind generation curtailed 
for each level of wind penetration with no storage in the system 

Wind 

Curtailment 
Cost 

($/MWh) 

Synchronous 
Constraint Operational 

Cost 
($M/year) 

Cost 
%Δ CO2 

Emissions 
(MtCO2) 

Percent 
Wind 

Energy 
Curtailed 

30% $35 N/A 12,000  32.0 1.8% 
 $35 50% 12,200 1.3 32.3 6.0% 
 $65 N/A 12,000  32.0 1.8% 
 $65 50% 12,200 1.4 32.3 6.0% 
 $100 N/A 12,000  32.0 1.8% 
 $100 50% 12,200 1.4 32.3 6.0% 

45% $35 N/A 10,400  28.3 15.8% 
 $35 50% 10,800 4.8 29.3 28.7% 
 $65 N/A 10,400  28.3 15.7% 
 $65 50% 10,900 5.0 29.3 28.8% 
 $100 N/A 10,400  28.3 15.7% 
 $100 50% 11,000 5.2 29.3 28.7% 

60% $35 N/A 9,500  26.3 36.0% 
 $35 50% 10,100 7.0 27.6 55.0% 
 $65 N/A 9,600  26.3 36.0% 
 $65 50% 10,300 7.3 27.6 55.0% 
 $100 N/A 9,700  26.3 36.0% 
 $100 50% 10,400 7.5 27.6 55.0% 

 

Similar to Vithayasrichareon et al. [93], we find that a synchronous generation requirement in the 

system increases costs.  Vithayasrichareon et al. found an increase in costs of 20% with an 85% 

renewable energy penetration level while we find an increase in costs as low as 1.3% for a 30% 

renewable energy penetration and as high as 7.25% for a 60% wind energy penetration level as 

shown in Table 4.6 and summarized in Figure 4.4.  The lower cost increases found in our work 

can be explained by the proportion of must run generation in the Alberta system, which provide 

approximately 30% synchronous generation in the system at all times. 
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Figure 4.4:  System cost increases due to synchronous generation requirements. 

Vithayasrichareon et al. [93] provide absolute numbers for the amount of wind curtailed, not a 

relative percentage, which makes it hard to compare their numbers to the curtailment in a 

different system, but they found significant increases in the amount curtailed with higher 

renewable energy penetration and with higher synchronous generation requirements.  As shown 

in Table 4.6, we find that, for the 30% penetration level, curtailment goes from just under 2% to 

just over 6% of the total wind available while for the 60% wind penetration level curtailment 

goes from around 36% up to 55%. 

Vithayasrichareon et al. report renewable energy penetration level and how this is reduced by a 

synchronous generation constraint.  For a 60% theoretical renewable energy scenario they find 
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that the actual penetration with a 50% synchronous generation constraint is only 50% of the 

energy in the system provided by renewables rather than the desired 60%.  We find a similar 

result.  For our nominal 60% renewable energy penetration scenario without the synchronous 

generation constraint, 52% of the system load could be met by wind, with another 4.2% provided 

by other renewables in the mix.  However, the resulting wind energy penetration level is only 

38% when the synchronous generation constraint is active, and when combined with other 

renewables, we get only 42% of the energy provided by renewables, indicating that the 

synchronous generation constraint significantly reduces the ability of wind to meet demand. 

This both impacts the economics of wind generation and the environmental benefits provided by 

having low emissions generation in the system.  As shown in Table 4.6, with a synchronous 

generation requirement we find that emissions increase by 1% for 30% renewables, 3.5% for 

45% renewables and 5% for 60% renewables due to increased operation of the natural gas 

generators to meet the synchronous generation requirements of the system.  The results in this 

section indicate that having cost effective approaches for providing inertia in the system that are 

not fossil fuel powered will be important for meeting future emissions targets. 

4.4.2 IMPACT OF STORAGE 

When storage is enabled in the system, we find that curtailment is reduced and that the storage 

provides value to the system by reducing generation by natural gas generators.  We consider only 

the situation with the synchronous generation constraint active.  Figure 4.5 provides the decrease 

in operational cost, CO2 emissions and percent wind energy penetration for the case with 60% 

wind and a $65/MWh curtailment cost for the system with varying levels of storage.  Other 

scenarios have similar results. 
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Figure 4.5:  Reduction in operational costs, total emissions and wind energy penetration 
for 60% wind and a $65/MWh curtailment cost with various levels of storage. 

Unlike the findings of McKenna et al. [98], who found that, under some assumptions, storage 

could increase system emissions, Figure 4.5 shows a steady decrease in emissions as the storage 

capacity increases.  This is replicated in all cases evaluated and this is likely due to the 

optimization of the storage operation.  While McKenna et al. assume exogenous operation of 

storage, our model allows for endogenous optimization of the storage operation.  We show the 

results for the 60% renewable energy case with a $65/MWh curtailment cost for the remainder of 

this section to provide illustrative results. 
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Figure 4.6 shows the generation over the course of a typical week with 14 GWh of storage in the 

system with storage power unconstrained while Figure 4.7 shows the same situation but with the 

storage power constrained to 1.4 GW (0.1 MW/MWh), typical of what would be expected for an 

average pumped hydro storage system.  It can be seen that there is more generation by natural 

gas turbines in the case where the storage power is constrained indicating that storage might not 

be able to provide as much of a benefit to the system when it is power constrained.  There is also 

more curtailment in Figure 4.7 as the ability of the storage system to absorb large amounts of 

wind energy is limited by the power constraint. 

 
Figure 4.6:  Generation with SG restriction active and 14 GWh of storage but no 
restriction on storage power (60% renewables, $65 curtailment cost). 
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Figure 4.7:  Generation with SG restriction active and 14 GWh of storage and storage 
power restricted to 0.1 MW/MWh (60% renewables, $65 curtailment cost). 

Another interesting feature of Figure 4.6 and Figure 4.7 is the operation of the storage system.  

Rather than operating in either a peak shaving/trough filling mode or a wind balancing mode, as 

assumed by McKenna et al. [98], the storage system operates only occasionally due to the high 

penetration of wind energy during the week shown.  Figure 4.8 shows the same generation per 

time slice data, but for a lower wind week.  In this case, due to a lack of wind in the system, there 

is only occasional opportunity for the storage system to reduce wind curtailment, and therefore 

the storage system provides little value during this week.  We need to look for a week with an 

intermediate amount of wind to be able to get significant value from the storage system. 
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Figure 4.8:  Generation with SG restriction active and 14 GWh of storage and storage 
power restricted to 0.1 MW/MWh (60% renewables, $65 curtailment cost) for a low wind 
week. 

Figure 4.9 shows a week where storage is being dispatched.  The variation of the wind during 

this week allows the storage system to charge and discharge numerous times throughout the 

week, adding significant value.  During this week the storage system shows six to seven charge-

discharge cycles compared to appoximately one cycle in the low wind week and one to two in 

the high wind week.  Figure 4.9 is also interesting in the way storage is operated.  The first two 

cycles of the storage system seem to operate mainly as demand shifting, but the next few cycles 

operate in a more wind peak shifting way, even powering load from storage during one of the 

nighttime load nadirs.  The assumptions on storage operation by McKenna et al. [98] will 



107 

therefore significantly decrease the value they calculate for storage in both economic and 

emissions reduction terms. 

 
Figure 4.9:  Generation with SG restriction active and 14 GWh of storage and storage 
power restricted to 0.1 MW/MWh (60% renewables, $65 curtailment cost) for a more 
variable wind week. 

 

4.4.3 VALUE PROVIDED BY STORAGE 

To illustrate the value that storage provides in the system, and to investigate the impact that 

synchronous generation requirements have on this value, we calculate the reduced cost to the 

system with storage installed.  The value that storage provides is calculated as: 

𝑉𝑉 = 𝐵𝐵𝑇𝑇0 − 𝐵𝐵𝑇𝑇 (34) 
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where, 𝐵𝐵𝑇𝑇0is the cost without storage and 𝐵𝐵𝑇𝑇 is the reduced cost with a given capacity of storage. 

We then normalize Equation 34 for the size of the storage system, 𝑆𝑆𝑉𝑉, to get the value per unit of 

storage capacity, 𝑣𝑣, as: 

𝑣𝑣 = 𝐶𝐶𝑇𝑇
0−𝐶𝐶𝑇𝑇
𝑆𝑆𝑉𝑉

 (35) 

Equations 34 and 35 are used to calculate the value that a given storage size provides to the 

system for each combination of storage size and power to capacity ratio of storage. 

Figure 4.10 shows the value provided by storage for a system with 60% wind and a $65 

curtailment cost for the case where there is no synchronous generation constraint and with the 

synchronous generation constraint.  For this figure storage power is unconstrained.  If there is a 

synchronous generation requirement in the system the value storage can provide is significantly 

reduced, by nearly half at all levels of storage. 
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Figure 4.10:  Value provided by storage per unit of storage capacity for nominally 60% 
renewable energy, $65 curtailment cost with and without a 50% synchronous generation 
requirement. 

Figure 4.11 shows the value provided by storage with the synchronous generation constraint but, 

in this case, with and without a constraint on the storage power.  We constrain the storage power 

to 1 MW/MWh, typical of a battery storage system, and to 0.1 MW/MWh, typical of a pumped 

hydro facility.  There is no discernable difference between the value provided by the storage 

when unconstrained and when constrained to 1 MW/MWh – both provide nearly identical value 

to the system and show up directly on top of each other in the figure.  For pumped hydro, with 

power constrained to 0.1 MW/MWh, however, the power constraint does impact the value at low 

installed capacities, indicating that battery storage would be able to provide more valuable 

service to the grid at smaller installed capacities. 
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Figure 4.11:  Value provided by storage for 60% renewable energy, $65 curtailment cost 
with and without a power limit on storage. 

4.5 Discussion 

The requirement for frequency regulation in the grid has a major impact on the operation of 

generators and the ability of the system to absorb renewable energy.  The amount of curtailed 

wind power in the grid increases significantly when a synchronous generation constraint is 

active.  This constraint also significantly increases system costs and system CO2 emissions.  The 

specific impact will depend on the system mix and it was observed that in Alberta the cost 

increase and emissions impact was smaller than that found in other works due to the existence of 

a large amount of must run cogeneration in the system, which provides a base level of 

synchronous generation that may not exist in other jurisdictions. 
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As storage is often seen as a potential technology to reduce curtailment and increase renewable 

penetration in the grid we evaluated the impact that a synchronous generation requirement has on 

the ability of storage to reduce curtailment and provide value to the grid.  We find that, with a 

synchronous generation constraint active, the reduction in curtailment and the resulting 

renewable energy penetration is significantly lower than the amount of available wind power 

would suggest.  We also find that storage does not operate in any pre-defined way such as peak 

demand shaving or wind shifting but has a variety of operating strategies that cannot be easily 

classified as there is much variation in the optimal operation of storage.  We also find that neither 

low or high wind weeks utilize the storage system significantly, but that highly variable wind 

weeks see significant storage operation and cycling, indicating that the storage system is 

providing system value during these weeks. 

Finally, we evaluate the value that a storage system can provide to the system and find that, with 

a synchronous generation requirement, the value that storage can provide is roughly half the 

value without a synchronous generation requirement in the system.  This indicates that it might 

be beneficial to find ways that variable renewables can contribute to grid frequency regulation 

such that storage can provide more value to the system.  The impact of limited power 

input/output from a storage system was also evaluated and it was found that a typical battery 

power ratio of 1 MW/MWh had a negligible impact on the value that storage provides to the 

system but that a typical pumped hydro power ratio of 0.1 MW/MWh had an impact, but only at 

low installed capacities. 
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4.6 Limitations 

This study used an optimization model, so is not able to capture any potential market dynamics 

that would exist in the market based Alberta system which would impact the operation of the 

storage system, though we expect these impacts to be minimal as storage would likely want to 

store energy when costs are low and generate when costs are high, which would correspond to 

optimal operation as modelled.  The potential impact of the capacity market being developed for 

Alberta [198] is also not considered in our model and it is not clear how this would impact the 

operation of a storage system nor if a storage system would benefit from such a market. 

The perfect foresight of the optimization model for the wind regime over the course of a week 

also over-estimates the value that storage can provide to the system.  Wind power is not perfectly 

predictable over the course of a week, though prediction is getting better and a day ahead 

prediction of wind power is becoming more accurate.  The lack of perfect forecasts means that 

the operator of a real storage system would have to gamble on the future predictions of wind 

which may or may not occur.  It would be an interesting future modelling exercise to incorporate 

this type of decision making into an energy systems model to see the impact that this has on 

operation algorithms for storage, but this is beyond the scope of the current study. 

4.7 Conclusions 

The requirement for synchronous generation for frequency regulation, and the resulting 

restriction on the instantaneous penetration of variable renewable energy such as wind, has a 

significant impact on the system.  This impact increases costs, decreases the amount of 

renewable energy used in the system, increases curtailment, and increases emissions.  Finding 

suitable non-fossil fuel generation that can provide effective frequency regulation services to 
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allow high instantaneous variable renewable generation during grid operation will aid in meeting 

future electricity emissions goals.  This will allow storage and other technologies to add more 

value to the system. 
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5. SUMMARY, CONTRIBUTIONS AND FUTURE WORK 

Achieving internationally agreed upon emissions targets is critical to ensuring that climate 

impacts of these emissions are minimized.  This dissertation presents three studies that address 

risk of increased emissions in energy systems models, investigates the impact that curtailment 

costs have on system operation and the value of storage and finally evaluates the impact of 

synchronous generation constraints on system operation. 

In the first study, an assessment is presented of how society can hedge against the risk that these 

target will be missed, due to uncertainty in the emission levels of key generation technologies, in 

the context of the Alberta electricity system.  We find that a significant build out of wind power 

is required to hedge against the risk of missing emissions targets.  In the second study, the 

operational implications of curtailment of high penetrations of wind power in the generation mix 

and the potential contribution of storage and dispatchable loads are assessed.  It is found that 

both technologies provide value to the system.  In the third study, a high temporal resolution 

model is developed that shows that restrictions on the instantaneous penetration of wind energy 

reduces the ability of storage to provide value to the system. 

5.1 Contributions 

This work demonstrates a need for planners to take into account both the risks associated with a 

given system plan, how to hedge against it, and also the potential challenges when a system has 

high penetrations of wind power.  Specific contributions that are broadly applicable to energy 

systems modelling and planning are: 
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• Policies that encourage early adoption of wind will likely decrease risks of exceeding 

emissions targets.  While Parkinson and Djilali [47] find that both wind and run-of-river 

would increase to hedge against climate risk, the lack of hydro potential in Alberta means 

that wind is the main option for hedging risk. 

• Allowing nuclear energy in the mix has a lower overall system cost, and a lower overall 

risk of exceeding emissions, even without a risk premium applied.  The social challenges 

with nuclear, however, may make this option difficult to pursue from a policy perspective. 

• Storage and dispatchable loads have the potential to reduce curtailment in the system and 

thereby lower system costs.  The inclusion of curtailment costs increases the value that 

storage and dispatchable loads can provide by anywhere from 10 to 60%, depending on the 

amount of wind power and the cost of curtailment. 

• The value storage provides to the system is very high for small amounts of installed 

capacity but declines quickly with increased capacity.  The value that dispatchable loads 

provides varies less with installed capacity. 

• The ability of storage to reduce integration costs for VR generation is restricted when the 

instantaneous penetration of renewable energy in the system is constrained. 

• Storage for integration of VR generation does not operate in a pre-defined peak shaving, 

wind shifting way, but does a combination of both depending on the specific wind resource 

available in a given week. 

In addition to the general system level and modelling insights, a number of additional 

contributions applicable to the Alberta, Canada system are: 
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• A 5% risk premium for Alberta starts the build out of wind about 5 years earlier, and the 

build out of solar around 7 years earlier than without the risk premium.  Policies that 

encourage early build out of wind and/or solar can decrease the emissions risk for the 

Alberta system. 

• Nuclear power in Alberta would essentially eliminate the need for any fossil generation 

other than the must run co-generation and, as long as enough flexibility was available in 

the system, wind and nuclear could produce around ¾ of the energy needs of the province, 

with the balance provided by co-generation and the small amounts of hydro and other 

generators in the system. 

• Storage, at small installed capacities, can provide significant value to the Alberta system.  

As the installed capacity of the storage system increases the value decreases quickly 

indicating diminishing returns. 

• Dispatchable loads provide consistent value to the Alberta system over a range of installed 

capacities in contrast to the diminishing returns for storage. 

• In conjunction with evaluation of storage and/or dispatchable loads, investing in research 

on technologies that will allow high instantaneous penetrations of renewable energy in the 

grid will ensure that any investments in storage can be fully utilized. 

In summary, we have implemented a risk hedging framework into the OSeMOSYS energy 

systems model and used it to evaluate how to reduce the risk of exceeding emissions targets.  

The large build out of wind required to hedge risk was then considered from a system operation 

perspective and the impact of curtailment costs and synchronous generation requirements were 

evaluated.  These contributions, and continuing work on refining modelling techniques, will 
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contribute to the building ability of energy systems models to inform policies for meeting global 

climate challenges. 

5.2 Future Work 

Future work should include incorporating electricity market dynamics into the modelling 

structure to better represent the Alberta, Canada electricity system.  This may become 

increasingly important as Alberta is implementing a capacity market and it is yet unclear exactly 

how this market will interact with the existing energy market in the province.  Including the 

potential for trade with other jurisdictions could also expand the applicability of the models 

developed.  Expanding the high temporal resolution model to a mixed integer unit commitment 

and dispatch model would be a step towards incorporating such market dynamics into the 

modelling. 

Finally, as the results of the long term modelling and the high temporal modelling answer 

different questions about the same system, it would be beneficial to find a way to hard-link these 

different temporal structures.  This would allow for a single model setup and a single set of data 

to be used to probe both long term and short term characteristics of a system.  Collins et al. [199] 

note that there are two main methods of integrating short term variations into energy systems 

models:  soft linking short term and long term modelling approaches and incorporating 

constraints into long term models to attempt to represent some of the challenges.  Developing a 

framework to hard-link across different temporal scales would provide policy makers with a 

more nuanced understanding of the system. 
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APPENDIX A:  OSEMOSYS CODE FOR INCORPORATING RISK 

To incorporate risk into OSeMOSYS the following sets, parameters, variables and constraints 

were added to OSeMOSYS. 

Sets 

set RANDOMDRAWS; 
Randomdraws is a sequential set from 1 to N, the number of random draws in the model run. 

Variables 

var Risk >= 0; 
var RiskNUp{n in RANDOMDRAWS} >= 0; 
var RiskNDown{n in RANDOMDRAWS} >= 0; 

Risk is the risk measure, which is comprised of only the upside risk as defined below.  Two 

variables, RiskNUp and RiskNDown are used to allow the model to sum only the upside risk. 

Parameters 

param BaseEmissionIntensity{t in TECHNOLOGY}; 
Baseline emissions intensity for each technology.  This is the deterministic expected average 

emissions intensity for this technology with no consideration of uncertainty. 

param EmissionsIntensity{n in RANDOMDRAWS,t in TECHNOLOGY}; 
The emissions intensity for each technology for each random draw.  This is used to calculate the 

upside/downside risk. 

param OptimalCost; 
Cost of the 'optimal' system, without any risk hedging considerations. 

param RiskPremiumFactor; 
The risk premium factor for the model.  How much more we are willing to pay to hedge against 

the risk. 
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Objective 

minimize risk: Risk; 
We minimize the risk, which is calculated as the upside risk in constraint EQRiskSum. 

Constraints 

s.t. EQRiskDraws{n in RANDOMDRAWS}: sum{y in YEAR, t in 
TECHNOLOGY, l in TIMESLICE,r in REGION, m in MODE_OF_OPERATION} 
(RateOfActivity[r,l,t,m,y] * (BaseEmissionIntensity[t] - 
EmissionsIntensity[n,t])) - RiskNUp[n] + RiskNDown[n] = 0; 

For each random draw, this equation calculates the upside or downside risk for the given 

technology mix and operational decisions. 

s.t. EQRiskSum: sum{n in RANDOMDRAWS} RiskNUp[n] = (max{nn in 
RANDOMDRAWS} max(nn)) * Risk; 

This equation sums the upside risk to calculate the overall risk in the system. 

s.t. Cost: sum{r in REGION, t in TECHNOLOGY, y in YEAR} 
(((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} 
NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + 
sum{m in MODE_OF_OPERATION, l in TIMESLICE} 
RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/(
(1+DiscountRate[r,t])^(y-min{yy in YEAR} 
min(yy)+0.5))+CapitalCost[r,t,y] * 
NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} 
min(yy)))+DiscountedTechnologyEmissionsPenalty[r,t,y]-
DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} 
(CapitalCostStorage[r,s,y] * 
NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy 
in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * 
NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy 
in YEAR} min(yy)))))<= (1 + RiskPremiumFactor) * OptimalCost; 

We restrict the cost to being less than the optimal cost plus an additional risk premium factor. 
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APPENDIX B:  OSEMOSYS CODE FOR COSTING CURTAILMENT 

To incorporate curtailment costs into OSeMOSYS, the following parameters, variables and 

constraints were added/modified. 

Parameters 

param CurtailmentCostPerUnit{r in REGION, t in TECHNOLOGY, y in 
YEAR}; 

The Curtailment Cost in $/Energy Unit for each technology. 

Variables 

var CurtailmentCost{r in REGION, t in TECHNOLOGY, y in YEAR} >= 
0; 

The total yearly cost of curtailment for each generator. 

var CurtailedEnergy{r in REGION, t in TECHNOLOGY, m in 
MODE_OF_OPERATION, l in TIMESLICE, y in YEAR} >= 0; 

The amount of energy curtailed for each generator in each timeslice. 

Objective Function 

minimize cost: sum{r in REGION, t in TECHNOLOGY, y in YEAR} 
(((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} 
NewCapacity[r,t,yy]) + ResidualCapacity[r,t,y]) * 
FixedCost[r,t,y] + (sum{m in MODE_OF_OPERATION, l in TIMESLICE} 
RateOfActivity[r,l,t,m,y] * YearSplit[l,y] * 
VariableCost[r,t,m,y]) + CurtailmentCost[r,t,y]) / 
((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5)) + 
(CapitalCost[r,t,y] * NewCapacity[r,t,y]) / 
((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy))) + 
DiscountedTechnologyEmissionsPenalty[r,t,y] - 
DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} 
(CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y] / 
((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy))) - 
CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y] / 
((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy))))); 

The objective function is updated to add in the curtailment cost to variable and operating costs. 
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Constraints 

s.t. CurtailedEnergy{r in REGION, t in TECHNOLOGY, f in FUEL, l 
in TIMESLICE, m in MODE_OF_OPERATION, y in YEAR: 
OutputActivityRatio[r,t,f,m,y] <>0}: ((((sum{yy in YEAR: y-yy < 
OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy]) + 
ResidualCapacity[r,t,y]) * AvailabilityFactor[r,t,y] * 
CapacityFactor[r,t,l,y] * CapacityToActivityUnit[r,t] - 
(RateOfActivity[r,l,t,m,y])) * CurtailmentCostPerUnit [r,t,y]) = 
CurtailedEnergy[r,t,m,l,y]; 

This constraint calculates the curtailed energy per time slice. 

s.t. CurtailmentCost{r in REGION, t in TECHNOLOGY, y in YEAR: 
CurtailmentCostPerUnit[r,t,y]<>0}: sum{m in MODE_OF_OPERATION, l 
in TIMESLICE} CurtailedEnergy[r,t,m,l,y] * YearSplit[l,y] = 
CurtailmentCost[r, t, y]; 

This constraint calculates the cost of the curtailed energy. 
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APPENDIX C:  BASE COST PARAMETERS 

Cost parameters are listed for the capital, fixed, variable and fuel costs for each technology as at 

the 2010 base year for the model period.  For wind and solar there is an assumed learning curve 

so the costs decline over time.  For coal and natural gas prices are projected to increase over 

time.  The start and end of the model period cost values are provided for these technologies. 

Table C:  Base Model Cost Parameters 

Technology Capital Cost 
($Million/MW) 

Fixed Cost 
($Million/MW) 

Variable Cost 
($/MWh) 

Fuel Cost 
($/MWh) 

COAL 3084 35.91 4.25 5.87 – 10.27 
COAL + CCS 4966 76.50 9.03 5.87 – 10.27 
CCGT 972 14.6 3.11 16.64 – 45.15 
CCGT with CCS 1990 30.20 6.44 16.64 – 45.15 
SCGT 642 6.69 9.85 16.64 – 45.15 
COGEN 1203 14.60 3.11 16.64 – 45.15 
BIOMASS 3908 100.35 0 Varies 
GEOTHERMAL 4144 95.00 0 0 
HYDRO 2789 13.42 4.25 0 
NUCLEAR 5254 88.62 2.03 2.56 
WIND 2102 - 1848 37.57 0 0 
SOLAR 3679 - 1378 26.36 0 0 

 


	Supervisory Committee
	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgements
	Dedication
	1. Introduction
	1.1 Previous Work
	1.1.1 The Risk of Increased Emissions
	1.1.2 The Value of Infrastructure to Reduce Curtailment
	1.1.3 Synchronous Generation Constraints
	1.1.4 OSeMOSYS model
	1.1.5 Contribution from Colleagues

	1.2 Overview and Outline

	2. Hedging the risk of increased emissions in long term energy planning1F
	Preamble
	2.1 Introduction
	2.2 Literature review
	2.2.1 Sources of Uncertainty
	2.2.2 Environmental Performance Uncertainty
	2.2.3 Risk methods in energy system models

	2.3 Methodology
	2.4 Case Study – Methods
	2.5 Case Study – Results
	2.5.1 System without Nuclear
	2.5.2 Nuclear Available as a Generation Option
	2.5.3 Cost and Risk Comparison

	2.6 Discussion
	2.7 Future Work

	3. Valuing infrastructure investments to reduce curtailment2F
	Preamble
	3.1 Introduction
	3.2 Literature Review
	3.2.1 Integration of VR generation in Power Systems
	3.2.2 Integration Costs and Model Frameworks
	3.2.3 Model Time Scales

	3.3 Methods
	3.3.1 System Representation
	3.3.2 Numerical Model
	3.3.3 Model Implementation and Data
	3.3.4 Case Studies
	3.3.4.1 Infrastructure Investment in Storage
	3.3.4.2 Infrastructure Investment in Dispatchable Load


	3.4 Results
	3.4.1 Valuing Investments in Storage
	3.4.2 Valuing Investments in Dispatchable Load

	3.5 Discussion
	3.5.1 Limitations

	3.6 Conclusions

	4. Impact of instantaneous renewable penetration limits on grid operations and storage value
	Preamble
	4.1 Introduction
	4.2 Literature Review
	4.2.1 Synchronous Generation
	4.2.2 Allowable Non-synchronous Generation Penetration
	4.2.3 Options for Mitigating System Challenges

	4.3 Methods
	4.3.1 System Representation
	4.3.2 Numerical Model
	4.3.2.1 Storage Modelling
	4.3.2.2 Ramping Constraints
	4.3.2.3 Synchronous Generation Constraint

	4.3.3 Model Implementation and Data
	4.3.4 Wind Resource
	4.3.5 Ramping and Synchronous Generation Constraints
	4.3.6 Scenarios
	4.3.6.1 Infrastructure Investment in Storage


	4.4 Results
	4.4.1 Costs, Emissions and Curtailment
	4.4.2 Impact of Storage
	4.4.3 Value provided by Storage

	4.5 Discussion
	4.6 Limitations
	4.7 Conclusions

	5. Summary, Contributions and Future work
	5.1 Contributions
	5.2 Future Work

	References
	Appendix A:  OSeMOSYS Code for Incorporating Risk
	Sets
	Variables
	Parameters
	Objective
	Constraints

	Appendix B:  OSeMOSYS Code for Costing Curtailment
	Parameters
	Variables
	Objective Function
	Constraints

	Appendix C:  Base Cost Parameters

