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ABSTRACT

Reliable, low-cost energy storage solutions are needed to manage variability, pro-

vide reliability, and reduce grid-infrastructure costs. Redox flow batteries (RFB) are

a grid-scale storage technology that has the potential to provide a range of services.

Desirable characteristics are long cycle life, high efficiency, and high energy density.

A key challenge for aqueous redox flow battery systems is thermal sensitivity. Oper-

ating temperature impacts electrolyte viscosity, species solubility, reaction kinetics,

and efficiency. Systems that avoid the need for active thermal management while

operating over a wide temperature range are needed. A promising RFB chemistry is

iron-vanadium because of the use of low-cost iron. This is an analysis of the thermal

response of on Iron-Vanadium (Fe/V) RFB using a zero-dimensional electrothermal

model. The model accounts for the reversible entropic heat of the electrochemical

reactions, irreversible heat due to overpotentials, and the heat transfer between the

stack and environment. Performance is simulated using institutional load data for

environmental conditions typical of Canadian jurisdictions.
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Chapter 1

Introduction

This chapter will introduce the objective and the motivation of this work and the

structure of the thesis, as well as a brief review of redox flow batteries.

1.1 Background

Electricity demand is increasing as a result of the growth of the global population

and the desire to electrify and provide a substitute for fossil fuel use. It is estimated

that global electricity generation will be 54 billion MWh by 2050 [1], compared to the

21.5 MWh registered in 2010[1]. Currently, electricity demand is being met largely

by carbon-intensive fuels [2] and the emission of CO2 during combustion makes this

a major contributor to global warming. The actual electric grid consists of a near-

instantaneous transmission of the power source and generation assets to the end-user

with little or no storage. The grid often suffers fluctuations in supply and demand

which requires that the grid be extremely flexible; this need makes fossil fuel genera-

tors with fast response attractive.

The growing demand for energy and the increasing attention to environmental

problems, it requires not only the optimal use of the common resources but also

needs to replace the existing technologies with environmentally- friendly sources.

Renewable sources, except for hydropower, currently provide 6% of the electricity

production (mainly solar and wind energy.[3]) Variable energy resources (VERs) such

as solar and wind are rapidly increasing and becoming more available. For example,

photovoltaics and solar-energy implementation is wasted because of the inability to

release solar energy when needed. The result of adding storage to the grid will have
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a significant added value. Also with wind, which could have its it maximum energy

generation during the night while customer demand is at its lowest.

The diurnal and intermittent nature and low energy density of VERs causes a

lack of balance between electricity demand and availability. To meet demand and

avoid curtailment or blackouts, grid-level storage must be integrated into the current

system. The ability of grid-level storage to provide application-specific energy services

allows for immediate response to fluctuations in demand[2]. Multiple energy storage

systems (ESS) are currently being studied, such as flow batteries, pumped hydro, and

compressed air.

Energy storage can also be useful in reducing electricity costs for distributors and

consumers when electric companies employ hourly pricing policies. Additionally, the

use of energy storage helps reduce the need for upgrading power plants on the basis

of peak demand evolution, meaning that the energy storage would allow the current

system to avoid an upgrade as the ESS could potentially absorb the peak demand.

ESS can be distinguished by these two metrics:

• Power quality

• Energy management

Power quality refers to charge/discharge cycle on a short time scale (s-min) which

includes power smoothing, grid stabilization, and frequency regulation.

Energy management refers to charge/discharge cycle on a long time scale(min-h),

which it includes load leveling, power balancing, peak shaving, and time-shifting.

This can also work as a power supply. The operating time range, response time

and services, and the range of kilowatt or gigawatt-scale will decide the appropriate

ESS.

Figure 1.1 shows different storage options and what they are used for, it should

be noted that batteries can vary significantly in terms of power rating. Each option

has its advantages and disadvantages, for example, compressed air relies upon on

caves with stable geologic structures; pumped hydro has geographic requirements but

has a high capacity with a proven technology; Li-ion batteries have a high energy

density and efficiency requires a protection circuit to maintain safe operation. The

electrochemical reactions within a redox battery occur at the surface of the electrodes,

and both oxidized and reduced species remain dissolved in the electrolyte, therefore

no forces are exerted on the electrode. In the case of a lithium-ion battery, the lithium



3

Figure 1.1: Energy Storage technologies comparison based on application adaptation
from [4]

cation is inserted between planes of graphite creating stresses on the electrode as the

charge/discharge cycles occur, reducing its lifetime. [5, 6].

To maintain a secure and reliable electricity grid, the operators must attempt to

maintain a steady supply and demand for electricity in order to meet peak demand.

The electricity grid is usually set up with different types of generators:

• Base-load Generators: are able to operate predictably for twenty-four hours a

day at a high capacity factor, but if demand changes quickly they can’t react

at the same pace, This is why the grid includes intermediate generators and

peakers.

• Intermediate Generators: typically come on line when daily electricity demand

increases in the morning and then they shut down when the demand drops off

in the evening.

• Peakers: Peaking power plants operate only during times of peak demand. In

general the demand for electricity peaks around the start and end of the working

day. Peakers are the most expensive and the highest emitters of CO2

The grid use peaker generators which can be a powered up or down as needed to

meet the demand. However, it is important to mention that this way (ramping up
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and down) is not ideal since these generators are more efficient when they run at full

power. The use of peakers generators to smooth out the demand is contributing CO2

emissions.

Therefore the current electric grid will not be sustainable since the peak demands

will become greater and the generators will need to be more flexible, resulting in the

constant use of peakers. Energy storage systems can be used to either replace the

peakers or provide more flexibility to the electricity grid.

With the increased use renewable energy, and its intermittent nature results in an

imbalance in supply and demand. To avoid blackouts or curtailment it is important

to integrate energy storage at a grid level. In the case of failures in the systems it

is completely necessary to have a power system supply connected to the network. In

this way, it is possible to avoid breakdowns in systems and the resulting disruption

to critical services.

The current grid system is oversized in order to handle demand peaks. Energy

storage can save utilities and their users money by eliminating the need for expansion

and the updating of transmission lines and infrastructure. Peak shaving can be re-

ferred to as leveling out the peak use of electricity by industrial and commercial power

consumers. Peak shaving is the process of reducing the amount of energy purchased

from the utility companies during peak hours of energy demand. Peak shaving isn’t

just beneficial by saving cost but can also potentially provide a benefit from Demand

Response incentive programs, which are always looking to reduce regional energy

demand during “peak load” periods (periods of the day that there is highest power

demand). Energy storage can be used a “peak-shaver” and can provide a backup

when the grid is down. The grid can thereby stare energy produced by both the

traditional plants and renewable sources to use at times of greater demand.

1.2 Motivation

Among multiple ESS, the redox flow batteries(RFB) represent one of the most recent

technologies with highly promising options for ESS.

Figure 1.2 shows a schematic of an aqueous RFB system. Energy is stored in

liquid electrolytes that flow through a stack of electrochemical cells during charge

and discharge. An ion-selective membrane or porous separator prevents the two

electrolytes from mixing in a cell. The maximum voltage across the RFB stack

is specific to the chemical species involved in the reaction and the number of cells
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Figure 1.2: Schematic of a Redox Flow Battery

connected in series. The amount of energy that can be stored in an RFB is determined

by the potential of redox couples, the concentration of active species, and the size of

the tanks that contain the electrolytes (negative and positive). The power of an RFB

system is determined by the size (active area) of the stack. Unlike more conventional

solid-state secondary batteries, energy and power capacity are decoupled in a standard

RFB.

Research on flow batteries or redox flow batteries (RFB) has been conducted since

1974 by NASA[7], the RFB used (Fe2
+

/Fe3
+

) in the positive cell and (Cr2
+

/Cr3
+

)

in the negative cell (Fe/Cr). Today one of the most advanced systems is the all-

vanadium (V/V ) redox battery, which is being deployed by utilities for grid support.

All-vanadium systems have demonstrated a long cycle life, good efficiency, and zero-

flammability [8, 9]. RFB does not undergo physical and chemical changes during

cycling, this attribute is free of structural or mechanical stress, thus extending their

service life. This could result in a lower capital cost of the battery system since the

investment can be spread over a longer period.

Researchers at the Pacific Northwest National Lab (PNNL) have developed a

mixed chemistry, which aims to combine the advantages of the (Fe/Cr) and (V/V )

systems (Fe/V ) mixed-acid system.[10]

With the PNNL electrolyte, the species stability is increased by removing the

energy losses caused by thermal management devices. Also, the electrolytes are less

corrosive allowing a more affordable separator to be used. These changes alone may
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reduce investment costs by 20% [11]. Using Fe in place of the higher potential V

species avoids the limited upper-temperature stability problem and reduces cost as

V is approximately 10x the cost of iron. This chemistry employs a mixed electrolyte

system. If the electrolytes become unbalanced or if an osmotic solvent transfer oc-

curs it is easily countered by remixing the electrolytes.[12] This mixed chemistry has

the disadvantage of having a lower volumetric energy density compared with the all

vanadium RFB [10].

Electro-thermal models can be important tools in the optimization of RFB, this

work aims to create an electrothermal model for the new chemistry (Fe/V ), which

accounts for the reversible entropic heat of the electrochemical reactions, irreversible

heat due to overpotentials, and the heat transfer between the stack and environment.

These types of models can assist in scaling up as well as the optimization of the

battery. There is a need for simple battery models that are detailed enough to capture

the performance so that use-cases can be tested. This type of model will assist in

define the battery size, operation, and design parameters.

1.3 Objective

The purpose of this work is to develop a full understanding of why energy storage

is needed, to present the redox flow battery as most promising technology to meet

this need and how RFB can be used as peak shaving tool to reduce cost of the

total electricity. A simple thermo-electrochemical model was used, the chemistry of

interest is the iron-vanadium which accounts for the reversible entropic heat of the

electrochemical reactions, irreversible heat due to overpotentials and the heat transfer

between the stack and environment. Followed by two simple dispatch strategy which

aim to use the performance from the thermo-electrochemical model and integrate it

into a dispatch strategy to obtain a new demand profile.

• Develop a thermo-electrochemical model of the Fe/V system.

• Dynamics of the model, obtain the current profile for a grid-size battery.

• Case study; implement the dynamics of the model for one type of scenario,

UVic’s demand profile and obtain the benefits of having an RFB
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1.4 Thesis Structure

This section provides an outline of this work. Each chapter will contain a brief

introduction. The document concludes with a summary of main results and recom-

mendations for future work. The content of each chapter are as follows:

Chapter 1 Presents a general background on redox flow batteries. The motivation

and objective of this work are also defined in Chapter 1.

Chapter 2 Describes what is a redox flow battery, it’s structure, advantages and

disadvantages as well as some modelling strategies found in the literature.

Chapter 3 Presents the electrochemical model of the chemistry Fe/V , describes the

model assumptions.

Chapter 4 Presents the validation of the model.

Chapter 5 This chapter will be a case study for the RFB; it contains the system

approach to a real scenario (UVic electricity demand) .

Chapter 6 Provides a restatement of the whole work and the results of the model. It

also identifies avenues of future research and further development of the concept

and its applications.

This chapter introduced the motivation, the objective, the structure of the thesis and

a general background on energy storage in redox flow batteries. The upcoming chapter

will go into detail of the structure of redox flow batteries as well as a literature review

of the most common types of chemistries employed in the industry and in research.
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Chapter 2

Electric Energy Storage Systems:

Redox Flow Battery

This chapter will introduce what a redox flow battery is, explain three different types

of chemisitries used in RFB as well as the structure of a cell in a RFB. Later on this

chapter will discussed Energy store systems and a brief introduction to modelling

RFB will be provided.

2.1 Introduction

Redox flow batteries have been researched since the 1970s [7]. Redox flow batteries

can be categorized by phase:

1. All liquids phase

2. All solid phase

3. Hybrid redox flow battery

The most common type of RFB is the all liquid, in which the negative and positive

active species are dissolved in electrolytes. The electrochemical reactions (reduction

and oxidation) in this type of RFB usually requires a membrane, which is used as

a separator between the positive electrolyte and the negative, and it prevents cross-

contamination. Some of the all-solid RFB store energy uses electrodeposition (charge)

at both electrodes, positive and negative. The energy is released when the deposit is

dissolved (discharge). Finally a hybrid RFB is the combination of the previous two
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where electroactive material is deposited on the surface of the electrode during the

charge cycle and then dissolved back into the electrolyte solution during discharge.

The general reactions can be written as:

A + B A+ + B– (2.1)

A A+ + e– oxidized (2.2)

B + e– B– reduced (2.3)

Typically, the RFB electrolytes are solutions of water, stabilizing agent (an acid).

The electrolyte has a significant impact in the reversibility of the RFBs, the pH is

an important aspect in terms of the ion stability. Acid liberates ions and enhances

the electrolyte conductivity [13, 14, 15] which shows how the electrolyte significantly

impacts the reversibility in the redox reactions.

Multiple chemistries have been explored since the first redox flow battery invented

by NASA[7] which used Fe2
+

/Fe3
+

in the positive cell and Cr2
+

/Cr3
+

in the

negative cell, the Iron-Chromium (Fe/Cr). Today one of the most advanced systems

is the All-vanadium (V/V ) redox battery[16].

Since the reactive materials are stored separately, the RFBs are safer systems

compared with other types of batteries. The flowing electrolytes function as a cooling

system since it carries away the heat generated during operation.

2.2 Types of Redox Flow Batteries

Another way to classify Redox flow batteries is by their active species or solvent:

• All Vanadium Redox Flow Battery.

• Vanadium-bromine Redox System.

• Bromine/polysulphide Flow Battery.

• Zinc/bromine Redox Flow cells.

• Iron-chromium Redox System.

• Iron- Vanadium Redox System.

A review of the chemistry of each can be found in [17], this work will briefly discuss

the All vanadium, Iron-Chromium, and the Iron-Vanadium.
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2.2.1 Iron-Chromium

The development of energy-storage in an electrochemical dorm started in the 1970s

at NASA, when it was demonstrated a 1kW/13kWh system for a photovoltaic ar-

ray application [7]. This system is an aqueous solution of ferric/ferrous (Fe2
+
/Fe3

+
)

redox couple in the positive electrode; at the negative electrode there is a mixture

of chromic and chromous ions (Cr2
+
/Cr3

+
). The system is in a hydrochloric acid

electrolyte. The cell voltage is 1.18 V . This system is an affordable stationary elec-

trochemical energy store, it has simple electrode reactions and high exchange current

density. The redox reaction are:

Fe3+ + e–
Discharging

Charging
Fe2+ E◦ = 0.77V (2.4)

Cr2+
Discharging

Charging
Cr3+ + e– E◦ = 0.41V (2.5)

Fe3+ + Cr2+
Discharging

Charging
Fe2+ + Cr3+ E◦ = 1.18V (2.6)

The system can operate with low-cost carbon felt electrodes. Both of the reactions

require only a single electron and this simplifies the charge transfer. The iron side

of the cell shows good reversibility and fast kinetics, the Cr side of the cell has

slower kinetics so this side of the cell requires a catalyst [18]. Higher voltage redox

couples can result in H2 evolution in which hydrogen ions are more easily reduced

than Cr3
+

ions. Hydrogen evolution not only reduces the coulombic efficiency but

also causes the state of charge (SOC) of positive and negative electrolytes to become

imbalanced over prolonged cycles, eventually causing capacity decay. This hydrogen

evolution represents a loss of protons from the electrolyte and it also leads to a

chemical imbalance with each charge-discharge cycle. [19]. Other advantages of the

(Fe/Cr) system is the low cost of each active species and the ability to operate at

temperatures of 60-65◦C [19, 18].

2.2.2 All vanadium

The All-vanadium (VRB) was first proposed in the 1980s by Skyllas-Kazacos [20] to

address the loss in efficiency which results in cross-over contamination from the other

species. The cross over contamination affects the efficiency and the degradation in the

overall performance system, which could result in an expensive electrolyte separation

reactant recovery. The VRB can solve this by using more than two oxidation states of
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the same element where crossover only represents an efficiency loss because no species

are irreversibly consumed or removed from their reactive electrolytic solution.

Although it seems to have advantages over other flow battery systems, such a low

energy density makes it less attractive when compared to rivals, like a lithium-ion

battery, this is also the main barrier to commercialization. The redox reaction are:

VO +
2 + 2 H+ + e–

Discharging

Charging
VO2+ + 2 H2O E◦ = 1.0V (2.7)

V2+
Discharging

Charging
V3+ + e– E◦ = 0.26V (2.8)

V2+ + VO2+
Discharging

Charging
V3+ + VO 3+

2 E◦ = 1.26V (2.9)

Energy efficiencies are high (85%) [21, 22]. While energy density is not necessarily

a primary concern for RFB and grid applications, nonetheless, the VRB energy den-

sity is limited by the solubility of vanadium. All-vanadium systems require thermal

management since the ion solubility and stability has a limited temperature range [23]

(5 to 50◦C). Alternatively, the use of acid stabilizers can increase the temperature

range but may require more expensive components. Furthermore VRBs require more

costly membranes for ion transport. An advantage of the all-vanadium chemistry its

the long cycle-life. This is partially due to the use of vanadium in both positive and

negative electrolytes, decreasing the cross-contamination that may occur.

2.2.3 Iron-Vanadium

A mixed chemistry which aims to combine the advantages of the Fe/Cr and V/V

systems Fe/V mixed-acid system has been described by researchers at PNNL [10,

24]. Since the Fe2
+
/Fe3

+
has a lower potential, this reduces the corrosive strength

compared to the all vanadium battery.

One of the biggest challenges for this particular chemistries is the energy density as

it is lower than both of the previously mentioned. However, this can be compensated

by increasing the reactant concentration in both sides of the cell, which will translate

into achieving a higher specific capacity and a higher energy density.
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The cell reaction of the redox flow battery:

Fe3+ + e–
Discharging

Charging
Fe2+ E◦ = 0.77V (2.10)

V2+
Discharging

Charging
V3+ + e– E◦ = 0.26V (2.11)

Fe3+ + V2+
Discharging

Charging
Fe2+ + V3+ E◦ = 1.02V (2.12)

In addition, the electrolytes are less corrosive allowing a more affordable separator to

be used. These changes alone may reduce investment costs by 20% [11]. Using Fe in

place of the higher potential V species avoids the limited upper temperature stability

problem and reduces cost as V is approximately 10x the cost or iron. One paper

[10] employs a chemistry with a mixed electrolyte system. If the electrolytes become

unbalanced or if osmotic solvent transfer occurs it is easily countered by remixing

the electrolytes. [12] more information can be found in the appendix A This mixed

chemistry has the disadvantage of having a lower volumetric energy density compared

with the all vanadium RFB [10]. However this works will based in a mixed- acid

electrolyte not mixed electrolyte. In which a mixed-acid electrolyte employs sulfuric

and hydrochloric acid to increase the concentration of the active species to increase

the energy density.

2.3 General Structure RFB

All the Redox Flow batteries have generally the same structure. Figure 2.1 illustrates

the components of a redox flow battery.

One of the particular qualities of an RFB is that the redox-active substances are

always in flowing media (fluids, gases, suspensions, etc). This allows for the separation

of the scaling of energy and power. RFB and fuel cells share this characteristic,

although fuel cells utilize reactions that often are not electrochemically reversible.

Thus both systems share a similar structure of the electrochemical cell and cell stacks.

They vary when looked at in detail depending upon the redox couple utilized. In

Figure 2.1 it can be seen that the cell is divided by a membrane into two half cells.

The solutions are pumped through the cell, and the relevant solutions are pumped

in circulation, using the battery convention where the positive electrode is always

referred to as the cathode and the negative electrode as the anode.

Figure 2.1 represents the structure of a redox flow battery cell. The endplates
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Figure 2.1: Exploded cell of common Redox flow battery

ensure the mechanical stability of the structure. The bipolar plate provides electrical

isolation between both parts of the cell. The graphite felt act as the electrodes to

ensure a large surface area. The flow frames ensure the distribution of the electrolyte

through the felt and membrane. The membrane serves as physical separator and as

an ion-exchange medium. Each part will be discussed later in this chapter.

To be a complete system these elements need to be taken into account: pumps,

fluid technology, heat management (if needed), sensor, battery management, etc. It

should be noted that the design of cells and cell stacks varies considerably depending

on the chemistry used. Some of the parameters that have to be considered are:

• Energy Density: Is the capacity of the battery divided by the weight of the

battery resulting in Wh/kg, gravimetric energy density.

• Energy Efficiency: Is the ratio of the energy extracted and introduced and can

be differentiated according to the system boundary, for example, into half-cell,
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cell, and battery efficiency. Often the energy efficiency of cells is given without

any consideration of the peripherals.

• Voltage Efficiency: Is the ratio of the average discharge voltage to the average

charge voltage.

• Current Efficiency: Is the ratio of the number of charges that enter the battery

during charging compared to the number that can be extracted from the battery

during discharging over a full cycle.

Energy density and power density, are two parameters that can be described as

the amount of energy or power stored in a given system or region of space per unit

volume. The difference between these two parameters is that energy is the amount of

power consumed over time, and power is how much power can be quickly delivered

to the system.

2.3.1 Mechanisms and losses

The polarization curve represents the behavior of an electrochemical reaction. It dis-

plays the output voltage of the cell at a given current density or state of charge (SOC).

In a typical polarization curve there are three main regions in which it dominates a

different kind of mechanism (although all the mechanisms are present at all time).

Figure 2.2 shows the three main voltage losses:

• Activation loss: In the polarization curve dominates at low current density, and

is the potential difference above the equilibrium potential required to overcome

the activation energy of the cell reaction to produce a specified current. This

loss is modeled by Butler-Volmer [17, 25] in chapter 3 the model is explained in

detailed by equations (3.25- 3.29).

• Ohmic loss occurs at moderate current densities and represents the voltage drop

due to the transfer of electrons in the electric circuit and the movement of ions

through the electrolyte and membrane. These phenomena are determined on

one hand by the electronic conductivity of the electrodes and the current collec-

tors (usually copper and aluminum) and on the other by the ionic conductivity

of the electrolyte and membrane which shows that the losses are primarily a

lineal region, the ohmic loss uses Ohm’s law, it has to be noted that the other

losses are still present however the dominant loss is ohmic.
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• Mass transport loss: at high current densities the cell potentials decrease due

to more pronounced concentration polarization resulting in voltage loss. It also

shows the limiting current, meaning the highest current which can be with-

drawn from the system. Further explanation of the three main mechanisms are

explained in chapter 3.

Figure 2.2: Typical Polarization curve

The main parts of the RFB contribute to the losses mentioned, understanding all

the parts of the RFB can help design a battery to minimize the losses.

2.3.2 Membrane

An ion exchange membrane divides the two electrolytes within the cell, it works also as

a physical barrier to avoid the mix of the electrolytes, this prevents a self-discharge

while still allowing the flow of ion to complete the circuit, which provides proton

conduction to maintain the electrical balance.

Nafion is the material most commonly used for proton exchange in RFB because

of its high proton conductivity and good chemical stability in acid environments.

Nafion sulfonated tetrafluoroethylene (Teflon) based fluoropolymer-copolymer was
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discovered in the late 1960s by Walther Grot. It has unique ionic properties due to

perfluorovinyl ether groups terminated with sulfonate groups onto a tetrafluoroethy-

lene (PTFE) backbone. In recent years it has received attention as a proton conductor

for RFB and fuel cells. Multiple works have tested and characterize this membrane

[26, 27, 28]. However, it cannot prevent ion-crossover and this results in a decrease

in coulombic efficiency, voltage efficiency, and energy efficiency.

Much research has attempted to reduce the permeation of the crossover ions and

a handful of proposed methods have obtained satisfactory results.[29, 30, 31, 32]. The

membrane contributes to the ohmic loss. Multiple studies have determined a model

to predict the conductivity of the membrane at different temperatures and different

degrees of saturation (of water).

2.3.3 Electrolyte

The electrolyte consist of mainly soluble salts. In an acid or base medium (liquid,

gelled or dry forms), the electrolyte serves as a conductor for the ions from one

electrode to the other. The electrolyte can be liquid or solid, and it works also as

a catalyst making the battery more conductive. The electrolyte plays a huge roll in

terms of designing the cell since one of the advantages of RFB is that the energy

and power are separate parameters which can be modified to design the whole cell.

The energy is contained in the tanks and the concentration of the soluble salt will

determine the energy density of the cell.

However the electrolyte contributes largely to the ohmic loss. There have been

multiple attempts to predict the conductivity of an electrolyte, and despite multiple

theories being formulated the conductivity depends on multiple factors that it makes

it difficult to use models only to recreate the conductivity of the electrolyte. What has

been done is to use data from previous work or measured conductivity. [25, 33, 34, 35].

Chapter 4 will discuss how to adequate the conductivity of the electrolyte and a

detailed explanation of why the current theories are not an accurate prediction of the

conductivity, more information can be found in appendix B

2.3.4 Electrode

The electrodes in RFBs are responsible for providing active sites for redox reactions

and facilitating the distribution of chemical species. Electrochemical reduction and

oxidation of redox couples occur at the negative electrode and the positive electrode,
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during charge, with the reverse processes occurring during discharge [36] Therefore,

the performance of the RFB is dependent on the properties of the electrodes, in

particular, their microstructure. The carbon presents some electric properties such

as electrical conductivity and dielectric constant.

Although these materials are inert and durable, they also have some drawbacks

including low surface area, poor wettability, and high-pressure drop [36, 37, 38]. To

enhance the electrochemical activity and wettability of carbon-based materials in

RFBs, there have been multiple attempts to change the surface of the carbon felts.

Different methods such as coating with metals such as iridium,[39] doped with nitro-

gen [40] or applied nanomaterials such as graphene-nanowalls[41] or graphite carbon

nanotubes have been tried.[42]

The main components of the RFB have been described, now it’s possible to recre-

ate a schematic of a cell and refer to the parameters that need to be monitored when

designing RFB. The following figure 2.3 illustrates the cell and all its parts.

Figure 2.3: Exploded cell with all the common parts of a flow cell battery
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2.4 Energy Storage Systems

When comparing an electric storage system with the conventional systems, such as

petroleum or natural gas, the electricity in the conventional systems must be used

when the energy is generated, but with an electric storage system it is possible to use

the energy when it is needed. This is the reason stored energy can be more flexible

and will have a wide range of applications due to this flexibility. For the supply power

application it can be seen as an advantages when encountering problems in energy

delivery on the part of the principal source. A good example would be a hospital,

where a constant power supply is a necessity. Here the electrical storage system plays

an crucial role.

In this case the electric storage system must have the requirements for partial

load. Another advantage could be in the daily consumption of energy in the home.

The electricity market purchases of cheaper electricity when domestic consumption is

lower and the generation is greater and is resold when the demand is higher. In this

way the company increases its profits. This happens because the market is always

regulated by the supply and demand paradigm, where when the demand is lower and

the supply is higher, the prices are lower and when the demand is higher than the

supply the prices rise.

Similarly, for the consumer it is possible to take advantage of the variation of the

price and consume ”cheap” electricity during the night and use the energy storage

during the day. For the infrastructure/transmission and distribution of energy, energy

storage could be used to avoid oversizing the grid in order to satisfy the peak demands.

2.4.1 Modeling Redox flow batteries

Electro-thermal models can be important tools in the optimization of RFB. These

models can be divided into two main groups: equivalent circuit models and numerical

models.

The equivalent circuit models simulate the cell with resistors and capacitors able

to capture the dynamics of the RFB while maintaining the simplicity and do not

require significant computations. These type of models are often used in control-

oriented systems. However, these type of models do not reflect internal processes

within the cell, therefore they require much measured data to correlate the system

with the model. The numerical models are more flexible since they are based on the

physical process so they are able to adapt to any type of system, needing only to
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change the coefficients related to the physical properties of the component.[43]

Figure 2.4: Schematic of a single cell RFB represented at different spatial dimensions
(a) 3D model, (b) 2D model and (c) 0D model. Adaptation from [44]

For iron-vanadium chemistry there is an electrochemical model [45] which as-

sumes an iso-thermal condition through the cell assuming a constant temperature

throughout the whole cell, while in reality, the cell interacts with the environment

and self-heating due to the redox reactions. Multiple models have been developed

for the all-vanadium RFB [46, 47, 48, 49], You[50] as well as Stephenson [45] found

a strong correlation using a simple model which ignored the effect of migration on

the transport of ionic species. Stephenson suggests that a zero-dimensional electro-

chemical model could be appropriate for RFB modeling if the reacting species do

not a create large concentration of gradients through the thickness and width of the

electrodes.

The reduction from a 3D to a 2D model is straight forwards, since the membrane

and electrode change in the dependent variable in the z-direction are negligible. It

does not require detailed analysis, however the 0D model needs more analysis in order

to account for the porous nature of the carbon felt and the membrane. Relative error

of less than 1% was found. This suggests that the reduced model is able to reflect

enough of the physics to reproduce the charge-discharge curve. Detailed explanation
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on how to reduce from 2D to a 0D can be found in [44].

The zero-dimensional electrochemical model is illustrated in 2.4. It shows how the

0D model considers electrochemistry as a function of the current applied. The devel-

opment of an effective control system for electrolytes re-balancing requires a dynamic

model that can predict RFB behavior as a real-time operation so that the controllers

can be able to schedule and re-balance the process. However, the microscopic models

require significant computational time, and therefore, are not suitable for this pur-

pose. On the contrary, 0-D models can fulfill this requirement, having briefer time

complexity. Moreover, they require significantly less computational power which en-

ables them to be implemented thorough on low-cost control hardware

A thermo-electrochemical model was be developed. An equivalent circuit model

that describe the dynamics of the battery while the thermal model which considers

he reversible entropic heat of the electrochemical reactions, irreversible heat due to

overpotentials, and the heat transfer between the stack and environment. With the

integration of models, performance, power and temperature can be obtained for a

system, this was be coupled with a dispatch strategy that will be described in chapter

5. The University of Victoria was chosen as the study case, in which the goal is to

reduce the total electricity bill of the university, increasing the energy demand and

reducing the power demand by deploying the battery.

This chapter discussed some of the typical chemistries used in RFB as well as

the structure of a cell in all RFB with a a brief introduction in how to model RFB.

The following chapter will go into more detail and explain how RFB’s are modeled,

including the electrochemical and thermal part of the reaction.
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Chapter 3

Thermo-Electrochemical Model

Fe/V

This chapter describes a thermo-electrochemical model of an Fe-V redox flow battery.

A lumped model of the stack and reservoirs is developed to capture stack voltage as

a function of current density, state of charge, temperature and design parameters.

3.1 Electro-chemical Model

The electrochemical model follows that reported by Stephenson et al. [45]. The

following section describes the main assumptions and resulting expressions. Subse-

quent sections describe the thermal model. In defining the electrochemical model,

the following assumptions are made:

1. The state of charge (SOC) is assumed to be known at all times.

2. The fluid is assumed to be an incompressible flow.

3. The Nernst potentials relate to the electrolyte SOC.

4. The membrane, electrode and electrolyte physical properties are isotropic and

homogeneous.

5. No cross-over contamination and no side reactions occur in the system, thus

achieving 100% coloumbic efficiency.

6. Change in the electrolyte volume is negligible.
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7. The Butler-Volmer kinetics is udes to describe the system reactions

8. Averaged current density is assumed.

9. The concentration of the redox species across the electrode is negligible.

At a high flow rate the variation in concentration of each active species through

the thickness of the electrode will not affect the performance.

3.1.1 State-of-Charge (SOC)

The efficiency of the battery is determined by the relationship between current and

voltage and parasitic losses such as pumping power. Over a cycle the concentration

of active species in the power stack (the state of charge) is changing because of the

relationship between species activity and voltage, the state of charge is a key parame-

ter determining efficiency at any time. Figure 3.1 shows a schematic representing the

two electrolyte tanks and the power conversion stack. The active vanadium species

are in the left electrolyte tank and iron species are in the right tank. If the external

circuit is closed as the electrolyte is pumped through the stack, discharge will occur

until two half-cells come to equilibrium. The rate of discharge is proportional to the

current, I.

As each redox reaction proceeds, the concentration of species in the tanks is chang-

ing. Assuming a well-mixed tank, the SOC is defined by the following,

Figure 3.1: Diagram showing of the system

The varying concentrations in the stack and the tanks are coupled by current and

electrolyte flow rates. Assuming no crossover of vanadium or iron in the stack, the
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state of charge is given by the concentration of active species in each tank via,

SOC ≡ cFe3+

cFe3+ + cFe2+

≡ cV 2+

cV 3+ + cV 2+

(3.1)

The stack voltage is a function of SOC which varies in time. Therefore, to determine

instantaneous voltage, the time dependent SOC must be determined.

Each redox half cell involves the conversion of one ion, a, to another b. Assuming

no parasitic reactions, leaks, or crossover, the total concentration c◦ remains constant.

c◦ = ca + cb (3.2)

Thus, the concentration of each species can be expressed in terms of the SOC via

equation 3.1:

ca = c◦ ∗ SOC

cb = c◦ ∗ (1− SOC)
(3.3)

The state of charge in a tank varies with average concentration of active species

a, as given by a mass balance on a tank:

Ṅa,in,T = Ṅa,out,stack

dNa,T

dt
= Ṅa,in,T − Ṅa,out,T

dNa,T

dt
= ca,inQ− ca,outQ

(3.4)

Using Na = ca∀ where the subscript T refers to the tank, ∀ is the volume of a tank

and Q volumetric flow of electrolyte,

∀dca
dt

= −(ca,in − ca,out)Q (3.5)

Using the equation 3.3 to solve for SOC in the reservoir.

∀c◦dSORR

dt
= (ca,out − ca,in)Q

dSORR

dt
=

(ca,out − ca,in)

∀c◦
Q

(3.6)
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A mass balance on any active species, a, through the stack is:

Ṅa,out = Ṅa,in − Ṅa,R (3.7)

where Na,in is the molar flow rate in to the stack and Na,R is the reaction rate. From

Faraday’s law of electrolysis [51],

ṄR =
I

nF
(3.8)

F is Faraday’s constant and n is the number of electrons transfered per mole of active

species. Current is assumed to be positive when discharging. Combining equation 3.5

and equation 3.8 and writing the molar flow rates in terms of concentration gives,:

(ca,in − ca,out)Q =
I

nF
(3.9)

Equation 3.9 can be used to rewrite equation 3.6 as,

dSOCR

dt
=
−I

c◦nF∀
(3.10)

Integrating to obtain the SOC as a function of time

SOCR(t) = SOC◦
R −

∫
I

c◦nF∀
dt

SOCR(t) = SOC◦
R −

1

c◦nF∀

∫
Idt

(3.11)

Where SOC◦
R is the initial state of charge of the battery.

The average concentration of reactants in the stack at any time can be determined

by an arithmetic mean of SOC or concentration at inlet and exit. The difference in

the state of charge across the stack can be expressed as:

∆SOC ≡ SOCexit − SOCinlet = − I

Qc◦nF
(3.12)

The average state of charge in the stack is then,

SOCavg(t) = SOCinlet(t) +
∆SOC

2
. (3.13)

Assuming a well-mixed reservoir, the state of charge entering the stack is equal to
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the reservoir, SOCin(t) = SOCR(t), thus,

SOCavg(t) = SOC◦
R −

1

c◦nF∀

∫ t

o

Idt− I

2Qc◦nF
(3.14)

3.1.2 Equivalent Circuit model

From Shah [52] the cell voltage, Ecell, can be calculated using the following equation:

Ecell = Erev
cell − (IR)m − (IR)e − η (3.15)

In which Erev
cell is the reversible open-circuit cell voltage (OCV), η is the activation

overpotential (with contributions from each electrode), (IR)m is the ohmic drop across

the membrane, (IR)e is the ohmic drop associated with the electrolyte.

The OCV, Erev
cell is determined using Nernst’s equation and a correction, Eshift(T ):

Erev
cell(T ) = (E◦

p − E◦
n) +

RT

F
ln(

cavgv2+c
avg
Fe3+

cavgv3+c
avg
Fe2+

)− Eshift(T ) (3.16)

where E◦
n and E◦

p are the standard potentials for each half reaction from reactions

2.10, R is the molar gas constant, T is temperature, F is Faraday’s constant and, cavgi

is the average concentration of the active species, Eshift is an empirical correction of

the Nernst equation given by Stephenson [45],

Eshift(T ) = 0.00038T + 0.073 (3.17)

Eshift is in Volts, T is in Kelvin.

3.1.3 Voltage losses

The reduction of cell potential relative to the open-circuit potential is due to losses

arising from:

1. Electrolyte resistance

2. Membrane resistance

3. Kinetics.
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Electrolyte

For the electrolyte, uniform reactions along the entire porous electrode (carbon felt)

is assumed. The following equation describes the losses in the electrolyte:

IRi = 2iA
Lw

κ(T )
(3.18)

Where κ(T ) is the effective conductivity of the electrolyte which is dependant on the

temperature, Lw is the width of the electrode, for each half cell. A is the area of

the electrode and i is the current density. Experimental data from [45] is used for

electrolyte conductivity as a function of temperature:

κ(T ) = κeff [1 + 0.0171(T − 296)] (3.19)

κeff is the conductivity at 296 K calculated using dilute solution theory:

κeff =
F 2

RT

∑
i

z2i ×D
eff
i × cavgi (3.20)

Where the subscript i designates a species, zi is the charge number, and Deff
i is the

effective diffusion coefficient calculated using the Bruggemann correction for porosity

[53].

Deff
i = ε3/2Di (3.21)

ε is the porosity of the electrode and Di is the diffusion coefficient.

Membrane

The ohmic loss in the membrane is modeled as:

IRm = iA
Lm

σm
(3.22)

Where Lm is the membrane’s thickness and σm is the conductivity. The conductivity

of Nafion® is calculated using the empirical relationship [54, 55]:

σm = (0.5136λ− 0.0326)exp
(
1268[

1

303
− 1

T
]
)

(3.23)
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Where λ is the water content which is assumed to be saturated λ = 22molH2O
molSO3

Overpotential

The Butler-Volmer equation is used to describe the overpotential associated with the

activation barrier of the electrode reactions. The total activation polarization is:

η = ηp − ηn (3.24)

Assuming an equal charge transfer coefficient of 0.5 [52, 56]

ηn =
−2RT

F
asinh(

i

2FknεaLx
√
cV 2+cV 3+

) (3.25)

and,

ηp =
2RT

F
asinh(

i

2FkpεaLx
√
cFe2+cFe3+

) (3.26)

Where kp and kn are the reaction rate constant associated with the reactions in the

positive electrode and negative electrode, a is the specific surface area and Lx is the

thickness of the electrode. The temperature dependence of the rate constants follows

the Arrhenius law:

kn = kn,refexp(
−FE◦

n

R
[

1

Tref
− 1

T
]) (3.27)

kp = kp,refexp(
FE◦

p

R
[

1

Tref
− 1

T
]) (3.28)

3.2 Thermal model

The thermal model is based on energy and mass balance equations coupled with the

equivalent circuit which computes the shunt current. The thermal model takes into

consideration the reversible entropic heat of the main reactions and losses due to the

overpotentials. Heat is generated in the stack and transferred into the environment

by the flow of the electrolytes.
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3.2.1 Energy Balance

The temperature of the stack is determined assuming a lumped mass approximation.

The second law states:

dS

dt
= −Qout

T
+
∑

(Ṅs)in −
∑

(Ṅs)out + Σ (3.29)

Where Σ is the entropy generation. Using this result in the first law, gives the well-

known result:

W = Wrev − TΣ (3.30)

where W is the actual work and Wrev is the reversible work.

The difference between ideal and actual work is given by the deviation in cell

potential and current:

Wrev −W = (Erev
cell − Eloss)I = TΣ (3.31)

where Eloss is the voltage loss calculated in 3.18-3.28. Defining the reaction entropy

as,

∆Ṡ =
∑

(Ṅs)in (3.32)

the internal heat generation can be written:

(Erev
cell − Eloss)I = Qout + T∆Ṡ (3.33)

Relating the reaction rate to current and rewriting, the heat generated is,

Qout = Qgen = (Erev
cell − Eloss)I − T∆S × I

nF
(3.34)

(Erev
cell − Eloss) is the irreversible heat and T∆S is the reversible heat generation.

Assuming the system has an effective specific heat, Cp

ρsCp,sV
dTs
dt

= Qgen −Qext +
∑
in

ṁihi(T )−
∑
out

ṁihi(T ) (3.35)

Where Qext is heat transfer with the environment and is modeled using an overall

transfer coefficient U :

Qext = UAs(Ts − Tinf) (3.36)
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Ts is the temperature of the cell stack and As is the assumed surface area of the stack

and can be expressed as:

As = (2(2Lh)(2Lx)) + (4LtNcells) (3.37)

where Lt is the cell thickness and Ncell is the number of cells. Figure 3.2 illustrates

the dimensions of each cell.

Figure 3.2: Cell dimensions for the stack and active area used for the model.

From equation 3.34 the energy balance will be adjusted to the system and illus-

trated in figure 3.3 . Where Qgen is the heat generation and it is separated into:

Qgen = Qr +Qs (3.38)

Where Qr is the irreversible heat from the ohmic loss and the reversible reaction
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entropic heat is Qs. Other internal sources of heat, like viscous dissipation are negli-

gible for liquids and will not be considered. Cp,s is considered to be the heat capacity

Figure 3.3: Energy balance of the whole system in which reversible entropic heat of
the electrochemical reactions is considered, irreversible heat due to overpotentials and
the heat transfer between the stack and also environment with a tank to mix inlet
and outlet temperature.

of a mix of both electrolytes, ρs is the density of the mix electrolyte and Vc is cell

electrolyte volume. The left hand side of the equation will be considered to be the

cell stack properties, as the electrolyte makes up more than 80% of the system. For

the flow mass rate of the species:∑
in

ṁihi(T )−
∑
out

ṁihi(T ) = ρFeCl2Cp,FeCl2Qc,in(Tin−Tout)+ρV Cl3Cp,V Cl3Qc,out(Tin−Tout)

(3.39)

ρFeCl2 and ρV Cl3 are the density flux of each electrolyte, Cp,i is the heat capacity of

each electrolyte, and Qc is the flow rate of the electrolyte for input and ouput of the

stack. The irreversible heat is caused by ohmic loss, ionic loss, and overpotential loss.

The overpotential loss refers to the activation overpotential. The ionic loss and the

ohmic loss are caused by the resistance that impedes the electrical flow. This term

is the summation of the resistance calculated in 3.18 for the electrolyte, 3.22 for the

membrane, and 3.24 for overpotential.

IReq,d = IRm + IRe + η (3.40)
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The following expression was used to represent them [48] 1

(Erev
cell − Eloss)I = IReq,d

Qr = IReqd

(3.41)

The reversible entropic heat, which is positive during discharge and negative during

charge. It is calculated using the following expression:

Qs = ITs
∆S

nF
(3.42)

Where ∆S is the entropy change calculated

∆Sr = s◦[V 2+ ] + s◦[Fe3
+

]− s◦[V 3+ ]− s◦[Fe2+ ] (3.43)

or

∆Sr = −130 + (−280.3)− (−230)− (−107.1) = −73.2
J

molK
(3.44)

Where the values for s◦ (Standard molar entropy) of each species are taken from [57],

the heat absorbed by the cell at T = 25◦C is:

Qabs = T◦∆S = −21.8
kJ

mol
(3.45)

The negative sign indicates that it is generating heat at a rate of 21.8 kJ per mol. To

incorporate the electrochemical model previously discussed with the thermal model,

the equation 3.37 was integrated and solve for Ts which was assumed to be the same

temperature as the outlet. This temperature was then placed in the electrochemical

equations to capture the dynamics of the system 3.20,3.23-3.26. In this way the

temperature increase will affect the chemical reactions.

3.2.2 Algorithm

To solve these thermal balance this algorithm was employed: Firstly, the thermal

balance equation 3.35 was integrated and solved for the initial conditions, where the

Tout,stack =Tin,stack. Then it was assumed that Tout,stack = Ts. The following diagram

3.4 shows how the algorithm was solved until it converged into the Tout or Tstack. To

solve the model Jupyter notebook [58] was used. The codes for the electrochemical

model can be found in appendix C.1. To recreate a closed loop an average of the outlet

1Note that IReq is in Voltage
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Figure 3.4: Flow chart to demonstrate how the thermal and electrochemical model
coupled to capture the dynamics of the system.

temperature and the inlet temperature was taken resulting the new inlet temperature:

Tin(t) =
Tout(t) + Tin(t− 1)

2
(3.46)
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This chapter explained the whole model used in this work, including the electro-

chemical model and the thermal model in which was included reversible entropic heat

of the electrochemical reactions, irreversible heat due to overpotentials, and the heat

transfer between the stack and environment. The following chapter will state how

the model was in order to be used as a real application.
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Chapter 4

Validation of the model

This chapter will validate the model presented. The validation of the model is needed

to show its potential as an application for as optimization or sizing the battery. The

present work does not include testing; therefore, literature data are used to validate

model results. The electrochemical calculations are compared to data in [45], while

the thermal results use multiple papers [59, 60].

4.1 Polarization and Electrochemical Validation

Parameters used for validation - The electrothermal model was compared to the

paper which describes the electrochemical model of the Fe/V system [45] using the

parameters listed in Table 4.1 taken from model[45]:

Table 4.1: Electrode Parameters

Symbol Parameter Value

Lw Width of electrode [10] 0.02m
Lh Height of electrode[10] 0.05m
Lx Thickness of electrode[10] 0.0045m
Lm Thickness of membrane[10] 5.08× 10−5 m
ε Porosity of the electrode[10] 0.929
a Specific surface area[61] 39000m−1

Table 4.2 shows the standard half-cell potentials and the kinetic parameters for

each reaction. Because these parameters are inherent to the cell chemistry, these

values do not change for the application results.
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Table 4.2: Kinetic Parameters

Symbol Parameter Value

E◦
n Reference potential for negative electrode (298K)[10] -0.255V

E◦
p Reference potential for positive electrode (298K)[10] 0.77V

kn,ref Reference rate constant for negative electrode (298K) [62] 8.7 ∗ 10−6 m/s
kp,ref Reference rate constant for positive electrode (298K)[24] 1.6 ∗ 10−6 m/s

Finally, the electrolyte properties are shown in table 4.3, these were used to vali-

date the electrochemical model.

Table 4.3: Electrolyte Parameters

Symbol Parameter Value

i Applied charge current density[10] −500A/m2

i Applied discharge current density[10] 500A/m2

Dv2+ Diffusion coefficient V 2+(296K)[62] 2.4 ∗ 10−10m2/s
Dv3+ Diffusion coefficient V 3+(296K)[62] 2.4 ∗ 10−10m2/s
DFe2+ Diffusion coefficient Fe2+(296K)[63] 3.95 ∗ 10−10m2/s
DFe3+ Diffusion coefficient Fe3+(296K)[63] 3.32 ∗ 10−10m2/s
DHS0−4

Diffusion coefficient HSO−
4 (296K)[63] 1.4 ∗ 10−10m2/s

D+
H Diffusion coefficient H+(296K)[63] 9.31 ∗ 10−9m2/s
c◦v Initial vanadium concentration both electrodes[10] 1600 mol/m3

c◦Fe Initial iron concentration both electrodes[10] 1600 mol/m3

c◦HCl Initial HCl concentration both electrodes[10] 2300 mol/m3

SOC0 Beginning state of charge for charge 0.025
SOC0 Beginning state of charge for discharge 0.975
zV 2+ Charge number of V 2+ 2
zV 3+ Charge number of V 3+ 3
zFe2+ Charge number of Fe2+ 2
zFe3+ Charge number of Fe3+ [10] 3
Qc Volumetric flow rate 20mL/min

The parameters described in the table 4.1 can be modified as they are the same

size of the cell that was used to validate the thermal model in Stephenson’s paper [45].

The Kinetic parameters presented in table 4.2 are inherent to the chemical species

involved in the reaction. If the model plans are to be used for different chemistries

the parameters will change according to the species involved. Finally the electrolyte

parameters in table 4.3 are a combination of fixed parameters and values that can vary

for different scenarios, such as i the current density can be modified for different runs,
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as well as for the initial concentrations employed in the battery. The volumetric flow

rate is an important parameter that has not been studied in this work, nevertheless, it

is important to mention that this parameter can be modified and will directly impact

the performance of the battery.

Conductivity of the electrolyte

The conductivity of the electrolyte is a parameter that is debated in the literature.

Whether calculated or measured. The most common approach to calculate the con-

ductivity of the electrolyte is to use dilute solution theory (equation 3.20). All ion

species have the velocity of the bulk and no interaction between the species occurs.

This assumption is questioned because the ion concentration is very high and there-

fore, at the upper boundary of the theory.

Stephenson [45] mentions that the measured intrinsic conductivity of the Fe/V

compared to the results obtained by using the dilute solution theory (equation 3.22)

gives an error of ∼ 600%. The calculated conductivity is several times higher than

the measured conductivity, this finding is cited in multiple papers [25, 64]. Instead

multiple studies [35, 34, 65] suggest using linearized functions based on measured

conductivity as a function of the SOC.

For this work the conductivities were calculated using Corcuera’s relationship

between the SOC and the temperature of the electrolyte, because the concentrations

used in this work are similar [35].

Equation 4.1 shows the relationship between the SOC and the temperature of the

electrolyte stated by Corcuera and Skyllas-Kazacos [35] where T is the temperature

in Celsius and SOC is the state of charge and κ is the conductivity of the solution

in mS/cm and the coefficients can be found in table 4.4. Further information can be

found in appendix B.

κ = (A× T +B)× SOC + (C × T +D) (4.1)

4.2 Model Simulation and Validation

The first part of the model was validated by the data obtained from Stephenson’s

paper [45]. Once the conductivity of the electrolyte from Corcuera and kyllas-Kazacos

(equation 4.1) was implemented, the electrochemical model was coupled with the
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Table 4.4: Coefficient for relation of the conductivity of the electrolyte

Coefficient Positive half cell Negative half cell

A 1.8 0.7050
B 93.5030 55.0420
C 4.6713 2.6176
D 172.07 122.37

thermal model. Figure 4.1 shows the experimental data obtained from [45] and the

model explained in chapter 3. 1

Figure 4.1

Figure 4.1: Iron vanadium system at 23◦C. Open circuit voltage is calculated by
equation 3.17. Model results correlate with experimental data from paper[45]

.

Since the cell size in paper [45] used is too small, a number of cells were combined

to create a stack model. Further results are described in the next section.

1Note that the temperature employed was 23◦ C in [45] so the same temperature was used for
comparison.
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4.3 Sizing

To obtain a scalable model the thermo-electrochemical model previously discussed,

will account for a battery that could potentially be used at the University of Victoria.

A 500 kW/2MWh battery was chosen to be used. As this could reduce the cost of the

electricity. In chapter 5 the dispatch strategies used to deploy the battery to reduce

the electricity cost will be discussed. The current density used in the system was set

up to be 500A/m2 or 50mA/cm2. Since the chemical reactions in both sizes of the

electrode only exchange one electron, the calculations to obtain the tank size of the

electrolyte, as well as the cell area, are simplified.

For a stack made of m cells, the stack power P is P (t) = V (t)I(t), the energy

produced will be the area under the curve:

E =

∫ t

0

P (t)dt =

∫ t

0

V (t)I(t)dt (4.2)

where the Voltage V (t) is the stack voltage, in terms of m cells:

V (t) = mv(t) (4.3)

Where v(t) is the cell voltage and m is the number of cells in the stack, assuming a

constant discharge current density.

Es(t) = mAcelli

∫
v(t)dt (4.4)

Where Es(t) is the energy of the stack, Acell is the area of the cell and i is the current

density.

4SOCR(t) =
iAcell

c◦∀nF
t (4.5)

The maximum change in SOC is 1, hence, the the maximum discharge time with

fixed current density is:

tmax =
c◦∀nF
iAcell

(4.6)

The maximum theoretical energy derived would be when the cell voltage is the

open circuit potential. Assuming that vmax
cell = E◦

p−E◦
p
∼= 1V olt, the maximum energy

stored in the battery is given by,
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Emax
s = mAcelliv

max
cell

c◦VrnF

iAcell

= mc◦∀nFvmax
cell

(4.7)

Using equation 4.2 and equation 4.7:

Pmax
s =

Emax
s

tmax
=
mc◦∀nFvcell
c◦∀nF

= mvcelliAcell

(4.8)

Equations 4.2 to 4.8 were used to calculate the area needed for a battery that could

dispatch 500 kW and the volume of the tank to store 2MWh of energy of the elec-

trolyte used in the system. The volume of the tank and the size of the cell are

summarized in table 4.5.

Table 4.5: System Parameters and Cell Area

Parameter Value

Voltage 48 [V]
Current density 500 [A/m2]

Power 500 [kW]
Time 4 [hours]

Tank Volume 0.975 [m3]
Area needed 20.2 [m2]

Number of cells 48
Cell area 0.42[m2]

Lx 0.65 [m]
Lh 0.65 [m]

Cell thickness 20 [mm]
Overall transfer coefficient 10 [W/(m2◦C)]

Flow rate 30 [L/min]

The flow rate used in the simulation was taken from a previous work as a 30

L/min [66]. This parameter can have significant impacts on the system performance;

nevertheless, for this work, flow rate for each electrolyte is fixed. The model was run

at different ambient temperatures: 5◦C, 20◦C and 50◦C

Figure 4.2 illustrates the transient temperature increase when the cell is operated

with a current density of 500mA/cm2 for a charge and discharge cycle. From figure

4.2 it can be noted that there is a slight cooling at the beginning of the reaction over
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Figure 4.2: Temperature increase for 5◦, 20◦ and 50◦ Charging and Discharging.

a few minutes. This can be associated with the entropy as the charging reactions are

endothermic, however the battery start to self heat due to ohmic losses of the reac-

tion. At higher ambient temperatures the temperature increase is less compared to a

lower ambient temperature, this is associated with the overpotential as at higher tem-

perature the energy required to overcome the potential is reduced as we as the ohmic

losses decrease, since the conductivity is highly correlated with the temperature.

It should be noted that the discharging was done immediately after the charging.

In reality the discharging might take place a few hours later and this result in the

tank returning to the ambient temperature.
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Figure 4.3: Simulation results at 500A/m2 for 8 hours (a-b) reversible entropic heat
rate (c-d) Irreversible heat rate at 20◦ C

At 20◦C figure 4.3 a) and b) show the stack reversible entropic heat rate Qs in

load operations. It is positive since the reactions are exothermic during discharge

and negative (endothermic reaction) during charge. In both operations the Qr values

are almost constant and the very small variations shown in the figures are due to a

secondary effect. As the system has no active cooling implemented, it can be seen

that the entropic heat has the same shape as the temperature increase. However the

irreversible heat is practically linear as it is represented by the ohmic losses.
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4.4 Limitations of the model

This model only accounts for this type of chemistry, however, the model can be

modified to modeled different chemistry by modifying the properties of the electrolyte.

It has to be mention that the reaction should be similar and no secondary reactions

will be taken into account, such as hydrogen evolution. Being a 0D model, it is heavily

based on the correlations obtained from experimental data, however, this work does

not include any experimental part. As such, the correlations were obtained from

previous works such as [45, 67, 20]. The electrolyte conductivity being an important

factor in terms of losses, can not be modeled with precision and require data to

correlate the model further explanation can be found at appendix B.

The model is based on the assumptions discussed in chapter 3 The battery op-

erated from 10% to 85% of SOC per Souentie’s findings [59]. The model is set up

so that the current density is always constant. It ca be modified to keep the power

constant and change the current density. In the current model the voltage and the

power varies as the SOC is decreased or increased.

The model does not account for any degradation of any kind. This is a major

limitation but it was decided to leave the degradation model out.

This chapter validates the model and calculated the cell size, the tank and the

number of cells needed for a particular case. The next chapter will use the validated

model and the size of the system into the electrical system of the University of Victoria

using the output power to deploy the battery at different dispatch strategies.
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Chapter 5

Study Case

This chapter will use the validated model and the size of cell stack and integrate into

the electrical system of the University of Victoria using the output power to deploy

the battery at different dispatch strategies.

The University of Victoria’s electrical system consists of four transformers in where

one is used as a backup for the other three. Each transformer connects the electricity

grid of BC Hydro to specific university buildings.

The university’s electricity bill consists of four distinct fees determined by monthly

peak demand (power), energy use, a fixed charge, and a peak-season demand charge

[68]:

• Demand Charge

– $12.34 per kW per month

– Peak demand is the highest rate of electricity use over 15 minutes each

month.

• Energy Charge

– $0.0606 per kWh.

• Basic Charge

– $0.2673 per day.

– Daily amount which partially recovers fixed customer-related costs, in-

cluding customer service channels, metering, billing, payment processing,

collections, and distribution system costs that are customer-related (elec-

trical lines and transformers).
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• Minimum Charge

– Equal to 50% of the highest demand charge during the previous November

1 to March 31 period.

– A charge that covers the costs of maintaining the equipment year-round

for customers with high electricity usage in the winter but low electricity

usage in the summer.

An example of the demand profile for a sub-set of buildings at UVic during a

winter day is shown in figure 5.1. Demand ramps up and down throughout the day.

One application of energy storage could be to reduce the peak demand by charging a

battery during low demand periods and using the stored energy during times of high

demand. This strategy of load shifting increases energy use due to inefficiencies of the

storage system, but with sufficient cost savings from the reduction in peak-demand,

the cost of additional energy is offset and a net-benefit is realized.

Figure 5.1: Demand profile for a sub-set of buildings at UVic during a winter day
with and without a battery. A reduction in net peak load is obtained by charging the
battery during low-demand hours and discharging during high-demand hours.

The model described in the previous chapter will be coupled with the dispatch

strategies described in this section. The thermo-electrochemical model describes the
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dynamics of the battery. This will provide the output power of the battery behaviour

under the conditions of operation described. The dispatch model will use the power as

an input for the dispatch strategy selected and will create a new demand, profile with

and without the battery. After the new profile is obtained, the cost of the electricity

can be calculated with and without the battery.

5.1 System Model

The following section describes dispatch the logic for a battery used to reduce peak

demands. This type of use effects the UVic electricity bill through power demand

and energy consumed. The demand charge is determined by the highest sustained

peak of the month. While the energy charge is for total electricity delivered for an

entire month. The battery will increase energy demand, but it can also reduce the

peak power demand.

A simple schematic of the UVic connection to the grid and the deployment of

a battery on the campus-side of the meter is shown in figure 5.2. There are four

transformers (three used daily while the fourth is a backup) and the aggregated

campus load at any instant in time is labeled, Pld. The nomenclature for parameters

defining the dispatch algorithm is summarized in Table 5.1.

Figure 5.2: A schematic of the UVic electricity system with four transformers and a
battery deployed on the campus-side of the meter.

The battery size considered:

• 500 kW/2 MWh

To meet instantaneous electrical demand, Pld, the system will try to use power from

the battery Pbt−ld or it will take if from the grid Pg−ld,
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Table 5.1: Nomenclature used

Variable Description Unit

Pld Actual demand (data) kW
Pg−ld Power taken from the grid to the load kW
Pbt−ld Power taken from the battery to the load kW
Pg−bt Charging power to the battery kW
Pmax Maximum power drawn from the grid kW
Pbt Power flow to the battery kW

Pbt,max Maximum power flow kW

Pld(kW ) = Pbt−ld + Pg−ld (5.1)

The power from the grid is constrained to be less than or equal to a maximum,

Pmax, whereby total demand is due to the campus load and the battery combined:

Pg−ld + Pg−bt ≤ Pmax (5.2)

The battery demand is positive when charging and is determined by battery con-

trol logic (to charge, discharge, or float = 0). At the connection to the campus, the

power flow to the battery, Pbt is then,

Pbt = Pg−bt − Pbt−ld (5.3)

where only one state is possible at each instant i.e. either charging (g–bt), discharging,

(bt–ld), or idle.

Because of inefficiencies, not all power drawn for battery charging results in charge

replenishment; likewise, not all stored energy is delivered during discharge. The dy-

namics of the battery were obtained from the model described in chapter 3, with a

fixed current density the efficiencies were taken into account for charging and dis-

charging. The efficiency varies depending on what associated the conditions were.

The table 5.2 shows all the scenarios that were chosen. The scenarios showing the

”Area calculated” refers to the battery size that was calculated with the equations

4.2 - 4.8 while the scenarios that shows ”Number % more of the area calculated”

refers that the area obtained from equations 4.1 - 4.7 the area was incremented by %

indicated. The temperatures of the scenarios reflects all the possibilities of where the

battery will be placed. 20◦C is the ambient temperature if the battery was placed
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inside a facility and no further thermal management is needed, 5◦C the temperature

if the battery is placed outside of the facilities and representing the coldest ambient

temperature in Victoria BC, [69] while 50◦C in the unlikely scenario, that the battery

could be placed somewhere that the ambient temperature could reach 50◦C .

Table 5.2: Scenarios chosen

Current density Temperature Area

400A/m2 20◦C Area calculated
600A/m2 20◦C Area calculated
350A/m2 20◦C Area calculated
350A/m2 20◦C 20 % more of the area calculated
350A/m2 20◦C 40 % more of the area calculated
350A/m2 50◦C Area calculated
350A/m2 5◦C Area calculated

5.2 Data

Load data with a 15-minute resolution for April 2018-March 2019 is used for the sim-

ulations.1 Figure 5.3 shows the probability of the peak load for each month occurring

on a given day. Wednesday is the most likely day to find the peak load and a monthly

peak never occurs on a weekend.

Figure 5.4 shows the probability of the peak demand occurring at selected times

of the day. 93% of the time the peak falls between 09:00 and 13:00 and has nearly a

70% probability of occurring between 11:00-13:00.

5.3 Dispatch Strategies

There are numerous ways to determine when charging and discharging events, - and

the magnitude of associated power flow, - should occur to provide the desired effect.

Based on the data analysis above, two simple modes of battery dispatch are tested

to demonstrate system benefit: (1) scheduled dispatch, and (2) dispatch on peak

demand 2.

1The data provided by UVic is for a single transformer. The total load is determined by assuming
the other two transformers have the same demand.

2The preferred method to predict demand and schedule battery operations is still to be deter-
mined. The two test cases are for illustrative purposes.
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Figure 5.3: Probability of the peak demand in a month occurring on a given day of
the week. The peaks never occur on weekend days.

Figure 5.4: Probability of the peak demand occurring in a given time period within
a day.

5.3.1 Strategy 1: Scheduled Dispatch

Scheduled dispatch specifies the times of day the battery will discharge and recharge.

Because monthly peak demand always occurs on a weekday, the batteries are only

operated Monday-Friday.
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• For the 500 kW/2 MWh system, four hours of discharge at a different current

densities. This battery is discharged at rated current density, which will vary

the power from 9:15-13:00 where peak demand is most probable.

The battery is recharged every night at rated power to ensure the state of charge

is at 85% before 9:15 the next day. The battery was run from 10% to 85%. Two

months where chosen for studying the battery the month of July (which accounts

for the lowest demand) and the month of February since its statistically the coldest

month in Victoria BC [69]. The model was run at different temperatures where there

is temperature control available. Assuming the university has an average temperature

of 20◦C inside the building, at 5◦C which would be the coldest average temperature

for Victoria and an extreme scenario in which the temperature would reach 50◦C.

Figure 5.5: One week of the ”Scheduled dispatch” strategy for the month of March .

5.3.2 Strategy 2: Dispatch on Peak Demands

Dispatch on peak demands assumes perfect foresight in each month and discharges

the battery to smooth out a select number of peaks. Two sub-cases are tested; one

where the 20 highest peaks are targeted, and a second where the 40 highest peaks are

reduced. The battery is discharged at a rated capacity for the 15-minute duration of
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each peak (and consecutive periods if they are also a peak.) Likewise, the battery is

recharged during periods of lowest demand.

Figure 5.6 shows how the net load is impacted using a load duration curve where

the load for each 15-minute period is ordered from highest to lowest for the entire

month. The top 20 or 40 points in the demand are reduced and the energy demand

will increase in the lowest demand when the battery is being charged.

Figure 5.6: Gross demand and net demand for the month of February using dispatch
strategy 2 where the top 20 peak loads are reduced with 500kW battery at a constant
current density

5.4 Results

After running all the scenarios figure 5.7 illustrates the energy efficiencies of all them.

The highest energy efficiency was achieved at 350A/m2 at 50◦C. However, to to

provide a more realistic scenario for all the runs, the temperature chosen was 20◦

C instead of 50◦C and the current density was lowered from 500A/m2 to 350A/m2.

Stephenson used 500A/m2 [45] however they were using a small cell 2cm by 5 cm.

The monthly savings which accrue due to demand charge reduction are partially

offset by additional energy consumed by the battery. Given the impact of efficiency
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on benefit, a sensitivity analysis was performed by varying the current density and

the temperature. The monthly reduction in electricity bill was determined for each

battery size, efficiency and dispatch strategy.

Figure 5.7: Comparison of energy efficiency the 500kW and 1MW battery at different
temperatures and current densities

5.4.1 Scheduled Dispatch

For the scheduled dispatch strategy the results are presented below:

Figure 5.8 shows expected monthly bill reductions for some scenarios. In some

months the battery reduces the monthly bill. However, the scheduled dispatch can

lead to small or even negative benefits in other months. This occurs because either

the peak demand was missed or the peak demand saved by using the battery was

not sufficient compared to the increase in energy demand. For this strategy, the

500 kW/2 MWh battery running at $350 A/m2 at 50◦C was the scenario that the

battery will save the most in a month, $5,345 in February. Nevertheless, to maintain
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a temperature of 50◦C there will be a cost associated with thermal management,

which is something that this chemistry claims is not needed. Therefore, looking at

the same current density but with an ambient temperature, the savings for February

are $3,050 giving an average saving of $22,000 per year, which includes the losses in

March, November, and December.

Figure 5.8: Comparison of different current densities, different temperatures and area
need using scheduled dispatch at the 500 kW and 1 MW.

5.4.2 Dispatch on peak demands

Using the same current density ranges as before, the 500 kW/2MWh battery is dis-

patched assuming perfect foresight for monthly demand so that a desired number of

peaks can be reduced. Scenarios for top 20 and 40 monthly peak demands are here

examined.

20 Peaks

For the dispatch strategy the highest 20 peaks of the month were selected and the

results are presented below:
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Figure 5.9: Average savings of the 500kW shaving the 20 highest peaks of each month,
first plot have at different current densities, second plot different areas and third plot
at different ambient temperatures
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Figure 5.9 shows the average monthly bill reductions for the scenario system where

the top 20 monthly peaks are reduced. With 500 kW/ 2 MWh, looking at the figure

for the same scenario as the previous dispatch strategy it appears to be the best

scenario . With 350A/m2 at 20◦C in which there is no temperature control assuming

that the battery will be placed indoors, the average saving per year is around $57,200.

The battery was run at multiple scenarios as figure 5.9 shows. In the first plot

shows different current densities from 350A/m2 to 600A/m2 the second plot shows

different areas in which the area calculated for the 500 kW/4MWh was increased by

20% or by 40% and the third plot different ambient temperatures.

40 Peaks

For the dispatch strategy in which the highest 40 peaks of the month the results are

presented below:

Figure 5.10 shows the average monthly reductions for each battery system where

the top 40 monthly peaks are reduced. With 500 kW/ 2 MWh with this strategy, the

best scenario is 350A/m2 at 20◦C in which there is no temperature control assuming

that the battery will be placed indoors here the average saving per year is around

$60,800.

Similar to 20 peaks, figure 5.10 shows in the first plot different current densities

from 350A/m2 to 600A/m2, the second plot shows different areas in which the area

calculated for the 500 kW/4MWh was increased by 20% or by 40% and the third plot

different ambient temperatures of 5◦C.

5.4.3 Dispatch Summary

The savings per year for each dispatch strategy and battery capacity are summarized

in Table 5.3. Dispatch strategies using knowledge of load dynamics outperform simply

scheduled dispatch by up to three times.

Table 5.3: Saving summary table of different dispatch strategies

Dispatch Strategy Battery size Savings(per year)

Scheduled Dispatch 500kW/2MWh $ 22,000
Peak on demands (20) 500kW/2MWh $ 57,200
Peak on demands (40) 500kW/2MWh $ 60,800
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Figure 5.10: Average savings of the 500kW shaving the 40 highest peaks of each
month, first plot have at different current densities, second plot different areas and
third plot at different ambient temperatures
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Crawford [70] determined the total energy storage system cost with a robust

performance-based cost model for multiple RFB chemistries. The Fe/V system indi-

cates that costs $ 600 kW/h while the All-vanadium is $ 350 kW/h. This means that

a Fe/V battery of 2MWh result into a capital cost of around $ 1,200,000. A RFB

is estimated to have from 10,000 - 14,000 cycles [71, 72]. For the scheduled dispatch

260 cycles per year are used, this translates into 38 years of life span. If the battery

is used with the scheduled dispatch it will require 55 years to have profits and this

assumed a 2% of degradation each year. If the 20 highest peaks are shaved it would

require 20 years to recover the capital cost but the system will be in the first half of

its life span. To be a profitable investment the cost per kW/h for the Fe/V has to

be 200 $ kW/h, using the scheduled dispatch strategy, while if it implemented the 20

highest peaks the battery cost could increase to $350 kW/h. Figure 5.11 shows the

savings per year per dispatch and current density used vs the saving and on the right

axis the cost of kW/h of the battery.

Figure 5.11: Savings per year with 2% degradation for every year. The cost of kW/h
is the right axis

In figure 5.11 it is shown the two dispatch strategies at 500A/m2 at 20◦C with SD

(Schedule Dispatch) and 350A/m2 at 20◦C with SD, as well as the dispatch of the

highest 20 and 40 peaks with a current density of 350A/m2 at 20◦C. On the right

axis the cost per kW/h of the battery is shown while on the left axis is shown the
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cumulative savings per technology used, and on the x axis it is shown the years of

use of the battery. Sample of the code for both dispatch strategies can be found in

the appendix C.2 and C.3.

5.5 Limitations

The scheduled dispatch strategy was chosen because there is an 87% probability that

the peak demand will occur between 9:00 am to 1:00pm. However, while this was the

case for the years of 2018-2019, it doesn’t take into consideration any variations, such

as vacations of the university, statutory holidays or if there is a pandemic. The only

factor considered was whether it is a weekday or the weekend. This illustrates a big

limitation of this dispatch strategy as the human factor plays a big role as to when

the peak demand will occur. As a the result there is a possibility that the peak will

not occur during the established hours and the electricity bill will be greater than if

no battery was installed.

For the 20th and 40th highest peaks, the 20 highest peaks of 5 hours of continuous

dispatch were chosen and that all peak occurred simultaneously. However historical

data shows, the highest peaks of the month are not likely to be sustained for more

than 2 hours. Nevertheless this strategy assumes that a perfect prediction of the

demand is as important as understanding the performance of the battery.

5.6 Forecasting

Optimizing the preferred storage system capacity and energy requires some defined

dispatch logic. Likewise, the effective use of storage implies knowledge of the dynamics

of demand. In an ideal situation, the demand profile is known exactly in advance (i.e.

with perfect foresight) and the storage system is optimally sized and operated to

maximize benefits. With a demand pattern that has variability and uncertainty,

rarely does this perfect foresight exist. Instead, some form of forecasting is used to

predict the future at a particular time. Two methods of forecasting are considered

here: linear regression (LR) and auto-regressive integrated moving average (ARIMA).

• Linear Regression: The linear regression approach correlates changes in spec-

ified independent variables to a linear change in a dependent variable. The
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following parameters are considered to explain independent variables correlated

to changes in electricity demand:

– Time

– Day of the week

– Previous hour temperature deviation from 20 C

– Month

• ARIMA: Auto-Regression-Integrated-Moving-Average takes into account the

previous values in a time-series. Therefore, only the demand profile is needed

to fit an ARIMA model. ARIMA is a light machine learning method in which

changing parameters define the number of lagged observations, the amount of

averaging. The size of the moving average window will determine the model

predictions. 20% of the demand data was used to train the model with the

remaining 80% used to test it.

Figure 5.12 shows the LR and ARIMA model predictions compared to the actual

demand for a single day in September. For this day, the ARIMA model appears to

better predict the actual demand. This result was obtained using p=2, d=1, and

q=1 where p is the number of autoregressive terms, d is the number of nonseasonal

differences, and q is the number of lagged forecast errors in the prediction equation.

Although it is used in the literature, ARIMA is not considered the best forecasting

method for electricity demand [73].

Sample of the Lineal and ARIMA code can be found in appendixC.4

5.7 Discussion

Dispatch using a predefined schedule could save $22,000 per year with the 500kW /

2MWh battery. This benefit is reduced relative to optimal dispatch due to the demand

peak being missed, or because the additional energy for charging surpasses the savings

in demand. Assuming demand can be predicted, dispatch strategy 2 targets the 20

or 40 highest peaks and is a more effective method to reduce the monthly electricity

bill. Savings of up to $ 60,000 per year are realized with the 500kW/2MWh battery.

However, demand can not be predicted with 100% accuracy using typical methods

such as linear regression (76% accuracy).
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Figure 5.12: Comparison for forecasting using the methods OLS (linear regression)
vs ARIMA

Further methods are being explored to predict the demand of the university. The

advantages of the LR is that it takes into consideration multiple factors such as the

temperature outside, the day of the week, the month, and the hour, giving it more

flexibility to predict the demand for an isolated point, unlike the ARIMA which

requires previous data to predict the next point.

As was mentioned, institutional demand data comes from one transformer only.

It is assumed that the battery can mitigate demand on all three transformers but this

may not be possible. To accurately size, dispatch, and locate storage, data for the

other two transformers are needed. It may be that three smaller batteries located on

each transformer are the preferred configuration. Further work is needed to develop

forecasting algorithms and optimize dispatch, power capacity, and energy stored.

In this chapter previously discussed model was analysed and implemented into

the electrical system of the University of Victoria using the output power to deploy

the battery using different dispatch strategies, comparing different scenarios and ob-

taining the potential savings of each dispatch strategy. The next chapter will have a

summary of the whole work and the results of the model. It will also discuss avenues

of future research for the further development of the concept.
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Chapter 6

Conclusions

This chapter will include a summary of the whole work and suggestions for the re-

search. Summarizes the key findings of the study and provides recommendations for

both experimental and theoretical studies to be conducted in future.

6.1 Summary

Since the electricity demand is increasing due to a rising global population, there is a

need to generate more electricity. However, there is a desire to substitute our heavy

fossil fuel grid, with different types of renewable energy. These new and emerging

sources are being installed in the current electrical grids.Despite their advantages,

renewable energy has a major drawback, all renewable energy (except for nuclear)

with its intermittent nature creates an imbalance in supply and demand. Energy

Storage is a much-needed technology for our current electrical grid, and offers many

other advantages. Multiple chemistries have been explored through the years but the

All-Vanadium is the most popular among the industry and in the research.

In an attempt to overcome the limitations that the All-Vanadium RFB, (ex-

plained in chapter 2), PNNL developed the Fe/V chemistry to address some of its

limitations[10, 39]. This work presented a 0D model for the Fe/V chemistry similar to

[45], as well as the thermal factor which is known to be a limitation to multiple RFBs

[48, 66, 67] when it was coupled to simple dispatch strategies where the intention was

to obtain the economical benefit of adding an RFB to the current electrical arrange

of the University of Victoria. Also discussing the sizing of the battery and suggesting

some optimal conditions for the battery. When modeling the electrochemical part of
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the RFB, one of the major roadblocks is the conductivity of the electrolyte since the

conductivity has multiple factors which need to be considered and the dilute solution

theory does not provide them. Further discussion can be found at appendix B

6.2 Results and Findings

Sizing the battery was one of the expected results, however the optimal size was not

modeled. The size was chosen arbitrarily to provide a clear idea of the potential

savings if an RFB was installed at the university facilities.By having a fixed current

density through charging and discharging, the optimal operation range of SOC was

from 10% - 85%(as per suggested in the literature [59, 39, 10, 35]). Also when charging

the battery the efficiencies are around 71% which is slightly lower than reported in

[10, 39], nonetheless, discharging with a fixed current density varied from 78% to

60% in some cases. These are significantly different results from the literature and it’s

presumed that by including the thermal model discharging efficiencies were affected.

A bigger cell, in terms of the area used for the reaction, does not necessarily benefit

or reduce the electricity cost which is one of the objectives of installing an RFB at

the University facilities

Previous research [39, 45, 67] suggest running the system at 500A/m2. However,

the results show that the system works better at lower current at 350A/m2. The

efficiency is 71 % by implementing the simple dispatch strategy (explained in chapter

5) suggests that there could be up to $ 22,000 dollars per year saved.

With the prices from Crawford [70] $600 kW/h from 2015 and the scheduled

dispatch strategy, the 500kW/ 2MWh will not be good investment as it requires over

50 years to be profitable. However, the prices of RFB have significantly dropped since

2015. There is no current price as in $kW/h for the Fe/V chemistry. Nevertheless, the

analysis showed that to be profitable the cost of kW/h should be less than $200kW/h.

If the battery could reduce their cost to $350 kW/h and if the strategy used to reduce

the electricity is smooth the 20 highest peaks, the battery will be profitable after 15

years, with a battery life span of 38 years.

6.3 Recommendation and Future work

The battery size was not optimized as it was not part of the scope of this work, this

could be a major work that could have more significant work, as the battery can
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be either increase the power capacity or energy capacity. Looking at the university

forecast from 2018- 2019 (as 2019-2020 had different power and energy needs due to

the global pandemic). A battery with a power capacity between 500 kW to 1MW

and a energy capacity between 2MWh to 3MWh should be sufficient to capture the

highest peak of the month without increasing significantly the capital cost.

The flow rate of the cell stack has a fixed value, but it has been seen that hat

the capacity increase, but the system efficiency decreases with increase of electrolyte

flow rate at a constant current density [74]. With a flow control implemented in the

system it has been reported an increase in efficiency from 3.5%[75] to 8%[74]. The

geometry of the cell stack is another parameter that can be optimized as geometry

impact the performance of the system [76, 77]. Further work is requires as 0D models

requires data to be correlated to be considered accurate. The present work was based

on data measured by [45] and [66].

Lastly, develop better tools to predict the demand of the university need to be

carried out to increase the accuracy of the simulations. A coupled model could be

implemented in which one model predicts the demand with a model that controls the

battery to peak shave the demand of the university.
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Appendix A

Standard potentials

The following table shows the standard potentials for each Red-Ox reaction described

in this work.

Reaction Potential Reference

Cr2O
2−
7 + 14H+ + 6e− 
 2Cr3

+
+ 7H2O E◦ = 1.33V [78]

O2 + 4e− + 4H+ 
 2H2O E◦ = 1.23V [79]

[V O2]
+ + 2H+ + e− 
 [V O]2

+
+H2O E◦ = 1.0V [20]

Fe3
+

+ e− 
 Fe2
+

E◦ = 0.77V [7]
O2 + 4e− + 2H2O 
 4OH− E◦ = 0.40V [79]

[V O]2
+

+ 2H+ + e− 
 V 3+ +H2O E◦ = 0.34V [20]
2H+ + 2e− 
 2H2 E◦ = 0.0V [80]

Fe3
+

+ 3e− 
 Fe E◦ = −0.04V [7]

V 3+ + e− 
 V 2+ E◦ = −0.26V [20]

Cr3
+

+ e− 
 Cr2
+

E◦ = −0.41V [7]

Cr3
+

+ 3e− 
 Cr E◦ = −0.74V [78]

Zn2+ + 2e− 
 Zn E◦ = −0.76V [81]

Cr2
+

+ 2e− 
 Cr E◦ = −0.91V [78]

V 2+ + 2e− 
 V E◦ = −1.13V [78]

Table A.1: Standard potentials Red-Ox

A mixed electrolyte system was used by [21] in which states that if the electrolytes

become unbalanced or if the osmotic solvent transfer occurs it is easily countered

by remixing the electrolytes. Operating the cell with mixed electrolyte, however,

leads to a reduction in open circuit voltage, increased electrolyte costs, and possible

complications over a large number of charge-discharge cycles which may limit its

commercial viability and industrial applicability.
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Using Fe in place of the higher potential V species avoids the limited upper-

temperature stability problem and reduces cost as V is approximately 10x the cost

of iron. One paper [10] employs chemistry with a mixed electrolyte system, if the

electrolytes become unbalanced or if the osmotic solvent transfer occurs it is easily

countered by remixing the electrolytes [12]. In the mixed electrolyte patent in which

Vanadium is present in both electrolytes, positive and negative, the hydrogen evolu-

tion is claimed to be neglected, however as both reactants could potentially develop

hydrogen gas one possibility in the mechanism is that the hydrogen evolution has

higher potential thus the energy required to produced hydrogen is higher and having

the Fe in place with a lower potential the energy will go into Fe2
+

instead to produce

hydrogen. The V 4+ and V 5+ works as a catalyst for the Fe side.
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Appendix B

Electrolyte conductivity

The dilute-solution approximation is used as the bulk of the electrolyte is water. All

ion species have the velocity of the bulk and no interaction between the species occurs.

This assumption is to be questioned because the ion concentration is very high and

therefore at the upper boundary of the theory.

The use of activities would be the more correct method, but they were unavailable

for the considered electrolyte and are not used in this study[33]. The conductivity of

the electrolyte is commonly calculated with the Nernst-Planck equations with Fara-

day’s law derivation [25]

κ =
F 2

RT

∑
i

z2i ×D
eff
i × ci (B.1)

The calculated conductivity is several times higher than the measured conductivity’s

found in multiple papers [25, 64]. The Nernst-Planck equation is no suitable to

describe the ionic conductivity of the electrolyte, thus this parameter is assumed

to be a limiting factor, the divergence so high is not acceptable for any simulation

as this would underestimate the influence of the electrolyte conductivity on the cell

performance. Instead multiple studies [11, 35] suggest using linearized functions based

on measured conductivity as a function of the SOC.

Stephenson[45] found that the intrinsic diluted theory overestimates the conduc-

tivity roughly 6.5 times compare to experimental data, however using the Bruggeman

relationship reduces the effective conductivity and results in good agreement, between

the model and data. Although the resulting average conductivity needed in the model

to match the electrolyte losses of the electrode was three times higher than experi-

mental, physically the conductivity of the electrolyte is analogous to the movement of

the proton since this type of chemistry is moving a proton compared to an electron,
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the proton movement is too slow (compared with an electron). It is believed that

the entire electrode thickness is not utilized, most of the electrochemical reaction

is believed to take place within one-half of the tested electrode thickness, it is also

believed that the electrodes are thicker than electrochemical needed.

Viswanatha [11] found the conductivity of the electrolyte as a function of the

concentration of reactant species and proton concentration was determined by semi-

empirical principles using relationships from dilute solution theory but ultimately

matching electrolyte ohmic losses at high flow rates (2.0 mL min/cm2 or greater) by

varying the electrolyte conductivity in the model. Model conductivities needed to

match electrolyte ohmic losses were compared with measured conductivity and found

to be 4 times larger.

To accommodate this discrepancy it is believed that not all the electrode is reacting

and as such a thinner electrode volume is being utilized, which is expected to be

the case when the felt electronic conductivity is much higher than the electrolyte

conductivity and has been verified experimentally [45, 11].

One of the linearized relations is described in [34]. The way the conductivity of

the electrolyte is being calculated of a two-dimensional model is :

σe = 17.69 + 7.50× SOC(negative) (B.2)

σe = 27.67 + 13.36× SOC(positive (B.3)

These equations were developed by creating an empirical model based on experimen-

tal conductivity data that has been shown to provide accurate predictions, with an

average error of 0.77%, of the conductivity of the positive half-cell electrolyte as a

potential state-of-charge detection too.

Corcuera and Skyllas-Kazacos derived another linearized relation that involves

the temperature as well as the SOC of the electrolyte.

Coefficient Positive half cell Negative half cell

A 1.8 0.7050

B 93.5030 55.0420

C 4.6713 2.6176

D 172.07 122.37

κ = (A× T +B)× SOC + (C × T +D) (B.4)
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Where T is the temperature in Celsius and SOC is the state of charge and κ is

the conductivity of the solution in mS/cm−1

The conditions of the electrolyte is 1.5 M in the positive side and negative (All

vanadium), the initial proton concentration on the positive is 6M and 4.5M in the

negative [65]

σe = 35.716 + 7.699× SOC(negative) (B.5)

σe = 43.763 + 12.251× SOC(positive) (B.6)

It was performed a small sensitivity analysis on the conductivity of the electrolyte

in which the conductivity of the electrolytes was varied from −20% to 20% because

the conductivity of the electrolyte is a linear equation the variation is linear at an

ambient temperature of 20◦C.

Figure B.1: Sensibility analysis; conductivity of the electrolyte varying from -20% to
+20%.
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Appendix C

Python codes

C.1 Thermo-electrochemical model

#Libraries needed

import math

import numpy as np

import matplotlib.pyplot as plt

import plotly.express as px

import plotly.graph_objects as go

import pandas as pd

##Inputs##

s=0#Area increased in %

t=4 *3600 #4 hours

v=48 # 48 volts

P_max=500000/(1-(s/100)) # 500kW

E_max=2000000/(1-(s/100)) #2MWh

N=48

rhof=1182 #Kg/m3-FeCl2

rhov=1158 #Kg/m3 VCl3

FM=126.751 #g/mol

VM=157.3# g/mol

Eo_p=0.77 #Fe Reference potential for positive electrode [V]
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Eo_n=-0.255#V Reference potential for negative electrode [V]

Eo=Eo_p-Eo_n # [V]

L_m=5.08E-5 #Thickness of membrane [m]

eps=0.929 #Porosity of the electrode

a=39000 #Specific surface are [1/m]

kn_r=8.7E-6 #Reference rate constant for negative electrode [m/s]

kp_r=1.6E-5 #Reference rate constant for positive electrode [m/s]

Id=500 #Applied charge current density [A/m2]

Ic=-Id #Applied discharge current density [A/m2]

Dv2=2.4E-10 #Diffusion coefficient V2+ [m2/s]

Dv3=2.4E-10 #Diffusion coefficient V3+ [m2/s]

Df2=3.95E-10 #Diffusion coefficient Fe2+ [m2/s]

Df3=3.32E-10 #Diffusion coefficient Fe3+ [m2/s]

Dhso=1.4E-10 #Diffusion coefficient HSO4- [m2/s]

Dh=9.31E-9 #Diffusion coefficient H+ [m2/s]

cv_0=1600 #Intial vanadium concentration both electrodes [mol/m3]

cf_0=1600 #Initial iron concentration bothelectrodes [mol/m3]

chcl_0=2300 #Initial HCL concentration both electrodes [m/m3]

SOC_c0=0.025 #Beginning state of charge for charge

SOC_d0=0.975 #Beginning state of charge for discharge

zv2=2 #Charge number for V2+

zv3=3 #Charge number for V3+

zf2=2 #Charge number for Fe2+

zf3=3 #Charge number for FE3+

Qc=20000 #Volumetric flow rate [mL/min]

Q=Qc*1.666667*(10**-8) #m3/s

gamma=2 #Pre Bruggeman factor

theta=2 #Non-ideal reactor factor

alpha=1.5 #Bruggeman exponent

lam=22

s_e=370 #Conductivity of electrolyte

F=96485.3365 #Faraday's constant [C/mol]

R=8.314 #Constant Gas [J/(K mol)]

#### Thermal variables needed####

S_v2=-130 #J/molK
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S_v3=-230 #J/molK

S_f2=-107.1 #J/molK

S_f3=-280.3 #J/molK

H_v2=-226000#J/mol

H_v3=-259000#J/mol

H_f3=-50200#J/mol

H_f2=-92500#J/mol

G_v2=-218 #J/mol

G_v3=-251.3 #J/mol

G_f3=-16.7 #J/mol

G_f2=-91.5#J/mol

cpf=3498 #J/kgK- VANADIUM

rhof=1182 #Kg/m3-FeCl2

cpv=3200 #J/kgK - VANADIUM

rhov=1158 #Kg/m3 VCl3

#A= L_w*L_h*10 # Area of the Electrode

N=48 # Number of cells

h=5 # Natural convections W/(m2K)

l=22 #Lamda , water content assumed to be saturated

T_ref=295

CP=3200 #Data from paper (the whole system)

RHO=1354 # Data from paper (The whole system)

n=1 #Number of electrons per mol

#Volume calculation#

Vc=(E_max*3600)/(N*n*cv_0*F*Eo)

#Area needed##

A_tot=P_max/(N*Eo*Id)

cell=A_tot/N

L_w=cell**0.5 # Width of electrode [m]

L_h=cell**0.5 # Height of electrode [m]

L_x=0.00425 #Thickness of electrode [m]
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SOC_0=1

t=4*3600

SOC_=[]

cf2=[]

cf3=[]

cv3=[]

cv2=[]

for t in range(0,t,900):

SOC_in=SOC_0-(t*A_tot*Id)/(cv_0*F*Vc)

dSOC=Id*cell/(cv_0*Vc*n*F)

SOC_avg=SOC_in-dSOC/2

SOC_.append(SOC_avg)

cf2_avg=cf_0*(1-SOC_avg)

cf3_avg=cf_0*SOC_avg

cv2_avg=cv_0*SOC_avg

cv3_avg=cv_0*(1-SOC_avg)

cf2.append(cf2_avg)

cf3.append(cf3_avg)

cv2.append(cv2_avg)

cv3.append(cv3_avg)

P_p=0 #Pump power taken from SANSO PMD-641 where 12 Watts are with

a flux of ~3.33x10^-4 m3/s↪→

#coefficients condcutivity electrolyte from Sankyzos pape

A_e=0.705

B_e=55.042

C_e=2.6176

D_e=122.37

Tc=20*N/1000 #m of thickness

As=cell*2+Tc*((cell)**0.5)*4

S=S_f3+S_v2-S_v3-S_f2
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# ## SOC time dependent

# # Battery 500kW 4MWh

ta=20

Ac=A_tot

a=4*3600

Rc=[]

h=10

SOC_c=[]

T_in=[]

Ec_cell=[]

Ed_cell=[]

Ed_cell_rev=[]

Ec_cell_rev=[]

time=[]

cnt=[]

T_c=[]

ct=[]

per_c=[]

pentro_c=[]

ele=[]

err=0.0001

SOC_0=0.0

l=22 #Lamda , water content assumed to be saturated

#T_in2=ta+273 #[K] inlet temperature

T_air=ta+273

f=rhof*cpf*Q

v=rhov*cpv*Q

w=Vc*cpf*rhof

H=h*As

T_ref=295

count=0

count2=0
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#obtaining constant c1#

#At t=0 T_stack_c=T_out1_c=T_in_c=T_ambient

#Remember T_stack is assumed to be the same at the outlet of the

tanks thus↪→

#stack temperature and outlet temperature are the same

cond=0

kn=kn_r*math.exp((-F*Eo_n/R)*((1/T_ref)-(1/T_air)))

kp=kp_r*math.exp((F*Eo_p/R)*((1/T_ref)-(1/T_air)))

E_shift=0.00038*T_air+0.073

l=22 #Lamda , water content assumed to be saturated

s_m=(0.5136*l-0.326)*math.exp(1268*((1/303)-1/T_air))

#s_e=F**2/(R*T_stack_c[t])* sum([zi[i]**2*(Di[i]*eps**(3/2))*ci[i]

for i in range(len(zi))])↪→

#k=s_e*(1+(0.0171*(T_stack_c[t]-296)))*1.2#4.12

#s_e*(1+(0.0171*(T_stack_c[t]-296)))*1.2↪→

k=((A_e*(T_air-273)+B_e)*SOC_avg+C_e*(T_air-273)+D_e)/10

###CHARGING###

IRm_c=Ic*L_m/s_m ## LOSSES IN THE MEMRANE

IRi_c=2*Ic*(L_x/(k*(1+cond/100))) ## LOSSES IN THE ELECTROLYTE

nc_n=-2*R*T_air/F*math.asinh(Ic/(2*F*eps*a*L_x*kn*

math.sqrt(cv2_avg*cv3_avg)))

nc_p=2*R*T_air/F*math.asinh(Ic/(2*F*eps*a*L_x*kp*

math.sqrt(cf2_avg*cf3_avg)))

nc=nc_p-nc_n ## LOSSES KINETIC OVERPOTENTIALS

Ec_cell_rev1=(Eo)+(R*T_air)/F*math.log((cv2_avg*cf3_avg)/

(cv3_avg*cf2_avg))-E_shift

Ec_cell1=Ec_cell_rev1-IRi_c-IRm_c-nc

##### Thermal model ####

S=S_f3+S_v2-S_v3-S_f2

P_entro=Ic*Ac*T_air*S/(F)# Watts

R1=IRi_c # Volts

R2=IRm_c# Volts
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R_eq=R1+R2+nc# Volts

P_r= Ic*Ac*R_eq# Volts*Amps/m2*m2 = V*A = Watts

c1=T_air-(P_entro/(f+H+v)+(f*T_air)/

(f+H+v)+(T_air*v)/(f+H+v)+P_p/(f+H+v)+P_r/(f+H+v))-

((T_air*H)/(f+H+v))

###CHARGE###

T_out1_c=[ta+273+2]*a

T_out2_c=[ta+273]*a

T_stack_c=[ta+273]*a

T_in_c=[ta+273]*(a) #[K] inlet temperature

#-4.624052328915854

for t in range(10,a-100):

SOC_in=SOC_0-(t*Ic*L_h*L_w*N)/(cv_0*F*Vc)

dSOC=Ic*cell/(cv_0*Vc*n*F)

SOC_avg=SOC_in-dSOC/2

cf2_avg=cf_0*(1-SOC_avg)

cf3_avg=cf_0*SOC_avg

cv2_avg=cv_0*SOC_avg

cv3_avg=cv_0*(1-SOC_avg)

ci=[cf2_avg,cf3_avg,cv2_avg,cv3_avg]

Di=[Df2,Df3,Dv2,Dv3]

zi=[zf2,zf3,zv2,zv3]

count=0

while abs(T_out1_c[t]-T_stack_c[t])>err:# This while is used to

converge , since it was guessed the inside temperature of

the stack

↪→

↪→

T_stack_c[t]=T_out1_c[t]

kn=kn_r*math.exp((-F*Eo_n/R)*((1/T_ref)-(1/T_stack_c[t])))

kp=kp_r*math.exp((F*Eo_p/R)*((1/T_ref)-(1/T_stack_c[t])))

E_shift=0.00038*T_stack_c[t]+0.073
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s_m=(0.5136*l-0.326)*math.exp(1268*((1/303)-1/T_stack_c[t]))

#s_e=F**2/(R*T_stack_c[t])*

sum([zi[i]**2*(Di[i]*eps**(3/2))*ci[i] for i in

range(len(zi))])

↪→

↪→

#k=s_e*(1+(0.0171*(T_stack_c[t]-296)))*1.2#4.12

#s_e*(1+(0.0171*(T_stack_c[t]-296)))*1.2↪→

k=((A_e*(T_out1_c[t]-273)+B_e)*SOC_avg+C_e*

(T_out1_c[t]-273)+D_e)/10

###CHARGING###

IRm_c=Ic*L_m/s_m ## LOSSES IN THE MEMRANE

IRi_c=2*Ic*(L_x/(k*0.8)) ## LOSSES IN THE ELECTROLYTE

nc_n=-2*R*T_stack_c[t]/F*math.asinh

(Ic/(2*F*eps*a*L_x*kn*math.sqrt(cv2_avg*cv3_avg)))

nc_p=2*R*T_stack_c[t]/F*math.asinh

(Ic/(2*F*eps*a*L_x*kp*math.sqrt(cf2_avg*cf3_avg)))

nc=nc_p-nc_n ## LOSSES KINETIC OVERPOTENTIALS

Ec_cell_rev1=(Eo)+(R*T_stack_c[t])/

F*math.log((cv2_avg*cf3_avg)/(cv3_avg*cf2_avg))-E_shift

Ec_cell1=Ec_cell_rev1-IRi_c-IRm_c-nc

##### Thermal model ####

S=S_f3+S_v2-S_v3-S_f2

P_entro=-Ic*Ac*T_stack_c[t]*S/(F)# Watts

R1=IRi_c # Volts

R2=IRm_c# Volts

R_eq=R1+R2+nc# Volts

P_r= Ic*Ac*R_eq# Volts*Amps/m2*m2 = V*A = Watts

T_out1_c[t]=((T_air*H)/(f+H+v))+c1*math.exp(((-f*t)/w)-

((h*t)/w)-((v*t)/w))+P_entro/(f+H+v)+(f*T_in_c[t])/

(f+H+v)+(T_in_c[t]*v)/(f+H+v)+P_p/(f+H+v)+P_r/(f+H+v)

count=count+1 #simple counter so wee how many iterations it

took to converge↪→

##ACTUAL MODEL##
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#once it caluclated a temperature that temperature will be used

for that step time to calcualte all the losses#↪→

T_in2_c=(T_stack_c[t]+T_in_c[t])/2 #Mix temperaute of the tank

T_in_c[t]=T_in2_c

kn=kn_r*math.exp((-F*Eo_n/R)*((1/T_ref)-(1/T_stack_c[t])))

kp=kp_r*math.exp((F*Eo_p/R)*((1/T_ref)-(1/T_stack_c[t])))

E_shift=0.00038*T_stack_c[t]+0.073

cf2_avg=cf_0*(1-SOC_avg)

cf3_avg=cf_0*SOC_avg

cv2_avg=cv_0*SOC_avg

cv3_avg=cv_0*(1-SOC_avg)

l=22 #Lamda , water content assumed to be saturated

s_m=(0.5136*l-0.326)*math.exp(1268*((1/303)-1/T_stack_c[t]))

k=((A_e*(T_stack_c[t]-273)+B_e)*SOC_avg+C_e*

(T_stack_c[t]-273)+D_e)/10

###CHARGING###

IRm_c=Ic*L_m/s_m ## LOSSES IN THE MEMRANE

IRi_c=2*Ic*(L_x/(k*0.8)) ## LOSSES IN THE ELECTROLYTE

nc_n=-2*R*T_stack_c[t]/F*math.asinh

(Ic/(2*F*eps*a*L_x*kn*math.sqrt(cv2_avg*cv3_avg)))

nc_p=2*R*T_stack_c[t]/F*math.asinh

(Ic/(2*F*eps*a*L_x*kp*math.sqrt(cf2_avg*cf3_avg)))

nc=nc_p-nc_n ## LOSSES KINETIC OVERPOTENTIALS

Ec_cell_rev1=(Eo)+(R*T_stack_c[t])/

F*math.log((cv2_avg*cf3_avg)/(cv3_avg*cf2_avg))-E_shift

Ec_cell1=Ec_cell_rev1-IRi_c-IRm_c-nc

count2=count2+1

##### Thermal model ####

S=S_f3+S_v2-S_v3-S_f2

P_entro=Ic*Ac*T_stack_c[t]*S/(F)# Watts

R1=IRi_c # Volts

R2=IRm_c# Volts

R_eq=R1+R2+nc# Volts
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P_r= Ic*Ac*R_eq# Volts*Amps/m2*m2 = V*A = Watts

R_c=(IRm_c+IRi_c+nc)/Ic*N

T_out3_c=((T_air*H)/(f+H+v))+c1*math.exp(((-f*t)/w)-

((h*t)/w)-((v*t)/w))+P_entro/(f+H+v)+(f*T_in2_c)/

(f+H+v)+(T_in2_c*v)/(f+H+v)+P_p/(f+H+v)+P_r/(f+H+v)

T_out2_c[t]=T_stack_c[t]

Rc.append(R_c)

SOC_c.append(SOC_avg)

cnt.append(count)

#Ed_cell.append(Ed_cell1)

Ec_cell.append(Ec_cell1)

Ec_cell_rev.append(Ec_cell_rev1)

time.append(t)

T_in.append(T_in2_c)

T_c.append(T_out3_c)

pentro_c.append(P_entro)

per_c.append(P_r)

ele.append(k)

### DISCHARGE###

a=4*3600

Rd=[]

T_out1_d=[T_c[-1]]*a

SOC_d=[]

Ed_cell=[]

Ed_cell_rev=[]

time=[]

cnt=[]

T_d=[]

T_out2_d=[T_c[-1]]*a

ct=[]

per_d=[]
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pentro_d=[]

err=0.0001

SOC_0=1

T_stack_d=[T_c[-1]+1]*a

T_in_d=[T_in[-1]+2]*(a) #[K] inlet temperature

T_in2=[T_in[-1]+2]*(a) #[K] inlet temperature

T_air=ta+273

f=rhof*cpf*Q

v=rhov*cpv*Q

w=Vc*cpf*rhof

H=h*As

T_ref=295

count=0

count2=0

for t in range(10,a-100):

SOC_in=SOC_0-(t*Id*L_h*L_w*N)/(cv_0*F*Vc)

dSOC=Id*cell/(cv_0*Vc*n*F)

SOC_avg=SOC_in-dSOC/2

cf2_avg=cf_0*(1-SOC_avg)

cf3_avg=cf_0*SOC_avg

cv2_avg=cv_0*SOC_avg

cv3_avg=cv_0*(1-SOC_avg)

ci=[cf2_avg,cf3_avg,cv2_avg,cv3_avg]

Di=[Df2,Df3,Dv2,Dv3]

zi=[zf2,zf3,zv2,zv3]

count=0

while abs(T_out1_d[t]-T_stack_d[t])>err:

T_stack_d[t]=T_out1_d[t]

kn=kn_r*math.exp((-F*Eo_n/R)*((1/T_ref)-(1/T_stack_d[t])))

kp=kp_r*math.exp((F*Eo_p/R)*((1/T_ref)-(1/T_stack_d[t])))

E_shift=0.00038*T_stack_d[t]+0.073

###DISCHARGING###
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l=22 #Lamda , water content assumed to be saturated

s_m=(0.5136*l-0.326)*math.exp(1268*((1/303)-1/T_stack_d[t]))

IRm_d=Id*L_m/s_m ## LOSSES IN THE MEMRANE

#k=s_e*(1+(0.0171*(T_stack_d[t]-296)))*1.2

k=((A_e*(T_stack_d[t]-273)+B_e)*SOC_avg+C_e*

(T_stack_d[t]-273)+D_e)/10

#IRi_d=Id*(L_x/(eps**(3/2)*k)) ## LOSSES IN THE ELECTROLYTE

IRi_d=2*Id*(L_x/(k*0.8))

nd_n=-2*R*T_stack_d[t]/F*math.asinh

(Id/(2*F*eps*a*L_x*kn*math.sqrt(cv2_avg*cv3_avg)))

nd_p=2*R*T_stack_d[t]/F*math.asinh

(Id/(2*F*eps*a*L_x*kp*math.sqrt(cf2_avg*cf3_avg)))

nd=nd_p-nd_n ## LOSSES KINETIC OVERPOTENTIALS

Ed_cell_rev=(Eo)+(R*T_stack_d[t])/

F*math.log((cv2_avg*cf3_avg)/(cv3_avg*cf2_avg))-E_shift

Ed_cell1=Ed_cell_rev-IRi_d-IRm_d-nd

##### Thermal model ####

S=-S_f3-S_v2+S_v3+S_f2

P_entro=Id*Ac*T_stack_d[t]*S/(n*F)# Watts

R1=IRi_d # Volts

R2=IRm_d# Volts

R_eq=R1+R2+nd# Volts

P_r= Id*Ac*R_eq# Volts*Amps/m2*m2 = V*A = Watts

T_out1_d[t]=((T_air*H)/(f+H+v))+c1*(math.exp(((-f*t)/w)-

((h*t)/w)-((v*t)/w)))+P_entro/(f+H+v)+(f*T_in_d[t])/

(f+H+v)+(T_in_d[t]*v)/(f+H+v)+P_p/(f+H+v)+P_r/(f+H+v)

count=count+1

T_in_d[t]=(T_out1_d[t]+T_in_d[t])/2

kn=kn_r*math.exp((-F*Eo_n/R)*((1/T_ref)-(1/T_stack_d[t])))

kp=kp_r*math.exp((F*Eo_p/R)*((1/T_ref)-(1/T_stack_d[t])))

E_shift=0.00038*T_stack_d[t]+0.073

cf2_avg=cf_0*(1-SOC_avg)
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cf3_avg=cf_0*SOC_avg

cv2_avg=cv_0*SOC_avg

cv3_avg=cv_0*(1-SOC_avg)

ci=[cf2_avg,cf3_avg,cv2_avg,cv3_avg]

Di=[Df2,Df3,Dv2,Dv3]

zi=[zf2,zf3,zv2,zv3]

###DISCHARGING###

l=22 #Lamda , water content assumed to be saturated

s_m=(0.5136*l-0.326)*math.exp(1268*((1/303)-1/T_stack_d[t]))

IRm_d=Id*L_m/s_m ## LOSSES IN THE MEMRANE

#s_e=F**2/(R*T_stack_d[t])*

sum([zi[i]**2*(Di[i]*eps**(3/2))*ci[i] for i in

range(len(zi))])

↪→

↪→

#k=s_e*(1+(0.0171*(T_stack_d[t]-296)))*1.2

IRi_d=2*Id*(L_x/(k*0.8))## LOSSES IN THE ELECTROLYTE

nd_n=-2*R*T_stack_d[t]/F*math.asinh

(Id/(2*F*eps*a*L_x*kn*math.sqrt(cv2_avg*cv3_avg)))

nd_p=2*R*T_stack_d[t]/F*math.asinh

(Id/(2*F*eps*a*L_x*kp*math.sqrt(cf2_avg*cf3_avg)))

nd=nd_p-nd_n ## LOSSES KINETIC OVERPOTENTIALS

Ed_cell_rev=(Eo)+(R*T_stack_d[t])/F*math.log((cv2_avg*cf3_avg)

/(cv3_avg*cf2_avg))-E_shift

Ed_cell1=Ed_cell_rev-IRi_d-IRm_d-nd

##### Thermal model ####

S=-S_f3-S_v2+S_v3+S_f2

P_entro=-Id*Ac*T_stack_d[t]*S/(F)# Watts

R1=IRi_d # Volts

R2=IRm_d# Volts

R_eq=R1+R2+nd# Volts

P_r= Id*Ac*R_eq# Volts*Amps/m2*m2 = V*A = Watts

R_d=(IRm_d+IRi_d+nd)/Id*N

T_out3_d=((T_air*H)/(f+H+v))+c1*math.exp(((-f*t)/w)-

((h*t)/w)-((v*t)/w))+P_entro/(f+H+v)+(f*T_in_d[t])/

(f+H+v)+(T_in_d[t]*v)/(f+H+v)+P_p/(f+H+v)+P_r/(f+H+v)
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T_out2_d[t]=T_stack_d[t]

#ct.append(c1)

Rd.append(R_d)

SOC_d.append(SOC_avg)

cnt.append(count)

Ed_cell.append(Ed_cell1)

#Ec_cell.append(Ec_cell1)

Ec_cell_rev.append(Ec_cell_rev1)

time.append(t)

T_d.append(T_out3_d)

pentro_d.append(P_entro)

per_d.append(P_r)

#Comand to save a CSV file

df=pd.DataFrame(list(zip(T_c,T_d,Ec_cell,Ed_cell,SOC_c,SOC_d)),

columns=['Temperature_c','Temperature_d',

'Voltage_c','Voltage_d','SOC_c','SOC_d'])

df.to_csv('Temp20_-20%con.csv')

df=pd.DataFrame(list(zip(pentro_c,pentro_d,per_c,per_d)))

df.to_csv('powers20_-20%con.csv')

C.2 Scheduled Dispatch model

import pandas as pd

import numpy as np

import math

data1 = pd.read_csv('data_lau/Alldata_1.csv')

from datetime import date

import calendar

#Battery

cosP = 12.34

cosE=0.0606

cosF=0.02673
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data1['Day_of_the_week']=pd.to_datetime(data1["Date"])

data1['Day_of_the_week']=data1.Day_of_the_week.dt.dayofweek #obtain

the date format↪→

data1['SOC']=4000

months=[1,2,3,4,5,6,7,8,9,10,11,12]

data1

Nobat=[]

Bat=[]

Sav=[]

for e in eff:

#Discharge

dis=cap*math.sqrt(e)

#Increment in the Energy demand.

cha=cap/math.sqrt(e)

print("Efficency of %s " %e)

for m in months:

hour=[]

demand=[]

dema1=[]

date=[]

day=[]

SOC=[]

data=data1[data1['Month'] == m]

v=data.loc[data['Month']==m,'Count'].iloc[0]

for i in range(v,(len(data.Count)+v)):

tempq=data.loc[data['Count']==i,'Time2'].iloc[0]

dta=data.loc[data['Count']==i,'Date2'].iloc[0]

dem=data.loc[data['Count']==i,'dem'].iloc[0]

day1=data.loc[data['Count']==i,'Day_of_the_week'].iloc[0]

soc=data.loc[data['Count']==i,'SOC'].iloc[0]

hour.append(tempq)

demand.append(dem)

date.append(dta)

day.append(day1)
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SOC.append(soc)

#SOC[0]=4000

char=0

for a in range(0,len(hour)):

SOC[a]=SOC[a-1]

if day[a]<5:

##DISCHARGE##

if SOC[a]>=500/4: #if the battery has some SOC it

can deploy↪→

if hour[a]>= '09:00':

if hour[a]<='13:00':

char=char+1

SOC[a]=SOC[a-1]-dis/4

demand[a]=demand[a]-dis

##CHARGE##

if SOC[a]<=3875:

if hour[a]>= '00:00':

if hour[a]<='04:00':

SOC[a]=SOC[a-1]+cha/4

# MAINTAIN THE SAME SOC IF ITS NOT USING

if hour[a]> '04:00':

if hour[a]<'09:00':

SOC[a]=SOC[a-1]

if hour[a]> '13:01':

if hour[a]<'23:59':

SOC[a]=SOC[a-1]

#else:

#if SOC[a]>=4000:

# SOC[a]=4000

#if SOC[a]<=0:

# SOC[a]=0
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e_bat=char*cha

di={'Demand':demand,'Date':date,'Hour':hour,

'Dw':day,'SOC':SOC}↪→

df4=pd.DataFrame(di)

#Cost of the increment

cc_e=round(e_bat/4*cosE ,2)#divided by for due to the 15 min

resolution↪→

if m ==1:

month='January'

elif m==2:

month='February'

elif m==3:

month='March'

elif m==4:

month='April'

elif m==5:

month='May'

elif m==6:

month='June'

elif m==7:

month='July'

elif m==8:

month='August'

elif m==9:

month='September'

elif m==10:

month='October'

elif m==11:

month='November'

elif m==12:

month='December'
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bat=round(df4.Demand.max()*cosP+ (df4.Demand.sum()) /4 * cosE

+cosF*(len(data.dem)/96)+cc_e,2)↪→

nobat=round(data.dem.max()*cosP+ data.dem.sum()/4 * cosE

+cosF*(len(data.dem)/96),2)↪→

sav=round(nobat-bat,2)

#Cost of charging the battery

print( month + " " + 'No Battery=%f , Battery=%f ,

Savings=%f , Cost of charging Batery=%f' % (nobat, bat,

sav,cc_e))

↪→

↪→

Nobat.append(nobat)

Bat.append(bat)

Sav.append(sav)

mon=[]

for i in range(0,12):

m=Sav[i],Sav[12+i],Sav[12*2+i],Sav[12*3+i],Sav[12*4+i],

Sav[12*5+i],Sav[12*6+i],Sav[12*7+i],Sav[12*8+i],Sav[12*9+i]

mon.append(m)

mon

Jan=mon[0]

Feb=mon[1]

Mar=mon[2]

Apr=mon[3]

May=mon[4]

Jun=mon[5]

Jul=mon[6]

Aug=mon[7]

Sep=mon[8]

Oct=mon[9]

Nov=mon[10]

Dec=mon[11]
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import plotly.plotly as py

import plotly.graph_objs as go

x=['January', 'February','March',

'April','May','June','July','August','September','October',↪→

'November','December']

data=[]

fig = go.Figure()

for i in range(0,len(eff)):

p=eff[i]*100

p=' %s '%p+ '% Efficency'

a=go.Scatter(x=x, y=Sav[(12*i):(12*(i+1))],

mode='lines+markers',

name= p )

data.append(a)

layout = dict(title="Savings ",

showlegend=True,

xaxis=dict(title="Month"),

yaxis=dict(title="$"))

data=data

# Create fig

fig = dict(data=data, layout=layout)

py.iplot(fig)

import plotly.plotly as py

import plotly.graph_objs as go

fig = go.Figure()

fig.add_trace(go.Box(y=Jan, name='January'))

fig.add_trace(go.Box(y=Feb, name = 'February'))

fig.add_trace(go.Box(y=Mar, name = 'March'))

fig.add_trace(go.Box(y=Apr, name = 'April'))

fig.add_trace(go.Box(y=May, name = 'May'))

fig.add_trace(go.Box(y=Jun, name = 'June'))

fig.add_trace(go.Box(y=Jul, name = 'July'))

fig.add_trace(go.Box(y=Aug, name = 'August'))
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fig.add_trace(go.Box(y=Sep, name = 'September'))

fig.add_trace(go.Box(y=Oct, name = 'October'))

fig.add_trace(go.Box(y=Nov, name = 'Novemeber'))

fig.add_trace(go.Box(y=Dec, name = 'December'))

py.iplot(fig)

Jan2

j=['January','January','January','January','January',

'January','January','January','January','January']

b1=['500kW/1MWh','500kW/1MWh','500kW/1MWh','500kW/1MWh',

'500kW/1MWh','500kW/1MWh','500kW/1MWh','500kW/1MWh',

'500kW/1MWh','500kW/1MWh',]

# Import pandas library

import pandas as pd

# initialize list of lists

data = [[Jan1[0], 'January','500kW/1MWh'], [Jan1[1],

'January','500kW/1MWh'], [Jan1[2], 'January','500kW/1MWh']]↪→

# Create the pandas DataFrame

df = pd.DataFrame(data, columns = ['Saving', 'Month','Battery'])

# print dataframe.

df

# Import pandas library

import pandas as pd

# initialize list of lists

for i in range(0,len())

data = [[Jan1[0], 'January','500kW/1MWh'], [Jan1[1],

'January','500kW/1MWh'], [Jan1[2], 'January','500kW/1MWh']]↪→
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# Create the pandas DataFrame

df = pd.DataFrame(data, columns = ['Saving', 'Month','Battery'])

# print dataframe.

df

C.3 Highest peaks dispatch model

import pandas as pd

import numpy as np

import math

data1 = pd.read_csv('data_lau/Alldata_1.csv')

from datetime import date

import calendar

#Battery

cap=500

e=0.8

cosP = 12.34

cosE=0.0606

cosF=0.02673

#Discharge

dis=cap*math.sqrt(e)

#Increment in the Energy demand.

cha=cap/math.sqrt(e)

data1['Day_of_the_week']=pd.to_datetime(data1["Date"])

data1['Day_of_the_week']=data1.Day_of_the_week.dt.dayofweek #obtain

the date format↪→

data1['SOC']=4000

data1.head()

Nobat=[]

Bat=[]
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Sav=[]

ca=[]

co=[]

SOC=[]

demand=[]

months=[1,2,3,4,5,6,7,8,9,10,11,12]

for e in eff:

#Discharge

dis=cap*math.sqrt(e)

#Increment in the Energy demand.

cha=cap/math.sqrt(e)

print("Efficency of %s " %e)

for m in months:

dem=[]

temp=data1[data1['Month'] == m]

md=temp.dem.nlargest(40)

v=temp.loc[temp['Month']==m,'Count'].iloc[0]

for i in range(v,(len(temp.Count)+v)):

dem1=temp.loc[temp['Count']==i,'dem'].iloc[0]

soc=temp.loc[temp['Count']==i,'SOC'].iloc[0]

for a in md:

if dem1==a:

dem1=dem1-dis

#else:

# dem1=dem1

#SOC[i]=SOC[i]-cha

dem.append(dem1)

SOC.append(soc)

e_bat=52*cha

di={'Demand':dem}

df4=pd.DataFrame(di)

#Cost of the increment
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cc_e=e_bat/4*cosE #divided by for due to the 15 min

resolution↪→

if m ==1:

month='January'

elif m==2:

month='February'

elif m==3:

month='March'

elif m==4:

month='April'

elif m==5:

month='May'

elif m==6:

month='June'

elif m==7:

month='July'

elif m==8:

month='August'

elif m==9:

month='September'

elif m==10:

month='October'

elif m==11:

month='November'

elif m==12:

month='December'

bat=round(df4.Demand.max()*cosP+ (df4.Demand.sum()) /4 * cosE

+cosF*(len(temp.dem)/96)+cc_e,2)↪→

nobat=round(temp.dem.max()*cosP+ temp.dem.sum()/4 * cosE

+cosF*(len(temp.dem)/96),2)↪→

sav=round(nobat-bat,2)

#Cost of charging the battery
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print( month + " " + 'No Battery=%f , Battery=%f ,

Savings=%f' % (nobat, bat, sav))↪→

Nobat.append(nobat)

Bat.append(bat)

Sav.append(sav)

import plotly.plotly as py

import plotly.graph_objs as go

x=['January', 'February','March',

'April','May','June','July','August','September','October',↪→

'November','December']

data=[]

fig = go.Figure()

for i in range(0,len(eff)):

p=eff[i]*100

p=' %s '%p+ '% Efficency'

a=go.Scatter(x=x, y=Sav[(12*i):(12*(i+1))],

mode='lines+markers',

name= p )

data.append(a)

layout = dict(title="Savings ",

showlegend=True,

xaxis=dict(title="Month"),

yaxis=dict(title="$"))

data=data

# Create fig

fig = dict(data=data, layout=layout)

py.iplot(fig)

df = pd.DataFrame(list(zip(mo, b,ef,Sav1)),

columns =['Month', 'Battery','Efficency','Savings'])

df.to_csv('deploy 20 peaks')

df
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import plotly.express as px

tips = px.data.tips()

fig = px.box(df, x="Month", y="Savings", color="Battery",

notched=True, # used notched shape

title="Box plot of total bill",

#hover_data=["day"] # add day column to hover data

)

fig.show()

Nobat1=[]

Bat1=[]

Sav1=[]

months=[1,3,4,5,6,7,8,9,10,11,12]

b=[]

ef=[]

mo=[]

for c in cap:

print("Cappacity of %s " %c)

for e in eff:

#Discharge

dis=c*math.sqrt(e)

#Increment in the Energy demand.

cha=c/math.sqrt(e)

print("Efficency of %s " %e)

for m in months:

dem=[]

temp=data1[data1['Month'] == m]

md=temp.dem.nlargest(20)

v=temp.loc[temp['Month']==m,'Count'].iloc[0]

for i in range(v,(len(temp.Count)+v)):

dem1=temp.loc[temp['Count']==i,'dem'].iloc[0]

for a in md:

if dem1==a:

dem1=dem1-dis
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dem.append(dem1)

e_bat=20*cha

di={'Demand':dem}

df4=pd.DataFrame(di)

#Cost of the increment

cc_e=e_bat/4*cosE #divided by for due to the 15 min

resolution↪→

if m ==1:

month='January'

elif m==2:

month='February'

elif m==3:

month='March'

elif m==4:

month='April'

elif m==5:

month='May'

elif m==6:

month='June'

elif m==7:

month='July'

elif m==8:

month='August'

elif m==9:

month='September'

elif m==10:

month='October'

elif m==11:

month='November'

elif m==12:

month='December'
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bat=round(df4.Demand.max()*cosP+ (df4.Demand.sum()) /4 *

cosE +cosF*(len(temp.dem)/96)+cc_e,2)↪→

nobat=round(temp.dem.max()*cosP+ temp.dem.sum()/4 * cosE

+cosF*(len(temp.dem)/96),2)↪→

sav=round(nobat-bat,2)

#Cost of charging the battery

print( month + " " + 'No Battery=%f , Battery=%f ,

Savings=%f' % (nobat, bat, sav))↪→

Nobat1.append(nobat)

Bat1.append(bat)

Sav1.append(sav)

ef.append(e)

b.append(c)

mo.append(month)

df1 = pd.DataFrame(list(zip(mo, b,ef,Sav1)),

columns =['Month', 'Battery','Efficency','Savings'])

df1.to_csv('deploy 20 peaks')

import plotly.express as px

tips = px.data.tips()

fig = px.box(df1, x="Month", y="Savings", color="Battery",

notched=True, # used notched shape

# title="Box plot of total bill",

#hover_data=["day"] # add day column to hover data

)

fig.show()

Sav500=Sav1[:120]

Sav1000=Sav1[120:]

import plotly.plotly as py

import plotly.graph_objs as go
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x=['January', 'February','March',

'April','May','June','July','August','September','October',↪→

'November','December']

dat1=[]

dat2=[]

d=[]

fig = go.Figure()

for i in range(0,len(eff)):

p=eff[i]*100

p1=eff[i]*100

p=' %s '%p+ '% Efficency 500kW Capacity'

a=go.Scatter(x=x, y=Sav500[(12*i):(12*(i+1))],

mode='lines+markers',

name= p )

p1=' %s '%p1+ '% Efficency 1000kW Capacity'

b=go.Scatter(x=x, y=Sav1000[(12*i):(12*(i+1))],

mode='lines+markers',

name= p1 )

dat1.append(a)

dat2.append(b)

d=dat1+dat2

layout = dict(title="Savings 20 max per month ",

showlegend=True,

xaxis=dict(title="Month"),

yaxis=dict(title="$"))

data=d

# Create fig

fig = dict(data=data, layout=layout)

py.iplot(fig)

Nobat2=[]

Bat2=[]

Sav2=[]
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b2=[]

ef2=[]

mo2=[]

months=[1,2,3,4,5,6,7,8,9,10,11,12]

for c in cap:

#print("Cappacity of %s " %c)

for e in eff:

#Discharge

dis=c*math.sqrt(e)

#Increment in the Energy demand.

cha=c/math.sqrt(e)

#print("Efficency of %s " %e)

for m in months:

dem=[]

temp=data1[data1['Month'] == m]

md=temp.dem.nlargest(40)

v=temp.loc[temp['Month']==m,'Count'].iloc[0]

for i in range(v,(len(temp.Count)+v)):

dem1=temp.loc[temp['Count']==i,'dem'].iloc[0]

for a in md:

if dem1==a:

dem1=dem1-dis

dem.append(dem1)

e_bat=28*2*cha

di={'Demand':dem}

df4=pd.DataFrame(di)

#Cost of the increment

cc_e=e_bat/4*cosE #divided by for due to the 15 min

resolution↪→

if m ==1:

month='January'

elif m==2:

month='February'
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elif m==3:

month='March'

elif m==4:

month='April'

elif m==5:

month='May'

elif m==6:

month='June'

elif m==7:

month='July'

elif m==8:

month='August'

elif m==9:

month='September'

elif m==10:

month='October'

elif m==11:

month='November'

elif m==12:

month='December'

bat=round(df4.Demand.max()*cosP+ (df4.Demand.sum()) /4 *

cosE +cosF*(len(temp.dem)/96)+cc_e,2)↪→

nobat=round(temp.dem.max()*cosP+ temp.dem.sum()/4 * cosE

+cosF*(len(temp.dem)/96),2)↪→

sav=round(nobat-bat,2)

#Cost of charging the battery

#print( month + " " + 'No Battery=%f , Battery=%f ,

Savings=%f' % (nobat, bat, sav))↪→

Nobat2.append(nobat)

Bat2.append(bat)

Sav2.append(sav)

ef2.append(e)

b2.append(c)
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mo2.append(month)

df2 = pd.DataFrame(list(zip(mo2, b2,ef2,Sav2)),

columns =['Month', 'Battery','Efficency','Savings'])

df2.to_csv('deploy 40 peaks 2')

df2

import plotly.express as px

#data_canada = px.data.gapminder().query("Battery == '500'")

fig = px.bar(df2, x='Month', y='Savings')

fig.show()

import plotly.express as px

tips = px.data.tips()

fig = px.box(df2, x="Month", y="Savings", color="Battery",

notched=True, # used notched shape

# title="Box plot of total bill",

#hover_data=["day"] # add day column to hover data

)

fig.show()

Sav500=Sav2[:132]

Sav1000=Sav2[132:]

import plotly.graph_objs as go

x=['January', 'February','March',

'April','May','June','July','August','September','October',↪→

'November','December']

dat1=[]

dat2=[]

d=[]

fig = go.Figure()

for i in range(0,len(eff)):

p=eff[i]*100

p1=eff[i]*100
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p=' %s '%p+ '% Efficency 500kW Capacity'

a=go.Bar(x=x, y=Sav500[(12*i):(12*(i+1))],

mode='lines+markers',

name= p )

p1=' %s '%p1+ '% Efficency 1000kW Capacity'

b=go.Bar(x=x, y=Sav1000[(12*i):(12*(i+1))],

mode='lines+markers',

name= p1 )

dat1.append(a)

dat2.append(b)

d=dat1+dat2

layout = dict(title="Savings 40 max per month ",

showlegend=True,

xaxis=dict(title="Month"),

yaxis=dict(title="$"))

data=d

# Create fig

fig = dict(data=data, layout=layout)

fig.show()

C.4 Lineal and ARIMA model

# # ARIMA

import pandas as pd

import numpy as np

Rdata = pd.read_csv('data_lau/Alldata_1.csv')

from datetime import date

import calendar

series=Rdata.dem

Rdata.head()

series=Rdata.filter(["Date", "dem"])
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series['Date']=pd.to_datetime(series['Date'])

series.head()

series.set_index('Date',inplace=True)

series.head()

series.index

series.describe().transpose()

series.plot()

time_series=series['dem']

type(time_series)

time_series.plot()

time_series.rolling(2880).mean().plot(label='Montly')

import numpy as np

import pandas as pd

from pandas.plotting import autocorrelation_plot

import matplotlib.pyplot as plt

autocorrelation_plot(series)

from pandas import Series

from matplotlib import pyplot

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(time_series)

pyplot.show()

from statsmodels.tsa.seasonal import seasonal_decompose

time_series=time_series[:96]

result = seasonal_decompose(time_series, model='multiplicative',

freq=1)↪→

result.plot()

pyplot.show()

from statsmodels.tsa.seasonal import seasonal_decompose

result = seasonal_decompose(time_series,

model='multiplicative',freq=1)↪→
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print(result.trend)

print(result.seasonal)

print(result.resid)

print(result.observed)

import statsmodels.api as sm

decomposition = sm.tsa.seasonal_decompose(time_series,

model='multiplicative')↪→

decomposition.plot()

from pandas import read_csv

from pandas import datetime

from pandas import DataFrame

from statsmodels.tsa.arima_model import ARIMA

from matplotlib import pyplot

# fit model

model = ARIMA(time_series, order=(5,2,1))

model_fit = model.fit(disp=0)

print(model_fit.summary())

# plot residual errors

residuals = DataFrame(model_fit.resid)

residuals.plot()

pyplot.show()

residuals.plot(kind='kde')

pyplot.show()

print(residuals.describe())

from pandas import datetime

from matplotlib import pyplot

from statsmodels.tsa.arima_model import ARIMA

from sklearn.metrics import mean_squared_error

Xt = time_series

sizet = int(len(Xt) * 0.2)
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traint, testt = Xt[0:sizet], Xt[sizet:len(Xt)]

history = [x for x in traint]

predictionst = list()

for t in range(len(testt)):

model = ARIMA(history, order=(2,1,1))

model_fit = model.fit(disp=0)

outputt = model_fit.forecast()

yhatt = outputt[0]

predictionst.append(yhatt)

obst = testt[t]

history.append(obst)

print('predicted=%f, expected=%f' % (yhatt, obst))

errort = mean_squared_error(testt, predictionst)

#print('Test MSE: %.3f' % errotr)

# plot

pyplot.plot(testt)

pyplot.plot(predictionst, color='red')

pyplot.show()

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.cm as cm

import matplotlib.mlab as mlab

from matplotlib.ticker import LinearLocator, FormatStrFormatter,

FuncFormatter, MaxNLocator↪→

from pandas import datetime

from matplotlib import pyplot

from statsmodels.tsa.arima_model import ARIMA

from sklearn.metrics import mean_squared_error

len(predictionst)

len(testt)

# plot

plt.figure(1,figsize=(20,10))
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#plt.plot(testt, label='Data',color='blue')

plt.plot(predictionst, label = 'Predictions',color='red')

plt.legend()

plt.xlabel('Time ')

plt.ylabel('Demand')

# plot

plt.figure(1,figsize=(20,10))

plt.plot(testt, label='Data',color='blue')

#plt.plot(predictionst, label = 'Predictions',color='red')

plt.legend()

plt.xlabel('Time ')

plt.ylabel('Demand')

x=predictionst[29377:32064]

y=testt[29377:32064]

a=y.reset_index()

index=a['Date']

a.dem

# plot

plt.figure(1,figsize=(20,10))

plt.plot(x, label='Data',color='blue')

plt.plot(a.dem, label = 'Predictions',color='red')

plt.legend()

plt.xlabel('Time ')

plt.ylabel('Demand')

# # Lineal Regression

import numpy as np

from numpy.random import randn

import math

get_ipython().run_line_magic('matplotlib', 'inline')

import plotly.graph_objs as go

import math

import numpy as np
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import pandas as pd

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.cm as cm

import matplotlib.mlab as mlab

from matplotlib.ticker import LinearLocator, FormatStrFormatter,

FuncFormatter, MaxNLocator↪→

import pandas as pd

import numpy as np

Series =pd.read_csv('data_lau/Data3.csv', header=0, parse_dates=[0],

index_col=0, squeeze=True)↪→

Series.head()

X = Series[['t1','t2','t3','t4','t5','t6','t7','t8','t9','t10','t11',

't12','t13','t14','t15','t16','t17','t18','t19','t20','t21','t22',

't23','t24','t25','t26','t27','t28','t29','t30','t31','t32','t33',

't34','t35','t36','t37','t38','t39','t40','t41','t42','t43','t44'

,'t45','t46','t47','t48','t49','t50','t51','t52','t53','t54','t55',

't56','t57','t58','t59','t60','t61','t62','t63','t64','t65','t66',

't67','t68','t69','t70','t71','t72','t73','t74','t75','t76','t77',

't78','t79','t80','t81','t82','t83','t84','t85','t86','t87','t88',

't89','t90','t91','t92','t93','t94','t95','t-18','t(t-1)','BD',

'Month']]

Y = Series[['dem']]

# Note that there is a temperature that is being taken into account

at t-18 since the temperature of the building to be at 18 C↪→

from pandas import DataFrame

from sklearn import linear_model

import statsmodels.api as sm

# with sklearn

regr = linear_model.LinearRegression()



105

regr.fit(X, Y)

print('Intercept: \n', regr.intercept_)

print('Coefficients: \n', regr.coef_)

# with statsmodels

X = sm.add_constant(X) # adding a constant

model = sm.OLS(Y, X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Feb_pred=predictions[29377:32064]

from sklearn import metrics

print(metrics.mean_absolute_error(Series.dem,predictions))

print(metrics.mean_squared_error(Series.dem,predictions))

print(np.sqrt(metrics.mean_absolute_error(Series.dem,predictions)))

type(predictions)

Series.dem.to_csv("series")

# plot

from matplotlib import pyplot

plt.figure(1,figsize=(20,10))

plt.plot(predictions, label='Data',color='blue')

plt.plot(Series.dem, label = 'Predictions',color='red')

plt.legend()

plt.xlabel('Time ')

plt.ylabel('Demand')

pyplot.show()

coef=regr.coef_

inter=regr.intercept_

temp=coef[0,95]

BD=coef[0,96]

mon=coef[0,97]
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# # Gui

#

# This Gui takes the values from temperature and hour and can

calculate point demand↪→

from pandas import DataFrame

from sklearn import linear_model

import tkinter as tk

import matplotlib.pyplot as plt

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

root= tk.Tk()

canvas1 = tk.Canvas(root, width = 1200, height = 450)

canvas1.pack()

# Temperature

label1 = tk.Label(root, text='Temperature ')

canvas1.create_window(100, 40, window=label1)

entry1 = tk.Entry (root) # create 1st entry box

canvas1.create_window(230, 40, window=entry1)

# Busisness Day

label2 = tk.Label(root, text=' BD (0= no 1= yes)')

canvas1.create_window(100, 60, window=label2)

entry2 = tk.Entry (root) # create 2nd entry box

canvas1.create_window(230, 60, window=entry2)

#Time

label31 = tk.Label(root, text=' Time (hhmm)')

canvas1.create_window(100, 80, window=label31)
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entry31 = tk.Entry (root) # create 2nd entry box

canvas1.create_window(230, 80, window=entry31)

#Month

label4 = tk.Label(root, text='Month')

canvas1.create_window(100, 100, window=label4)

entry4 = tk.Entry (root) # create 2nd entry box

canvas1.create_window(230, 100, window=entry4)

def values():

global Temperature #our 1st input variable

Temperature = float(entry1.get())

global BD #our 2nd input variable

bd = float(entry2.get())

global Month #our 1st input variable

Month = float(entry4.get())

global Time

entry3=str(entry31.get())

if entry3=="0000":

a=coef[0,0]

elif entry3=="0015":

a=coef[0,1]

elif entry3=="0030":

a=coef[0,2]

elif entry3=="0045":

a=coef[0,3]

elif entry3=="0100":

a=coef[0,4]

elif entry3=="0115":

a=coef[0,5]

elif entry3=="0130":

a=coef[0,6]

elif entry3=="0145":
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a=coef[0,7]

elif entry3=="0200":

a=coef[0,8]

elif entry3=="0215":

a=coef[0,9]

elif entry3=="0230":

a=coef[0,10]

elif entry3=="0245":

a=coef[0,11]

elif entry3=="0300":

a=coef[0,12]

elif entry3=="0315":

a=coef[0,13]

elif entry3=="0330":

a=coef[0,14]

elif entry3=="0345":

a=coef[0,15]

elif entry3=="0400":

a=coef[0,16]

elif entry3=="0415":

a=coef[0,17]

elif entry3=="0430":

a=coef[0,18]

elif entry3=="0445":

a=coef[0,19]

elif entry3=="0500":

a=coef[0,20]

elif entry3=="0515":

a=coef[0,21]

elif entry3=="0530":

a=coef[0,22]

elif entry3=="0545":

a=coef[0,23]

elif entry3=="0600":

a=coef[0,24]
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elif entry3=="0615":

a=coef[0,25]

elif entry3=="0630":

a=coef[0,26]

elif entry3=="0645":

a=coef[0,27]

elif entry3=="0700":

a=coef[0,28]

elif entry3=="0715":

a=coef[0,29]

elif entry3=="0730":

a=coef[0,30]

elif entry3=="0745":

a=coef[0,31]

elif entry3=="0800":

a=coef[0,32]

elif entry3=="0815":

a=coef[0,33]

elif entry3=="0830":

a=coef[0,34]

elif entry3=="0845":

a=coef[0,35]

elif entry3=="0900":

a=coef[0,36]

elif entry3=="0915":

a=coef[0,37]

elif entry3=="0930":

a=coef[0,38]

elif entry3=="0945":

a=coef[0,39]

elif entry3=="1000":

a=coef[0,40]

elif entry3=="1015":

a=coef[0,41]

elif entry3=="1030":
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a=coef[0,42]

elif entry3=="1045":

a=coef[0,43]

elif entry3=="1100":

a=coef[0,44]

elif entry3=="1115":

a=coef[0,45]

elif entry3=="1130":

a=coef[0,46]

elif entry3=="1145":

a=coef[0,47]

elif entry3=="1200":

a=coef[0,48]

elif entry3=="1215":

a=coef[0,49]

elif entry3=="1230":

a=coef[0,50]

elif entry3=="1245":

a=coef[0,51]

elif entry3=="1300":

a=coef[0,52]

elif entry3=="1315":

a=coef[0,53]

elif entry3=="1330":

a=coef[0,54]

elif entry3=="1345":

a=coef[0,55]

elif entry3=="1400":

a=coef[0,56]

elif entry3=="1415":

a=coef[0,57]

elif entry3=="1430":

a=coef[0,58]

elif entry3=="1445":

a=coef[0,59]
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elif entry3=="1500":

a=coef[0,60]

elif entry3=="1515":

a=coef[0,61]

elif entry3=="1530":

a=coef[0,62]

elif entry3=="1545":

a=coef[0,63]

elif entry3=="1600":

a=coef[0,64]

elif entry3=="1615":

a=coef[0,65]

elif entry3=="1630":

a=coef[0,66]

elif entry3=="1645":

a=coef[0,67]

elif entry3=="1700":

a=coef[0,68]

elif entry3=="1715":

a=coef[0,69]

elif entry3=="1730":

a=coef[0,70]

elif entry3=="1745":

a=coef[0,71]

elif entry3=="1800":

a=coef[0,72]

elif entry3=="1815":

a=coef[0,73]

elif entry3=="1830":

a=coef[0,74]

elif entry3=="1845":

a=coef[0,75]

elif entry3=="1900":

a=coef[0,76]

elif entry3=="1915":
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a=coef[0,77]

elif entry3=="1930":

a=coef[0,78]

elif entry3=="1945":

a=coef[0,79]

elif entry3=="2000":

a=coef[0,80]

elif entry3=="2015":

a=coef[0,81]

elif entry3=="2030":

a=coef[0,82]

elif entry3=="2045":

a=coef[0,83]

elif entry3=="2100":

a=coef[0,84]

elif entry3=="2115":

a=coef[0,85]

elif entry3=="2130":

a=coef[0,86]

elif entry3=="2145":

a=coef[0,87]

elif entry3=="2200":

a=coef[0,88]

elif entry3=="2215":

a=coef[0,89]

elif entry3=="2230":

a=coef[0,90]

elif entry3=="2245":

a=coef[0,91]

elif entry3=="2300":

a=coef[0,92]

elif entry3=="2315":

a=coef[0,93]

elif entry3=="2330":

a=coef[0,94]
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elif entry3=="2345":

a=0

else:

a=0

Prediction_result = ('Demand: ',

inter+a+mon*Month+temp*(abs(Temperature-18))+BD*bd)↪→

label_Prediction = tk.Label(root, text= Prediction_result,

bg='orange')↪→

canvas1.create_window(260, 280, window=label_Prediction)

button1 = tk.Button (root, text='Demand',command=values, bg='orange')

# button to call the 'values' command above↪→

canvas1.create_window(270, 150, window=button1)

root.mainloop()

# Test for Feruary

import pandas as pd

import numpy as np

Feb =pd.read_csv('data_lau/Feb_values.csv', header=0,

parse_dates=[0], index_col=0, squeeze=True)↪→

Feb.head()

Feb_real=Feb.dem

Feb_pred1=Feb_pred*1.1

print(Feb_real)

Feb=Series[Series['Month']==2]

Feb=Feb.dem

Feb

# plot

from matplotlib import pyplot

plt.figure(1,figsize=(20,10))
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plt.plot(Feb, label='Data',color='blue')

plt.plot(Feb_pred1, label = 'Predictions',color='red')

plt.legend()

plt.xlabel('Time ')

plt.ylabel('Demand')

plt.title('February Lineal Regression')

pyplot.show()
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