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ABSTRACT

In the study of multi-agent systems (MASs), cooperative control is one of the most

fundamental issues. As it covers a broad spectrum of applications in many industrial

areas, there is a desire to design cooperative control protocols for different system

and network setups. Motivated by this fact, in this thesis we focus on elaborating

consensus protocol design, via model predictive control (MPC), under two different

scenarios: (1) general constrained linear MASs with bounded additive disturbance; (2)

linear MASs with input constraints underlying distributed communication networks.

In Chapter 2, a tube-based robust MPC consensus protocol for constrained linear

MASs is proposed. For undisturbed linear MASs without constraints, the results on

designing a centralized linear consensus protocol are first developed by a subopti-

mal linear quadratic approach. In order to evaluate the control performance of the

suboptimal consensus protocol, we use an infinite horizon linear quadratic objective

function to penalize the disagreement among agents and the size of control inputs.

Due to the non-convexity of the performance function, an optimal controller gain is
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difficult or even impossible to find, thus a suboptimal consensus protocol is derived.

In the presence of disturbance, the original MASs may not maintain certain properties

such as stability and cooperative performance. To this end, a tube-based robust MPC

framework is introduced. When disturbance is involved, the original constraints in

nominal prediction should be tightened so as to achieve robust constraint satisfaction,

as the predicted states and the actual states are not necessarily the same. Moreover,

the corresponding robust constraint sets can be determined offline, requiring no extra

iterative online computation in implementation.

In Chapter 3, a novel distributed MPC-based consensus protocol is proposed for

general linear MASs with input constraints. For the linear MAS without constraints,

a pre-stabilizing distributed linear consensus protocol is developed by an inverse op-

timal approach, such that the corresponding closed-loop system is asymptotically set

stable with respect to a consensus set. Implementing this pre-stabilizing controller in

a distributed digital setting is however not possible, as it requires every local decision

maker to continuously access the state of their neighbors simultaneously when updat-

ing the control input. To relax these requirements, the assumed neighboring state,

instead of the actual state of neighbors, is used. In our distributed MPC scheme,

each local controller minimizes a group of control variables to generate control input.

Moreover, an additional state constraint is proposed to bound deviation between the

actual and the assumed state. In this way, consistency is enforced between intended

behaviors of an agent and what its neighbors believe it will behave. We later show

that the closed-loop system converges to a neighboring set of the consensus set thanks

to the bounded state deviation in prediction.

In Chapter 4, conclusions are made and some research topics for future exploring

are presented.
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Chapter 1

Introduction

1.1 Cooperative Control of Multi-agent Systems

In the past few decades, cooperative control in MASs, like formation, tracking and

consensus, has received increasing attention. It covers a broad spectrum of appli-

cations in autonomous vehicles, distributed sensor networks, cyber-physical systems

and power grids. Technically, the term “agent” refers to a general individual system

dynamic. It can be characterized as a single mobile robot or an unmanned aerial

vehicle (UAV) in a multi-robotic system, or a single satellite in a global navigation

system, or a photovoltaic panel in a micro power grid. Equipped with actuators and

sensors, agents can share information with others via communication networks to per-

form complex tasks which are difficult or even impossible for a single agent. A general

architecture of MASs is shown in Figure 1.1. A cooperative control law is called a

protocol in the study of MASs. In cooperative control problems, information shared

among agents may involve common objectives, common control protocols, relative

state information, or topology of communication networks.

One approach to tackle multi-agent cooperative control problem is to implement a
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Figure 1.1: A general architecture of MASs

centralized controller to regulate all agents. It aims to use only one computationally

powerful central controller to control the overall MAS. After collecting data and

calculating, the centralized controller sends control input signals to every agent. With

properly designed protocols, the centralized cooperative control strategy works well

in the MASs whose scales are not very large.

In many practical applications, the number of agents can grow tremendously,

thus computational load and communication pressure on the system may increase.

Together with disturbance like sensor noise and model mismatch, the cooperation

among agents may fail. Another approach featuring the computational efficiency is

to apply decentralized cooperative control frameworks. A large-scale MAS is decou-

pled into several subsystems by neglecting interactions among agents, and then an

independent controller is assigned to every agent to generate control signals.

However, ignorance of interactions among agents is possible to result in poor con-

trol performance or even loss of convergence. To this end, increasing attention has
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been devoted to effective, but more reliable distributed control schemes. Similar to

the structure of the decentralized control strategies, a local controller is assigned to

each agent in the distributed control schemes, but the interactions are considered

in controller design. Therefore, the distributed control strategies can achieve coop-

erative control tasks as the centralized ones, as well as reduce the computational

complexity due to the decentralized network structure. Figure 1.2 demonstrates the

three different communication network architectures.

Applications of multi-agent cooperation are reported in multi-vehicle system for-

mation control [1, 2], leader-follower flocking [3, 4], trajectory tracking [5], point

tracking [6] and so forth. The centralized cooperative control strategies can be found

in [7, 8], and existing works [9, 10] demonstrate the decentralized cooperative control

schemes with robustness to disturbance. The distributed control strategies are also

reported in [11, 12, 13]. In the following sections, a brief introduction to multi-agent

consensus is given and a literature review is presented to illustrate the recent research

progress.
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1.2 Consensus Problem in Multi-agent Systems

Multi-agent consensus, also known as multi-agent agreement, requires a group of

agents to agree on certain quantities of interest [14]. Consensus problem has a long

history in the research field of computer science [15], especially in automata and

distributed computation, but in this thesis we focus on its applications from the

perspective of automatic control.

In a typical MAS, a group of autonomous agents are equipped with build-in sensors

and actuators. Each agent has an embedded controller to generate control inputs

individually. The agents measure their states and communicate with other agents

via an information transmission network. In this way, the overall system works in a

collaborative way. The overall system is said to achieve consensus if all agents reach an

agreement on certain common features, such as common equilibrium points, position,

linear/angular velocity or orientation [16]. The schematic of a typical multi-agent

consensus problem is demonstrated in Figure 1.3.

Appropriate consensus protocols are necessary and crucial to multi-agent cooper-

ation. To elaborate this, we consider the following MAS given by discrete-time linear

time-invariant (LTI) dynamics:

xi(k + 1) = Axi(k) +Bui(k), xi(0) = xi0, i ∈ N[1,M ],

where xi ∈ Rn is the state, ui ∈ Rm is the control input and xi0 is the initial

state. N[1,M ] represents a sequence of integers {1, . . . ,M}. The MAS is said to reach

consensus if

lim
k→∞
‖xi(k)− xj(k)‖ = 0,

where i, j ∈ N[1,M ] and i 6= j. Without loss of generality, our objective is to design a
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Figure 1.3: Schematic of consensus problem in MASs

consensus protocol of the following form

ui(k) = g(xi(k), xj(k)),

where j ∈ Ni(k) represents the set of neighbor agents whose information is accessible

to agent i at time k. Our focus is mainly on fixed network topology, so Ni(k) is

assumed to be time-invariant in this thesis.

The topology of the communication network is described by a graph. In this

thesis, a graph G is assumed to be time-invariant and is defined by (V , E) with V =

{v1, v2, · · · , vM} being a non-empty vertex set of M nodes and

E = {(vi, vj) |vi, vj ∈ V , i 6= j} ⊂ V × V

being the edge set. More about graph theory is referred to [16, 17].
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Since a consensus control scheme can be easily modified to solve stabilization,

formation, leader-follower flocking, trajectory tracking and some other cooperative

control problems, it is one of the most fundamental issues in multi-agent cooperation,

and has been studied from different perspectives in the past few decades:

• System dynamics. In the early stage, simple system dynamics like single-

integrator receive major attention, and some decent results can be found in

[18, 19, 20]. Extensions for more complex double-integrator systems are made

and related works are reported in [21, 22, 23]. Particularly, authors in [24]

demonstrate the sufficient and necessary conditions for a second-order MAS

reaching consensus under a directed communication graph with a spanning tree.

Systems in practical industrial applications are often more complex, thus con-

sensus for more general linear systems is investigated [25, 26, 27, 28]. However,

these aforementioned consensus control schemes may not be directly applicable

to higher order dynamics or nonlinear systems. Till now, consensus solutions

to nonlinear MASs are still few, but some exceptions can be found in [29, 30].

• Applications. Multi-agent consensus has found many applications in industry,

particularly in UAV control [31, 26], multi-vehicle collaboration [21, 32, 33] or

platoon [27] and wireless sensor networks [34]. In the field of power grid man-

agement, implementations of MAS consensus are reported in power restoration

and distributed power generation [35, 36].

• Practical constraints. Challenges are brought to the real applications of

multi-agent consensus when practical constraints are involved. Generally, these

constraints can be categorized as two types: state constraints and input sat-

uration. Satisfaction of state constraints is often considered in multi-agent

cooperation. For example, if the distance between two agents is too closed,
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collision may happen and cooperation among agents may fail. An example of

collision avoidance can be referred to [26]. On the contrary, if the distance is

too far, communication connection among agents is possible to lose, so some

researchers develop results considering connectivity maintenance [37]. Another

category of practical constraints is input saturation. Due to the physical limi-

tations of electrical/mechanical actuators, control input has to be restricted to

reasonable levels, e.g. [38, 27].

Some typical results in multi-agent consensus subject to different constraints are

categorized in Table 1.1.

Table 1.1: Brief literature review for multi-agent consensus.

Related Work System Model Cooperation Type Practical Constraints

B-Arranz et al, 2014 Nonlinear & Continuous Formation Distance constraints

Lin et al, 2014 Linear & Continuous Formation Distance constraints

Zhan et al, 2012 Linear & Discrete Flocking Distance constraints

Gu et al, 2009 Nonlinear & Continuous Flocking Input saturation

Li et al, 2015 Nonlinear & Continuous Trajectory tracking Input saturation

Su et al, 2013 Linear & Continuous Consensus Input saturation

Kuriki et al, 2014 Linear & Discrete Consensus Collision avoidance

Li et al, 2018 Linear & Discrete Consensus Input saturation

Zhan et al, 2018 Linear & Discrete Consensus Input saturation & Distance constraints

1.3 MPC and MPC-based Consensus

1.3.1 MPC

Model predictive control (MPC), also known as receding horizon control (RHC), is

an advanced optimal control strategy combining the feedback mechanism and con-

strained convex optimization techniques. The control input is generated by solving an
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optimal control problem (OCP) where the cost functional is a function of the current

system state and a sequence of control variables over a certain time horizon in the

future prediction. The constraints of the OCPs are designed based on the inherent

physical restrictions of real systems. MPC finds its applications in many engineer-

ing domains where practical constraints are involved, such as chemical plant control

[39, 40], path planning of AUVs [41] and power grids [35, 36].

Consider a discrete-time linear system given by

x(k + 1) = Ax(k) +Bu(k), (1.1)

where x ∈ Rn is the state and u ∈ Rm is the control input. The system is required

to satisfy the state constraints x ∈ X and the input constraints u ∈ U . The cost

function of the corresponding OCP to be solved iteratively can be defined as

JN(x(k),u(k)) =
N−1∑
t=0

‖x(k + t|k)‖2
Q + ‖u(k + t|k)‖2

R + ‖x(k +N |k)‖2
P ,

where N denotes the prediction horizon, x(k + t|k) and u(k + t|k) represent the

predicted state and input trajectories at time k + t starting from time k and satisfy

x(k|k) = x(k),

x(k + t+ 1|k) = Ax(k + t|k) +Bu(k + t|k),

(1.2)

and Q � 0, R � 0 and P � 0 are weighting matrices. The predicted control sequence

is defined by u(k)T =

[
u(k|k)T, · · · , u(k −N |k)T

]T

. Then at time instant k, the
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control input sequence is obtained by solving the following optimization problem:

min
u(·)

JN(x(k),u(k))

s.t. (1.2)

x(k + t|k)∈ X , u(k + t|k)∈ U ,

x(k +N |k)∈ Xf ,

where the target set Xf is called the terminal set. In most cases, once the optimal

predicted control sequence u∗(k) = arg min JN(x(k),u(k)) is obtained, only the first

element u∗(k|k) is applied to the actual system. As time moves, the system re-samples

the current state and solves the above online optimization problem to generate control

signals iteratively.

Compared with other control methods, MPC has proved success in tackling hard

constraints in multi-variable control. The process industry witnessed the phenomenal

success of MPC at the beginning of this century, but paid less attention to the condi-

tions that guarantee stability of MPC. Fortunately, a breakthrough in deterministic

MPC stability study happens in 2000. The researchers in [42] discuss the conditions

that ensure nominal stability of linear and nonlinear systems with state and input

constraints of the MPC frameworks. It is well understood that the stability of MPC

can be achieved by adding a properly designed terminal cost and terminal constraints,

or by extending the prediction horizon of the online optimization problem. Many lit-

eratures also present robust MPC schemes against additive disturbance. An overview

of typical MPC schemes can be summarized as follows:

• To guarantee iterative feasibility and stability in deterministic MPC design,

some tailored terminal constraints and terminal state penalty are often added

to the online optimization problem in the model predictive controllers. For lin-
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ear systems, the essential idea of stable MPC frameworks is to find a positive

invariant set as the terminal region [42]. When the system state is inside the

offline determined terminal set, all constraints are recursively satisfied. A no-

table work [43] proposes a stabilizing MPC framework for nonlinear systems. It

is assumed that the linearization of the original nonlinear system is stabilizable

at the origin. Then a local linear feedback law which stabilizes the lineariza-

tion, can be determined. The linear feedback can also be proved to stabilize

the original nonlinear system locally. Feasible control input to the optimization

problem can be produced by the local control law and optimality is thus ob-

tained. In this way, the stability is gained from the recursive feasibility and the

optimality.

• To tackle additive disturbance caused by noise, model mismatch or parametric

uncertainty, robust MPC schemes are developed. The existing literatures in

robust MPC can be classified as three categories: robust MPC with nominal

cost [44], tube-based MPC [45, 46] and min-max robust MPC [12, 47, 48]. Since

MPC design combines the feedback mechanism and optimization, the inherent

properties of feedback, to some extend, can provide a certain degree of robust-

ness against external disturbance. By tightening the original constraints, satis-

faction of restrictions on the actual disturbed systems can be achieved in robust

MPC with nominal cost. This approach, however, generally yields conservative

robustness in open-loop prediction [44]. A typical tube-based MPC scheme in-

corporates an a priori well-tuned linear feedback with control input generated

from constrained optimization. The former static feedback, or referred to as

nominal/reference feedback [45, 49], helps tackle effects from disturbance and

the latter preserves constraint satisfaction. The conservativeness in [44] can be

reduced, especially for nonlinear system dynamics, by using tube-based MPC
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strategies. In another type of tube-based MPC, also known as feedback MPC,

the decision variable in the OCP is a policy, i.e., a sequence of control laws,

rather than control actions (see [46, 50, 51] for examples). In min-max robust

MPC, the worst case in all admissible disturbance is considered to guarantee the

satisfactory of robust constraints. By using dynamic programming techniques,

a min-max optimization problem is formulated and solved to generate control

input. This approach provides better robustness but consumes more computa-

tional resources. Thus the trade-off between performance and computation has

to be taken into consideration when implementing the min-max MPC.

A brief literature review for typical MPC schemes can be found in Table 1.2.

Table 1.2: Brief literature review for typical MPC schemes.

Related Work System Model
Deterministic

/Robust
Input Generation

Chen et al, 1998 Nonlinear & Continuous Deterministic Optimal control action

Mayne et al, 2000 Nonlinear & Discrete Deterministic Optimal control policy

Marruedo et al, 2002 Nonlinear & Continuous Inherent robust Optimal control action

Mayne et al, 2005; Chisci et al, 2001 Linear & Discrete Tubed-based robust Optimal control policy

Raimondo et al, 2009 Nonlinear & Discrete Min-max robust Optimal control policy

1.3.2 MPC-based Consensus

It is well known that MPC has proved success in handling hard constraints, and it is

widely adopted in MAS control. Among MPC-based multi-agent control frameworks,

most of the existing results discuss cooperative stabilization and tracking [52, 53, 54,

55], where the systems have to converge to an a priori known set point or to follow

an a priori specified reference trajectory. Compared to the classical stabilization or

tracking control problems, more general cooperative control objectives, in particular,
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multi-agent consensus, are of great importance. In such a setting, the systems are

required to agree on a common online trajectory which is not necessarily a priori

specified. MPC-based consensus is still challenging with relatively fewer results.

In the early stage, the main focus is on first-order integrator dynamics [54], and in

recent years, some new approaches for double-integrator models appear (see [56, 23]

for examples). In [23], a distributed model predictive controller is designed for static

formation of a group of agents governed by double integrator dynamics. The cooper-

ative control problem is formulated into an unconstrained leader-follower formation

problem, and the leader agent has global access to the state of the overall system.

The authors in [57] propose an MPC-based consensus strategy for unconstrained inte-

grators. In this work, iterative information exchange among agents is required. Most

existing works considering integrator models focus on fixed network topologies, but

one exception studying MAS underlying a directed graph with switching topology

can be found in [56].

In the literatures of consensus of linear MASs, some decent results are presented

in [58]. In this work, the consensus problem of general linear MASs are investigated

under the framework of unconstrained optimization. An explicit solution is derived by

using Karush–Kuhn–Tucker (KKT) conditions and more specified consensus condi-

tions for one-dimensional linear systems are developed by Riccati difference equations.

However, input/state constraints are not involved in this framework. For constrained

linear MASs, the researchers in [38] first propose an inverse optimal linear consensus

protocol, such that the closed-loop system is asymptotically stable with respect to

a consensus set. When the input constraints are involved, a centralized MPC-based

consensus strategy is designed based on the pre-stabilizing linear consensus protocol.

Distributed MPC scheme is later developed by decoupling the centralized one. Appli-

cations of distributed MPC-based consensus, like multi-vehicle platoon, can be found
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in [27]. This work proposes a novel distributed MPC-based consensus framework with

self-triggered mechanism. Information accessing among agents happens only one time

at every sampling instant and multi-vehicle platoon problem is later studied based on

this distributed self-triggered MPC framework. However, the communication pattern

in this control strategy requires simultaneous information sharing when each agent

measures its current state in a directed network. This is particularly troublesome in

networked control systems with distributed digital controller setup. Moreover, the

conditions for recursive feasibility are not rigorously derived, thus a rather strong

assumption is made in this work.

More related works on MPC-based consensus for different scenarios are listed in

Table 1.3.

Table 1.3: Existing literatures for MPC-based consensus

Coupling
Cost function Constraints
Zhan et al, 2018 Müller et al, 2012a

Communication

Iterative Non-iterative
Müller et al, 2012b Li et al, 2018
Fixed topology Time-varying topology

Ferrari-Trecate et al, 2019 Cheng et al, 2015
Periodic Triggered

Manfredi et al, 2018 Duan et al, 2018

Robustness
Tube-based Min-max

Müller et al, 2012b Jia et al, 2002

1.4 Motivations and Contributions

1.4.1 Motivations

The main motivations of this thesis can be summarized in the following points of

view.

• Tube-based robust MPC consensus. Many existing works on MPC-based

consensus focus on simple deterministic system dynamics like single or double
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integrator systems [22, 23, 59], with several exceptions considering disturbance

[12, 60] as mentioned in the previous section. In a notable result [60], where

tube-based MPC is adopted to solve consensus problem of nonlinear systems,

the model predictive controller assigned on each agent requires multiple times

of communication to share both state and input information. This iterative

communication pattern imposes heavy pressure on the communication network.

Therefore, it would make perfect sense that the tube-base robust MPC con-

sensus protocol designed for general linear systems with disturbance requires

non-iterative information sharing among agents.

• Distributed MPC-based consensus. In the literature of MPC for multi-

agent cooperation, most of the existing results focus on cooperative stabilization

problem [32, 52, 39, 5]. Till now, there are still few results adopting distributed

MPC for multi-agent consensus and some of them are reported in [54, 61, 58,

38, 27]. In [54], the system model is restricted to integrator dynamics and is not

easy to extend to more general system models. Distributed MPC frameworks

involving more general constrained linear systems can be found in [27, 38], but

simultaneous access to neighboring agent state is required. This is especially

difficult to realize in digital controller networks. The authors in [57, 58] study

multi-agent consensus by formulating the control problem into an optimization

problem without considering constraints. None of the existing MPC results can

handle multi-agent consensus for general constrained linear MASs underlying

an undirected communication graph with truly distributed local controllers.
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1.4.2 Contributions

This thesis focuses on designing MPC-based consensus control strategies for different

system and network setups. The main contributions of this thesis are summarized as

follows.

• Centralized robust MPC-based consensus for linear MASs with in-

put constraints. In the first part, we propose the tube-based MPC scheme to

solve the consensus problem of constrained linear MASs with bounded additive

disturbance. A linear consensus protocol is first introduced for the undisturbed

systems without constraints. Due to the non-convexity of the infinite horizon

performance function in linear quadratic form, the optimal controller gain is

difficult, or even impossible to find. Thus a suboptimal solution is adopted and

the sufficient and necessary conditions for its existence are given. By solving

a modified discrete-time Riccati equation (DARE), an identical local feedback

gain is obtained for every agent in the MAS. When disturbance and constraints

are involved, a tube-based MPC consensus strategy is adopted. By inserting

tightened constraints into the original OCP, the closed-loop systems gain ro-

bustness against disturbance. We further prove that the recursive feasibility

and convergence can be guaranteed.

• Distributed MPC-based consensus for linear systems with input con-

straints. The second part of this thesis is concerned with a novel distributed

MPC-based consensus protocol for semi-stable systems with input saturation.

At every time step, each agent measures its current state, then solves a local

constrained OCP to generate control signals, where only state information of

the neighbors is required. Once the local optimization problem is solved, every

agent exchanges the predicted state information with its neighbors only once at
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each time instant, i.e., no iterative communication is required. We first intro-

duce a linear consensus protocol designed via the inverse optimal method as the

pre-stabilizing control law, such that the closed-loop system is asymptotically

stable with respect to a consensus set. When input saturation is considered,

we minimize the gap between the MPC input and the pre-stabilizing controller

input while preserving the satisfaction of input constraints. Moreover, an addi-

tional state constraint is inserted into the OCP in order to restrict the deviation

between the acutal and the assumed state. By doing this, cooperation among

agents is reinforced. We further prove the feasibility and show that the MAS

converges to a neighboring set of the consensus set.

1.5 Thesis Organization

The reminder of this thesis is organized as follows:

Chapter 2 involves a centralized robust MPC scheme to solve the consensus problem

of general linear multi-agent systems with bounded disturbance.

Chapter 3 proposes a novel distributed MPC scheme to solve the consensus problem

for general semi-stable linear MASs in truly distributed networks.

Chapter 4 gives the conclusions of this thesis and proposes some interesting future

research areas.
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Chapter 2

A Centralized Robust MPC-based

Consensus Protocol for Disturbed

Multi-agent Systems

2.1 Introduction

In this chapter, our focus is on robust model predictive solution to consensus prob-

lem of linear MASs subject to persistent additive disturbance. We first present the

results on developing a centralized linear consensus protocol, via suboptimal linear

quadratic approach, for unconstrained nominal MASs. When disturbance and con-

straints are considered in the MPC framework, the original constraint sets in nominal

MPC prediction should be more stringent, so that the actual state/input, which does

not necessarily coincide with the predicted ones, can achieve robust constraint sat-

isfaction. We later show the constraint sets in our MPC framework can be offline

determined and no extra online computation is required. Properties such as stability

and iterative feasibility will be provided.
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In applications involving multiple agents agreeing upon various quantitative inter-

ests, consensus has been a long-standing area of research. The past few decades have

witnessed an enormous amount of research efforts on cooperative control of MASs

from different perspectives. In the early stage, the main focus is on consensus of multi-

ple agents governed by first-order dynamics [62, 18, 19], where necessary and sufficient

conditions for first-order dynamics under different setups are illustrated. The inter-

est in studying consensus of second-order dynamics also grows in the past decade,

and some decent results can be found in [24, 5]. Particularly, the authors in [24]

demonstrate necessary and sufficient conditions for MASs governing by second-order

dynamics underlying a fixed connected information transmission network topology.

In recent years, more and more results are proposed to handle practical issues

in MAS consensus. Many of these works involve practical constraints under differ-

ent network setups, including actuator saturation [25], collision avoidance [26, 31],

time-delay [63, 64] and switching network topology [19, 65]. These techniques turn

out to be useful in industrial applications. For example, the authors in [6] consider

a multiple-robot system with physically decoupled nonlinear dynamics, pursuing a

common cooperative control task subject to certain coupling constraints.

It is well known that MPC has been broadly implemented in many industrial

applications for decades and has significant profits in handling hard constraints in

comparison with many other conventional control strategies [66]. In the literature,

many works consider deterministic linear/nonlinear systems and illustrate conditions

ensuring stability. Some of those remarkable results can be found in [67, 68, 69, 43].

However, the presence of uncertainty, in possible form of additive disturbance,

inaccurate state estimation or model mismatch, may destroy stability of nominal

predictive control systems. To attenuate the uncertainty effect, the authors in [44]

investigate the growth of the disturbance effect on nominal systems along the pre-
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diction horizon and introduce the robust MPC with nominal cost. This framework

benefits from some degree of inherent robustness of MPC. By involving properly

tightened constraint sets in nominal prediction, the uncertainty effect can be limited.

This approach, however, may bring in conservatism because of its open-loop fash-

ion in prediction. Another approach considers deviation between the predicted state

and the actual state. The deviation is then characterized by a sequence of limited

sets, also known as “tubes”. By subtracting these deviation sets from the original

constraint sets, the tightened constraints for robust prediction are obtained. After

solving the robust OCP, a sequence of control actions is generated. This category

of tube-based MPC cannot contain the “spread” of predicted state/input trajectory,

so this prediction is open-loop and may result in conservatism. In another type of

tube-based MPC scheme, also known as feedback MPC, see [46, 50, 51] for exam-

ples, the decision variable in the optimal control problem is a policy, or namely a

sequence of control laws, rather than a sequence of control actions. Since disturbance

considered in robust MPC problems is assumed to be bounded, another well-known

feedback MPC framework, min-max MPC, involves the worst case of all possible dis-

turbance to satisfy constraints and solves a min-max optimization problem to obtain

a sequence of optimal control policies [47]. However, the min-max MPC is the most

computationally expensive among these three categories of robust MPC frameworks.

Supplementary techniques like parameterization of policies are developed to reduce

the degree of freedom of the min-max optimization problem, so that computation

load is reduced to a practically solvable level [48].

Compared with the robust MPC with nominal cost, the tube-based MPC has

more profits in handling disturbance and yield less conservative robustness margins.

It also consumes less computation power than the min-max MPC frameworks, so

the required computation resource level is more practically acceptable. Motivated by
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this fact, we want to investigate the consensus problem in disturbed linear MASs by

making use of the tube-based MPC.

The main contributions of this chapter are two-fold:

• We present a linear consensus protocol design method for linear MASs by ex-

tending the results in [28] into discrete-time domain. Sufficient and necessary

conditions for the existence of such a suboptimal solution to the linear quadratic

consensus control problem are given. By computing a positive definite solution

of a modified discrete-time algebraic Riccati equation (DARE), an identical

local controller gain is obtained for every agent.

• A tube-based MPC scheme is developed to tackle infeasibility and instability of

a predictive controller when joint presence of input constraints and additive dis-

turbance occurs. The robustness is enforced by inserting restricted constraints

into the nominal predictive controller, so that input-to-state stability is guar-

anteed.

The reminder of this chapter is organized as follows. Section 2.2 formulates the

robust consensus problem and presents the control objectives. Section 2.3 develops

the consensus protocol designed via the suboptimal linear quadratic approach. With

the linear consensus protocol, we introduce a nominal predictive consensus control and

show the offline computed constraint sets of the MPC framework at the beginning of

Section 2.4, followed by the robust model predictive solution to the consensus problem.

Section 2.5 focuses on feasibility and convergence analysis. Numerical examples and

simulation study are provided in Section 2.6. Section 2.7 concludes this chapter.

Notation: The notation R represents the set of real numbers and Rn denotes

the Cartesian product of R× · · · × R︸ ︷︷ ︸
n

. A sequence of integers is given by N[m,n] =

{m,m+ 1, . . . , n}. Given two sets A, B ⊆ Rn and vectors a, b, c ∈ Rn, the Minkowski
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sum of the sets is defined by A⊕B := {c|c = a+ b, a ∈ A, b ∈ B} and the Pontryagin

difference of the two sets is given by A 	 B := {c|c + b ∈ A, b ∈ B}. The Euclidean

norm is denoted by ‖·‖ and for a given matrix P , the weighted norm of a vector

x ∈ Rn is defined by ‖x‖2
P = xTPx. Let S(r) = {x0 ∈ RnM | ‖x0‖2 ≤ r2} be the

closed sphere of radius r in the nM -dimensional space.

2.2 Preliminaries and Problem Statement

2.2.1 Preliminaries

In this chapter, we consider an MAS consisting of M identical agents of the form

xi(k + 1) = Axi(k) +Bui(k) + ωi(k), i ∈ N[1,M ], (2.1)

with xi ∈ Rn being the state and ui ∈ Ui ⊆ Rm being the control input. An unknown

disturbance acting on agent i is denoted by ωi ∈ Wi ⊆ Rn. By using the Kronecker

product, we can rewrite the MAS of the dynamics in (2.1) in compact form as

x(k + 1) = (IM ⊗ A)x(k) + (IM ⊗B)u(k) + ω(k), (2.2)

with x =

[
xT

1 , · · · , xT
M

]T

, u =

[
uT

1 , · · · , uT
M

]T

and ω =

[
ωT

1 , · · · , ωT
M

]T

. The vectors

x ∈ Rn×M , u ∈ Rm×M and ω ∈ Rn×M denote the state, the control input and

the disturbance of the overall system. We also denote the input constraint set and

disturbance set by U := U1 × · · · × UM and W :=W1 × · · · ×WM , respectively.

Graph theory is one of the most commonly used mathematical tools in mod-

elling information exchange for MASs. In this chapter, G = (V , E) denotes a sim-

ple undirected graph, where V = {v1, v2, · · · , vM} represents the vertex set and

E = {(vi, vj) |vi, vj ∈ V , i 6= j} ⊂ V × V represents the edge set. Let Ni be the
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set of all neighboring vertices of node i, i.e., Ni := {vj|vi, vj ∈ V , (vi, vj) ∈ E , i 6= j}

and di := |Ni| its cardinality. For a graph G with M vertices, its adjacency matrix

Ad = [aij] ∈ RM×M is given by aij = 1 if (i, j) ∈ E and by aij = 0 if (i, j) /∈ E .

Accordingly, the Laplacian matrix is defined as L = [lij] ∈ Rn×n, where


lij = −aij, ∀i 6= j

lii =
∑

j∈Ni
aij, i, j = N[1,M ].

The Laplacian matrix of an undirected graph has the following properties. It is

symmetric and has no negative eigenvalues which can be ordered as λ1 < λ2 ≤ · · · ≤

λM with λ1 = 0. Therefore, we can always find an orthogonal matrix U ∈ RM×M ,

such that UTLU = diag {λ1, λ2, · · · , λM}, where UT is the transpose of matrix U .

We also define the diagonal matrix as Λ := UTLU = diag {0, λ2, · · · , λM}.

Definition 1. A path from vertex i1 to ik is denoted by an edge sequence

{(i1, i2), (i2, i3) · · · (ik−1, ik)},

with all edges in the sequence (ij−1, ij) or (ij, ij−1), j ∈ N[1,k] belonging to the edge set

E. If there exists a vertex i such that any other vertices in graph G can be reached via

at least one path, the graph G is said to contain a spinning tree and to be connected.

Definition 2. For the linear MAS in (2.1) over a connected undirected graph G, it

is said to reach consensus if

‖xi(k)− xj(k)‖ → 0 as k →∞,

where ∀i, j ∈ N[1,M ], i 6= j.

The assumptions providing necessary conditions for the MAS in (2.1) achieving
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consensus are given as follows.

Assumption 1. In the reminder of the chaper, we assume that

1. The pair (A,B) is assumed to be stabilizable.

2. The input constraint set Ui and the disturbance set Wi are compact and contain

the origin as their interior point.

3. The graph G is connected and contains a spanning tree, giving a necessary con-

dition to achieve consensus.

2.2.2 Control Objective

Our objective is to design a nonlinear consensus feedback

u(k) = g(x(k)), (2.3)

via MPC, which regulates the MAS in (2.2) to reach consensus while satisfying the

constraints for all possible disturbance. The continuous nonlinear function g : Rn →

Rm. Furthermore, the nonlinear consensus protocol in (2.3) reduces to an a priori

well-tuned linear consensus feedback when the system state enters a target set X f

(to be specified later). Due to the persistent disturbance acting on each agent, the

MAS in (2.2) is not possible to achieve consensus asymptotically. Then our best hope

would be to steer the state disagreement
∑

i,j∈V ‖xi(k)− xj(k)‖ as small as possible.

To meet the desire for the well-tuned consensus control when x(k) ∈ X f , we

consider a consensus protocol of the form

uli(k) = K
∑
j∈Ni

(xi(k)− xj(k)),
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or namely,

ul(k) = (L ⊗K)x(k), (2.4)

so the corresponding unperturbed closed-loop system becomes

x(k + 1) = (IM ⊗ A)x(k) + (IM ⊗B)ul(k)

= (IM ⊗ A+ L ⊗BK)x(k) := Φx(k),

(2.5)

where Φ := IM ⊗ A + L ⊗ BK is the state transition matrix and K is the feedback

gain matrix (to be later specified). To collaborate the linear consensus feedback with

the MPC-based consensus framework, we introduce the control variable,

c(k) := u(k)− ul(k) = u(k)− (L ⊗K)x(k), (2.6)

to characterize the difference between the MPC input and the well-tuned linear con-

sensus control input. Accordingly, the disturbed MAS in (2.2) can be rewritten as

x(k + 1) = Φx(k) + (IM ⊗B)c(k) + ω(k). (2.7)

Now we can restate the control objective in this chapter as follows:

• Design a consensus protocol given by (2.3) using MPC framework for the dis-

turbed MAS in (2.2).

• A further requirement is to vanish the gap between the MPC input and the

nominal control input: lim
k→∞

c(k) = 0.

In the following section, we demonstrate how to design the linear consensus protocol

by using a suboptimal method.
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2.3 Suboptimal Consensus Protocol Design

In this section, we discuss the consensus problem for linear MASs by extending [28]

into discrete-time systems. Consider an MAS represented by

xi(k + 1) = Axi(k) +Bui(k), xi(0) = xi0, i ∈ N[1,M ], (2.8)

where matrices A ∈ Rn×n, B ∈ Rn×m and the system state and the control input of

agent i are denoted by xi ∈ Rn and ui ∈ Rm, respectively. To evaluate the consensus

performance, an infinite horizon linear quadratic cost function is implemented:

Ji(xi, xj, ui) =
1

2

∞∑
k=0

∑
j∈Ni

‖xi(k)− xj(k)‖2
Q + ‖ui(k)‖2

R , (2.9)

where Q � 0, R � 0 are real weighting matrices. This performance function sums

the weighted norm of the state disagreement among every agent and its neighbors,

and it also penalizes the control input in quadratic form.

Concatenating the states and the inputs of all agents in columns, we can write

(2.8) in compact form as

x(k + 1) = (IM ⊗ A)x(k) + (IM ⊗B)u(k), x(0) = x0. (2.10)

The initial states of the agents are collected in the joint column vector to represent

the overall system initial state x0. Accordingly, the performance functional of the

overall MAS in (2.10) can be written as

J(x,u) =
M∑
i=1

Ji(xi, xj, ui) =
∞∑
k=0

‖x(k)‖2
(L⊗Q) + ‖u(k)‖2

(IM⊗R) . (2.11)
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We want to find a linear state feedback of the form

ui(k) = K
∑
j∈Ni

(xi(k)− xj(k)), (2.12)

or namely,

u(k) = (L ⊗K)x(k). (2.13)

where K ∈ Rn×m is an identical feedback gain for every agent, such that the perfor-

mance functional in (2.11) is minimized. Accordingly, the closed-loop system is

x(k + 1) = (IM ⊗ A+ L ⊗BK)x(k). (2.14)

The associated performance function in (2.11) can be written as a function of the

gain matrix K:

J(K) = J(x,u) = J(x, (L ⊗K)x)

=
∞∑
k=0

‖x(k)‖2
(L⊗Q) + ‖(L ⊗K)x(k)‖2

(IM⊗R)

=
∞∑
k=0

xT(k)(L ⊗Q+ LTL ⊗KTRK)x(k)

=
∞∑
k=0

‖x(k)‖2
(L⊗Q+LTL⊗KTRK) .

(2.15)

Due to the nature of an undirected graph, it always holds that the minimum eigen-

value of the Laplacian is zero, i.e., λmin(L) = 0. Thus, the weighting matrix of the

infinite horizon objective function in (2.15) is not guaranteed to be positive definite,

or namely,

L ⊗Q+ LTL ⊗KTRK � 0.

This indicates that the corresponding minimization problem is non-convex. It is
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difficult or even impossible to find an optimal consensus feedback gain K in such

case, or the optimal solution may not even exist. We will instead, solve the consensus

problem by involving the suboptimal solution. More precisely, the following problem

is considered:

Problem 1. Consider the MAS in (2.8) over an undirected graph G with the initial

state x(0) = x0. Denote an a priori known upper bound for the performance function

(2.15) by a positive constant ρ. We want to find a consensus protocol given by (2.12)

for each agent, so that the closed-loop system in (2.14) achieves consensus and the

associated performance function (2.15) is less than the upper bound ρ.

Following the same line in solving the discrete-time algebraic Riccati equation

(DARE) in linear quadratic regulator (LQR) design, we first address the suboptimal

control problem for a single agent.

2.3.1 Suboptimal Solution to Autonomous Systems

In this subsection, we analyze the suboptimal solution to an autonomous system.

Consider an autonomous system given by

x(k + 1) = Āx(k), x(0) = x0, (2.16)

where Ā ∈ Rn×n and x ∈ Rn is the system state. The infinite horizon quadratic

performance function associated with (2.16) is given by

J(x) :=
∞∑
k=0

‖x(k)‖2
Q̄ =

∞∑
k=0

x(k)TQ̄x(k), (2.17)

where Q̄ � 0 is a given weighting matrix.
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Lemma 1 (Theorem B.18 in [70]). The performance function (2.17) gives a finite

value if the state transition matrix of the corresponding autonomous system in (2.16)

is Schur stable, i.e., the eigenvalues of Ā are in the unit circle. In this case, the

infinite horizon performance function (2.17) gives a finite value

J = xT
0 Y x0, (2.18)

where the unique matrix Y � 0 is the solution to

ĀTY Ā− Y + Q̄ = 0. (2.19)

By the properties of the discrete-time Lyapunov equation, it is a well known fact

that the quadratic performance (2.17) is given by the weighted norm of the initial state

(2.18), so we just omit the proof here. Alternatively, we are more interested in finding

the solution given by a series of Lyapunov inequalities, so that the corresponding

performance function (2.17) is less than a given constant ρ > 0.

Lemma 2. Consider the system in (2.16) with the corresponding linear quadratic

performance function (2.17). If the system is Schur stable, the expression of the

performance function given by the Lyapunov inequality,

inf{xT
0 Px0|P � 0, ĀTPĀ− P + Q̄ < 0}, (2.20)

is equivalent to (2.18).

Proof. Suppose that Y is the solution to Lyapunov equation in (2.19) and P � 0 is
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the solution to Lyapunov inequality in (2.20). Let X := P − Y , one gets

ĀT(X + Y )Ā− (X + Y ) + Q̄ < 0

ĀTXĀ+ ĀTY Ā− (X + Y ) + Q̄ < 0

ĀTXĀ < X.

(2.21)

Since Ā is Schur stable, we immediately have X � 0, or namely, P − Y � 0. Conse-

quently, it holds that

J = xT
0 Y x0 ≤ xT

0 Px0, (2.22)

for any positive semi-definite solution P to the Lyapunov inequality. Therefore, the

infimum expression (2.20) is exactly (2.18):

J = inf{xT
0 Px0|P � 0 and ĀTPĀ− P + Q̄ < 0} = xT

0 Y x0.

Remark 1. In fact, one can always find a positive semi-definite matrix Pε satisfying

Lyapunov inequality in (2.20) with Pε < Y + εI, for any given ε > 0. Obviously,

matrix Pε can be chosen by solving the following Lyapunov equality

ĀTPεĀ− Pε + Q̄+ εI = 0.

It can also be noticed that Pε → Y as ε → 0. Therefore, for any given upper bound,

we can always find a suboptimal solution Pε satisfying J ≤ xT
0 Pεx0, by solving the

corresponding Lyapunov equation.

To evaluate under what conditions the performance function (2.17) is smaller than

a given upper bound, the following theorem is proposed:
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Theorem 1. Consider the autonomous system in (2.16) with the associated positive

semi-definite performance function (2.17). For a given constant ρ > 0, it holds that

Ā is Schur stable and J < ρ iff a positive semi-definite P to the inequalities

ĀTPĀ− P + Q̄ < 0, (2.23)

and

xT
0 Px0 < ρ, (2.24)

can be found.

Proof. (if) By Lemma 2, if there exists a positive semi-definite solution to (2.23),

it holds that Ā is Schur stable. Since matrix P satisfies both (2.23) and (2.24), by

taking a proper ε as in Remark 1, we can immediately have

J < xT
0 Px0 < ρ. (2.25)

(only if) By Lemma 2 again, If Ā is Schur stable and J < ρ, then there exists a

positive semi-definite solution P to (2.23), satisfying J < xT
0 Px0 < ρ.

2.3.2 Suboptimal Solution to General Linear Systems

In this subsection, we analyze the suboptimal solution to general linear discrete sys-

tems with control input. Consider a discrete-time LTI system given by

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, (2.26)
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where A ∈ Rn×n, B ∈ Rm×m. The system state is x ∈ Rn and the control input is

u ∈ Rm, and the associated linear quadratic performance function is given by

J(x, u) =
∞∑
k=0

‖x(k)‖2
Q + ‖u(k)‖2

R (2.27)

where the weighting matrices Q � 0 and R � 0. It is assumed that the pair (A,B) is

stabilizable. We want to find a linear state feedback u = Kx, such that the associated

closed-loop system

x(k + 1) = (A+BK)x(k) (2.28)

is asymptotically stable and the corresponding cost functional (2.27),

J(x, u) =
∞∑
k=0

‖x(k)‖2
Q + ‖Kx(k)‖2

R =
∞∑
k=0

‖x(k)‖2
(Q+KTRK) ,

which can be regarded as a function of the feedback matrix K,

J(K) =
∞∑
k=0

‖x(k)‖2
(Q+KTRK) ,

is less than a given upper bound ρ.

The following lemma provides a sufficient condition for the existence of such a

feedback.

Lemma 3. If there exists a matrix P � 0, such that

ATPA− ATPB(R +BTPB)−1BTPA+Q− P < 0, (2.29)

xT
0 Px0 < ρ, (2.30)



32

then the linear feedback u(k) = Kx(k), where the feedback gain matrix is given by

K = −(R +BTPB)−1BTPA, (2.31)

can stabilize the closed-loop system in (2.28) and the associated performance function

(2.27) is bounded by ρ.

Proof. With the linear feedback given by (2.31), the closed-loop system in (2.28)

becomes

x(k + 1) = (A−B(R +BTPB)−1BTPA)x(k), x(0) = x0. (2.32)

Let

Ā := A−B(R +BTPB)−1BTPA

and

Q̄ :=Q+ ATPB(R +BTPB)−1BPA

− ATPB(R +BTPB)−1BTPB(R +BTPB)−1BTPA.

By taking

Z := (R +BTPB)−1 − (R +BTPB)−1BTPB(R +BTPB)−1

and multiplying a symmetric term (R+BTPB) � 0 on both sides of Z, it holds that

(R +BTPB)Z(R +BTPB) = (R +BTPB)−BTPB = R � 0,

so we can check that Z � 0. Since Q̄ = Q+ ATPBZBTPA, it can be easily verified
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that Q̄ � 0. One can evaluate the corresponding Lyapunov inequality as follow:

ĀTPĀ− P + Q̄

=(A−B(R +BTPB)−1BTPA)TP (A−B(R +BTPB)−1BTPA)− P + Q̄

=ATPA− 2ATPB(R +BTPB)−1BTPA

+ ATPB(R +BTPB)−1BTPB(R +BTPB)−1BTPA− P + Q̄

=ATPA− ATPB(R +BTPB)−1BTPA+Q− P.

Since matrix P satisfies (2.29), we immediately have

ĀTPĀ− P + Q̄ = ATPA− ATPB(R +BTPB)−1BTPA+Q− P < 0. (2.33)

By Lemma 2 and Theorem 1, the closed-loop system in (2.32) is asymptotically stable

and the corresponding cost function J < ρ.

Remark 2. By implementing Lemma 3, we can find a group of suboptimal linear

feedbacks satisfying J < ρ, as long as there exists any matrix P satisfying (2.29) and

(2.30).

In the following subsection, we will apply the proposed design method to solve

linear quadratic consensus control problem for a linear MAS.

2.3.3 Subpotimal Solution to Multi-agent Systems

As stated in the beginning of this section, we would like to find a linear control law

given by (2.12) that regulates an MAS in (2.8) to achieve consensus. In the meanwhile,

the corresponding performance function (2.15) is less than a given upper bound ρ.
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We apply the state and input transformations

x̄ =

[
x̄T

1 x̄T
2 · · · x̄T

M

]T

= (UT ⊗ In)x,

ū =

[
ūT

1 ūT
2 · · · ūT

M

]T

= (UT ⊗ Im)u,

(2.34)

or namely,

x = (U−T ⊗ In)x̄, u = (U−T ⊗ Im)ū, (2.35)

to decouple the MAS, where matrix U satisfies UTLU = Λ = diag {0, λ2, · · · , λM}

and U−T denotes the inverse of UT. The MAS in (2.10) becomes

x̄(k + 1) = (IM ⊗ A)x̄(k) + (IM ⊗B)ū(k), x̄0 = (UT ⊗ In)x0. (2.36)

Accordingly, the consensus protocol (2.13) for the system in (2.36) can be written as

ū(k) = (Λ⊗K)x̄(k). (2.37)

Note that the transformed state x̄i and input ūi of agent i are decoupled from its

neighbors’ states and inputs, so the linear feedback control (2.12) becomes


ū1(k) = 0,

ūi(k) = λiKx̄i(k), i ∈ N[2,M ].

(2.38)

The transformed dynamics of the agents can be decoupled into M autonomous sys-

tems given by

x̄1(k + 1) = Ax̄1, (2.39)
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x̄i(k + 1) = (A+ λiBK)x̄i(k), (2.40)

where i ∈ N[2,M ]. The performance function associated with the transformed system

in (2.36) becomes

J(K) =
M∑
i=0

Ji(K) =
M∑
i=0

∞∑
k=0

x̄T
i (k)(λiQ+ λ2

iK
TRK)x̄i(k). (2.41)

It is worth mentioning that the first agent in (2.39) does not contribute to the per-

formance function (2.41) as λ1 = λmin(L) = 0. The original overall system in (2.2)

reaches consensus if and only if the decoupled systems in (2.40) are stabilized by the

consensus control (2.37) with proper feedback gains. The following lemma givens

sufficient condition for the existence of the suboptimal control feedback.

Lemma 4. We consider system dynamics given by (2.36) with the corresponding cost

function (2.41). For any given upper bound ρ > 0 and for all x0 ∈ S(r) with a radius

of r, all systems are stable and the cost function J(K) is bounded by ρ, if positive

semi-definite matrices Pi exist, such that

(A+ λiBK)TPi(A+ λiBK)− Pi + (λiQi + λ2
iK

TRK) < 0, (2.42)

M∑
i=2

x̄T
i0Pix̄i0 < ρi, (2.43)

where
∑M

i=1 ρi ≤ ρ.

Proof. By Lemma 3, we can always find sufficient small εi associating with matrices

Pi for each agent i, by taking Āi = A+ λiBK and Q̄i = λiQi + λ2
iK

TRK, such that

Āi is Schur stable and Ji ≤ x̄i0Pix̄i0 < ρi. Since εi can be taken sufficiently small, we
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always have

J(K) =
M∑
i=1

Ji(K) ≤
M∑
i=1

x̄T
i0Pix̄i0 <

M∑
i=1

ρi ≤ ρ. (2.44)

Remark 3. Lemma 4 provides a series of control feedback gains to the transformed

system dynamics. By taking inverse transformation, we immediately obtain the sub-

optimal solution,

ui(k) = −(R +BTPiB)−1BTPiAxi(k), (2.45)

to the consensus control problem, together with proper selected Pi obtained by Lemma

4.

By applying Lemma (4), the obtained linear consensus feedback gains for different

agents may be different. In order to obtain an identical suboptimal feedback gain

matrix satisfying all Lyapunov inequalities for all agents, the following lemma is

proposed.

Lemma 5 (Theorem 9 in [28]). For the suboptimal consensus control problem for the

MAS in (2.10), the consensus protocol (2.13), whose gain is given by

K = −c(R +BTPB)−1BTPA, c =
2

λ2 + λM
, (2.46)

is a common solution to all agents, where P is the solution to the following modified

Lyapunov inequality

ATPA− (c2λ2
M − 2cλM)ATPB(R +BTPB)−1BTPA+ λMQ− P < 0,

xT
0 {(IM −

1

N
1T1)⊗ P}x0 < ρ,

Note that λ2 and λM are the eigenvalues of the Laplacian matrix underlying the graph
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of the communication network. This claim holds for all x0 ∈ S(r) with a radius of r.

Proof. Following the same procedure in obtaining the suboptimal solutions to general

linear systems, we can easily prove Lemma 5 and we just omit it here.

2.4 Robust MPC-based Consensus Strategy

In this section, a nonlinear state feedback (2.3) is designed via MPC to meet the

aforementioned control requirements. We first present a nominal control framework,

referred to as nominal MPC-based consensus control, by synthesizing the suboptimal

linear consensus protocol obtained from Lemma 5. Next, by tightening the constraints

into smaller sets to handle disturbance, a robust version of the MPC framework,

referred to as robust MPC-based consensus control, is proposed.

2.4.1 Nominal MPC-based Consensus

Consider the nominal system

x(k + 1) = (IM ⊗ A)x(k) + (IM ⊗B)u(k), (2.47)

with the input constraints u(k) ∈ U . We want to find a nonlinear consensus protocol

designed via MPC, such that the nominal system in (2.47) achieves consensus while

satisfying the input constraints.

The nominal consensus control input is generated by solving the following opti-
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mization problem.

minimize
c(·)

JN(x(k), c(k)) =
N−1∑
t=0

‖c(k + t|k)‖2

subject to: x(k|k) = x(k),

x(k + t+ 1|k) = Φx(k + t|k) + (IM ⊗B)c(k + t|k),

u(k + t|k) = (L ⊗K)x(k + t|k) + c(k + t|k) ∈ U ,

x(k +N |k) ∈ X f .

The constant N > 0 is the prediction horizon, which represents the number of free

state and control moves in the OCP. The optimal solution to the OCP is denoted by

c∗(k) =

[
c∗(k|k)T, · · · , c∗(k +N − 1|k)T

]T

, and the corresponding optimal predicted

state and input sequences are given as follows:

x∗(k) =

[
x∗(k|k)T, · · · ,x∗(k +N |k)T

]T

, u∗(k) =

[
u∗(k|k)T, · · · ,u∗(k +N − 1|k)T

]T

.

As in many existing MPC works, only the first element of the optimal predicted

control sequence

u(k) = u∗(k|k) = (L ⊗K)x(k|k) + c∗(k|k),

is implemented to the plant. The predictive controller implicitly defines a nonlinear

consensus input from the solution of the constrained convex optimization problem. To

ensure recursive feasibility of the OCP, the terminal region X f is determined offline,

so that

1. The corresponding control variables vanish to zero and the input constraints
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are satisfied, i.e.,

x ∈ X f ⇒


c = 0,

u = (L ⊗K)x ∈ U ;

2. The successive state is still inside the terminal region,

x ∈ X f ⇒ (IM ⊗ A+ L ⊗BK)x := Φx ∈ X f .

We define the feasible set for the terminal constraints in N -step horizon as follow:

FN = {x|(L ⊗K)Φix ∈ U ,∀i ∈ N[0,N ]}.

By taking N →∞, the terminal region becomes

X f = lim
N→∞

FN . (2.48)

The terminal set (2.48) containing infinite number of constraints can be proved

bounded [71]. For implementation issues, a finite integer n∗ can be determined offline,

such that F∞ = Fn∗ [71].

2.4.2 Robust MPC-based Consensus

The constraints in the nominal MPC-based consensus problem involve only disturbance-

free predictions. Therefore, we cannot guarantee that the real system state and input

will satisfy the constraints due to the present of disturbance. Hence the nominal

MPC-based consensus control is possible to lose feasibility and cannot provide any

guarantee of stability. To this end, we propose a robust MPC-based consensus control

framework to solve this, while preserve feasibility despite the existence of disturbance.
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Considering the disturbed MAS in (2.2), the real state and control input are given

by

x(k + t) = x(k + t|k) +
t∑
i=1

Φi−1ω(k + t− 1),

u(k + t) = u(k + t|k) +
t∑
i=1

(L ⊗K)Φi−1ω(k + t− 1),

where the first terms on the right hand side of the equations represent the disturbance-

free prediction and the latter terms represent the forced responses caused by distur-

bance.

Let

Rj :=

j−1⊕
i=0

ΦiW (2.49)

denote the j-step reachable set for the closed-loop system from the origin, driven by

the bounded disturbance as the only input. Hence, a sufficient condition for the real

input satisfying the input constraints, i.e., u(k + t) ∈ U , is to impose more stringent

constraints on the nominal predictions, u(k + t|k) ∈ Ut, t ≥ 0, where the restricted

input constraint set is given by Ut := U 	 (L ⊗K)Rt.

Problem 2.

minimize
c(·)

JN(x(k), c(k)) =
N−1∑
t=0

‖c(k + t|k)‖2

subject to: x(k|k) = x(k),

x(k + t+ 1|k) = Φx(k + t|k) + (IM ⊗B)c(k + t|k),

u(k + t|k) = (L ⊗K)x(k + t|k) + c(k + t|k) ∈ Ut,

x(k +N |k) ∈ X f
N .

(2.50)

To ensure the satisfactory of the terminal constraint under perturbation, the re-
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stricted terminal region X f
N := X f 	RN is applied.

In fact, if u(k + t|k) ∈ U 	 (L ⊗K)Rt holds, one immediately gets u(k + t|k)⊕

(L ⊗ K)Rt ⊂ U for all possible disturbance, which further implies the real control

input satisfying the constraints, i.e., u(k + t) ∈ u(k + t|k)⊕ (L ⊗K)Rt ⊂ U .

Based on the above arguments, the following robust MPC-based consensus frame-

work is proposed.

The robust MPC-based consensus control algorithm is given below.

Algorithm 1 Robust MPC-based Consensus Algorithm

Require: initial state of the MAS x0; index k = 0; prediction horizon N .
1: while The control action is not stopped do
2: Measure the current states of all agents x(k) in the system (2.2);
3: Solve the optimal control problem in Problem 2, obtain the sequences c∗(k),

u∗(k); the concatenated control input is taken as u(k) = u∗(k|k);
4: Each agent applies the first element of the optimal control sequence

ui(k) = u∗i (k|k)

to the system in (2.1);
5: Increment k = k + 1, go back to step 2.
6: end while

2.5 Feasibility and Convergence Analysis

Concatenating the optimal “tail” at sampling time k with terminal zero elements, the

control variable candidate sequence can be taken as

c̃(k + 1) =

[
c̃(k + 1|k + 1)T, · · · , c̃(k +N − 1|k + 1)T, c̃(k +N |k + 1)T

]T

,

=

[
c∗(k + 1|k)T, · · · , c∗(k +N − 1|k)T, 0

]T

.

(2.51)

Definition 3. A control sequence c(k) =

[
c(k|k)T, · · · , c(k +N − 1|k)T

]T

is said to
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be admissible for state x(k) if the constraints in (2.50) are satisfied. A state x(k) is

said to be feasible if there exists at least one control variable sequence c(k) admissible

for x(k).

The following lemma and theorem provide sufficient conditions such that the ro-

bust MPC-based consensus control meets the control objectives.

Lemma 6. For the MAS in (2.2) under the regulation of the robust MPC-based

consensus control u(k) = (L ⊗K)x(k) + c(k), the following implication holds

c∗(k) is admissible for x(k)⇒ c̃(k + 1) is admissible for x(k + 1).

Proof. The predictions corresponding to c∗(k) with x(k) are denoted by u∗(k) and

x∗(k). We also denote the predictions for the control variable candidate c̃(k+1) with

x(k + 1) by ũ(k + 1) and x̃(k + 1). Since the optimal sequence c∗(k) is the solution

to Problem 2 at time k, it follows that u∗(k + t|k) ∈ Ut and x∗(k +N |k) ∈ X f
N . Due

to the existence of disturbance, we can check that

x̃(k + 1 + t|k + 1) = x∗(k + 1 + t|k) + Φtω(k) ∈ X f
t+1 ⊕ ΦtW ,

ũ(k + 1 + t|k + 1) = u∗(k + 1 + t|k) + (L ⊗K)Φtω(k) ∈ Ut+1 ⊕ (L ⊗K)ΦkW .

By the properties of the Minkowski sum, it holds that

x̃(k + 1 +N |k + 1) ∈ X f
N+1 ⊕ Φ

NW = (X f
N 	RN+1)⊕ ΦNW

= (X f
N 	 (RN ⊕ ΦNW))⊕ ΦNW

⊆ X f 	RN = X f
N .
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Similarly, we can prove that the control input candidate satisfies the input constraints:

ũ(k + 1 + t|k + 1) ∈ Ut+1 ⊕ (L ⊗K)ΦkW ⊆ Ut.

Combining the above constraint satisfactory results, we can conclude that Lemma 6

holds.

Theorem 2. Given that the initial state x0 is feasible, the MAS in (2.2) under the

control of the proposed robust MPC-based consensus protocol, with c(k) = c∗(k|k),

satisfies the following properties:

1. lim
k→∞

c(k) = 0;

2. consensus is not guaranteed due to disturbances, but the disagreement among

the agents can be reduced to a bounded level.

Proof. Denote the Lyapunov function by

V (k) := J∗(c(k)) =
N−1∑
t=0

‖c∗(k + t|k)‖2 ≥ 0,

and we evaluate its value for the candidate c̃(k + 1):

Ṽ (k + 1) =
N−1∑
i=0

‖c̃(k + 1 + i|k + 1)‖2 = −‖c∗(k|k)‖2 + V (k).

The candidate c̃(k + 1) is suboptimal to Problem 2 at time instant k + 1, so it holds

that

Ṽ (k + 1) = V (k)− ‖c∗(k|k)‖2 ≤ V (k + 1),

⇒V (k + 1)− V (k) ≤ −‖c∗(k|k)‖2 ≤ 0.
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Considering the sum of the above inequalities, one gets

lim
k→∞

k∑
t=0

(V (k + 1)− V (k)) = lim
k→∞

V (k + 1)− V (0) = lim
k→∞

k∑
t=0

−‖c∗(t|t)‖2 .

Since 0 ≤ V (k + 1) ≤ ∞ and 0 ≤ V (0) ≤ ∞, we obtain that

0 ≤ lim
k→∞

V (k + 1) = V (0)− lim
k→∞

k∑
t=0

‖c∗(t|t)‖2 ≤ ∞,

which implies lim
k→∞

∑k
t=0 ‖c∗(t|t)‖

2 ≤ ∞, and further we obtain lim
k→∞
‖c∗(k|k)‖2 =

0, which proves the first part of Theorem 2. Accordingly, we can summarize the

convergence results:

lim
k→∞

x(k) = lim
k→∞
{Φkx0 +

k∑
t=1

Φt−1(IM ⊗B)c∗(k − t|k − t)

+
k∑
t=1

Φt−1ω(k − t)} ⊆ Rk ⊂ R∞,

where the proof for the set R∞ being bounded is given in the previous discussion.

This completes the second part of the proof.

2.6 Numerical Examples

In this section we use several numerical examples to illustrate the proposed MPC-

based consensus control framework. Consider a group of four identical oscillators

given by the following linear dynamics:

xi(k + 1) = Axi(k) +Bui(k) + ωi(k), xi(0) = xi0, i ∈ N[1,4],
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where A = [0, 1;−1, 0] and B = [0.5; 0.5]. The initial states of the 4 agents are chosen

as

x10 =

−0.08

0.11

 , x20 =

 0.12

−0.08

 , x30 =

−0.09

−0.14

 , x40 =

−0.12

0.04

 .
Assume the graph underlying the MAS is undirected and the Laplacian matrix is

L = [1,−1, 0, 0;−1, 2,−1, 0; 0,−1, 2,−1; 0, 0,−1, 1]. The smallest nonzero and largest

eigenvalue of L are λ2 = 0.5858 and λ4 = 3.4142. We make use of the cost functional,

J(x, u) =
∞∑
k=0

x(k)T(L ⊗Q)x(k) + u(k)T(I4 ⊗R)u(k),

to evaluate the level of consensus. Given the constant ε, we compute a positive definite

solution P by solving the modified DARE

ATPA− (c2λ2
4 − 2cλ4)ATPB(R +BTPB)−1BTPA+ λ4Q− P + εI4 = 0,

where c = 2/(λ2 + λ4). The other parameters adopted in this numerical example are

listed in Table 2.1.

Table 2.1: The parameters adopted in our work.

Prediction horizon N 10
Weighting matrix Q [2,0;0,1]
Weighting matrix R 1

Scalar in the modified DARE ε 0.001
Finite integer for the terminal region n∗ 5

Solution to the DARE P [9.1328,1.1642;1.1642,9.1328]
Feedback gain K [-0.4052;0.2078]

The disturbance bound ‖ωi‖∞ ≤ 0.003
Input constraints ‖ui‖∞ ≤ 0.1

In the following example for the oscillator MAS, we first show the performance of
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the proposed linear consensus protocol developed by the suboptimal linear quadratic

approach. Then we demonstrate the effectiveness of our tube-based MPC consensus

control in handling input constraints when bounded disturbance is involved.

The plots of the four oscillators with the suboptimal linear feedback are shown in

Figure 2.1. The states of the agents gradually agree on a common online trajectory,

but the size of some control inputs exceed the restriction of 0.1 (see Figure 2.2).
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Figure 2.1: State trajectories for the oscillators regulated by the linear consensus
protocol
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Figure 2.2: Control inputs of the linear consensus protocol
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Figure 2.3: State trajectories for the oscillators regulated by the MPC inputs
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Figure 2.4: MPC inputs for all agents
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Figure 2.5: Disagreement among the agents

Figure 2.3 shows that the disagreement among the agents is gradually reduced,

but cannot diminish to zero due to the existence of disturbance (see the red dashed

line in Figure 2.5). This is also true for the MPC inputs. Thanks to the stringent

constraints in prediction, the robust MPC-based consensus protocol is recursively

feasible at each time instant, and the control inputs implemented to all agents satisfy

the input saturation (as shown in Figure 2.4). Figure 2.5 compares the disagreement

convergence rate for the linear and robust MPC-based consensus protocol. It is well

noted that the robust MPC-based consensus algorithm converges slower than the

linear counterpart, for its sacrifice of preserving input constraint satisfaction.

It is worthwhile to mention that this MPC framework is also applicable to stable

and unstable MASs. Consider an MAS of the same form of dynamics as mentioned at

the beginning of this section. We further choose the system parameters of the stable

and unstable dynamics as A1 = [0.8, 0; 0,−0.7], B1 = [0.5; 0.5]; A2 = [0, 1;−1.1, 0],

B2 = [0.5; 0.5], respectively. Following the same line, the feedback gain matrices for

these two cases can be obtained: K1 = [−0.4052, 0.2078], K2 = [0.3974,−0.4958].
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Figure 2.6: State trajectories for the stable MAS regulated by the MPC inputs
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Figure 2.7: MPC inputs of the stable MAS
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Figure 2.8: State trajectories for the unstable MAS regulated by the MPC inputs
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Figure 2.9: MPC inputs of the unstable MAS
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We apply the proposed robust MPC framework to the above two types of systems

with the same setup as the aforementioned oscillator case. The simulation results

for stable and unstable MASs are presented in Figure 2.6-2.7 and Figure 2.8-2.9,

respectively. All the results demonstrate that our consensus control strategy can

reduce the disagreement among agents for both stable and unstable MASs. In the

meanwhile, the input constraints are satisfied in both cases. Due to the persistent

existence of disturbance, the disagreement, as well as the control inputs, cannot vanish

to zeros, but can be limited to a bounded level.

2.7 Conclusion

In this chapter, a robust MPC-based consensus control scheme is proposed. The

agent dynamics discussed in this chapter are governed by general discrete-time linear

dynamics with bounded additive disturbance. A suboptimal linear consensus protocol

is first introduced, followed by the associated nominal MPC strategy for expository

of the offline computed constraint sets. Later we adopt a tube-based MPC consensus

framework by tightening the original constraint sets, such that the actual system

still satisfies the constraints under disturbance. Simulation results for three types of

MASs (oscillator, stable an unstable) are provided to demonstrate the effectiveness

of our control strategy.



52

Chapter 3

Distributed Model Predictive

Control based Consensus of

General Linear Multi-agent

Systems with Input constraints

3.1 Introduction

In the study of MASs, cooperative control has been one of the most significant topics

for the past decades, due to its wide applications in completing complex tasks by

multiple robots, controllers and terminal devices in large scale networks. Especially,

consensus is one of the most basic problems in multi-agent cooperation study. Many

decent results have been proposed in recent years, for example in [72, 28, 73], providing

a wide range of consensus protocols in different forms for multiple types of systems

and communication networks.

Model predictive control (MPC), or namely, receding horizon control (RHC) tech-
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niques have received increasing attention due to their remarkable advantages in han-

dling multi-variables and hard constraints. Distributed MPC algorithms have been

adopted in MAS and some remarkable results can be found in [53, 58, 74, 75]. Among

the MPC-based consensus algorithms, the majority of the existing works mainly focus

on the stabilization of an a priori known set point [32, 52, 39] or trajectory tracking

[5]. A decent work on disturbed nonlinear MAS stabilization via distributed MPC can

be found in [55], where a novel constraint providing both robustness and convergence

is proposed. However, consensus problem is more challenging as it requires all agents

in an MAS agreeing a common online trajectory, in contrast to following an a priori

given reference trajectory as formation or tracking control. Until now, only very few

exceptions consider other cooperative control tasks like consensus.

Starting from simple systems, the researchers in [22, 23] implement the MPC

schemes to solve consensus problem for unconstrained single and double-integrator

dynamics. A novel distributed MPC controller for double-integrator systems is re-

ported in [23], where the consensus problem is treated as static formation to an

autonomous leader agent. In [58], consensus for general linear MASs is addressed

under necessary and sufficient conditions by involving an unconstrained convex opti-

mization framework. The algorithms developed in [60] and [76] solve nonlinear MAS

consensus with state and input constraints, but iterative communication of both state

and input information among agents and repeated optimization problem solving are

required. It is worth noting that [27, 38] consider consensus for linear systems with

constraints. However, a rather strong assumption on information exchange is made,

where each agent is able to access its neighbors states simultaneously. This makes the

MPC-based consensus algorithms not fully distributed and is especially troublesome

for the MASs equipped with wireless networked digital controllers.

Therefore, the motivation of this chapter is to design a novel distributed consensus
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protocol via MPC for linear MASs with input constraints, avoiding iterative commu-

nication in transmission networks, as well as being truly distributed and applicable

to networked digital controllers.

The main contributions of this chapter are mainly twofold.

• A novel distributed MPC-based consensus protocol and the conditions for de-

signing such consensus algorithm for semi-stable MASs are proposed. At every

time step, each agent only measures its current state, and makes use of the

assumed neighbor state information received at previous instant, rather than

accessing the current state of neighbors, then solves a local constrained con-

vex optimization problem to generate the control input. The local optimization

problem is solved and state information is broadcast among neighbors only once

at each time instant.

• A pre-stabilizing linear consensus protocol is first introduced, such that the

closed-loop system is asymptotically stable with respect to a consensus set. By

minimizing the gap between the MPC input and the pre-stabilizing linear con-

sensus control input, cooperation among agents is reinforced with satisfaction

of the input constraints. With the properly designed bounds on the difference

between the actual state and the assumed state, the overall system converges

to a neighboring set of the consensus set.

Notation: Denote the field of real numbers by R and the field of non-negative

real numbers by R≥0. We also denote any n dimensional column vector by x ∈ Rn

and any n× n matrix by A ∈ Rn×n. Let A⊗ B ∈ Rnp×mq be the Kronecker product

of two matrices where A ∈ Rn×m and B ∈ Rp×q. For any scalar a ∈ R, |a| is the

absolute value of a. For any vector xi ∈ Rn, ‖xi‖ and ‖xi‖∞ are the 2-norm and

the infinity-norm of xi, respectively. Let In be the n × n identity matrix. For a set
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Xi ⊆ Rn and a point xi ∈ Rn, the distance from the point to the set is defined as

|xi|Xi
:= infz∈Xi

‖xi − z‖. A function α(t) : R≥0 → R≥0 is a class K function if α is

continuous, monotonically increasing and α(0) = 0. And if α(t)→∞ as t→∞, it is

of class K∞. A function β : R≥0×R≥0 → R≥0 is a KL function if β(·, t) is a K function

for every given t, and β(γ, t) is monotonically decreasing to 0 as t → ∞ for every

given γ ≥ 0. A function σ : R→ R≥0 belongs to class PD (positive definite), if it is

continuous, σ(0) = 0, and always positive otherwise. 1M represents an unit column

vector of proper dimension whose M entries are all one(s). spec(A) is the spectrum

of matrix A. A sequence of integers is denoted by N[m,n] = {m,m + 1, . . . , n}. The

Cartesian product of multiple sets is denoted by X = X1 × · · · × XM . We denote the

largest and the smallest eigenvalue of a matrix P ∈ Rn×n by λmax(P ) and λmin(P ),

respectively. Given two sets A, B ⊆ Rn and vectors a, b, c ∈ Rn, the Minkowski sum

of the sets is defined by A ⊕ B := {c|c = a + b, a ∈ A, b ∈ B} and the Pontryagin

difference of the two sets is denoted by A	B := {c|c+b ∈ A, b ∈ B}. The Minkowski

sum of multiple sets is given by A1 ⊕ A2 · · · ⊕ AM =
⊕M

i=1Ai. The Drazin inverse of

a matrix A is denoted by A#.

3.2 Preliminaries and Problem Statement

Consider an MAS consisting of M identical agents given by

xi(k + 1) = Axi(k) +Bui(k), xi(0) = xi0, i ∈ N[1,M ], (3.1)

where xi(k) ∈ Rn and ui(k) ∈ Ui ⊂ Rm are the system state and control input at

time k, respectively. The compact set Ui, containing the origin as its interior point,

stands for the input constraint set. A system is said to be semi-stable if spec(A) ≤ 1,

and if spec(A) = 1, then 1 is a simple eigenvalue of A. In this chapter, we consider a
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linear semi-stable MAS given in (3.1).

3.2.1 Basic Concepts from Graph Theory

In the study of MASs, graph theory is often used to model information exchange

among agents.

The communication topology underlying the MAS in (3.1) is characterized by

a graph G = (V , E ,A), with V = {v1, v2, · · · , vM} being the non-empty vertex set

of M nodes and E = {(vi, vj) |vi, vj ∈ V , i 6= j} ⊂ V × V being the edge set. An

edge (vi, vj) ∈ E represents a communication channel from agent i to j. In the

corresponding adjacency matrix A = [aij] ∈ RM×M , aij = 1 stands for the existence

of a communication pathway from agent i to j for all edges in E ; if (vi, vj) /∈ E or

otherwise, then aij = 0. An agent j is said to be a neighbor of agent i if the edge

(vi, vj) ∈ E , or namely aij = 1. Let Ni be the set of all neighboring vertices of node

i, i.e., Ni := {vj|vi, vj ∈ V , (vi, vj) ∈ E , i 6= j} ⊆ V and di := |Ni| its cardinality.

In this chapter, we assume that the graph G is undirected, i.e., aij = 1⇔ aji = 1

and each agent has at least one neighbor. The Laplacian matrix of the graph G is

denoted by L = D − A, where the diagonal matrix D := diag{dii} ∈ RM×M , with

dii = di, ∀i ∈ N[1,M ], is the degree matrix containing the information about the

number of edges attached to each vertex.

Definition 4. A path from vertex i1 to ik is denoted by an edge sequence

{(i1, i2), (i2, i3) · · · (ik−1, ik)},

with all edges in the sequence (ij−1, ij) ∈ E, ∀j ∈ N[1,k]. If there exists a vertex i such

that any other vertices in graph G can be reached via at least one path, the graph G is

said to contain a spanning tree and to be connected.
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Given an undirected graph G, its Laplacian matrix L is symmetric and simple, and

consequently has real eigenvalues. Furthermore, the eigenvalues of L are always non-

negative and can be reorganized in increasing order as λ1 ≤ λ2 ≤ · · · ≤ λM−1 ≤ λM .

Specially, for a connected graph G, it always holds that λ1 = 0. Since the Laplacian

matrix L has zero row sums, it follows that 1M is an eigenvector with λ1 = 0 as the

associated eigenvalue, which indicates that L1M = 0.

3.2.2 Preliminaries on Multi-agent Consensus

Consider the MAS in (3.1) underlying an undirected graph G, the definition of con-

sensus is given as follow.

Definition 5. For all initial states xi and xj, the MAS over an undirected commu-

nication graph G, is said to reach consensus if

‖xi(k)− xj(k)‖ → 0 as k →∞,

where ∀i, j ∈ N[1,M ], i 6= j.

According to Definition 5, the MAS achieving consensus means that the states

of all agents are identical, including the scenarios where the agents are stabilized

simultaneously to an a priori known static point.

The following assumptions are made in the reminder of this chapter, such that

the necessary conditions for multi-agent consensus are satisfied [17].

Assumption 2. The identical pair (A,B) ∈ Rn×n×Rn×m in the MAS given by (3.1)

is assumed to be controllable.

Assumption 3. The graph G associated with the MAS system in (3.1) is connected.
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3.2.3 Set-wise Stabilization

For convenience, we can write (3.1) in compact form as

x(k + 1) = (IM ⊗ A)x(k) + (IM ⊗B)u(k), x(0) = x0, (3.2)

where the compact state and control input are denoted by

x(k) := [xT
1 (k), xT

2 (k), · · · , xT
M(k)]T ∈ Rn×M ,

u(k) := [uT
1 (k), uT

2 (k), · · · , uT
M(k)]T ∈ U ⊆ Rm×M ,

respectively. The input constraint set of the overall system is defined by the Cartesian

product of multiple single input constraint sets as U := U1 × · · · × UM .

Viewed from the perspective of set theory, multi-agent consensus can be charac-

terized as a set-wise stabilization problem. To this end, a consensus set for the MAS

in (3.2) is introduced:

C = {x|x1 = x2 = · · · = xM},

where x ∈ Rn×M is the compact state vector of the overall system.

When the MAS in (3.2) achieves consensus, the state x(k) reaches the consensus

set C. It follows that the distance between the state and the consensus set becomes

zero, i.e., |x(k)|C = infz∈C ‖x(k)− z‖ = 0. Therefore, the necessity to study set-wise

Lyapunov stability naturally arises. We are now in a position to introduce some

definitions and preliminaries for set stability.

Definition 6 ([38]). For a discrete-time autonomous system

x+ = f(x), (3.3)
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where x ∈ Rn and f : Rn → Rn denotes a continuous function. The solution to (3.3)

at time k with the initial state x0 is denoted by ϕ(k;x0). A non-empty closed subset

of Rn, denoted by O, is forward invariant if, for any given initial state x0 ∈ O, it

holds that

ϕ(k;x0) ∈ O, ∀k ≥ 0.

Note that the forward invariant set O is not necessarily bounded. Similar to

asymptotic stability with respect to a static point, we recall the definition of set-wise

asymptotic stability given in [38] and a lemma in [77].

Definition 7 ([38]). The system in (3.3) is asymptotically stable with respect to a

forward invariant set O if the following conditions are satisfied:

• (set-wise Lyapunov stability) for every ε > 0, a scalar δ > 0 can always be

found, such that |x0|O < δ implies |ϕ(k;x0)| < ε, ∀k ≥ 0;

• (set-wise attraction) for x0 ∈ Xi ⊆ Rn, |ϕ(k;x0)|O → 0 as k →∞.

Lemma 7 ([77]). If there exists a Lyapunov function V : Rn → R≥0 for the system

in (3.3) and the given forward invariant set O, such that

• α1(|x|O) ≤ V (x) ≤ α2(|x|O),

• V (x+)− V (x) ≤ −α3(|x|O),

for any x0 ∈ Xi ⊆ Rn, where functions α1, α2 belong to class K and α3 ∈ PD, then

we can conclude that the system in (3.3) is asymptotically stable with respect to the

forward invariant set O.
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3.2.4 Problem Statement

Consider a linear semi-stable MAS given by (3.2), the distributed controller

uli(k) = K
∑
j∈Ni

(xi(k)− xj(k)), (3.4)

proposed in [38], can drive the system state to the consensus set C, when there is no

constraint involved. However, implementing (3.4) to a digital controller is difficult,

since it requires every agent to have continuous access to their neighbors states xj(k)

simultaneously at every discrete time instant. To relax these requirements, we are

more interested in designing distributed MPC-based consensus strategy,

ui(k) = gi(xi(k), x̂j(k)), (3.5)

where the continuous nonlinear function gi : Rn → Rm, such that the closed-loop

system can be driven to the consensus set, while satisfying input constraints. The

assumed state of agent j at time k is denoted by x̂j(k) and will be specified later. For

convenience, we introduce a control variable

ci(k) := ui(k)− uli(k) = ui(k)−K
∑
j∈Ni

(xi(k)− x̂j(k)) (3.6)

to characterize the difference between the distributed MPC input (3.5) and the pre-

stabilizing linear consensus control input (3.4). Accordingly the closed-loop systems

become

xi(k + 1) = Axi(k) +BK
∑
j∈Ni

(xi(k)− x̂j(k)) +Bci(k), ∀i, j ∈ N[1,M ], i 6= j. (3.7)
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By minimizing the control variable, the MPC input gradually approaches the pre-

stabilizing linear consensus control input, indicating that the cooperation among

agents is reinforced. It is worth noting that, the assumed neighbor state x̂j(k) is

involved in the distributed MPC controller design, as it is not realistic for digital

decision makers in a wireless digital networked system to grant continuous access to

state of neighbors simultaneously. To this end, restricting the deviation between the

real and the assumed states becomes necessary. The assumed state should lie in a

specified neighborhood of the real state,

x̂i(k) ∈ xi(k)⊕ εi, (3.8)

where 0 ∈ εi ⊂ Rn, so that consistency can be ensured between the intended behavior

of an agent and what its neighbors believe how the agent will behave. We are now in

the position to present our distributed MPC-based consensus algorithm.

3.3 Distributed MPC-based Consensus

Given the prediction horizon N , the cost function for agent i at time k can be for-

mulated as follow:

J iN(xi(k), x̂j(k), ci(k)) =
N−1∑
t=0

‖ci(k + t|k)‖2 , (3.9)

where x̂j(k) =

[
x̂T
j1

(k) x̂T
j2

(k) · · · x̂T
jdi

(k)

]T

is the collection of assumed state se-

quences of the neighboring agents and di = |Ni|. The distributed optimal control
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problem Pi is given by:

minimize
ci(·)

J iN(xi(k), x̂j(k), ci(k)) (3.10a)

subject to xi(k|k) = xi(k), (3.10b)

ui(k + t|k) = K
∑
j∈Ni

(xi(k + t|k)− x̂j(k + t|k)) + ci(k + t|k), (3.10c)

ui(k + t|k) ∈ Ui, (3.10d)

xi(k + t+ 1|k) = Axi(k + t|k) +Bui(k + t|k), (3.10e)

‖xi(k + t|k)− x̂i(k + t|k)‖ ≤ ∆i, (3.10f)

xi(k +N |k) ∈ X f
i , (3.10g)

where t ∈ N[0,N−1] and ∆i > 0 is a positive constant. The terminal region defined as

X f
i = {xi ∈ Rn|xT

i

∑
j∈Ni

S2(xi − x̂j(k +N |k)) ≤ β2
s

M
},

is a forward invariant set [38]. The gain matrix K, the positive semi-definite weighting

matrix S2 ∈ Rn×n and the positive constant βs are given in [38]. The solution to

Pi is denoted by c∗i (k + t|k) = arg min J iN(xi(k), x̂j(k), ci(k)), t ∈ N[0,N−1] and the

corresponding optimal predicted state and input are denoted by x∗i (k+ t|k), t ∈ N[0,N ]

and u∗i (k + t|k), t ∈ N[0,N−1], respectively. At time instant k, we make use of the

predicted state sequence received at previous time step to construct the assumed

state trajectory as

x̂j(k + t|k) =


x∗j(k + t|k − 1), t ∈ N[0,N−1],

Ax∗j(k +N − 1|k − 1), t = N.

(3.11)
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This construction can be done once the local Pj is solved and the sequence x∗j(k −

1 + t|k − 1), t ∈ N[0,N ] is available.

Remark 4. The constraint (3.10f) bounds the optimal predicted state sequence x∗i (k+

t|k) within a tube centered in the assumed state sequence x̂i(k + t|k). This implies

that (3.8) is satisfied, which further guarantees bounded gap between the real state of

agent i and the predicted state it sends to its neighbors. This constraint enforces, to

a certain extent, consistency between the intended behaviors of an agent and what it

makes the neighbors believe how the agent will behave.

The distributed MPC-based consensus algorithm is formulated in Algorithm 2.

Algorithm 2 Distributed MPC-based Consensus Algorithm

Require: Initial states of all agents xi0; initial assumed state sequences x̂i(t|0) =
Atxi0, t ∈ N[0,N ] (transmit to neighbors once obtained); index k = 1.

Initialization: Every agent i receives the initial assumed state trajectories x̂j(t|0)
from neighbors and solves Pi without the constraints (3.10f)-(3.10g).
At time instant k,

1: for i ∈ N[1,M ] do
2: Agent i receives neighbors optimal predicted state trajectories x∗j(k+t−1|k−1),

t ∈ N[0,N ], j ∈ Ni. Then it computes neighbors’ assumed state trajectories using
(3.11) and stacks them together as x̂j(k);

3: Agent i measures its current state xi(k);
4: Solve Pi to generate optimal predicted control sequences c∗i (t+ k|k) and u∗i (t+

k|k), t ∈ N[0,N−1] and obtain optimal predicted state trajectory x∗i (t + k|k),
t ∈ N[0,N ];

5: Implement the control ui(k) = u∗i (k|k) to agent i;
6: Broadcast the optimal predicted state trajectory x∗i (t + k|k), t ∈ N[0,N ] to all

its neighbors j ∈ Ni;
7: end for
8: Increment k and go back to step 1.

In Initialization of Algorithm 2, solving Pi without the constraints (3.10f)-(3.10g) is

under the assumption that the neighbors apply zero control input over the prediction

at the first time step. This idea can be originated from [32].
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We compare our distributed MPC-based consensus algorithm with some existing

works in the following remark.

Remark 5. Our algorithm differs some existing works in two aspects. The informa-

tion broadcasting among our MPC-based consensus controllers is more general, since

the communication graph is undirected. In [27], the transmission network is directed,

so agent i is able to access its neighbors state xj(k) simultaneously, thus no assumed

state sequences are required to formulate the OCP. Compared with [60] where itera-

tive communication of both state and input information is required, our local MPC

controllers exchange state information only once at each time, which relaxes commu-

nication load for the network and also saves computational resource for individual

local decision makers.

3.4 Feasibility and Stability Analysis

In the distributed MPC framework, only the first element of the optimal control

sequence is implemented to the plant, i.e., ci(k) = c∗i (k|k), ui(k) = u∗i (k|k). By

applying Algorithm 2 to the MAS in (3.1), the closed-loop system becomes

xi(k + 1) = Axi(k) +BK{
∑
j∈Ni

(xi(k)− xj(k)) + wi(k)}+Bci(k), (3.12)

where wi(k) :=
∑

j∈Ni
(xj(k)− x̂j(k)) ∈ Wi(k). The set

Wi(k) := {w ∈ Rn| ‖w‖ ≤
∑
j∈Ni

‖xj(k)− x̂j(k)‖ ≤ di∆i}, (3.13)

can be easily proved to be compact according to (3.10f). At time instant k, every

agent i solves Pi, obtaining the optimal predicted state sequence x∗i (k), the optimal
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control sequence u∗i (k) and the control variable sequence c∗i (k), where

x∗i (k + t+ 1|k) = Ax∗i (k + t|k) +Bu∗i (k + t|k), (3.14)

u∗i (k + t|k) = K
∑
j∈Ni

(x∗i (k + t|k)− x̂j(k + t|k)) + c∗i (k + t|k), t ∈ N[0,N−1]. (3.15)

To approach the cooperation of the overall system, we evaluate the overall closed-loop

system

x(k + 1) =(IM ⊗ A)x(k) + (L ⊗BK)x(k) + (IM ⊗BK)w(k)

+ (IM ⊗B)c(k)

=Φx(k) + (IM ⊗BK)w(k) + (IM ⊗B)c(k),

(3.16)

where Φ = IM⊗A+L⊗BK, w(k) :=

[
wT

1 (k) · · · wT
M(k)

]T

∈ W :=W1×W2×· · ·×

WM and c(k) :=

[
cT

1 (k) · · · cT
M(k)

]T

. By (3.13), one can easily get the compact

set W(k) = {ω ∈ Rn×M | ‖ω‖2 ≤
∑M

i=1 d
2
i∆

2
i }.

3.4.1 Feasibility Analysis

In order to prove the recursive feasibility of the distributed MPC-based consensus

algorithm by induction, there must exist at least one control sequence ci(0), such

that the constraints (3.10b)-(3.10g) are satisfied for the given initial state xi0. This

initial feasibility can be fulfilled by selecting a proper prediction horizon N .

Assume that the initial feasibility is satisfied, the main results on the algorithm

feasibility is summarized in the following theorem.

Theorem 3. For the MAS in (3.1) with initial feasibility, suppose that Assumption

2 and Assumption 3 hold, then Algorithm 2 is iteratively feasible.
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Proof. Without loss of generality, we assume that, at an arbitrary time instant k, each

agent solves Pi and the assumed state sequences constructed as in (3.11) are broadcast

via the transmission network. By induction principles, the recursive feasibility holds

if there exists a control variable candidate sequence c̃i(k+ 1) being compatible to the

constraints in Pi for the state xi(k + 1).

We sketch the proof in two steps. First, we derive the candidate sequences. Con-

catenating the “tail” of the optimal predicted control variable sequence c∗i (k) with

terminal zero elements, the control variable candidate is formulated as

c̃i(k + 1 + t|k + 1) =


c∗i (k + 1 + t|k), t ∈ N[0,N−2],

0, t = N − 1.

(3.17)

Before showing the candidate c̃i(k+ 1) is compatible for xi(k+ 1), we investigate the

associated control input candidate ũi(k+1) and the state candidate x̃i(k+1) by using

(3.14) and (3.15). It is worth mentioning that, at time instant k + 1, the assumed

state trajectories of neighbors are updated to x̂j(k + 1) based on the optimal state

trajectories x∗j(k). Consequently, the control input candidates ũi(k + 1 + t|k + 1) are

not necessarily coincide with u∗i (k + 1 + t|k) at corresponding time instants, due to

the deviation between x̂j(k + 1 + t|k + 1) and x̂j(k + 1 + t|k).

Given the control variable candidate (3.17), the control input and state candidates

can be iteratively calculated by

ũi(k+ 1 + t|k+ 1) =


K
∑

j∈Ni
(x̃i(k + 1 + t|k + 1)− x̂j(k + 1 + t|k + 1))

+c∗i (k + 1 + t|k), t ∈ N[0,N−2],

K
∑

j∈Ni
(x̃i(k +N |k + 1)− x̂j(k +N |k + 1)), t = N − 1,
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and

x̃i(k + 1 + t+ 1|k + 1) =Ax̃i(k + 1 + t|k + 1) +Bũi(k + t+ 1|k + 1)

=Ax̃i(k + 1 + t|k + 1) +BK
∑
j∈Ni

(x̃i(k + 1 + t|k + 1)

− x̂j(k + 1 + t|k + 1)) +Bc∗i (k + 1 + t|k)

=Ax̃i(k + 1 + t|k + 1) +BK
∑
j∈Ni

(x̃i(k + 1 + t|k + 1)

− x̂j(k + 1 + t|k))

+BK
∑
j∈Ni

(x̂j(k + 1 + t|k)− x̂j(k + 1 + t|k + 1))

+Bc∗i (k + 1 + t|k), t ∈ N[0,N−1],

respectively. Let

ω∗i (k + 1 + t|k) = −
∑
j∈Ni

(x̂j(k + 1 + t|k)− x̂j(k + 1 + t|k + 1))

=
∑
j∈Ni

(x∗j(k + 1 + t|k)− x̂j(k + 1 + t|k)), t ∈ N[0,N−1],

it is easy to check that

‖ω∗i (k + 1 + t|k)‖ ≤
∑
j∈Ni

‖x̂j(k + 1 + t|k)− x̂j(k + 1 + t|k + 1)‖ ≤ di∆i.

Using the above expressions, one can represent the state sequence candidate itera-

tively by

x̃i(k + 1 + t+ 1|k + 1) =Ax̃i(k + 1 + t|k + 1) +BK
∑
j∈Ni

(x̃i(k + 1 + t|k + 1)

− x̂j(k + 1 + t|k))−BKω∗i (k + 1 + t|k) +Bc∗i (k + 1 + t|k).
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Since no uncertainty is involved in the system (3.1), the actual state at k + 1 can be

obtained and represented as follow:

xi(k + 1) = Axi(k|k) +Bu∗i (k|k) = x∗i (k + 1|k) = x̃i(k + 1|k + 1),

and accordingly, the first element of the control input candidate is given by

ũi(k + 1|k + 1) =K
∑
j∈Ni

(x̃i(k + 1|k + 1)− x̂j(k + 1|k + 1)) + c̃i(k + 1|k + 1)

=K
∑
j∈Ni

(x̃i(k + 1|k + 1)− x̂j(k + 1|k)) + c̃i(k + 1|k + 1)

+K
∑
j∈Ni

(x̂j(k + 1|k)− x̂j(k + 1|k + 1))

=K
∑
j∈Ni

(x∗i (k + 1|k)− x̂j(k + 1|k)) + c∗i (k + 1|k)

−K
∑
j∈Ni

(x̂j(k + 1|k + 1)− x̂j(k + 1|k))

=u∗i (k + 1|k)−Kω∗i (k + 1|k).

Moreover, it is easy to find the successive element of the state sequence candidate:

x̃i(k + 2|k + 1) =Ax̃i(k + 1|k + 1) +Bũi(k + 1|k + 1)

=Ax∗i (k + 1|k) +B(u∗i (k + 1|k)−Kω∗i (k + 1|k))

=x∗i (k + 2|k)−BKω∗i (k + 1|k).

Following the same procedure, the state sequence candidate can be iteratively ob-

tained by

x̃i(k + 1 + t|k + 1) =x∗i (k + 1 + t|k)

−
t−1∑
s=0

(A+BK)t−1−sBKω∗i (k + 1 + s|k), t ≥ 1,
(3.18)
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and the control sequence candidate as

ũi(k + t+ 1|k + 1) =u∗i (k + 1 + t|k)

−K
t−1∑
s=0

(A+BK)t−1−sBKω∗i (k + 1 + s|k)

−Kω∗i (k + 1 + t|k), t ≥ 1,

(3.19)

by using the prediction made at k. Though the deviation between prediction and

assumed sequences persistently exists, the gap can be restricted within a bounded

range thanks to the constraint (3.10f).

We now check the compatibility of the candidates to the constraints in Pi at k+1.

Since Pi is solved at time instant k, it follows that

u∗i (k + t|k) ∈ Ui, x∗i (k +N |k) ∈ X f
i , ∀t ∈ N[0,N−1].

In conjunction with (3.18)-(3.19) and the properties of the terminal set, one obtains

u∗i (k + 1 + t|k) =ũi(k + 1 + t|k + 1) +K
t−1∑
s=0

(A+BK)t−1−sBKω∗i (k + 1 + s|k)

+Kω∗i (k + 1 + t|k) ∈ Ui, t ∈ N[0,N−2],

We define the variable

rti =


0, t = 0,∑t−1

s=0(A+BK)t−1−sBKω∗i (k + 1 + s|k), t ∈ N[1,N−1]

and the set

Rt
i : =

t−1⊕
s=0

(A+BK)t−1−sBKWi(s), t ≥ 1,
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with R0
i = {0}. One can get that

u∗i (k + 1 + t|k) =ũi(k + 1 + t|k + 1) +Krti +Kω∗i (k + 1 + t|k)

∈ũi(k + 1 + t|k + 1)⊕KRt
i ⊕KWi(1 + t) ∈ Ui, t ∈ N[0,N−2].

By the properties of Pontryagin difference, it follows that

ũi(k + 1 + t|k + 1) ∈ ((Ui 	KWi(1 + t))	KRt
i) ⊆ Ui, t ∈ N[0,N−1].

Therefore, the input constraint is satisfied for the control sequence candidate ũi(k +

1) ∈ Ui. We now check the recursive feasibility for the terminal constraint by plugging

x̃i(k +N |k + 1) = x∗i (k +N |k)− rN−1
i

into

x̃i(k + 1 +N |k + 1) =Ax̃i(k + 1 +N − 1|k + 1) +Bũi(k + 1 +N − 1|k + 1)

=Ax̃i(k + 1 +N − 1|k + 1) +BK
∑
j∈Ni

(x̃i(k + 1 +N − 1|k + 1)

− x̂j(k + 1 +N − 1|k + 1)) +K c̃i(k + 1 +N − 1|k + 1)︸ ︷︷ ︸
zero terminal elements

=Ax̃i(k + 1 +N − 1|k + 1) +BK
∑
j∈Ni

(x̃i(k + 1 +N − 1|k + 1)

− x̂j(k + 1 +N − 1|k))−BK
∑
j∈Ni

(x̃j(k + 1 +N − 1|k + 1)

− x̂j(k + 1 +N − 1|k))

=Ax̃i(k + 1 +N − 1|k + 1) +BK
∑
j∈Ni

(x̃i(k + 1 +N − 1|k + 1)

− x̂j(k + 1 +N − 1|k))−BKω∗i (k + 1 +N − 1|k),
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then it follows that

x̃i(k + 1 +N |k + 1) =A(x∗i (k + 1 +N − 1|k)− rN−1
i )

+BK
∑
j∈Ni

(x∗i (k + 1 +N − 1|k)− rN−1
i

− x̂j(k + 1 +N − 1|k))−BKω∗i (k + 1 +N − 1|k)

=x̃iN − (BKω∗i (k + 1 +N − 1|k) + (A+BK)rN−1
i )

=x̃iN − (BKω∗i (k + 1 +N − 1|k)

+
N−1−1∑
s=0

(A+BK)N−1−sBKω∗i (k + 1 + s|k))

=x̃iN −
N−1∑
s=0

(A+BK)N−1−sBKω∗i (k + 1 + s|k))

=x̃iN − r̃Ni ,

where

x̃iN := Ax∗i (k + 1 +N − 1|k) +BK
∑
j∈Ni

(x∗i (k + 1 +N − 1|k)− x̂j(k + 1 +N − 1|k))︸ ︷︷ ︸
inside the forward invariant terminal set

according to the properties of the forward invariant set [38] and the state deviation

b̃Ni =
N−1∑
s=0

(A+BK)N−1−sBKω∗i (k + 1 + s|k)) ∈ RN
i .

By the features of the Pontryagin difference, it immediately holds that

x̃i(k + 1 +N |k + 1) = x̃iN − b̃Ni ∈ X
f
i 	RN

i ⊆ X
f
i .
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By now, we have shown that, there exists a control variable candidate c̃i(k + 1)

being compatible to the constraints (3.10d), (3.10f), (3.10g) for the successive state

xi(k + 1).

It is worth noting that the consensus control algorithm is executed distributively

on local controllers, but consensus describes behaviors of overall systems. In the

following two subsections, we investigate the convergence properties of the closed-

loop system in (3.16).

3.4.2 Convergence of the Control Variable

Before summarizing the convergence results, we first concatenate the systems in (3.1)

into a compact one and restate the preliminaries obtained in the previous subsection.

At time instant k, all agents solve corresponding Pi, obtaining x∗(k), u∗(k) and

c∗(k). We immediately get that

x∗(k + t+ 1|k) = (IM ⊗ A)x∗(k + t|k) + (IM ⊗B)u∗(k + t|k),

u∗(k + t|k) = (L ⊗K)x∗(k + t|k) + c∗(k + t|k) + (IM ⊗K)ω∗(k + t|k).

Following the same line in (3.17), let the control candidate at time instant k + 1 be

c̃(k + 1 + t|k + 1) =


c∗(k + 1 + t|k + 1), t ∈ N[0,N−2],

0, t = N − 1.

Accordingly, the control input candidate and the state candidate are given as follows:

ũ(k + 1 + t|k + 1) =u∗(k + t+ 1|k)− (IM ⊗K)ω∗(k + 1 + t|k)

−
t−1∑
s=0

[IM ⊗ (A+BK)t−1−sBK]ω∗(k + 1 + s|k)
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and

x̃(k + 1 + t+ 1|k + 1)

=(IM ⊗ A)x̃(k + 1 + t|k + 1) + (IM ⊗B)ũ(k + 1 + t|k + 1)

=x∗(k + 1 + t|k)−
t−1∑
s=0

(IM ⊗ (A+BK)t−1−sBK)ω∗(k + 1 + s|k).

Remark 6. Due to the existence of “errors” (treated as disturbance) between the

actual state and assumed state xi(k)−x̂i(k), the overall system in (3.16) is not possible

to guarantee asymptotic stability with respect to the consensus set. We however can

steer (3.16) to a neighborhood set of C, which further translates to the neighborhood

set C ⊕R being as small as possible. By tightening the set R, the state sensitivity to

the state deviation is minimized.

The convergence of the control variable is summarized in the following lemma.

Lemma 8. Given any feasible initial state x0, the optimal control sequences lim
k→∞

c∗(k) =

0 and square summable, i.e. lim
k→∞

∑k
t=0(c∗(t))Tc∗(t) <∞.

Proof. Denote the Lyapunov function by

VC(k) := J∗(c(k)) =
M∑
i=1

J iN(k) =
N−1∑
t=0

‖c∗(k + t|k)‖2 ≥ 0.

For the control candidate sequence c̃(k + 1), we have

ṼC(k + 1) =
N−1∑
t=0

‖c̃(k + 1 + t|k + 1)‖2 = VC(k)− ‖c∗(k|k)‖2 .

Since the control variable candidate c̃(k + 1) is a feasible, but not necessarily an

optimal solution to Pi, the associated cost value is suboptimal to the OCP at time
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instant k + 1, so it holds that

ṼC(k + 1) = VC(k)− ‖c∗(k|k)‖2 ≤ VC(k + 1),

⇒VC(k + 1)− VC(k) ≤ −‖c∗(k|k)‖2 ≤ 0.

(3.20)

Considering the sum of the inequalities in (3.20), one gets

lim
k→∞

k∑
t=0

(VC(t+ 1)− VC(t)) = lim
k→∞

VC(k + 1)− VC(0) ≤ − lim
k→∞

k∑
t=0

‖c∗(t|t)‖2 .

As VC(k + 1) and VC(0) are sums of squared finite scalars, we obtain that

0 ≤ lim
k→∞

VC(k + 1) = VC(0)− lim
k→∞

k∑
t=0

‖c∗(t|t)‖2 <∞,

which implies lim
k→∞

∑k
t=0 ‖c∗(t|t)‖

2 < ∞. Furthermore, by the properties of square

summable infinite series, it follows that

lim
k→∞
‖c∗(k|k)‖2 = 0

and each entry of the control variable vector c(k) also satisfies lim
k→∞

c∗i (k) = lim
k→∞

c∗i (k|k) =

0. By now we prove the convergence of the control variable ci(k) as it vanishes to

zero as k →∞.

3.4.3 Consensus Convergence Analysis

Now we consider the convergence of the MAS in (3.16). Due to the consistent devi-

ation between the real current neighbor states and assumed ones, it can be checked
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that the evolution of the actual system state at time instant k is given by

x(k) =Φkx(0) +
k−1∑
t=0

Φt(IM ⊗B)c(k − 1− t)

+
k−1∑
t=0

Φt(IM ⊗BK)w(k − 1− t),

(3.21)

where c(k − 1− t) = c∗(k − 1− t|k − 1− t), w(k − 1− t) = w∗(k − 1− t|k − 1− t).

The corresponding average state of the MAS is defined by

x̄(k) =
1

M
((1T

M1M)⊗ In)x(k) =

[
x̄(k)T · · · x̄(k)T

]T

∈ C, (3.22)

where x̄(k) = 1/M
∑M

i=1 xi(k). It is obvious that x̄(k) in the average state vector

x̄(k) are equal, which implies x̄(k) ∈ C. From the perspective of set theory,

lim
k→∞
|x(k)|C = lim

k→∞
‖x(k)− x̄(k)‖

measures the distance from the actual state to the consensus set. We investigate the

distance between the actual state (3.21) and the average state (3.22) as k →∞:

lim
k→∞

x(k)− x̄(k)

= lim
k→∞

[
IMn −

1

M
((1T

M1M)⊗ In)

]
x(k)

= lim
k→∞

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φkx(0)

+ lim
k→∞

k−1∑
t=0

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt(IM ⊗B)c(k − 1− t)

+ lim
k→∞

k−1∑
t=0

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt(IM ⊗BK)w(k − 1− t).

(3.23)
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Before proving that the first two terms in (3.23) vanish to zero as k → ∞, we first

recall an useful lemma from [78].

Lemma 9 ([78]). For any given scalar β ∈ (0, 1), and square summable series

lim
k→∞

E(k)2 <∞, it holds that

lim
k→∞

k−1∑
t=0

βk−1−tE(t) = 0.

Now we prove the following lemma by using Lemma 9.

Lemma 10. For the transition matrix Φ = IM ⊗A+ L⊗BK of the MAS in (3.16)

consisting of semi-stable agents, it holds that

lim
k→∞

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φkx(0) = 0.

Proof. By application of the semi-stability theorem in [74] and the properties of

Drazin inverse, we have

Y = lim
k→∞

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φk

=

[
IMn −

1

M
((1T

M1M)⊗ In)

][
IMn − (In − Φ)(In − Φ)#

]
.

We further obtain that

Y (IMn − Φ) =

[
IMn − (Φ− IMn)(Φ− IMn)# − 1

M
((1T

M1M)⊗ In)

+
1

M
((1T

M1M)⊗ In)(Φ− IMn)(Φ− IMn)#

]
(IMn − Φ)

=(IMn − Φ)− (IMn − Φ)− 1

M
((1T

M1M)⊗ In)(IMn − Φ)

+
1

M
((1T

M1M)⊗ In)(IMn − Φ) = 0,

(3.24)
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which implies Y = 0. Therefore we prove that

lim
k→∞

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φkx(0) = lim

k→∞
Y x(0) = 0.

Now we give the proof of the convergence of the second term in (3.23) in the

following lemma.

Lemma 11. Consider the second term in (3.23), it holds that

lim
k→∞

k−1∑
t=0

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt(IM ⊗B)c(k − 1− t) = 0. (3.25)

Proof. Since (3.24) holds, there always exists a scalar 0 < β < 1, such that

λmax(

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt) ≤ λmax(

[
IMn −

1

M
((1T

M1M)⊗ In)

]
) ≤ βt < 1.

Considering that the control variable sequence c∗(k) is square summable, it also holds

that the norm sequence E(k− 1− t) = ‖IM ⊗B‖ ‖c(k − 1− t)‖ is square summable:

lim
k→∞

k−1∑
t=0

E2(k − 1− t) = ‖IM ⊗B‖2 lim
k→∞

k−1∑
t=0

‖c(k − 1− t)‖2 <∞.

By application of the Cauchy-Schwarz inequality, the Euclidean norm of the sum in
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(3.25) becomes

0 ≤ lim
k→∞

∥∥∥∥∥
k−1∑
t=0

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt(IM ⊗B)c(k − 1− t)

∥∥∥∥∥
≤ lim

k→∞

k−1∑
t=0

∥∥∥∥[IMn −
1

M
((1T

M1M)⊗ In)

]
Φt
∥∥∥∥ ‖(IM ⊗B)c(k − 1− t)‖

≤ lim
k→∞

k−1∑
t=0

βtE(k − 1− t).

In conjunction with Lemma 9, we immediately obtain

lim
k→∞

k−1∑
t=0

βtE(k − 1− t) = 0,

implying that

lim
k→∞

∥∥∥∥∥
k−1∑
t=0

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt(IM ⊗B)c(k − 1− t)

∥∥∥∥∥ = 0. (3.26)

Now we are in a position to summarize our consensus convergence results. The

results in (3.25) and (3.26) reveal that the overall state will converge to a bounded

invariant set around the consensus set C. Together with (3.23), we can conclude that

lim
k→∞

x(k) = x̄(k) + lim
k→∞

k−1∑
t=0

[
IMn −

1

M
((1T

M1M)⊗ In)

]
Φt(IM ⊗BK)w(k − 1− t)

= x̄(k) + lim
k→∞

k−1∑
t=0

Φ̄t(IM ⊗BK)w(k − 1− t),

where matrix Φ̄ is Hurwitz and satisfies Φ̄t =

[
IMn− 1

M
((1T

M1M)⊗ In)

]
Φt. Similarly,
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we use some results of the robust positively invariant set presented in [71]. Let

Rt =
t−1⊕
s=0

Φ̄s(IM ⊗BK)W

be the deviation set of states which is reachable in j steps starting from the consensus

set C. It is obvious that
∑k−1

t=0 Φ̄
t(IM ⊗ BK)w(k − 1 − t) ∈ Rk. By [71], the set Rt

remains bounded as t → ∞ and contains the origin as an interior point, so we take

the compact set R := R∞. Therefore, under the initial feasibility, the overall state

of the MAS guarantees the convergence to a neighborhood of the consensus set, i.e.,

lim
k→∞

x(k) ∈ C ⊕ lim
k→∞
Rk = C ⊕R.

3.5 Numerical Examples

Consider an MAS with 5 identical linear semi-stable dynamics given by

xi(k + 1) = Axi(k) +Bui(k), xi(0) = xi0

where

A =



0.8 0.1 0.1 0 0

0 0.9 0 0.1 0

0.1 0.1 0.6 0.1 0.1

0 0.1 0.1 0.8 0

0.1 0.1 0 0 0.8


, B =



−0.1 0.1

0.1 −0.2

0 −0.3

0.08 0.1

0.2 0.08


.



80

The initial state of the five agents are selected as follow:

x10 =

[
0.9442 1.2174 −1.1190 1.2401 0.3971

]T

x20 =

[
1.2074 −0.6645 0.1406 1.3725 1.3947

]T

x30 =

[
−1.0272 1.4118 1.3715 −0.0439 0.9008

]T

,

x40 =

[
−1.0743 −0.2347 1.2472 0.8766 1.3785

]T

,

x50 =

[
0.4672 −1.3929 1.0474 1.3020 0.5362

]T

.

The control input for every agent is restricted by ‖ui‖∞ ≤ 0.3. The communication

network underlying the MAS contains a spanning tree and its Laplacian is

L =



2 −1 0 −1 0

−1 2 −1 0 0

0 −1 2 0 −1

−1 0 0 2 −1

0 0 −1 −1 2


.

The parameters are designed based on the inverse optimal consensus method in

[38] as follows: S2 = [2.551,−0.447, 0.119,−0.813,−1.069;−0.447, 4.028, 0.227, 1.356,

−2.664; 0.119, 0.227, 1.799, 0.74,−2.431,−0.813, 1.356, 0.74, 3.884,−3.689,−1.069,

−2.664,−2.431,−3.689, 10.081], K = [0.1258,−0.1015, 0.0542, 0.0071,−2.443;−0.0787,

0.1863, 0.0637, 0.0982,−0.1376]. The simulation results of the pre-stabilizing linear

consensus protocol in (3.4) are shown in Figure 3.1 and Figure 3.2. From Figure

3.1, we can see that the corresponding states of all five agents converge to the same

value and the closed-loop system reaches consensus under the design pre-stabilizing

consensus control. However, in Figure 3.2, it can be seen that the control inputs of
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some agents exceed the restriction of 0.3.
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Figure 3.1: State trajectories of all agents
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Figure 3.2: Pre-stabilizing control inputs for all 5 agents
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Figure 3.3: State trajectories of all agents
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Figure 3.4: MPC inputs for all 5 agents
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In the distributed MPC-based consensus framework setup, the prediction horizon

is taken as N = 10, and ∆ = 0.3, βs = 13.9. Making use of the MATLAB packages,

YALMIP and MPT, we obtain the simulation results as shown in the above figures.

It is shown in Figure 3.3 that all states of every agent converge to a small neighbor-

ing area around 0. This indicates that the closed-loop MAS converge to a neighboring

set of the consensus set under the proposed distributed MPC-based consensus algo-

rithm. The control inputs for all agents can be seen in Figure 3.4. The figures imply

that the input constraints are satisfied and the proposed distributed MPC framework

meets the control objectives.

3.6 Conclusion

In this chapter, the MPC-based consensus problem for input-constrained linear MASs

is studied. An inverse optimal consensus feedback is first introduced as the pre-

stabilizing consensus protocol in unconstrained scenarios. The next step is to design

the distributed MPC-based consensus algorithm based on the pre-stabilizing control

law with the satisfaction of the input constraints. Moreover, the recursive feasibility

of the proposed distributed MPC scheme has been analyzed. The overall system is

regulated to a neighborhood of the consensus set due to the distributed nature of the

digital controller networks.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, the MPC-based consensus problem for linear MASs has been addressed.

Chapter 2 involves a centralized tube-based MPC scheme to solve the consensus

problem for constrained linear MASs with bounded additive disturbance. First, a

linear consensus control protocol is designed via a suboptimal, rather than optimal,

linear quadratic approach, due to the non-convexity of the associated consensus per-

formance function. With the linear consensus protocol, we extend an existing robust

MPC scheme for single system stabilization to solve the multi-agent consensus prob-

lem. In order to robustify the model predictive controller with respect to persistent

disturbance, proper restrictions on the constraints are implemented. In this way,

with feasible initial states, the iterative feasibility of the proposed MPC scheme can

be guaranteed. As the robust constraint sets can be computed offline, no extra online

computation is required.

In Chapter 3, we propose a novel distributed MPC-based consensus protocol for

linear MASs with semi-stable dynamics. In order to reach consensus and guaran-
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tee recursive feasibility, each agent optimizes a local cost function at every sampling

time to obtain the optimal predicted control sequence and state sequence. The pre-

dicted information is shared with neighbors via a communication network with fixed

topology. Moreover, an inverse optimal linear control serves as the pre-stabilizing

consensus protocol for the proposed distributed MPC scheme.

4.2 Future Work

In this thesis, some assumptions are made to formulate and solve the consensus prob-

lem by using MPC schemes. These assumptions may restrict practical implementation

of the proposed control algorithms. Many interesting areas and problems are worth

of investigating in the future. We list some research potentials here.

• Chapter 2 involves the centralized consensus control problem of multi-agent

systems. The centralized control scheme can achieve the desired consensus per-

formance if the central controller is computationally powerful enough and the

scale of the MASs is not very large. However, in most real applications, con-

trollers cannot provide such powerful computational resources when the num-

ber of agents keeps increasing. Generally speaking, decoupling the large scale

systems into single ones and then assigning each agent an independent local

controller can significantly reduce the computational load. Decentralized con-

trol schemes are quite promising potential solutions to the consensus control of

MASs, but the design of such decentralized algorithms is still very challenging.

• Another potential research branch would be how to address the consensus prob-

lem for general nonlinear MASs with bounded disturbance in a distributed way

as in Chapter 3. The consensus control strategies designed via distributed

MPC-based consensus protocol for general linear time-invariant MASs with in-
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put constraints, avoiding iterative communication among subsystems and re-

ducing sequential information transmission via the networks, as well as in a

fully distributed manner is still difficult to solve and only few existing works

can be found.
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Additional Information
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and M. Hernández-Pérez, “Consensus problem for linear time-invariant systems

with time-delay,” Mathematical Problems in Engineering, vol. 2019, 2019.

[74] Q. Hui and W. M. Haddad, “Optimal semistable stabilisation for linear discrete-

time dynamical systems with applications to network consensus,” International

Journal of Control, vol. 82, no. 3, pp. 456–469, 2009.

[75] Q. Hui and Z. Liu, “Semistability-based robust and optimal control design for

network systems,” in Proceedings of the 51st IEEE Conference on Decision and

Control, pp. 7049–7054, 2012.

[76] S. Zeng and F. Allgöwer, “Structured optimal feedback in multi-agent systems:

A static output feedback perspective,” Automatica, vol. 76, pp. 214–221, 2017.

[77] Z.-P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-time sys-

tems with disturbances,” Systems & Control Letters, vol. 45, no. 1, pp. 49–58,

2002.



98

[78] C. Liu, H. Li, Y. Shi, and D. Xu, “Distributed event-triggered gradient method

for constrained convex minimization,” IEEE Transactions on Automatic Control,

2019.


	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acronym
	Acknowledgments
	Introduction
	Cooperative Control of Multi-agent Systems
	Consensus Problem in Multi-agent Systems
	blackMPC and MPC-based Consensus black
	blackMPC black
	blackMPC-based Consensus black

	Motivations and Contributions
	Motivations
	Contributions

	Thesis Organization

	blackA Centralized Robust MPC-based Consensus Protocol for Disturbed Multi-agent Systems black
	Introduction
	Preliminaries and Problem Statement
	Preliminaries
	Control Objective

	Suboptimal Consensus Protocol Design
	Suboptimal Solution to Autonomous Systems
	Suboptimal Solution to General Linear Systems
	Subpotimal Solution to Multi-agent Systems

	Robust blackMPC-based black Consensus Strategy
	Nominal blackMPC-based black Consensus
	Robust blackMPC-based black Consensus

	Feasibility and Convergence Analysis
	Numerical Examples
	Conclusion

	blackDistributed Model Predictive Control based Consensus of General Linear Multi-agent Systems with Input constraints black
	Introduction
	Preliminaries and Problem Statement
	Basic Concepts from Graph Theory
	Preliminaries on Multi-agent Consensus
	Set-wise Stabilization
	Problem Statement

	Distributed blackMPC-based black Consensus
	Feasibility and Stability Analysis
	Feasibility Analysis
	Convergence of the Control Variable
	Consensus Convergence Analysis

	Numerical Examples
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Additional Information
	Bibliography

