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ABSTRACT

In modern cyber-physical systems (CPSs) where the control signals are gener-

ally transmitted via shared communication networks, there is a desire to balance the

closed-loop control performance with the communication cost necessary to achieve it.

In this context, aperiodic real-time scheduling of control tasks comes into being and

has received increasing attention recently. It is well known that model predictive con-

trol (MPC) is currently widely utilized in industrial control systems and has greatly

increased profits in comparison with the proportional-integral-derivative (PID) con-

trol. As communication and networks play more and more important roles in modern

society, there is a great trend to upgrade and transform traditional industrial systems

into CPSs, which naturally requires extending conventional MPC to communication-

efficient MPC to save network resources.

Motivated by this fact, we in this thesis propose robust MPC and scheduling

co-design algorithms to networked CPSs possibly affected by both parameter uncer-

tainties and additive disturbances.
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In Chapter 2, a dynamic event-triggered robust tube-based MPC for constrained

linear systems with additive disturbances is developed, where a time-varying pre-

stabilizing gain is obtained by interpolating multiple static state feedbacks and the

interpolating coefficient is determined via optimization at the time instants when the

MPC-based control is triggered. The original constraints are properly tightened to

achieve robust constraint satisfaction and a sequence of dynamic sets used to test

events are derived according to the optimized coefficient. We theoretically show that

the proposed algorithm is recursively feasible and the closed-loop system is input-to-

state stable (ISS) in the attraction region. Numerical results are presented to verify

the design.

In Chapter 3, a self-triggered min-max MPC strategy is developed for constrained

nonlinear systems subject to both parametric uncertainties and additive disturbances,

where the robust constraint satisfaction is achieved by considering the worst case of

all possible uncertainty realizations. First, we propose a new cost function that re-

laxes the penalty on the system state in a time period where the controller will not be

invoked. With this cost function, the next triggering time instant can be obtained at

current time instant by solving a min-max optimization problem where the maximum

triggering period becomes a decision variable. The proposed strategy is proved to be

input-to-state practical stable (ISpS) in the attraction region at triggering time in-

stants under some standard assumptions. Extensions are made to linear systems with

additive disturbances, for which the conditions reduce to a linear matrix inequality

(LMI). Comprehensive numerical experiments are performed to verify the correctness

of the theoretical results.
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Chapter 1

Introduction

1.1 Networked Cyber-physical Systems and Ape-

riodic Control

The term networked cyber-physical systems (CPS) represents a new generation of

systems with tightly integrated cyber and physical components that can interact with

each other via wireless communication networks to achieve increased computational

capability, flexibility and autonomy over conventional systems. An illustration of

operation principles of modern CPSs can be found in Figure 1.1. The development of

CPSs serves as a technical foundation to a lot of important engineering applications

spanning automotive systems, industrial systems, smart grid and robotics. It is worth

noting that the communication and control that help form the interplay between cyber

and physical spaces in CPSs play a key role in advancing future developments of CPSs,

which is also the main topic of this thesis.

In typical networked CPSs, the interacting system components are generally spa-

tially distributed and connected via shared communication networks. In controller

design of such systems, the communication cost used to realize feedback control should
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Figure 1.1: Operation principles of CPSs.

be taken into account. In this respect, the conventional periodic control may be not

suitable, as it samples system state, calculates and delivers control input signals in a

periodic way, possibly leading to unnecessary over-provisioning and therefore higher

communication and computation costs. This problem, also faced by embedded control

systems, becomes more serious for large-scale CPSs. To elaborate this, we consider

the following discrete-time nonlinear system:

xt+1 = f(xt, ut) (1.1)

where xt ∈ Rn, ut ∈ Rm represent the system state and control input, respectively,

at time t ∈ N. f : Rn × Rm → Rn is a nonlinear function satisfying f(0, 0) = 0. Let

the sequence {tk|k ∈ N} ∈ N where tk+1 > tk be the time instants when the control

input ut needs to be updated. If the system is controlled by a periodic controller,

one should derive in advance the maximum open-loop time period that the system

equipped with such a controller can endure while preserving the closed-loop stability.

This process, obviously, does not take the dynamical behavior of the closed-loop

system into account and may give a conservative sampling strategy that leads to
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unnecessary use of computation and communication resources that are quite scarce

in networked CPSs.

To tackle this problem, significant research has been devoted to the co-design of

scheduling and control of CPSs, that is, generating and broadcasting control signals

only when necessary. In particular, event-triggered control has been proposed and

received considerable attention recently. In sharp contrast to periodic control, event-

triggered control only generates network transmissions and closes the feedback loop

when the system being controlled exhibits some undesired behaviors. In other words,

the dynamical behavior of the real-time closed-loop system is taken into account to re-

duce the conservativeness of periodic schedulers. To be more specific, event-triggered

control involves comparing the deviation between the actual state trajectory and the

assumed trajectory at last triggering instant with a pre-defined, possibly time-varying

threshold, thereby adapting the nonuniform sampling period in response to the sys-

tem performance. A typical event-triggered control paradigm can be found in Figure

1.2. It is worth mentioning that continuous state measurement is necessary in event-

triggered control. Intuitively speaking, the state deviation serves as a measure of

how valuable the system state at current time instant is to the performance of the

closed-loop system. If the deviation exceeds a pre-specified threshold, the current

state is deemed as essential and will be used to generate control signals. Theoretical

properties about how this threshold magnitude impacts the lower bound of the sam-

pling period and the closed-loop system behavior are then analyzed by using different

stability concepts in the literature. The hope of event-triggered control is to pro-

vide a larger average sampling period than periodic control while largely preserving

the control performance. For a recent overview on event-triggered and self-triggered

control, please refer to [28,31,37].

Early works on event-triggered control can be found in [1,2,29] for scalar systems.
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Recently, there are some works addressing high-order systems using event-triggered

control. For example, an event-triggered control strategy for a class of nonlinear

systems based on the input-to-state stable (ISS) concept was developed in [61]. The

event-triggered state-feedback control problem for linear systems was investigated

in [46], where the performance was evaluated by using an emulation-based approach,

i.e., comparing the event-triggered control with the corresponding continuous state-

feedback. In [27], Heemels et al. proposed an event-triggered control strategy for

linear systems where the event-triggered condition is only required to be verified

periodically. In [14], Donkers et al. designed an output-based event-triggered control

strategy for linear systems and studied the stability and L∞-performance of the closed-

loop system. Results on distributed event-triggered consensus were reported in [13]

for first-order multi-agent systems and [64] for general linear models.

Event-triggered control generally requires continuously sampling system state and

then checking triggering conditions, which may be not feasible for practical imple-

mentation. An example of triggering times in event-triggered control is plotted in

Figure 1.3. To overcome this drawback, the self-triggered control has been devel-

oped. In contrast to event-triggered control, it no longer monitors the closed-loop

system behavior to detect the event but estimates the next triggering time instant

based on the knowledge of system dynamics and state information at current trigger-

ing time instant. Please see Figure 1.4 for an example of self-triggering time instants.

This, although leads to a relatively conservative sampling strategy, makes the prac-

tical implementation much easier. In [62], Wang et al. developed a self-triggered

control strategy for linear time-invariant systems with additive disturbances where

the control performance is evaluated by the finite-gain l2 stability.
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Figure 1.2: An event-triggered control paradigm.

Triggering time
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Figure 1.3: An example of triggering times in event-triggered control.

Triggering time

Measurement

Figure 1.4: An example of triggering times in self-triggered control.

1.2 MPC and Aperiodic MPC

1.2.1 MPC

Model predictive control (MPC), also known as receding horizon control, is an ad-

vanced control strategy that combines the feedback mechanism with optimization.

The control signal is derived by solving constrained optimization problems where the

objective function is essentially a function of the system state at current time instant

and a sequence of control inputs over a certain time horizon in the future, and the

constraints are determined according to the limitations inherent in practical systems.

MPC has now been widely used in various engineering areas such as process control

systems [53] and motion control of autonomous vehicles [19]. Interestingly, the idea
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of iteratively optimizing a performance index has been also used in path planning for

robotics [59].

Take the nonlinear system in (1.1) for example. Suppose that the system is subject

to state constraints xt ∈ X ⊂ Rn and input constraints ut ∈ U ⊂ Rm. The cost

function to be minimized at each time instant can be set as

J(xt,ut,N) =
N−1∑
i=0

L(xi,t, ui,t) + F (xN,t)

where N denotes the prediction horizon, xi,t and ui,t represent the predicted state

and input trajectory emanating from time t and obey

x0,t = xt

xi+1,t = f(xi,t, ui,t), i ∈ N[0,N−1],

(1.2)

and ut,N =

[
uT

0,t, · · · , uT
N−1,t

]T

. L : Rn ×Rm → R≥0 and F : Rn → R≥0 are the stage

cost function and terminal cost function, respectively. It is assumed that they are

both continuous and satisfy L(0, 0) = 0 and F (0) = 0. Then the control input at

time t is derived by solving the following.

u∗t,N = arg min
u0,t∈U ,··· ,uN−1,t∈U

J(xt,ut,N)

s.t. (1.2)

ui,t = U , xi,t ∈ X , i ∈ N[0,N−1]

xN,t ∈ X .

Once a sequence of future control inputs, i.e., u∗t,N , is derived, the first element of it,

i.e., u∗0,t, is applied to the system. As time evolves, the MPC law can be obtained by

re-sampling the system state and re-activating the optimization iteratively. Please
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see [49] for more details on MPC. Note that the objective and constraints in MPC-

based controllers are usually set as functions of future system states and inputs to

conveniently encode the desired control performance and system constraints in prac-

tice. However, given a system model, the future system states are functions of the

current state and the future control actions. This implies that, at each time instant,

the decision variable of the optimization problem becomes only the future inputs since

the variable “current state” is fixed.

In the literature, there are some typical MPC schemes that are carefully designed

in order to provide performance guarantees, e.g., recursive feasibility of optimization

problems, closed-loop stability and robustness against additive disturbance and/or

parametric uncertainties.

� First, to ensure recursive feasibility and stability, the authors in [10] proposed

to add some tailored terminal ingredients including usually a terminal state

penalty and terminal state constraints to the optimization problem in MPC-

based controllers. The essential idea of this stabilizing MPC framework is that,

by assuming the linearization of the original system is stabilizable, a static feed-

back law that stabilizes the linearization also works for the original nonlinear

system locally and can be used to produce feasible control input solutions to

optimization problems. The stability then follows from the use of this feasible

control input and optimality. There are also some other stabilizing MPC strate-

gies. For example, a Lyapunov-based constraint characterized by a stabilizing

control law was used to ensure the feasibility and stability of MPC in [12].

� Second, there are three typical robust MPC schemes in the literature, that is,

robust MPC with nominal cost [42,48], robust MPC with min-max cost [43,54],

and tube-based MPC [11, 50].



8

1. In the first method, the Lipschitz continuity of the cost function [48] or

the exponential stability of the local feedback [42] was explored to estab-

lish some degree of inherent robustness and the constraint satisfaction in

presence of additive disturbances was achieved by properly tightening the

original constraints. This approach generally yields conservative robust-

ness margins as the prediction in this scheme is conducted in an open-loop

fashion with which the disturbance effect exponentially increases according

to the Gronwall-Bellman inequality [33].

2. In the second strategy, the controllers consider the worst case of all possible

disturbance and/or uncertainty realizations to ensure robust constraint

satisfaction and solve a min-max optimization problem to generate control

inputs. This strategy provides larger robustness margins due to the so-

called feedback prediction process [54] but also becomes computationally

expensive. Trade-offs between computation and performance in min-max

MPC were made in [43, 44]. Note that in the above two methods, the

control input is purely optimization-based (Opt-based).

3. In robust tube-based MPC, the control law is composed by a pre-stabilizing

linear feedback and the optimization-based input, in which the static linear

feedback helps attenuate disturbance impacts and the latter contributes

to the constraint satisfaction. It is worth mentioning that, with a pre-

stabilizing feedback in the prediction model, the conservativeness caused by

the constraint tightening procedure in [48] can be alleviated, especially for

unstable linear systems and nonlinear systems where the model is Lipschitz

continuous with a constant larger than 1.

An overview of typical MPC algorithms can be found in Table 1.1.
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MPC schemes Optimization Constraints Control input
Standard MPC in [10] Minimization Original Opt-based

Robust MPC
[48] Minimization Tightened Opt-based
[54] Min-max Original Opt-based
[50] Minimization Tightened Opt-based + pre-stabilizing

Table 1.1: An overview of typical MPC algorithms.

1.2.2 Event-triggered MPC and self-triggered MPC

It is well known that MPC is currently widely utilized in the industrial control sys-

tems and has greatly increased profits in comparison with the proportional-integral-

derivative (PID) control. As communication and networks play more and more im-

portant roles in modern society, there is a great trend to upgrade and transform tradi-

tional industrial systems into CPSs, which naturally requires extending conventional

MPC to communication-efficient MPC to save network resources. In this context,

aperiodic MPC comes into being and has received increasing attention recently.

One widely used methodology in existing works on event-triggered MPC is to make

use of the cost function to derive event-triggering conditions. For example, the event-

triggered mechanisms, recursive feasibility and closed-loop stability in [15, 16, 24–26]

were developed by taking advantage of the Lipschitz continuity of the cost function;

specifically the authors in [24–26] considered the sample-and-hold implementation of

the control law with different hold mechanisms. The authors in [24] further proposed

a computationally efficient method for adaptively selecting sampling intervals while

ensuring some degree of sub-optimality. Moreover, the robust constraint satisfaction

therein was achieved by properly tightening the original constraints according to the

Gronwall-Bellman inequality [33]. The authors in [20, 39, 43, 63] introduced a new

variable that provides a degree of freedom to balance the communication cost and

the control performance to the standard MPC cost function, and by solving a more
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complex optimization problem, the next triggering time can be explicitly determined

at current triggering time instant. The essential idea is to relax the state cost penalty

in a certain time period by multiplying the cost by a constant smaller than 1 if the

controller during this period will not be triggered. The decrease in the optimal cost

caused by the relaxed penalty may be seen as a reward due to a larger sampling

period. By performing optimization, a trade-off between communication and control

performance is sought. Amongst them, references [5, 20, 39] considered nonlinear

systems without disturbances; the authors in [3, 6, 63] considered disturbed linear

systems and [43] dealt with uncertain nonlinear systems.

Another standard routine, known as the emulation-based event-triggered control,

involves setting a threshold that limits the deviation between the actual state and the

predicted state at last triggering time instant and investigating how this threshold

will affect the recursive feasibility and closed-loop stability of MPC algorithms; see

[7, 8, 22, 23, 38, 40, 42] for example. The MPC-based control in these schemes should

have some degree of robustness. This is primarily because that these works either

considered systems with zero-order hold control inputs or/and additive disturbances.

In this respect, these strategies differ from each other by the different types of robust

MPC strategies used. In particular, the works in [22,23,38,40,42] recruited the robust

MPC with nominal cost mentioned in the last subsection and [7, 8] used the robust

tube-based MPC. Note that the solution proposed in [7, 8] may be less conservative

since the tube-based MPC can better cope with the disturbance thanks to the pre-

stabilizing linear feedback. When dealing with continuous-time systems within this

framework, the effect caused by bounded additive disturbances is usually explored in

order to make the event trigger Zeno-free [23, 38,40,42].
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Aperiodic MPC Mechanism Disturbance Uncertainty

Cost-based
[24,26] Self-triggered Yes No

[25] Event-triggered Yes No
[20,39] Self-triggered No No

Emulation-based [8, 23,38] Event-triggered Yes No

Table 1.2: An overview of aperiodic MPC algorithms.

1.3 Motivations

Although the event-triggered and self-triggered MPC have received enormous atten-

tion recently and great progress has been made in the literature, the existing schemes

mostly presented a separate design of MPC and triggering strategy, as surveyed in the

previous section. Notable exceptions include [20] where undisturbed nonlinear sys-

tems were considered and [3,6] addressing linear systems with additive disturbances.

These methods cannot be easily extended to disturbed nonlinear systems with or

without parametric uncertainties primarily because the tube-based MPC framework

mainly applies to linear systems and cannot handle parameter uncertainties. This two

reasons motivate the research in this thesis to present a robust MPC and scheduling

co-design framework for general nonlinear systems subject to both additive distur-

bances and parametric uncertainties. Specifically, the main motivations are summa-

rized in the following two aspects.

� Dynamic event-triggered tube-based MPC. The co-design frameworks

in [3, 6, 20] are all self trigger-based. In other words, the event-triggered sched-

ulers and MPC in the literature are all separately designed in the sense that

the threshold that characterizes the event trigger does not relates to the con-

strained optimization problem in the MPC framework. Considering that the

optimization problem lies at the core of MPC, it would make perfect sense

that the event-triggered threshold and the optimization problem can be jointly
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designed, i.e., the dynamic threshold is determined by the optimization prob-

lem at each triggering time instant. A better trade-off between communication

and control performance can be expected due to the new optimization-based

dynamic event trigger. This idea will be pursued in the first part of the thesis.

� Self-triggered min-max MPC. None of the existing results can handle gen-

eral nonlinear systems affected by parametric uncertainties, although model

uncertainties are almost unavoidable in system modeling. This is mainly due to

the robust MPC schemes on which the existing results build are the robust MPC

with nominal cost and the tube-based MPC, and cannot handle parametric un-

certainties. Besides, the prediction in these two schemes is performed in an

open-loop sense, leading to conservative attraction regions in presence of uncer-

tainties. Robust min-max MPC can well handle general nonlinear systems with

both parametric uncertainties and additive disturbances and provides relatively

large attraction regions mainly thanks to the feedback prediction. However,

how to introduce self-triggered schedulers to min-max MPC is unexplored and

will be investigated in the second part of the thesis.

1.4 Contributions

The co-design problem of robust MPC and scheduling for networked CPSs is investi-

gated in the thesis. The main contributions are summarized as follows.

� Dynamic event-triggered tube-based MPC for disturbed unconstrained

linear systems. The first part of the thesis is concerned with the robust event-

triggered MPC of discrete-time constrained linear systems subject to bounded

additive disturbances. We make use of the interpolation technique to construct

a feedback policy and tighten the original system constraint accordingly to
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fulfill robust constraint satisfaction. A dynamic event trigger that allows the

controller to solve the optimization problem only at triggering time instants is

developed, where the triggering threshold is related to the interpolating coef-

ficient of the feedback policy and determined via optimization. We show that

the proposed algorithm is recursively feasible and the closed-loop system is ISS

in the attraction region. Finally, a numerical example is provided to verify the

theoretical results.

� Self-triggered min-max MPC for uncertain constrained nonlinear sys-

tems. In the second part, we propose a robust self-triggered MPC algorithm for

constrained discrete-time nonlinear systems subject to parametric uncertainties

and disturbances. To fulfill robust constraint satisfaction, we take advantage of

the min-max MPC framework to consider the worst case of all possible uncer-

tainty realizations. In this framework, a novel cost function is designed based on

which a self-triggered strategy is introduced via optimization. The conditions

on ensuring algorithm feasibility and closed-loop stability are developed. In

particular, we show that the closed-loop system is input-to-state practical sta-

ble (ISpS) in the attraction region at triggering time instants. In addition, we

show that the main feasibility and stability conditions reduce to a linear matrix

inequality (LMI) for linear case. Finally, numerical simulations and comparison

studies are performed to verify the proposed control strategy.

1.5 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, the co-design of

event trigger and the tube-based MPC for constrained linear systems with additive

disturbances is investigated. A self-triggered min-max MPC strategy for uncertain
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constrained nonlinear systems is proposed in Chapter 3. Chapter 4 concludes the

thesis and gives some future research directions.
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Chapter 2

Dynamic Event-triggered

Tube-based MPC for Disturbed

Constrained Linear Systems

2.1 Introduction

In this chapter, the focus is on event-triggered MPC of discrete-time constrained lin-

ear systems subject to bounded additive disturbances. When additive disturbance is

considered in the MPC framework, the original state constraint should be tightened

to achieve robust constraint satisfaction as the actual state and the predicted state

do not coincide necessarily. The authors in [25,42,48] quantified the effect caused by

the worst case disturbance on the system state by taking advantage of the Lipschitz

continuity of the nonlinear system model; by set subtraction, a sequence of time-

varying tightened constraints can be obtained. However, the use of the open-loop

prediction strategy and the Lipschitz continuity essentially results in conservative at-

tractive regions. To better attenuate the disturbance effect, the feedback prediction



16

strategy [43, 54] can be employed to limit the growth of the disturbance effect along

the prediction horizon. With this strategy, the well-known min-max MPC framework

was developed in [58], where the controllers consider the worst case of all possible

disturbance realizations to achieve constraint satisfaction and performs min-max op-

timization to derive optimal control policies. However, such a min-max optimization

problem is computationally intractable, and parameterization of certain policies is

often used [54] to reduce the degree of freedom in decision variables to make the op-

timization problem relatively easy to solve. Another application of this strategy can

be found in tube-based MPC [11,50], where a fixed control policy is used for predic-

tion, leading to a sequence of limited sets (known as the “tube”) characterizing the

deviation between the actual state and the predicted state. Based on this approach,

the authors in [8] developed a robust event-triggered MPC scheme by exploiting the

fact that, during some open-loop spans, the realized disturbances that may be of

insignificant impact will not bring the actual state farther away from the predicted

state trajectory than the assumed worst case disturbance with feedback, it is then

possible to not calculate and transmit control signals periodically.

Note that the linear feedback control policy used to attenuate the disturbance

effect in [8] is static. It is also worth mentioning that a high-gain feedback law, i.e.,

LQR gain, that provides superior control performance may suffer from a small event-

triggering threshold and thus a high sampling rate, while low-gain feedback laws may

lead to a larger deviation bound and larger average sampling period with relatively

poor control performance. This implies that a constant linear feedback gain may can-

not finely balance the control performance and communication cost in robust event-

triggered MPC. To solve this important issue, we propose a robust event-triggered

MPC method featuring the following: (1) The feedback policy interpolates between

low-gain feedback laws and a performance controller and (2) the interpolating coef-
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ficients are subject to optimization at triggering time instants to achieve a co-design

of the triggering mechanism and the feedback policy. The idea of using interpolating

strategy within periodic MPC was originally proposed and explored in [4, 51, 56, 57]

for undisturbed linear systems to enlarge the associated feasible region while pre-

serves the control performance; extensions to disturbed linear systems can be found

in [52, 60]. However, the proposed control methodology differs from that in [52, 60]

in the following two aspects: First, the controllers in [52, 60] solve constrained opti-

mization problems periodically while the proposed controller conducts optimization

aperiodically; this poses a challenge to ensuring robust constraint satisfaction and

closed-loop stability. Second, compared with the existing control configuration [60]

where the closed-loop state trajectory is a convex combination of the disturbed tra-

jectory associated with a performance controller and some undisturbed trajectories

governed by low-gain feedback laws, the proposed controller interpolates between

multiple disturbed closed-loop state trajectories, and optimizes the interpolating co-

efficient at each triggering time instant in order to generate an optimized triggering

mechanism.

The main contributions of this chapter are two-fold:

� A robust MPC strategy is developed for discrete-time constrained linear sys-

tems with bounded additive disturbances, where the feedback policy that helps

attenuate the disturbance effect in the prediction process is constructed based

on the interpolation technique. To fulfill robust constraint satisfaction, the

system constraint sets are properly tightened according to a set of stabilizing

feedback gains and the interpolating coefficients between them. The control

input and the interpolating coefficients are derived by solving constrained opti-

mization problems where the cost penalizes the weighting factors of the low-gain

feedback laws in order to balance the size of attraction region and the control
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performance.

� An event-triggered control mechanism with dynamic triggering threshold is in-

troduced to the interpolation-based robust MPC strategy such that the con-

troller only needs to solve the constrained optimization problem and transmit

the control signals at particular triggering time instants to reduce computation

load and communication cost. Rigorous studies on algorithm feasibility and

closed-loop stability have been conducted. Simulation examples are provided

to validate the theoretical design.

The rest of this chapter is organized as follows. Section 2 formulates the control

problem. Section 3 develops the robust event-triggered MPC algorithm. In Section

4, the algorithm feasibility and closed-loop stability are analyzed. Simulation results

are provided in Section 5. Finally, Section 6 concludes the chapter.

Notations: In this chapter, we use the notation R, and N to denote the sets of

real and non-negative integers, respectively. Rn represents the Cartesian product

R× R · · · × R︸ ︷︷ ︸
n

. For some c1 ∈ R, c2 ∈ R≥c1 , let R≥c1 and R(c1,c2] denote the sets

{t ∈ R : t ≥ c1} and {t ∈ R : c1 < t ≤ c2}, respectively. Given a symmetric matrix

S, S > 0 (S ≥ 0) means that the matrix is positive (semi)definite. Im denotes an

identity matrix of size m for some m ∈ N>0. Given two sets X, Y ⊆ Rn and a vector

x ∈ Rn, the Minkowski sum of X and Y is X⊕Y = {z ∈ Rn : z = x+y, x ∈ X, y ∈ Y }

and the Pontryagin set difference is X 	 Y = {z ∈ Rn : z + y ∈ X, ∀y ∈ Y }, and

x ⊕ X = {x} ⊕ X. Given a polytope Z = {z ∈ Rn+m : Az ≤ b}, proj(Z, n) =

{x ∈ Rn : ∃u ∈ Rm such that A

[
xT uT

]T

≤ b}, proj∗(Z,m) = {u ∈ Rm : ∃x ∈

Rn such that A

[
xT uT

]T

≤ b}.
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2.2 Problem Statement and Preliminaries

Consider the following constrained linear system

x(t+ 1) = Ax(t) +Bu(t) + w(t), (2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, w(t) ∈ Rn denote the system state, the control input,

and unknown, time-varying additive disturbance at discrete time t ∈ N, respectively.

A and B are constant matrices of appropriate dimensions. The system constraints are

given by x(t) ∈ X , u(t) ∈ U , w(t) ∈ W , t ∈ N. It is assumed that X ⊆ Rn, U ⊆ Rm,

and W ⊆ Rn are compact, convex polytopes containing the origin in their interiors.

We further assume that the pair (A,B) is controllable and the state information can

be measured at any time t ∈ N.

The objective of this chapter is to stabilize the disturbed constrained system

(2.1) asymptotically by using event-triggered MPC, where the control inputs are only

required to be calculated and transmitted at some particular time instants {tk :

k ∈ N} ∈ N to save communication and computation resources. In particular, the

controller will be scheduled by an event trigger of the form

tk = 0, tk+1 = tk +H∗(x(t)), (2.2)

where H∗ : Rn → N≥1 is a function. The MPC-based control law becomes

u(t) = µ(x(tk), t− tk), t ∈ N[tk,tk+1−1], (2.3)

where µ : Rn × N→ Rm is a function to be later designed.
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2.3 Robust Event-triggered MPC

2.3.1 Control Policy and Constraint Tightening

Assumption 1. Kp ∈ Rm×n, p ∈ N[0,v] are static feedback gains that render Φp =

A+BKp Schur.

We consider the following control policy

u(t) =
v∑
p=0

Kpxp(t), v ∈ N, (2.4)

where variables xp(t) = λp(t)x(t), p ∈ N[0,v] with the coefficients λp(t), p ∈ N[0,v]

satisfying the following:
v∑
p=0

λp(t) = 1, λp(t) ∈ R[0,1]. (2.5)

The recruitment of control policy in (2.4) in the MPC framework will lead to an

enlarged terminal set (convex hull of individual terminal sets that are associated with

Kp, p ∈ N[0,v] for undisturbed linear systems [51,57]) and therefore a larger attraction

region. Note that the parameterization design in control policy may introduce con-

servativeness, as it essentially reduces the degree of freedom of the decision variables.

Remark 1. To implement a controller of the form equation (2.4), one should first

derive a group of feedback gains Kp that render Φp = A + BKp stable and then use

the coefficients to partition the state; the coefficients can either be fixed or optimized

online as done in this chapter. Then the control input can be generated by following

equation (2.4).

Due to disturbance, the original system constraints should be tightened to address

any possible disturbance realization, and thus to fulfill robust constraint satisfaction.
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Define the following tightened constraint sets

Xj = X 	 (⊕vp=0λp(t)F
p
j ),

Uj = U 	 (⊕vp=0λp(t)KpFpj ),

Fpj = ⊕j−1
i=0 (A+BKp)

iW .

(2.6)

Rewrite the prediction policy in (2.4) as

u(t) = K0x0(t) +
v∑
p=1

Kpxp(t)

with

x0(t) = x(t)−
v∑
p=1

xp(t).

It follows

u(t) = K0x(t) +
v∑
p=1

(Kp −K0)xp(t),

in closed-loop with which the system (2.1) becomes

x(t+ 1) = Φ0x(t) +B
v∑
p=1

(Kp −K0)xp(t) + w(t).

Consider

xp(t+ 1) = Φpxp(t) + λp(t)w(t), p ∈ N[1,v]

and define

z(t) =

[
x(t)T x1(t)T · · · xv(t)

T

]T

d(t) =

[
w(t)T λ1(t)w(t)T · · · λv(t)w(t)T

]T

.
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We then have

z(t+ 1) = Φz(t) + Ed(t), (2.7)

where

Φ =



Φ0 B(K1 −K0) · · · B(Kv −K0)

0 Φ1 · · · 0

...
...

. . .
...

0 0 · · · Φv


,

E =



In 0 · · · 0

0 In · · · 0

...
...

. . .
...

0 0 · · · In


.

(2.8)

Let Zf be the maximal robust positively invariant (MRPI) set [9] of the system (2.7)

with the following constraints

x(t) ∈ X , K0x(t) +
v∑
p=1

(Kp −K0)xp(t) ∈ U ,

d(t) ∈ W × · · · ×W︸ ︷︷ ︸
v+1

.

(2.9)

Lemma 1. [52] For the system in (2.7), define the cost function V (z(t)) = z(t)TPz(t),

where P > 0 and P ∈ R(v+1)n×(v+1)n.

V (z(t+ 1))− V (z(t))

≤ −x(t)TQx(t)− u(t)TRu(t) + σd(t)Td(t),

(2.10)
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where Q ≥ 0, Q ∈ Rn×n, R > 0, R ∈ Rm×m and σ ∈ R≥0, if the following holds


P −Q−R 0 (Φ)TP

0 σINn ETP

PΦ PE P

 ≥ 0, (2.11)

with

Q =

[
In 0

]T

Q

[
In 0

]
,R =

[
K0 K

]T

R

[
K0 K

]
,

and

K =

[
K1 −K0 · · · Kv −K0

]
.

The proof can be found in [52]; we sketch the proof below for completeness.

Proof. Using (2.7), we have

V (z(t+ 1))− V (z(t))

= (Φz(t) + Ed(t))TP (Φz(t) + Ed(t))− z(t)TPz(t)

=

[
z(t)T d(t)T

]ΦT

ET

P [Φ E

]z(t)

d(t)

− [z(t)T d(t)T

]P 0

0 0


z(t)

d(t)

 .
We turn to consider

− x(t)TQx(t)− u(t)TRu(t) + σd(t)Td(t)

= z(t)T(−Q−R)z(t) + σd(t)Td(t)

=

[
z(t)T d(t)T

]−Q−R 0

0 σI


z(t)

d(t)

 .
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It remains to show that if equation (2.11) holds then

ΦT

ET

P [Φ E

]
−

P 0

0 0

 ≤
−Q−R 0

0 σI

 ,
which is equivalent to

P −Q−R 0

0 σI

−
ΦT

ET

P [Φ E

]
≥ 0.

This is true by the positive definiteness of P and the Schur complement.

2.3.2 Robust Event-triggered MPC Setup

At each triggering time tk, the controller solves a constrained finite horizon optimiza-

tion problem, where the decision variable is

Λ(tk) =

[
λ1(tk) · · · λv(tk)

]
∈ Rv. (2.12)
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The constrained optimization problem is formulated as

min
Λ(tk)

J(z(tk),Λ(tk)) (2.13a)

s.t.
v∑
p=0

λp(tk) = 1, λp(tk) ∈ R[0,1], (2.13b)

xp(0, tk) = λp(tk)x(tk), p ∈ N[0,v], (2.13c)

xp(j + 1, tk) = Φpxp(j, tk), j ∈ N[0,N−1], p ∈ N[0,v], (2.13d)

u(j, tk) =
v∑
p=0

Kpxp(j, tk), j ∈ N[0,N−1], (2.13e)

x(j + 1, tk) = Ax(j, tk) +Bu(j, tk), j ∈ N[0,N−1], (2.13f)

x(j, tk) ∈ Xj, u(j, tk) ∈ Uj, j ∈ N[0,N−1], (2.13g)

[x(N, tk)
T, x1(N, tk)

T, · · · , xv(N, tk)T]T

∈ Zf 	F
′

N(Λ(tk)), (2.13h)

where J(z(tk),Λ(tk)) = z(tk)
TPz(tk) + Λ(tk)

TΓΛ(tk) with Γ > 0 and Γ ∈ Rv×v,

F ′N(Λ(tk)) = {(x0, · · · , xv) ∈ Rn(v+1) : x0 ∈ ⊕vp=0λp(tk)F
p
N , x1 ∈ λ1(tk)F1

N , · · · , xv ∈

λv(tk)FvN}.

Let DN(x(tk)) = {Λ(tk) ∈ Rv : (2.13b) to (2.13h)} be the set of feasible deci-

sion variables for a given state x(tk). The optimal solution of optimization problem

(2.13) is denoted as Λ∗(tk) =

[
λ∗1(tk), · · · , λ∗v(tk)

]
, and the corresponding optimal

control input and state are written as u∗(j, tk), j ∈ N[0,N−1] and x∗(j, tk), j ∈ N[0,N ],

respectively. The optimal cost is denoted by J∗(z(tk),Λ(tk)).

Remark 2. Note that we use the interpolation technique to construct the control pol-

icy and optimize the coefficients online in order to achieve larger region of attraction

and better control performance. Due to disturbances and system constraints, real-

time tightened constraints must be generated according to the time-varying control
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policy to achieve robust constraint satisfaction. As a limitation, the controller may

suffer relatively heavy computation load compared to other standard tube-based MPC

schemes where the control policy is fixed, as it needs to perform Pontryagin Difference

and Minkowski Sum of polytopes online. Some algorithms for efficiently conducting

such set operations have been reported in the literature. Specifically, the Pontryagin

Difference can be derived for polytopes by solving a sequence of linear programming

problems [34]; the derivation of Minkowski Sum involves a projection operation from

R2n down to Rn or vertex enumeration and computation of convex hull [30].

2.3.3 Triggering Mechanism

In this chapter, we employ an event trigger that is realized by testing whether or not

the deviation between the predicted state and the true state exceeds a threshold as

in [8, 38,40,42]

t0 = 0, tk+1 = tk + min{i ∈ N≥1 : z(tk + i) /∈ z∗(i, tk)⊕ Ti}, (2.14)

where

z∗(j, tk) =

[
x∗(j, tk)

T x∗1(j, tk)
T · · · x∗v(j, tk)

T

]T

(2.15)

and

Ti = A−1(F ′i+1(Λ∗(tk))	 (W × λ∗1(tk)W × · · ·λ∗v(tk)W)), (2.16)

i ∈ N[1,N−1], with T0 = {0}, TN = ∅,

A =



A 0 · · · 0

0 A · · · 0

...
...

. . .
...

0 0 · · · A


, (2.17)
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and F ′i (Λ∗(tk)) = {(x0, · · · , xv) ∈ Rn(v+1) : x0 ∈ ⊕vp=0λ
∗
p(tk)F

p
i , x1 ∈ λ∗1(tk)F1

i , · · · , xv ∈

λ∗v(tk)Fvi }.

Remark 3. The computational complexity of the proposed event-triggered control

algorithm mainly results from the test of triggering conditions and the optimization

problem in equation (2.13). Testing triggering conditions requires to check whether or

not A(z(tk + i)− z∗(i, tk)) is in the set F ′i+1(Λ∗(tk))	 (W× λ∗1(tk)W× · · ·λ∗v(tk)W).

Besides, the optimization problem (2.13) is a convex quadratic problem, and can be

efficiently solved via various optimization packages, e.g., CPLEX and Gurobi.

2.4 Analysis

Under the event-triggered scheduler (2.14) and controller (2.13), the closed-loop sys-

tem becomes

x(t+ 1) = Ax(t) +Bu∗(t− tk, tk) + w(t), t ∈ N[tk,tk+1−1],

tk+1 = tk + min{i ∈ N≥1 : z(tk + i) /∈ z∗(i, tk)⊕ Ti},
(2.18)

where t, k, tk ∈ N, x(0) ∈ Rn, t0 = 0, and w(t) ∈ W . In this section, recursive

feasibility of the proposed control strategy and stability of the closed-loop system

(2.18) will be analyzed.

2.4.1 Recursive Feasibility

A useful lemma is presented before proceeding to the main result.

Consider the set S = {(x, u) ∈ Rn+1 : Gx + Hu ≤ b}, where G ∈ Rs×n, H ∈ Rs

and b ∈ Rs
≥0. Let Sx = proj(S, n) and Su = proj∗(S, 1).

Lemma 2. Suppose that convex sets Ω1 ⊆ Sx, Ω2 ⊆ Su both contain the origin in their
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interiors, and define Ω = {(x, u) ∈ Rn+1 : x ∈ Ω1, u ∈ Ω2}, then proj(S 	 Ω, n) ⊆

(Sx 	 Ω1).

Proof. Following the Fourier-Motzkin elimination method [32], we have

Sx = {x ∈ Rn : Gix ≤ bi,∀i ∈I0} ∩ {x ∈ Rn : (H iGj −HjGi)x

≤ H ibj −Hjbi,∀i ∈ I+, j ∈ I−},
(2.19)

where I0 = {i : H i = 0}, I+ = {i : H i > 0} and I− = {i : H i < 0} are subsets of the

set {1, 2, · · · , s}. Using the support function operation [34], we have

S 	 Ω = {(x, u) ∈ Rn+1 :Gix+H iu ≤ bi

− sup(z1,z2)∈Ω(Giz1 +H iz2), i ∈ N[1,s]},
(2.20)

and

Sx 	 Ω1 ={x ∈ Rn : Gix ≤ bi − supz∈Ω1
Giz,∀i ∈ I0}

∩{x ∈ Rn : (H iGj −HjGi)x ≤ H ibj)

−Hjbi − supz∈Ω1
(H iGj −HjGi)z,

∀i ∈ I+, j ∈ I−}.

(2.21)

Similarly, it can be verified that

proj(S 	 Ω, n) ={x ∈ Rn : Gix ≤ bi − sup(z1,z2)∈Ω

(Giz1 +H iz2), i ∈ I0}

∩{x ∈ Rn : (H iGj −HjGi)x

≤ H i(bj − sup(z1,z2)∈Ω(Gjz1

+Hjz2))−Hj(bi − sup(z1,z2)∈Ω

(Giz1 +H iz2)),∀i ∈ I+, j ∈ I−}.

(2.22)
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Since Ω2 contains the origin in its interior and H i > 0 and Hj < 0, we have

−H isup(z1,z2)∈Ω(Gjz1 +Hjz2) +Hjsup(z1,z2)∈Ω(Giz1 +H iz2)

≤−H isupz∈Ω1
Gjz +Hjsupz∈Ω1

Giz.

(2.23)

Consider

− supz∈Ω1
(H iGj −HjGi)z

≥− {supz∈Ω1
(H iGjz) + supz∈Ω1

(−HjGiz)}

=−H isupz∈Ω1
Gjz +Hjsupz∈Ω1

Giz.

(2.24)

By summarizing (2.23) and (2.24), it readily follows that proj(S 	 Ω, n) ⊆ (Sx 	

Ω1).

Lemma 3. Given Λ(tk), for FpN , p ∈ N[0,v] defined in (2.6) and Zf , F ′N(Λ(tk)) defined

in (2.13h), proj(Zf 	F
′
N(Λ(tk)), n) ⊆ proj(Zf , n)	 (⊕vp=0λp(tk)F

p
N) holds.

Proof. Based on Lemma 2, Lemma 3 can be proved by following the idea in Lemma

2 in [60]; indeed it reduces to Lemma 2 in [60] by setting F ′N(Λ(tk)) = {(x0, 0) ∈

Rn(v+1) : x0 ∈ F0
N}.

The recursive feasibility result is summarized in the following lemma.

Lemma 4. For the system (2.1) with initial state x(t0), if DN(x(t0)) 6= ∅ and the

time series {tk}, k ∈ N is determined by the triggering mechanism (2.14), then

DN(x(tk)) 6= ∅, k ∈ N holds.

Proof. We make use of the induction principle to prove the optimization problem

(2.13) is recursively feasible. Assume that DN(x(tk)) 6= ∅ for some tk. Based on

Λ∗(tk) at time tk, a decision variable candidate can be constructed as follows

Λ̃(tk+1) =

[
λ∗1(tk), · · · , λ∗v(tk)

]
; (2.25)
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the satisfaction of constraint (2.13b) follows. Due to x(tk + i) = Ax(tk + i − 1) +

B
∑v

p=0Kpxp(i − 1, tk) + w(tk + i − 1), i ∈ N[1,tk+1−tk], the constraint (2.13c) can be

satisfied by choosing

x̃p(0, tk+1) =xp(tk+1 − tk, tk) +

tk+1−tk−1∑
j=0

λ∗p(tk)A
jw(tk+1 − 1− j)

=λ∗p(tk)(x(tk+1 − tk, tk) +

tk+1−tk−1∑
j=0

Ajw(tk+1 − 1− j)), p ∈ N[0,v].

(2.26)

From the prediction dynamics (2.13d) and the definition of decision variable candidate

Λ̃(tk+1), one gets, for j ∈ N[0,N ], p ∈ N[0,v],

x̃p(j, tk+1) =Φjp(x̃p(tk+1)− xp(tk+1 − tk, tk)) + xp(tk+1 − tk + j, tk), (2.27)

with, for j ∈ N[N+tk−tk+1+1,N ],

xp(tk+1 − tk + j, tk) = Φtk+1−tk+j−N
p xp(N, tk), p ∈ N[0,v]. (2.28)

It follows, for j ∈ N[0,N ],

x̃(j, tk+1) =
v∑
p=0

Φjp(x̃p(tk+1)− xp(tk+1 − tk, tk)) + x(tk+1 − tk + j, tk),

ũ(j, tk+1) =
v∑
p=0

KpΦ
j
p(x̃p(tk+1)− xp(tk+1 − tk, tk)) + u(tk+1 − tk + j, tk),

(2.29)

which implies that constraints (2.13e)-(2.13f) are satisfied.

Note that no event was triggered during time period t ∈ N[tk+1,tk+1−1], which means

that

xp(tk + j + 1)− x∗p(j + 1, tk) = A(xp(tk + j)− xp(j, tk)) + λ∗(tk)w(tk + j)
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holds for j ∈ N[0,tk+1−tk−2]. By induction, we have

x(tk+1)− x(tk+1 − tk, tk) ∈ ⊕vp=0λ
∗
p(tk)F

p
tk+1−tk ,

x̃p(0, tk+1)− xp(tk+1 − tk, tk) ∈ λ∗p(tk)F
p
tk+1−tk , p ∈ N[0,v].

(2.30)

Considering that

x(tk+1 − tk + j, tk) ∈ Xtk+1−tk+j, j ∈ N[0,N+tk−tk+1], (2.31)

and

Xtk+1−tk+j ⊕ (⊕vp=0λ
∗
p(tk)Φ

j
pF

p
tk+1−tk)

=X 	 (⊕vp=0λ
∗
p(tk)F

p
tk+1−tk+j)⊕ (⊕vp=0λ

∗
p(tk)Φ

j
pF

p
tk+1−tk)

⊆X 	 (⊕vp=0λ
∗
p(tk)F

p
j ), j ∈ N[0,N+tk−tk+1],

(2.32)

and similarly,

Utk+1−tk+j ⊕ (⊕vp=0λ
∗
p(tk)KpΦ

j
pF

p
tk+1−tk)

⊆U 	 (⊕vp=0λ
∗
p(tk)KpFpj ), j ∈ N[0,N+tk−tk+1],

(2.33)

it follows, for j ∈ N[0,N+tk−tk+1],

x̃(j, tk+1) ∈ Xj, ũ(j, tk+1) ∈ Uj. (2.34)

Since Zf is a robustly positively invariant set of the system (2.7), one gets, for j ∈
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N[N+tk−tk+1+1,N ],

[(
v∑
p=0

xp(tk+1 − tk + j, tk) +

tk+1−tk+j−1∑
i=0

Φipλ
∗
p(tk)w(i))T,

(x1(tk+1 − tk + j, tk) +

tk+1−tk+j−1∑
i=0

Φi1λ
∗
1(tk)w(i))T, · · · ,

(xv(tk+1 − tk + j, tk) +

tk+1−tk+j−1∑
i=0

Φivλ
∗
v(tk)w(i))T]T ∈ Zf ,

(2.35)

and

u(tk+1 − tk + j, tk) = K0(x(tk+1 − tk + j, tk) + y)

+
v∑
p=1

(Kp −K0)(xp(tk+1 − tk + j, tk) + yp) ∈ U ,
(2.36)

where y ∈ ⊕vp=0λ
∗
p(tk)F

p
N , yp ∈ λ∗p(tk)F

p
tk+1−tk+j, p ∈ N[1,v]. It follows

[x(tk+1 − tk + j, tk)
T, x1(tk+1 − tk + j, tk)

T, · · · ,

xv(tk+1 − tk + j, tk)
T]T ∈ Zf 	F

′

tk+1−tk+j(Λ
∗
tk

),

j ∈ N[N+tk−tk+1+1,N ].

(2.37)

Considering (2.29) and (2.36), one gets

ũ(j, tk+1) ∈ U 	 (⊕vp=0λ
∗
p(tk)KpFpj ), j ∈ N[N+tk−tk+1+1,N ]. (2.38)

By application of Lemma 3, one gets x(tk+1 − tk + j, tk) ∈ Xf 	⊕vp=0λ
∗
p(tk)F

p
tk+1−tk+j

where Xf denotes the projection of Zf onto x space. Due to

Xf 	 (⊕vp=0λ
∗
p(tk)F

p
tk+1−tk+j)⊕ (⊕vp=0λ

∗
p(tk)Φ

j
pF

p
tk+1−tk)

⊆ Xf 	 (⊕vp=0λ
∗
p(tk)F

p
j ),

(2.39)
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we have

x̃(j, tk+1) ∈ Xf 	 (⊕vp=0λ
∗
p(tk)F

p
j ), j ∈ N[N+tk−tk+1+1,N ]. (2.40)

By summarizing (3.2), (2.38) and (3.3) and considering Xf ⊆ X , we have that con-

straint (2.13g) is satisfied.

By letting j = N in (2.35) and considering (2.29), we have

[x̃(N, tk+1)T, x̃1(N, tk+1)T, · · · , x̃v(N, tk+1)T]T ∈ Zf 	F
′

N(Λ∗(tk)), (2.41)

implying that the satisfaction of constraint (2.13h) can be achieved by Λ̃(tk+1). The

proof is completed.

2.4.2 Stability

The closed-loop stability result is presented in the following theorem.

Theorem 1. For the system (2.1) with initial state x(t0), if DN(x(t0)) 6= {∅} and the

time series {tk}, k ∈ N is determined by the triggering mechanism (2.14), then the

closed-loop system in (2.18) is ISS.

Proof. Without loss of generality, the following two cases are considered to prove the

theorem. First, if the event is not triggered at time instant tk + 1, from Lemma 1 we

have

J(z(tk + 1),Λ∗(tk))− J(z(tk),Λ
∗(tk))

≤ V (z(tk + 1))− V (z(tk))

≤ −x(tk)
TQx(tk)− u(tk)

TRu(tk) + σd(tk)
Td(tk).

(2.42)

Second, if the event is triggered at time instant tk+1 = tk + 1, from Lemma 4 we
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have that Λ̃(tk + 1) = Λ∗(tk) is a feasible solution of the optimization problem (2.13).

Similarly, we consider

J(z(tk + 1),Λ∗(tk+1))− J(z(tk),Λ
∗(tk))

≤ J(z(tk + 1),Λ∗(tk))− J(z(tk),Λ
∗(tk))

≤ V (z(tk + 1))− V (z(tk))

≤ −x(tk)
TQx(tk)− u(tk)

TRu(tk) + σd(tk)
Td(tk).

(2.43)

Therefore, J(z(t),Λ(t)) is an ISS Lyapunov function of the closed-loop system (2.18),

implying that the closed-loop system (2.18) is ISS. This completes the proof.

2.5 Simulation

Consider the following linear system [11,60]

x(t+ 1) =

1.1 1

0 1.3

x(t) +

1

1

u(t) + w(t), (2.44)

where the constraint sets are given by X = [−30, 30] × [−10, 10], U = [−5, 5] and

W = [−0.2, 0.2] × [−0.2, 0.2]. Set v = 1. K0 =

[
−0.4991 −0.9546

]
is derived by

using the LQR technique by setting (Q,R) to be (I2, 1); a low-gain feedback is chosen

as K1 =

[
−0.0333 −0.4527

]
. Set N = 5 and x(0) = [−30; 10]. The weighting

matrix

P =



1980.1 522.5 −1947.4 −398.4

522.5 1517.3 −494.9 −1368.3

−1947.4 −494.9 1953.3 495.4

−398.4 −1368.3 495.4 1842.4


(2.45)
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and σ = 8186.2 are derived by solving the following optimization problem:

min
P>0

σ s.t. Eq. (2.11), (2.46)

where Q and R are chosen as identity matrices of appropriate dimensions. Set Γ =

20000.

By using Multi-Parametric Toolbox 3.0 [30], the terminal regions for K0, K1

and the proposed control strategy are plotted in Fig. 2.1; it can be seen that the

proposed strategy enjoys a much larger terminal region compared with that for static

feedback gains K0 and K1. To highlight the advantages of the proposed control

strategy, its periodic counterpart is also executed. The additive disturbances in this

simulation are randomly chosen, but keep the same for both event-triggered and

periodic control cases. The optimization problems are solved by using YALMIP [45].

The results are reported as follows. Table 2.1 compares the average sampling period

and the closed-loop performance of these two cases, where the performance indices

Jp =
∑Tsim−1
t=0 x(t)TQx(t)+u(t)TRu(t)

Tsim
with Tsim = 1000 being the simulation time. It can be

seen that the proposed control strategy significantly reduces the sampling frequency

while preserves the closed-loop control performance. Note that Jp in event-triggered

control is even smaller than that in periodic case; it may be because that there is

a gap between the cost function to be optimized and Jp. To clearly illustrate the

simulation results, only for the first 30 steps the closed-loop behavior is plotted. It is

worth mentioning that the number of triggering in the first 30 steps is 17. Specifically,

Fig. 2.2 shows the evolution of the system state, Fig. 2.3 depicts the control input

trajectory, and Fig. 2.4 illustrates the change of λ1 over time.
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Figure 2.1: Comparison of terminal regions.
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Figure 2.2: Trajectories of system state.

Average sampling time Jp

Periodic 1.0000 3.8873
Event-triggered 1.2019 3.8599

Table 2.1: Performance comparison
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Figure 2.3: Trajectories of control input.
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Figure 2.4: Trajectories of λ1.

2.6 Conclusion

We have studied the robust event-triggered MPC problem for discrete-time con-

strained linear systems with bounded additive disturbances. A novel robust event-

triggered MPC strategy has been developed, where the robust constraint satisfaction
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is guaranteed by taking advantage of an interpolation-based feedback policy within

the MPC framework and appropriately tightening the original constraint sets. At

each triggering time instant, by solving a constrained optimization problem the con-

troller generates a sequence of control inputs and a set of interpolating coefficients

that characterizes the triggering threshold of the event trigger. The recursive feasi-

bility and closed-loop stability have been rigorously analyzed. A simulation example

has been provided to illustrate the effectiveness of the proposed approach.



39

Chapter 3

Self-triggered Min-max MPC for

Uncertain Constrained Nonlinear

Systems

3.1 Introduction

Self-triggered MPC for uncertain systems is of particular importance as uncertain-

ties are not avoidable in practice, which is also the focus of this chapter. Among

the results of self-triggered MPC, [15,16,25,38] use nominal models to formulate the

optimization problems, the stability is ensured by exploring the inherent robustness

of MPC and the original system constraints are tightened to achieve robust con-

straint satisfaction. In these cases, the closed-loop stability is usually established by

exploiting the system inherent robustness. Unfortunately, this method suffers from

very small attraction regions, especially for unstable linear systems and nonlinear

systems with relatively large Lipschitz constants, due to the constraint tightening

procedure. To enlarge attraction region, the authors in [3, 6] recently investigated
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the robust self-triggered MPC problem for discrete-time linear systems based on the

idea of tube-based MPC [18, 50], where a pre-stabilizing linear feedback controller is

introduced into the prediction model to attenuate disturbance impacts. In contrast

to robust self-triggered MPC using a nominal model, self-triggered MPC with a tube-

based strategy has less conservative tightened constraints, therefore offering relatively

large regions of attraction.

It is worth noting that the existing results of self-triggered MPC might not be able

to handle systems with generic parameter uncertainties, though model uncertainties

are almost unavoidable in system modeling. Besides, enlarging the region of attraction

is always preferred for MPC design. Motivated by these facts, this chapter proposes

a robust self-triggered min-max MPC approach to constrained nonlinear systems

with both parameter uncertainties and disturbances, leading to an enlarged region of

attraction in comparison with [6].

The main contributions of this chapter are two-fold:

� A self-triggered min-max MPC algorithm is designed for generic constrained

nonlinear system with both parameter uncertainties and disturbances. The de-

signed algorithm is proved to be recursively feasible and the closed-loop system

is ISpS at triggering time instants in its region of attraction. Compared with

existing self-triggered MPC strategies where nominal models are used for predic-

tion, we take advantage of the worst case of all possible uncertainty realizations

in the self-triggered control, ensuring robust constraint satisfaction in presence

of parametric uncertainties and external disturbances.

� More specific results are developed for linear systems with parameter uncer-

tainties and external disturbances. In particular, we show that for linear sys-

tems with additive disturbances, the approximate closed-loop prediction strat-

egy [21,36,47,54] can be adopted to facilitate the self-triggered min-max linear
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MPC design to yield an enlarged attraction region, the feasibility and stability

conditions reduce to an LMI, which can be solved easily.

The rest of the chapter is organized as follows. Section 2 introduces some pre-

liminaries and formulates the control problem. The robust self-triggered feedback

min-max MPC strategy is developed in Section 3. The feasibility and stability anal-

yses are conducted in Section 4. The extension to linear case is further presented

in Section 5. Simulations and comparison studies are provided in Section 6, and the

conclusions are given in Section 7.

The notations adopted in this chapter are as follows. Let R, and N denote by the

sets of real and non-negative integers, respectively. Rn denotes the Cartesian product

R× R · · · × R︸ ︷︷ ︸
n

. We use the notation R≥c1 and R(c1,c2] to denote the sets {t ∈ R|t ≥ c1}

and {t ∈ R|c1 < t ≤ c2}, respectively, for some c1 ∈ R, c2 ∈ R≥c1 . The notation ‖·‖ is

used to denote an arbitrary p-norm. Given a matrix S, S � 0 (S ≺ 0) means that the

matrix is positive (negative) definite. A scalar function α : R≥0 → R≥0 is of class K

if it is continuous, positive definite and strictly increasing. It belongs to class K∞ if

α ∈ K and α(s)→ +∞ as s→ +∞. A scalar function β : R≥0×R≥0 → R≥0 is said to

be a KL-function if for fixed k ∈ R≥0, β(·, k) ∈ K and for each fixed s ∈ R≥0, β(s, ·)

is non-increasing with lim
k→∞

β(s, k) = 0. For m,n ∈ N>0, Im×m denotes an identity

matrix of size m and 0m×n represents an m× n matrix whose entries are zero.

3.2 Preliminaries and Problem Statement

3.2.1 Preliminaries

Consider the discrete-time perturbed nonlinear system given by

xt+1 = g(xt, dt), (3.1)
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where xt ∈ Rn, dt = [wT
t , v

T
t ]T ∈ D ⊂ Rd are the system state, unknown time-

varying model uncertainties, respectively, at discrete time t ∈ N. More specifically,

wt ∈ W ⊂ Rw denotes parametric uncertainties and vt ∈ V ⊂ Rv stands for additive

disturbances. W and V are compact sets, and contain the origin in their interiors.

g : Rn × Rd → Rn is a nonlinear function satisfying g(0, 0) = 0.

Definition 1. (RPI). A set Ω is a robust positively invariant (RPI) set for the system

(3.1) if g(xt, dt) ∈ Ω, ∀xt ∈ Ω, dt ∈ D.

Definition 2. (Regional ISpS). The system in (3.1) is said to be ISpS in X if there

exist a KL-function β, a K-function γ and a number τ ≥ 0 such that, for all x0 ∈ X ,

all wt =

[
wT

0 , · · · , wT
t−1

]T

∈ W t, vt =

[
vT

0 , · · · , vT
t−1

]T

∈ V t, the state of (3.1)

satisfies

‖xt‖ ≤ β(‖x0‖, t) + γ(‖vt−1‖) + τ, ∀t ∈ N≥1.

We recall a useful lemma from [36], which provides sufficient conditions for ISpS.

Lemma 5. Given an RPI set X with {0} ⊂ X for the system (3.1), let V : Rn → R≥0

be a function such that,

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) + τ1, (3.2a)

V (g(x, d))− V (x) ≤ −α3(‖x‖) + σ(‖v‖) + τ2, (3.2b)

for all x ∈ X , d = [wT, vT] ∈ D, where α1(s) , asλ, α2(s) , bsλ and α3(s) , csλ

with a, b, c, τ1, τ2, λ ∈ R>0 and c ≤ b, and σ is a K-function, then the system (3.1) is

ISpS in X with respect to v.

Proof. By V (x) ≤ α2(‖x‖) + τ1 for all x ∈ X , one gets, for all x ∈ X \ {0},

V (x)− α3(‖x‖) ≤ α3(‖x‖)
α2(‖x‖)

(V (x)− τ1) = ρV (x) + (1− ρ)τ1
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where ρ , 1− c
b
∈ R[0,1). It can be verified that if x = 0 the preceding inequality also

holds since

V (0)− α3(0) = V (0) = ρV (0) + (1− ρ)V (0) ≤ ρV (0) + (1− ρ)τ1.

Further, this inequality in conjunction with equation (3.2b) gives

V (g(x, d)) ≤ ρV (x) + σ(‖v‖) + (1− ρ)τ1 + τ2

for all x ∈ X , d ∈ D. By recursion, one obtains

V (xt+1) ≤ ρt+1V (x0) +
t∑
i=0

ρi
(
σ(‖vt−i‖) + (1− ρ)τ1 + τ2

)

for all x ∈ X and any uncertainty realizations, i.e., wt =

[
wT

0 , · · · , wT
t

]T

∈ W t+1,

vt =

[
vT

0 , · · · , vT
t

]T

∈ V t+1. Considering equation (3.2a), σ(‖vi‖) ≤ σ(‖vt‖), and∑t
i=0 ρ

i = 1−ρt+1

1−ρ , we have

V (xt+1) ≤ ρt+1α2(‖x0‖) + ρt+1τ1 +
t∑
i=0

ρi
(
σ(‖vt−i‖) + (1− ρ)τ1 + τ2

)
≤ ρt+1α2(‖x0‖) + τ1 +

1− ρt+1

1− ρ
σ(‖vt‖) +

1− ρt+1

1− ρ
τ2

≤ ρt+1α2(‖x0‖) + τ1 +
1

1− ρ
σ(‖vt‖) +

1

1− ρ
τ2

for all x0 ∈ X , wt =

[
wT

0 , · · · , wT
t

]T

∈ W t+1, vt =

[
vT

0 , · · · , vT
t

]T

∈ V t+1. Define
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ξ = τ1 + 1
1−ρτ2 and α−1

1 as the inverse of α1. We have

‖xt+1‖ ≤ α−1
1 (V (xt+1))

≤ α−1
1

(
ρt+1α2(‖x0‖) + ξ +

σ(‖vt‖)
1− ρ

)
,

(3.3)

which in conjunction with

α−1
1 (z + y + s) ≤ α−1

1 (3z) + α−1
1 (3y) + α−1

1 (3s)

gives

‖xt+1‖ ≤ α−1
1

(
3ρt+1α2(‖x0‖)

)
+ α−1

1 (3ξ) + α−1
1

(
3
σ(‖vt‖)
1− ρ

)
for all x0 ∈ X , wt =

[
wT

0 , · · · , wT
t

]T

∈ W t+1, vt =

[
vT

0 , · · · , vT
t

]T

∈ V t+1. Two cases

are considered in order.

� ρ 6= 0. Define β(s, t) = α−1
1 (3ρtα2(s)). Since ρ ∈ R(0,1), β(s, t) is a KL-function.

Let γ(s) = α−1
1 (3σ(s)

1−ρ ). We then have γ(s) ∈ K since 1
1−ρ > 0, α−1

1 ∈ K∞ and

σ(s) ∈ K. ξ ≥ 0 by definition and therefore α−1
1 (3ξ) ≥ 0.

� ρ = 0. From equation (3.3), one gets that

‖xt‖ ≤ α−1
1 (3ξ) + α−1

1 (3σ(‖vt−1‖)) ≤ β(‖x0‖, t) + α−1
1 (3ξ) + α−1

1 (3σ(‖vt−1‖))

holds for any β ∈ KL and ∀t ∈ N≥1.

This completes the proof.
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3.2.2 Problem Statement

Consider a discrete-time perturbed nonlinear system given by

xt+1 = f(xt, ut, dt), (3.4)

where xt ∈ Rn, ut ∈ Rm, dt = [wT
t , v

T
t ] ∈ D ⊂ Rd are the system state, the control

input, unknown, possibly time-varying model uncertainties, respectively, at discrete

time t ∈ N. More specifically, wt ∈ W ⊂ Rw represents parametric uncertainties and

vt ∈ V ⊂ Rv stands for additive disturbances. f : Rn ×Rm ×Rd → Rn is a nonlinear

function satisfying f(0, 0, 0) = 0. It is assumed that the system is subject to state

and input constraints given by xt ∈ X , ut ∈ U , where X and U are compact sets

containing the origin in their interiors. Throughout the chapter, we assume that W

and V are compact sets and contain the origin in their interiors. We further assume

that the state is available as a measurement at any time instant.

The control objective of this chapter is to design a self-triggered MPC strategy

to robustly asymptotically stabilize the system (3.4) while satisfying the system con-

straints. Let the sequence {tk|k ∈ N} ∈ N where tk+1 > tk be the time instants when

optimization problem needs to be solved. In particular, the control law is of the form

ut = µ(xtk , t− tk), t ∈ N[tk,tk+1−1], (3.5)

where µ : Rn×N→ Rm is a function, and {tk|k ∈ N} ∈ N are sampling instants that

are determined by using a self-triggering scheduler, i.e.

t0 = 0, tk+1 = tk +H∗(xtk), k ∈ N, (3.6)

where H∗ : Rn → N≥1 is a function.
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3.3 Robust Self-triggered Feedback Min-max MPC

3.3.1 Min-max Optimization

For a given prediction horizon N ∈ N≥1 and H ∈ N[1,N ], the cost function at time

tk ∈ N is formulated as

JHN (xtk ,utk,N ,dtk,N) ,
H−1∑
j=0

1

β
L(xj,tk , uj,tk) +

N−1∑
j=H

L(xj,tk , uj,tk) + F (xN,tk),

where β ∈ R≥1 is a fixed constant, xj,tk denotes the predicted state for system (3.4)

at time j ∈ N[0,N−1] initialized at x0,tk = xtk with the control input sequence

utk,N =

[
uT

0,tk
, · · · , uT

N−1,tk

]T

and the disturbance sequence

dtk,N =

[
dT

0,tk
, · · · , dT

N−1,tk

]T

.

We assume that L and F are continuous functions. Specifically, the stage cost is

given by L : Rn × Rm → R≥0 with L(0, 0) = 0, and the terminal cost is given by

F : Rn → R≥0 with F (0) = 0.

We make use of the min-max MPC strategy to achieve robust constraint satisfac-

tion in this chapter. In particular, the control input is derived by solving the following
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min-max optimization problem.

V H
N (xtk) = min

u0,tk∈U ,··· ,uH−1,tk
∈U

{
max

d0,tk∈D,··· ,dH−1,tk
∈D

{H−1∑
j=0

1

β
L(xj,tk , uj,tk) + VN−H(xH,tk)

}
such that xH,tk ∈ XN−H ,∀d0,tk ∈ D, · · · , dH−1,tk ∈ D

}
,

s.t. x0,tk = xtk , xj,tk ∈ X , j ∈ N[0,H−1],

xj+1,tk = f(xj,tk , uj,tk , dj,tk), j ∈ N[0,H−1],

(3.7)

where

Vi(xi,tk) = min
ui,tk∈U

{
max
di,tk∈D

{
L(xi,tk , ui,tk) + Vi−1(f(xi,tk , ui,tk , di,tk))

}
such that f(xi,tk , ui,tk , di,tk) ∈ Xi−1,∀di,tk ∈ D

}
,

(3.8)

where i ∈ N[1,N−H] and Xi ⊆ X denotes the set of states that can be robustly

controlled into the terminal set Xf in i steps by using feedback laws. The optimization

problem is defined for i = 1, · · · , N with the boundary conditions

V0(x) , F (x),

X0 , Xf .

The optimal solution of optimization problem (3.7) is denoted as

u∗tk,N = [u∗T0,tk
, · · · , u∗TN−1,tk

]T,

and the optimal predicted model uncertainty is written as

d∗tk,N = [d∗T0,tk
, · · · , d∗TN−1,tk

]T.
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In the sequel, we particularly denote, for the optimization problem in (3.7) with β = 1

and H = 1, the cost function by JN(xtk ,utk,N ,dtk,N), the corresponding optimal cost

by VN(xtk), and the initial feasible region by XN .

Remark 4. It is worth noting that, we formulate a new cost function JHN (.) in min-

max optimization in order to design a self-triggered strategy. The solution of op-

timization problem in (3.7) is a combination of a sequence of control values u∗j,tk ,

j ∈ N[0,H−1] (generated by open-loop min-max strategy) and a sequence of control

policies u∗j,tk , j ∈ N[H,N−1] (generated by feedback min-max strategy). This config-

uration is necessarily formulated to facilitate the self-triggered design as the state

information is not available to construct feedback laws during triggering time instants

in self-triggered control; it will reduce to the conventional one in standard feedback

min-max MPC by letting H = 1 and β = 1, and recovers the standard open-loop

min-max MPC framework [36, 47, 54] by setting H = N and β = 1. Also note that

the proposed optimization problem can conveniently incorporate the sparsity of con-

trol inputs, uj,tk = 0, j ∈ N[1,H−1] or uj,tk = u0,tk , j ∈ N[1,H−1] as in [3, 5, 6, 20], if

necessary.

3.3.2 Self-triggering in Optimization

At some sampling time instant t ∈ N, the control input is defined as

uSTt (xtk) , u∗t−tk,tk , t ∈ N[tk,tk+1−1], (3.9)

where u∗t−tk,tk , t ∈ N[tk,tk+1−1] represents the optimal solution of optimization problem

(3.7). It can be observed that the control input uSTt is open-loop for t ∈ N[tk+1,tk+1−1]

since it only depends on the state at the last sampling time instant tk.

In the standard scheme of self-triggered MPC, both the control input and the
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next triggering time need to be decided at each sampling time instant. In general,

the triggering time instants are derived by checking whether or not the optimal cost

is deceasing. In this chapter, the triggering time instants are determined as follows:

tk+1 = tk +H∗(xtk),

H∗(xtk) , max{H ∈ N[1,Hmax]|V H
N (xtk) ≤ V 1

N(xtk)},
(3.10)

where Hmax ∈ N[1,N ] denotes the maximal length of the open-loop phase.

The self-triggered min-max MPC strategy is formulated in Algorithm 1.

Remark 5. It is worth noting that, the triggering condition in [3, 6] leads to a sep-

arate design of feedback control and triggering time instant, but the triggering con-

dition in (3.10) with the min-max framework provides a co-design of the feedback

control and triggering time instant, and the model uncertainty is explicitly considered

in the co-design. Specifically, the co-design is realized by the self-triggering scheduler

that involves comparing min-max costs with different open-loop spans. As a result,

for linear systems the proposed strategy will provide a larger attraction region and

achieve a better trade-off between average sampling time and the control performance,

and it involves min-max optimization over all possible uncertainty realizations that is

computationally more expensive than general min-max optimization used in [6].
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Algorithm 1 Self-triggered min-max MPC algorithm

Require: Prediction horizon N ; design parameters β and Hmax.
1: Set t = tk = k = 0;
2: while The control action is not stopped do
3: Measure the current state xtk of system (3.4);
4: Solve the optimization problems in (3.7) and (3.10), obtain u∗(xtk) and H∗(xtk);
5: while t ≤ tk +H∗(xt)− 1 do
6: Apply u∗t−tk,tk to the system;
7: Set t = t+ 1;
8: end while
9: Set k = k + 1, tk = t;
10: end while

3.4 Feasibility and Stability Analysis

By applying Algorithm 1 to system (3.4), the closed-loop system becomes

xt+1 = f(xt, u
ST
t , dt), (3.11a)

uSTt = u∗t−tk,tk , t ∈ N[tk,tk+1−1], (3.11b)

tk+1 = tk +H∗(xtk). (3.11c)

To approach the feasibility and stability problem for the closed-loop system (3.11),

we first make the following assumptions.

Assumption 2. There exist a function κf : Rn → Rm with κf (0) = 0, a K-function

σ, and αl, αf , αF , λ ∈ R>0 with αl ≤ αF such that:

1) Xf ⊆ X and 0 ∈ int(Xf );

2) Xf is an RPI set for system (3.4) in closed-loop with u = κf (x);

3) L(x, u) ≥ αl‖x‖λ for all x ∈ X and u ∈ U ;

4) αf‖x‖λ ≤ F (x) ≤ αF‖x‖λ for all x ∈ Xf ;

5) F (f(x, κf (x), d))− F (x) ≤ −L(x, κf (x)) + σ(‖v‖) for all x ∈ Xf and d ∈ D.
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In Assumption 2, the terminal cost F (x) serves as a local ISS Lyapunov function

for the closed-loop system xt+1 = f(xt, κf (xt), dt). In the literature regarding robust

MPC, some methods for deriving ISS Lyapunov functions satisfying Assumption 2

have been proposed in [35] for linear systems, and [54] for nonlinear systems.

Before proceeding to the main result, we first present two useful lemmas.

Lemma 6. For all x0 ∈ Xf and any realization of the disturbances dt ∈ D with t ∈ N,

if Assumption 2 holds for system (3.4), then

F (xm)− F (x0) ≤ −
m−1∑
t=0

(L(xt, κf (xt))− σ(‖vt‖)), (3.12)

where xm is derived by applying the local stabilizing law κf to system (3.4), and

m ∈ N[1,N ].

Proof. According to Assumption 2, there exists a feedback law κf for system (3.4)

such that

F (xt+1)− F (xt) ≤ −L(xt, κf (xt)) + σ(‖vt‖), (3.13)

for all xt ∈ Xf . Since Xf is an RPI set for system (3.4) in closed-loop with κf , by

summing (3.13) from t = 0 to t = m− 1, we obtain the inequality (3.12).

Lemma 7. For the optimization problem defined in (3.7),

V 1
N(xtk) ≤ VN(xtk). (3.14)

Proof. Without loss of generality, assume the solutions corresponding to VN(xtk) are



52

u∗tk,N = [u∗T0,tk
, · · · , u∗TN−1,tk

]T, d∗tk,N = [d∗T0,tk
, · · · , d∗TN−1,tk

]T. Due to optimality, we have

V 1
N(xtk)

≤max
dtk,N

J1
N(xtk ,u

∗
tk,N

,dtk,N)

≤max
dtk,N

JN(xtk ,u
∗
tk,N

,dtk,N) +
1− β
β

L(x0,tk , u
∗
0,tk

)

=VN(xtk) +
1− β
β

L(x0,tk , u
∗
0,tk

).

(3.15)

Since L(x0,tk , u
∗
0,tk

) ≥ 0 and β ∈ R≥1, we can obtain the inequality in (3.14).

The main results on the algorithm feasibility and closed-loop stability are sum-

marized in the following theorem.

Theorem 2. For the perturbed nonlinear system (3.4) with x0 ∈ XN , suppose that

Assumption 2 holds, then Algorithm 1 is recursively feasible, system (3.4) in closed-

loop with the self-triggered feedback min-max MPC control (3.9) and (3.10) is ISpS

with respect to v in XN at triggering time instants.

Proof. We sketch the proof in two steps. First, we show that XN is an RPI set for

closed-loop system (3.11) to prove the recursive feasibility of the optimization problem

(3.7). Second, we prove that the min-max MPC optimal cost function V (·) is an ISpS

Lyapunov function for the closed-loop system at triggering time instants.

Without loss of generality, we assume that xt = xtk ∈ XN and the calculated

span of open-loop phase is H∗(xtk) at time tk. Due to Assumption 2-2), a vector of

feedback control polices can be constructed as a feasible solution for the optimization

problem (3.7) at time tk+1 as follows

(u∗H∗(xtk ),tk
, · · · , u∗N−1,tk

, κf (xN,tk), · · · , κf (xN+H∗(xtk )−1,tk)), (3.16)
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implying that XN is an RPI set for system (3.4) in closed-loop with the proposed

self-triggered min-max MPC law. Note that each element of the vector in (3.16) is a

feedback law, i.e., its value depends on the actual disturbance realization.

Then we will derive lower and upper bounds on the min-max MPC optimal cost

function at triggering time instants. From the definition of the optimization problem

(3.7), for all xtk ∈ XN we have

V
H∗(xtk )

N (xtk) = J
H∗(xtk )

N (xtk ,u
∗
tk,N

,d∗tk,N)

≥ min
utk,N

J
H∗(xtk )

N (xtk ,utk,N ,0)

≥ αl
β
‖xtk‖λ.

(3.17)

For all xtk ∈ XN , we consider

J1
N+1(xtk , ũtk,N+1,dtk,N+1)

=
(
− F (xN,tk) + F (xN+1,tk) + L(xN,tk , κf (xN,tk))

)
+ J1

N(xtk ,u
∗
tk,N

,dtk,N),

(3.18)

where

ũtk,N+1 = [u∗Ttk,N , κf (xN,tk)
T]T. (3.19)

By application of point 5 of Assumption 2 and sub-optimality of the control input

sequence ũtk,N+H∗(xtk ), it follows, for all xtk ∈ XN ,

V 1
N+1(xtk) ≤ max

dtk,N+1

(
J1
N+1(xtk , ũtk,N+1,dtk,N+1)

)
≤ V 1

N(xtk) + max
v
σ(‖v‖).

(3.20)
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Analogously, we have

V 1
N(xtk) ≤ V 1

1 (xtk) + (N − 1) max
v
σ(‖v‖)

≤ F (xtk) +N max
v
σ(‖v‖) +

1− β
β

L(x0,tk , κf (x0,tk))

≤ αF‖xtk‖λ +N max
v
σ(‖v‖)

(3.21)

for all xtk ∈ Xf . Recalling the triggering mechanism in (3.10), it follows

V H
N (xtk) ≤ αF‖xtk‖λ +N max

v
σ(‖v‖) (3.22)

for all xtk ∈ Xf . For xtk ∈ XN\Xf , one can establish the upper bound of V H
N (xtk) by

following the idea in [41] (Lemma 1) as follows. Define a set

Br = {x ∈ Rn|‖x‖ ≤ r} ⊆ Xf ,

where r > 0. Following the compactness of X , U , W and V , there always exists a

finite JN > 0 such that V H
N (xtk) ≤ JN for all xtk ∈ XN . Define θ = max(αF ,

JN
rλ

). It

follows

V H
N (xtk) ≤ θ‖xtk‖λ +N max

v
σ(‖v‖)

for all xtk ∈ XN .

Next, we will show that V
H∗(xtk )

N (xtk) satisfies condition (3.2b). From the trigger-
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ing mechanism in (3.10), we have

V
H∗(xtk+1

)

N (xtk+1
)− V H∗(xtk )

N (xtk)

≤V 1
N(xtk+1

)− V H∗(xtk )

N (xtk)

≤V 1
N(xtk+1

)− max
d0,tk∈D,··· ,dH−1,tk

∈D

{H∗(xtk )−1∑
j=0

1

β
L(xj,tk , u

∗
j,tk

) + VN−H∗(xtk )(xH,tk)
}

≤V 1
N(xtk+1

)− VN−H∗(xtk )(xtk+1
)−

H∗(xtk )−1∑
j=0

1

β
L(xtk+j, u

∗
j,tk

),∀xtk ∈ XN .

(3.23)

By using Lemma 6 and an analogous reasoning as in (3.18) – (3.21), one can get

VN(xtk+1
)− VN−H∗(xtk )(xtk+1

) ≤ H∗(xtk) max
v
σ(‖v‖), (3.24)

for xtk+1
∈ XN−H∗(xtk ). Considering Lemma 7 and plugging (3.24) into (3.23), we

have

V
H∗(xtk+1

)

N (xtk+1
)− V H∗(xtk )

N (xtk)

≤−
H∗(xtk )−1∑

j=0

1

β
L(xtk+j, u

∗
j,tk

) +H∗(xtk) max
v
σ(‖v‖)

≤− 1

β
αl‖xtk‖λ +H∗(xtk) max

v
σ(‖v‖),

(3.25)

for all xtk ∈ XN .

By now, we have shown that V
H∗(xtk )

N (xtk) is an ISpS Lyapunov function at trig-

gering time instants. With the aid of Lemma 5, we can conclude that the closed-loop

system (3.11) is ISpS in XN with respect to v at triggering time instants.

Remark 6. Note that Theorem 1 investigates the stability of the closed-loop system

at triggering time instants. For system states at time instants in between, one can
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ensure xt ∈ X . However, if the states in between are expected in a smaller set, one

could tighten the state constraints in (3.7) to achieve the goal, or if the asymptotic

stability of the closed-loop system is desired, one could utilize the dual-mode strategy

to satisfy the requirement.

Remark 7. Theorem 2 indicates that the closed-loop system (3.11) is ISpS in XN .

From the derivations, we can see that there is a trade-off between the frequency of

optimization and the size of the convergence set with respect to the control parameter

β. That is, a larger β lowers the average sampling rate to alleviate the computa-

tional load, however it enlarges the size of the convergence set (This argument will be

elaborated by means of numerical simulations in the sequel).

3.5 The Case of Linear Systems with Additive Dis-

turbances

In this section, we develop more explicit results for linear cases.

Consider the following uncertain linear system

xt+1 = A(wt)xt +B(wt)ut + vt, (3.26)

where the pair (A(wt), B(wt)) is assumed controllable for all wt ∈ W .

In this case, the feedback control law can adopt the following linear structure for

prediction [44]:

utk,N , ctk,N + MH
Nvtk,N , (3.27)

where ctk,N = [c0,tk , · · · , cN−1,tk ]
T with c·,tk ∈ Rm, vtk,N denotes disturbance sequence,
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and

MH
N =



0Hm×n 0Hm×n · · · 0Hm×n 0Hm×n

MH,0 · · · MH,H−1 0m×n 0m×n
...

. . . . . .
... 0m×n

MN−1,0 · · · · · · MN−1,N−2 0m×n


with M ∈ Rm×n.

Note that the disturbance parameterization min-max MPC introduces conser-

vatism, as the inputs to be optimized are not completely free.

In what follows, we consider a particular case, namely, the system matrices A and

B are static and known, which is also the system studied in [6]. For this particular

case, we develop an optimization-based method to calculate the control parameters

satisfying Assumption 2. The results are summarized in the following corollary.

Corollary 1. For the perturbed linear system (3.26) with fixed wt and x0 ∈ XN ,

consider the stage cost L(x, u) = xTCTCx + uTDTDu with CTC � 0, DTD � 0,

σ(‖v‖) = γvTv with γ ∈ R>0, κf (x) = Kx with K being a matrix, and the terminal

cost F (x) = xTPx with P � 0. If matrices Q, R, P and K are designed by solving

the following optimization problem

min γ

s.t.

P 0 n×n (P (A+BK))T CT KTDT

0 n×n γIn×n P 0 n×n 0 n×m

P (A+BK) P P 0 n×n 0 n×m

C 0 n×n 0 n×n In×n 0 n×m

DK 0m×n 0m×n 0m×n Im×m


� 0,

(3.28)
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then Algorithm 1 is recursively feasible, and the system (3.26) in closed-loop with the

self-triggered min-max MPC control (3.9) and (3.10) is ISpS with respect to v in XN .

Proof. Assumption 2-3) and 2-4) hold since the quadratic cost is used. By pre- and

post-multiplying (3.28) by diag{I, I, P−1, I, I} and using the Schur complement lead

to  P 0n×n

0n×n γIn×n

−
(A+BK)T CT KTDT

In×n 0n×n 0n×m

×

P 0n×n 0n×n

0n×n In×n 0n×n

0n×n 0n×n In×n




(A+BK) In×n

C 0n×n

DK 0m×n

 � 0.

(3.29)

It follows

((A+BK)x+ v)TP ((A+BK)x+ v) < xTPx− xTQx− xTKTRKx+ γvTv,

implying the satisfaction of Assumption 2-5). A + BK being stable ensures the

existence of set Xf . Therefore, Assumption 2-1) and Assumption 2-2) hold true.

Furthermore, the corresponding RPI set Xf can be calculated as [55]. The recursive

feasibility of Algorithm 1, stability of the closed-loop system can be analogously

analyzed as that in Theorem 2.

Remark 8. The results in Corollary 1 can be directly extended to a more general

case, i.e., [A(wt), B(wt)] =
∑S

s=1 χs[A(ws), B(ws)],
∑S

s=1 χs = 1 with s ∈ N, χs being

nonnegative reals and ws being the vertices of W, by following the similar lines of [35]

(pp: 151-158) provided that W is a polyhedral set.

Remark 9. In comparison with conventional min-max MPC, Algorithm 1 might need

less computational load. This is because, though the additional optimization problems
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(at most Hmax quadratic programs) needs to be solved at each triggering time instant,

the optimization frequency is greatly reduced due to the triggering strategy. Also note

that for linear case with quadratic cost, the min-max optimization problem (3.7) can

be solved as the conventional min-max MPC in [9, 17, 21, 44].

3.6 Simulation and Comparisons

3.6.1 Comparison of XN with [6]

Consider an unstable system

xt+1 =

1.1 1

0 1.2

xt +

0.5

1

ut + vt, (3.30)

where for all t ∈ N, vt ∈ V with V = [−0.2, 0.2] × [−0.2, 0.2]. The state and input

constraints are given by X = [−10, 10] × [−10, 10] and U = [−2, 2]. We set the

prediction horizon as N = 5. The stage cost is designed as L(x, u, v) = xTCTCx +

uTDTDu where C = diag(1, 1) and D = 1, respectively, and the terminal cost is

set as F (x) = xTPx. Set K =

[
−0.8286 −1.5013

]
. Note that the constant γ and

the matrix P should be designed to satisfy Assumption 2 . We take advantage of

the optimization toolbox YALMIP [45] to solve the optimization problem (3.28), and

get γ = 6.4547, P =

4.4888 2.2715

2.2715 3.6604

. Finally, the RPI set for system (3.30) in

closed-loop with u = Kx is derived by using Multi-Parametric Toolbox 3.0 [30].

To illustrate the advantages of the proposed self-triggered min-max MPC with

disturbance parameterization strategy over the event-triggering strategy with tube

MPC [6], we plotted their regions of attraction in Fig. 3.1, where the darkest shade

denotes the RPI set of the system (3.30) in closed-loop with u = Kx, the lighter
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one stands for the region of attraction of the strategy in [6], and the lightest one

represents that of the proposed strategy.

It can be seen that the proposed control strategy gives a larger region of attraction.

This is primarily because that the feedback gains are jointly optimized with the next

sampling time depending on the current state, whereas the feedback gain in [6] was

fixed. Considering that the inputs are not completely free but parameterized as in

(3.27), only a suboptimal solution of the min-max problem in (3.7) is obtained.

Figure 3.1: Comparison of regions of attraction.

3.6.2 Comparison with Periodic Min-max MPC

Consider the discrete-time nonlinear system [54] as follows

xt+1(1) =xt(1) + Txt(2)

xt+1(2) =− lT

m
e−xt(1)xt(1) +

m− hT
m

xt(2) +
T

m
ut −

T

m
wtxt(2) +

T

m
vt,

(3.31)
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where the system parameters are given by: m = 1 kg; l = 0.33 N/m; h = 1.1 Ns/m;

T = 0.4 s. The model uncertainties are limited by

−0.1 ≤ wt ≤ 0.1

−0.2 ≤ vt ≤ 0.4.

The system constraints are set as

−4.5 N ≤ ut ≤ 4.5 N

−2 m ≤ xt(1) ≤ 2 m.

The prediction horizon is chosen as N = 5. Set Hmax = 4. The cost function is set as

L(x, u) = xTQx+ uTRu

with

Q =

0.64 0

0 0.64

 , R = 1.

By following the method for deriving min-max MPC parameters developed in [54],

the local stabilizing law and terminal stage cost are derived as

κf (x) =

[
−0.7797− 1.1029

]
x,

and

F (x) = xTPx
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with P =

4.5678 3.2018

3.2018 4.3500

, respectively. The terminal region is numerically chosen

as

Xf = {x : xTPx ≤ 3.8}.

The policies

u(x) = aκf (x) + b(x2
1 + x2

2) + c,

where a, b, c ∈ R, are used for prediction from the prediction horizon N − H to N .

The initial state is given by x0 = [0.5, 0.4].

The simulation is conducted by following the self-triggered min-max MPC Algo-

rithm 1, where the MATLAB subroutine fminimax is employed to solve constrained

min-max optimization problems. We consider two configurations in the simulation,

that is, β = 1.2 and β = 3. Besides, the periodic min-max robust MPC is also ex-

ecuted in the simulation with the same system parameters. In the simulation, the

chosen trajectories of uncertainties are plotted in Fig. 3.5. The results are reported

as follows. Fig. 3.2-3.3 show the evolutions of system states, and Fig. 3.4 depicts

the control input. To further illustrate the difference of control performance, the

performance indices

Jp =

∑Tsim−1
t=0 xT

t Qxt + uT
t Rut

Tsim

and the average sampling instants are presented in Table 3.6.2, where Tsim is the

simulation time. It can be observed from Table 3.6.2 that the self-triggered min-

max MPC strategy reduces the computation load while achieves comparable control

performance as the periodic one. It can also be seen that the proposed self-triggered

strategy is feasible and the closed-loop system is stable, and with a larger β, the

controller has a lower optimization frequency but also a larger convergence set.
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Average sampling time Jp

Periodic 1.0000 0.0477
β = 1.2 1.2000 0.0519
β = 3.0 3.3333 0.0560

Table 3.1: Performance comparison

3.7 Conclusion

We have studied the robust self-triggered min-max MPC problem for constrained un-

certain discrete-time nonlinear systems. A self-triggered control scheduler has been

proposed to maximize the inter-sampling time of feedback min-max MPC, and the al-

gorithm feasibility and closed-loop ISpS at triggering time instants have been proved.

Numerical simulations and comparison studies have verified the effectiveness and ad-

vantages of the proposed results.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, the co-design problem of robust MPC and scheduling for networked

CPSs has been investigated.

The co-design problem of event trigger and robust tube-based MPC for constrained

linear systems with additive disturbances has been studied in Chapter 2. Based on

multiple stabilizing feedback gains, the interpolation technique is used to construct

a feedback policy where the interpolating coefficient is determined via optimization.

According to the dynamic interpolation, the original constraints are properly tight-

ened to achieve robust constraint satisfaction and a sequence of threshold sets that

characterize the maximum endurable deviation between the predicted and actual sys-

tem states are generated, leading to a co-design between the event trigger and the

tube-based MPC. The recursive feasibility and closed-loop stability have been rigor-

ously studied. Numerical results have been provided to verify the design.

A robust self-triggered min-max MPC strategy for constrained nonlinear systems

with both additive disturbances and parametric uncertainties has been proposed in
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Chapter 3, where a new cost function that relaxes the stage cost penalty for a

prediction horizon period during which the controller will not be invoked is designed.

The triggering instant is then determined by solving the optimization problem in the

min-max MPC framework. Note that the constraints in presence of both additive

disturbances and parametric uncertainties can be well handled as min-max MPC

considers the worst case of all possible uncertainty realizations. The closed-loop

system has been proved to be ISpS in the attraction region under some standard

conditions. Extensions have been made to linear systems; the feasibility and stability

conditions reduce to an LMI. Numerical simulations and comparison studies have

been conducted to verify our theoretical findings.

4.2 Future Work

There are many interesting issues that are worth exploring in the future. Here, two

main research branches are listed.

� The thesis is concerned with the centralized control of CPSs. When the dimen-

sion of the system state becomes very large, which is always the case in CPSs,

the controller should collect all the state measurements, generate and distribute

control signals to multiple modules at triggering time instants. This sort of

paradigm might be undesirable as it requires one-to-all communication and the

breakdown of one communication channel completely disables the controller. It

would be much more beneficial if the overall system can be firstly decoupled

into multiple subsystems and then a number of controllers that work coopera-

tively to stabilize the overall system based on peer-to-peer communication are

assigned to the subsystems. Generally speaking, this distributed framework is

not only more flexible and reliable, but also lowers down the requirement on
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computation for each controller, which can be seen as a byproduct.

Although this is a quite promising solution to the control of CPSs, how to

achieve a co-design of distributed MPC and scheduling is very challenging. This

is mainly because that the aperiodic scheduling of subsystems naturally intro-

duces asynchrony which makes the cooperation pattern between subsystems

unreliable and thus threats the closed-loop stability.

� Another research direction would be how to alleviate the computation burden

in self-triggered min-max MPC designed in Chapter 3. The min-max optimiza-

tion problem with general feedback policies is intractable, the introduction of

parameter H and the modification of the standard optimization problem make

the computation even more computationally expensive. There are two possible

research avenues to tackle this. The first one is to fix the state feedback policy,

e.g., disturbance feedback as done in Chapter 3.6 for linear systems with addi-

tive disturbances or state feedback, used for the prediction in min-max MPC.

The second one is to devise efficient optimization algorithms for constrained

optimization problems.
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Appendix A

Publications

� Refereed Journal Papers

1. C. Liu, H. Li, Y. Shi, and D. Xu. Distributed event-triggered gradient

method for constrained convex minimization. IEEE Transactions on Au-

tomatic Control, 2019, DOI: 10.1109/TAC.2019.2916985

2. C. Liu, H. Li, Y. Shi, and D. Xu. Co-design of event trigger and feed-

back policy in robust model predictive control. IEEE Transactions on

Automatic Control, 2019, DOI: 10.1109/TAC.2019.2914416

3. C. Liu, H. Li, J. Gao, and D. Xu. Robust self-triggered min-max model

predictive control for discrete-time nonlinear systems. Automatica, 89:

333-339, 2018

� Journal Papers Under Review

1. C. Liu, H. Li, and Y. Shi. Distributed subgradient method for convex

constrained optimization: Non-ergodic convergence guarantees. Submitted

to Automatica, under the second-round review, 2019.
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2. C. Liu, H. Li, Y. Shi, and D. Xu. Distributed event-triggered model pre-

dictive control of coupled nonlinear systems. Submitted to SIAM Journal

on Control and Optimization, under the second-round review, 2019.
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