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Abstract

Enterprising technologies and policies that focus on energy reduction in buildings are
paramount to achieving global carbon emissions targets. Energy retrofits, building stock
modelling, heating, ventilation, and air conditioning (HVAC) upgrades and demand side
management all present high leverage opportunities in this regard. Advances in computing,
data science and machine learning can be leveraged to enhance these methods and thus to
expedite energy reduction in buildings but challenges such as lack of data, limited model
generalizability and reliability and un-reproducible studies have resulted in restricted indus-
try adoption [44]. In this thesis, rigorous and reproducible studies are designed to evaluate
the benefits and limitations of state-of-the-art machine learning and statistical techniques for
high-impact applications, with an emphasis on addressing the challenges listed above.

The scope of this work includes calibration of physics-based building models and
supervised deep learning, both of which are used to estimate building properties from real
and synthetic data.

• Original grey-box methods are developed to characterize physical thermal properties
(RC and RK)from real-world measurement data.

• The novel application of supervised deep learning for thermal property estimation and
HVAC systems identification is shown to achieve state-of-the-art performance (root
mean squared error of 0.089 and 87% validation accuracy, respectively).

• A rigorous empirical review is conducted to assess which types of gray and black box
models are most suitable for practical application. The scope of the review is wider
than previous studies, and the conclusions suggest a re-framing of research priorities
for future work.

• Modern interpretability techniques are used to provide unique insight into the learning
behaviour of the black box methods.
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Overall, this body of work provides a critical appraisal of new and existing data-driven
approaches for thermal property estimation in buildings. It provides valuable and novel
insight into barriers to widespread adoption of these techniques and suggests pathways
forward. Performance benchmarks, open-source model code and a parametrically generated,
synthetic dataset are provided to support further research and to encourage industry adoption
of the approaches. This lays the necessary groundwork for the accelerated adoption of
data-driven models for thermal property identification in buildings.
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Chapter 1

Introduction

At the time of writing, over 1,800 jurisdictions spanning 31 countries have declared a climate

emergency,1 and governments are scrambling to develop evidence-based carbon emissions

reduction strategies. Upgrading existing buildings is a key component in the climate action

plans of federal [3], provincial [2] and municipal [100] governments in Canada, where

heating, cooling and electricity use in existing buildings accounts for 17% of national GHG

emissions [3]. Further, decarbonizing the building stock has invaluable co-benefits including

reduced consumer energy costs, job creation and improved occupant health and comfort

[59] [58].

High-impact applications for carbon reduction in buildings, including retrofit analysis,

stock modelling and demand-side management, are supported by the identification of build-

ing properties. Building retrofits entail upgrades that result in reduced energy use. For

example, heating, ventilation and air conditioning (HVAC) systems might be replaced by

more efficient alternatives, or the quality of the building constructions (i.e. the building

envelope) might be improved to reduce heat loss [51]. The ability to perform mechanical

systems and thermal envelope property diagnostics (respectively) is essential to the devel-

opment of effective retrofit programs. Stock-level modelling of building properties allow

1https://www.cedamia.org/global/

https://www.cedamia.org/global/
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stakeholders, such as municipalities, to deliver evidence-based carbon reduction plans and

targets. Demand-side management schemes, which aim to control building heating systems

while providing flexibility to the heating grid, also require stock-level building analysis.

To achieve global emissions reductions targets, these types of strategies must be im-

plemented on a massive scale [26] [63]. In practice, methods for building property char-

acterization rely on walk-throughs, surveys or the collection of in-situ measurements [72],

which are neither scaleable nor cost-effective. Efficient and reliable methods that extract

properties from large datasets are therefore required. Meanwhile, the rate of data collection

in buildings is extraordinary; worldwide, more than one billion smart metering devices will

be installed by the end of 2020 [83], and large construction markets have or will have (e.g.

Canada [42]) nationwide coverage. These observations indicate that data-driven, statistical

and machine learning approaches will be integral for decarbonizing the building stock.

Figure 1.1: Workflow for (1) gray and (2) black box methods. (1) require both a physics-
based model of the building and fitting to measurement data. They estimate properties by
calibrating parameters to measurement data from a single building at a time. (2) are purely
data-driven; they build statistical representations from large amounts of data to predict on
unseen examples. Supervised deep learning is a popular approach to black box modelling.

Two paradigms2 for data-driven building diagnostics exist: gray box and black box
2A third modelling paradigm, known as white box modelling, also exists. These methods are purely physics-

based and not data-driven, so they cannot be used to estimate building properties from sensor measurements.
White box models are used in this work to generate pramaterized synthetic datasets.
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methods (see Figure 1.1). Together they provide comprehensive coverage of methods for

data-driven estimation of building properties from large datasets, but neither have seen

wide-spread adoption by the buildings industry [44]. For black box models this can be

attributed in part to a lack of relevant labels. Smart meter data, for instance, increasingly

provide nationwide coverage, but do not include detailed information about the building

characteristics or energy loads [102]. Existing gray box methods do not require labelled

data, but they have not been validated for use on large, heterogenous building sensor datasets.

In general, benchmarking of both black and gray box approaches is limited, and it is often

unclear whether the approaches are scalable and robust to diverse building properties.

The major contribution of this thesis is to support industry adoption of novel and existing

gray box and black box methods for practical, big-data applications such as retrofit analysis

and building stock modelling. This is done via rigorous, empirical validation. Two primary

objectives arise:

• To assess novel and existing gray and black box methods for thermal property estima-

tion in buildings. Both real-world data and synthetic data with ground-truth labels are

used.

• To orient future research in terms of challenges that restrict industry adoption of

data-driven modelling research, including data availability, reproducibility and model

reliability, generalizability and transferability [45]. To support reproducibility, all the

work completed over the course of this thesis is open-sourced.3

The following research questions are addressed in this work.

1. Can gray box models derive useful building properties from real-world datasets, in

spite of limited information? (Chapter 2)

3Available at https://gitlab.com/energyincities

https://gitlab.com/energyincities
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The first chapter in this thesis presents and compares three gray box methods for

assessing heating characteristics of households using a real-world, smart thermostat

dataset that does not contain ground truth or heating power measurements. The three

methods are based on: (1) balance point plots, (2) the extraction of indoor temperature

decay curves, and (3) the classic differential equation for indoor temperature. The

result indicates that the methods can be used in a real-world context to ascertain

relative values for the thermal characteristics of a building.

2. Can black box models predict thermal building properties using time series sensor

data? (Chapter 3)

This chapter serves as a novel showcase for how multivariate time series analysis with

Gated Recurrent Units can be applied to targeted retrofit analysis via two case studies:

(1) classification of building heating system type and (2) prediction of the numerical

physical property that determines the rate of heat lost through the building envelope.

3. Is gray box calibration or black box learning more reliable for application on large,

heterogenous building datasets? (Chapter 4)

Seven different gray box and black box approaches for characterization of the whole-

building heat loss coefficient are compared in this chapter. To do so, a synthetic dataset

of 16,000 simulated buildings is created. The models are benchmarked according to

four criteria: (1) data and infrastructure requirements, (2) scalability to larger datasets,

(3) model validation and (4) comparison to ground truth, including an assessment

of robustness to climate, construction materials, air-infiltration rate and occupant

behaviour. It is shown for the first time that the deep learning methods outperform

other approaches in terms of accuracy and robustness, but that all of the approaches

have limitations that restrain their practical usage.

4. Can black box models that are trained on synthetic data be transferred to real world
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data? (Chapter 5)

Gradient-based activation maps are used in interpretable machine learning research

to highlight the important features of a datum for a specified prediction task. In this

chapter activation maps are applied to illuminate how deep neural networks trained on

time series inputs predict a building’s heat loss coefficient (HLC). Several networks are

trained on different sets of inputs, and the resulting activation maps are compared. The

results indicate that the networks learn physically meaningful features from synthetic

data, which in the long term might mean that pre-trained networks could be used

to reduce real-world data requirements through transfer [98] or self-supervised [70]

learning. This is one of the first applications of activation maps for both time series

and building data.

Table 1.1 lists all of the models that are evaluated in this thesis, alongside their inputs

and outputs. The ‘Introduction’ sections in Chapters 2-5 contain the relevant background,

so to avoid repetition an additional literature review section is not included.
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Chapter 2

Comparing Gray Box Methods to Derive

Building Properties from Smart Thermo-

stat Data

2.1 Introduction

2.1.1 Motivation

Retrofitting the existing building stock is one of the primary means by which we can reduce

building energy consumption and reach energy efficiency targets globally to mitigate climate

change [63]. Existing buildings account for 32% of global energy demand and 30% of global

carbon emissions [107]. Of that, approximately 60% of the energy required by residential

buildings are for thermal uses [107]. It follows that many studies highlight the environmental

necessity of retrofits. For instance a study by Deconinck and Roels et al. determined that

2050 energy reduction targets for two case studies can not be achieved without a retrofit rate

of at least 2% of buildings per year [26]. In a 2011 study, Mills et al. show that retrofits in

the US can result in a median of 16% whole energy building savings, with a payback period
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of only 4.2 years [69]. Another area in which stock-level analysis of building properties

would be valuable is in assessing the potential of demand-side management (DSM) schemes

which seek to control building heating systems to provide flexibility to the electricity grid

without discomforting building occupants. A quantitative and scalable approach to filtering

viable building candidates would be beneficial in targeting retrofit and DSM measures and

assessing the applicability of such measures to whole building stocks. This work explores

methods to provide stock-level overviews of building characteristics as needed to assess the

potential for such measures.

2.1.2 Research Background

In order to target buildings for envelope upgrades and to tailor appropriate construction

strategies, building performance evaluation is required. Currently, techniques for evaluating

thermal building characteristics require onsite measurements and performance appraisal,

often combined with complex building simulations [72]. Basic energy audits include

walk-through assessments and survey analysis [63], while more complex analysis involves

advanced computational techniques and sensor networks. For example, Biddulph et al. and

Gori et al. use Bayesian techniques take advantage of rich in-situ measurements and time

series data to predict the thermophysical properties of buildings [38][12], Aznar et al. use

the data from in-wall sensors to train a deep-learning model that measures and predicts heat

transfer [8] and Nagy et al. implement a low cost sensor network to estimate the thermal

transmittance of the building [72].

As illustrated by the examples above, there has been a lot of progress towards the energy

evaluation of a single building. While indispensable, this type of analysis is not scalable

and cannot filter for viable retrofit candidates at a district scale. With the advent of smart

sensing technology and the internet of things (IoT) unprecedented amounts of building data

are becoming available. This provides an opportunity to address the scalability issues of
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building energy performance assessment. More recently, researchers are starting to take

advantage of this new resource. Studies by Tabatabaei et al. and Van der Ham et al. use

thermostat data to estimate the thermal characteristics of houses. The former evaluates 99

Dutch households while the latter uses 67 households [97][99]. Ghiaus uses aggregate data

to predict the energy consumption and heat loss coefficient for a single building in several

locations [35]. In perhaps the most large-scale study to date, Iyengar et al. use Bayesian

inference over more than 10,000 buildings to create a partial ordering of buildings based on

their efficiency [50]. All of the papers cited above use temperature and heating load data.

Research into the use of "big data" from smart-sensing and IoT devices to predict the

thermal characteristics of buildings is still a relatively young field. The aforementioned

studies provide a valuable starting point, but much work remains to be done in this area. It

is still unclear what types of thermal characteristics can be estimated using big data, how

reliable these estimates are, what types of data are required and what are the limitations.

2.1.3 Contribution

This paper addresses these open research questions by comparing three gray box methods

which predict the thermal characteristics of buildings: balance point plots, decay curves and

numerical integration of the energy balance equation. A summary of these three methods and

the required data can be seen in Table 2.1, and they are described in detail in section 2.2.2.

The methods in this paper are novel and differ from the aforementioned studies in several

ways. First, all of the above studies use energy load data, which are not always available.

In cases where energy data is available, as with smart meter data, there are problems with

working backwards from aggregated loads to identify just the heating or cooling-related

energy use [60]. As smart thermostats become more common1, it is important to develop

methods that can derive building properties directly from temperature data. For these reasons

1In the US in 2015, 10 million thermostats were purchased, 40% of which were connected [49].
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Table 2.1: Model summary

Method Parameters Required Data Fitting Method
Balance
point RK

Heating system duty cycle
External temperature Linear regression

Decay
curves RC

Internal temperature
External temperature Non-linear least squares

Energy
balance RK, RC

Heating system duty cycle
Internal temperature Non-linear least squares

no load profiles are used in this paper2. Second, this paper uses a larger dataset than most

of the previous studies, with over 4,000 buildings. Finally, it is important to capture the

dynamic aspects of building energy performance such as thermal mass by using the rich and

informative time series data which is becoming available. Two of the three methods in this

study use the sequential time series data rather than an aggregated form.

The paper is organized as follows: a description of the data and models; a results section

describing model performance; and a discussion of the merits of each method.

2.2 Methodology

To compare possible data analysis techniques for deriving the thermal characteristics of

buildings from temperature time series, three gray box models were implemented:

(1) Balance point plots of daily heating demand against outdoor temperature.

(2) Exponential decay curves of indoor temperature following heating setpoint drops.

(3) Numerical integration of the 1D heat conduction differential equation from a known

initial value.

Each model is fitted to each building for which suitable data are available to estimate the

thermal parameters of that building.

A general analysis pipeline was created to compare each of the three models. Code for

2Heating system duty cycle is used as a proxy for an energy use in one of the three methods.
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the pipeline can be found at https://gitlab.com/energyincities/besos-public/

publications. An important part of the process involved creating appropriate filters for

the time series data. Each time new filters were created, the analysis pipeline was rerun

and the new results were compared. Initially, to reduce the computational cost and to avoid

overfitting the filters, only a small subset (20%) of the data was evaluated. The entire dataset

was analyzed only after the filters were finalized.

In this section each method is discussed in detail, along with the data, the final filters

used in the preprocessing phase and the metrics used for the comparison of the models. The

limitations of each method are also discussed.

2.2.1 Data

The Dataset

The dataset for this research was acquired through the ecobee Smart Thermostat Donate

Your Data program3. The original dataset consists of over a terabyte of anonymized smart

thermostat data from 76,000 households worldwide. The data for each household consists

of both time series data and metadata. The time series data spans from 2015 to 2018 with

a 5 minute granularity and includes indoor and outdoor temperatures, heating and cooling

system duty cycles, occupant schedules and heating and cooling setpoints. The inside

temperature is typically measured at a single thermostat and the outdoor temperature data is

acquired from the nearest available weather station for each building. The metadata includes

building characteristics such as size, age, heating system type, location, and occupancy. A

more detailed description of the dataset can be found in "A longitudinal study of thermostat

behaviours based on climate" [49].
3https://www.ecobee.com/donateyourdata/

https://gitlab.com/energyincities/besos-public/publications
https://gitlab.com/energyincities/besos-public/publications
https://www.ecobee.com/donateyourdata/
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Preprocessing

The methods proposed in this study aim to predict the thermal characteristics of buildings

in cold climates where heating is required to maintain internal temperatures, though the

methods could all be inverted to work in cooling-dominated climates. The dataset was

reduced to include only buildings in the cold climates of Ontario, Canada and New York,

USA. To further reduce potential confounding factors, only homes without auxiliary heating

systems were evaluated. After this filters was applied, the dataset included 4,646 buildings.

In addition to the metadata filtering described above, the time periods over which the

models are trained was limited to times when the outdoor temperature is lower than the

indoor temperature and there are no solar gains. We therefore look only at time periods that

are during the night (08:00 PM - 05:00 AM) in the winter months (November - February).

Specific methods also required particular filtering to obtain time periods that were

consistent with the assumptions of that method. The way data was filtered had a significant

effect on the performance of the methods used; understanding which filters were used to

obtain the final result and the reason why will therefore be important for additional research

in this domain. Details of the preprocessing filters applied for each method are given in the

relevant sections below.

2.2.2 Models

The methods presented in this paper use a gray box approach, that is they combine the

data-driven nature of black box modelling with the use of explicit domain knowledge and

the physics equations of white box models. Black box models, which are commonly used

by data scientists and machine learning practitioners, are statistical models used to extract

and predict interesting information from large data sets. These types of models are seeing

increasing uptake and application in a wide variety of fields; they require minimal domain



13

knowledge and can be used in spite of limited information. White box models, on the

other hand, model the detailed physical behaviour of a system. They are more difficult to

implement and often require highly specialized domain expertise, however they are easier to

interpret and can be more reliable than black-box methods. Gray box methods marry these

two approaches by formulating a statistical model according to a-priori physical knowledge.

In this way, the physical parameters of a system can be reliably described, predicted and

estimated, even in lieu of missing information.

The physics on which the models in this paper are based is derived from the thermal

energy balance of a building, as described in the section below. This is followed by a

description of each the methods and their associated fitting process.

Thermal Energy Balance in a Building

The thermal energy balance in a building can be expressed by equation 2.1, where Tin is the

indoor temperature, Text is the outdoor temperature, Q̇in is the internal heat gains, Q̇h is the

heat flow supplied by the heating system, Q̇sol is the solar radiation gains, Q̇ven is the heat

flow due to ventilation, C is the lumped building capacitance and R the lumped building

thermal resistance [19].

C
dTin

dt
(t) = Q̇in(t) + Q̇h(t) + Q̇sol(t) −

1
R

(Tin(t) − Text(t)) − Q̇ven(t) (2.1)

This equation includes lumped parameters for capacitance and thermal resistance. It

therefore assumes that the different parts of the building cool or warm uniformly. The

thermal resistance R (
◦K
W ) represents the global insulation of the building; the higher the R

value, the better insulated the building. The thermal capacitance C ( J
◦K ) describes the ability

of the building fabric to store energy and therefore its inertia; buildings with high thermal

mass, for example built from concrete, have high values for C.

For this work, we assume that:
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• the dominating heat flows are the heat flow supplied by heating system Q̇h and the

heat flow due to the indoor and outdoor temperature difference.

• the heat flow supplied by heating system Q̇h can be rewritten as:

Q̇h(t) = δon(t) × K

where K is the heating power, assumed constant, and δon is the proportion of time that

the heating system is on during a particular time interval.

The thermal energy balance therefore becomes:

C
dTin

dt
(t) =

1
R

(Text(t) − Tin(t)) + δon(t)K (2.2)

The objective of the models in this paper is to determine the parameters R and C,

to characterise the building fabric; to fit the equation when the heating system power is

unknown, it may also be necessary to estimate K. Equation 2.2 must therefore be rewritten

so that it can be parameterized and optimized:

dTin

dt
(t) =

1
RC

((Text(t) − Tin(t)) + δon(t)RK) (2.3)

dTin

dt
(t) = α((Text(t) − Tin(t)) + βδon(t)) (2.4)

The parameters now become (RC)−1 (α) and RK (β), both of which can be determined

through the fitting of statistical models by various methods, as outlined below. The RC

value is easy to interpret as the "time constant" of the building,4 while RK is more abstract.

In this paper RK primarily provides an additional means to compare the results of two
4The units of

◦K
W and J

◦K cancel to s (seconds), since 1J = 1Ws. This requires a conversion in the energy
balance equation when applied to the ecobee data, which has a time resolution of 5 minutes. Values are
reported in hours.
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of the models, further justifying the observed correlation between the methods. It should

be noted that it is impossible to derive the individual factors R, C and K independently

from equation 2.2; based on temperature data alone, there is no way to distinguish a poorly

insulated building with high thermal mass from a well-insulated but thermally lightweight

building. This is a further justification for the use of multiple methods: if RC and RK can

be estimated with reasonable accuracy, it may be possible to use assumptions about K to

determine specific values of R and C.

Model 1: Balance Point

"Energy signature" methods have long been used as a tool for estimating building energy

performance [39]. In these models, the energy use of a single building is plotted as a function

of the outdoor temperature. Each point represents the heating load and temperature, typically

aggregated by taking the mean outdoor temperature (T ext) and the total heating load (Q̇h,d)

on a daily basis. Usually the plot shows two distinctive sections on either side of a particular

value of the outside temperature called the "balance point". A linear correlation is visible

below this point and, above this point, the temperature has no impact on the heating load

[39]. By applying a linear regression on the portion below the balance point we can find the

gradient, which represents the R value in equation 2.5 where y = Q̇h,d and x = T ext. This

equation is derived from equation 2.3 by assuming that on average the indoor temperature

does not change during the day (mean( dTin
dt ) = 0). The balance point method cannot predict

values for C, since the points are evaluated independently of time so no dynamic behaviour

can be captured.

y(x) =
1
R

(T in − x) (2.5)

The ecobee data does not provide any information about specific heating or energy load

Q̇h, and the metadata does not contain any information on the system capacity, so the duty
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cycle of the heating system δon is used instead. A daily unitless heating runtime fraction Fh,d

is derived from δon as the fraction of time periods where δon,i = 1. As mentioned in section

2.2.1, to limit the impact of solar and internal gains, the fractions are computed only over the

night periods. The shape of the signature produced using this heating runtime fraction Fh,d

is similar to the shapes seen in typical energy signatures (see Figure 2.1), indicating that this

is a reasonable proxy. Note that Figure 2.1 shows only the data with a linear dependance

on outdoor temperature, well below the "balance point", since we filter for only winter

nighttime values.

Solving equation 2.2 with y = Fh,d and x = T ext we derive:

y(x) =
1

RK
(T in − x) (2.6)

We can see from this equation that the slope of the line of best fit for the balance point

plot is now represented by −(RK)−1. Therefore, a simple linear regression can be used to

solve for RK by finding the slope of the line of best fit.5 Outliers, which for this model are

simply defined as any points that lie more than one standard deviation away from the mean,

are excluded. This is illustrated in Figure 2.1. This approach has been applied previously by

in other works, where regression was used to estimate building energy performance from

heating load and outdoor temperature [35].

Though finding the slope of the balance point plot is a relatively common approach to

estimate the thermal characteristics of buildings, this method is subject to certain limitations.

First, for this work it is assumed that the form of the scatter plot is linear, but in reality a

typical building always exhibits some dynamic, non-linear behaviour [39]. Second, linear

regression is highly susceptible to outliers. The way in which we perform outlier detection

and removal in this study is rather crude and may accidentally remove valuable information.

5The scipy.stats.linregress python module is used to perform the linear regression, see https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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Figure 2.1: Example balance point plot showing daily sampled data (filtered for winter
nighttimes), remaining data after outlier removal, and the final linear regression whose slope
gives RK.

A more robust method for outlier detection should be implemented, perhaps by iteratively

removing outliers over a series of regressions to obtain a minimum error.

Model 2: Decay Curves

Unlike balance point plots, which use daily aggregated values, decay curve analysis takes

advantage of the rich time series data available. A typical decay curve occurs when there

is no heat input into the system and the outdoor temperature is much lower than the initial

indoor temperature. According to equation 2.2, at these times there will be an exponential

rate of decay of the indoor temperature towards the outdoor temperature. An example is

shown in Figure 2.4. With no heating and constant outdoor temperature, equation 2.7 is a

specific analytical solution to the general equation 2.2. Note that since the decay curves

describe the behaviour of the building when no heating is present, this method cannot predict

values of K, which in any case are not relevant in assessing the building envelope.
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θ(t) = θ0e
−t
RC (2.7)

where θ(t) = Tin(t) − Text.

Figure 2.2: A decay curve fit for indoor temperature decrease following a setpoint drop and
heating duty cycle decrease. Though plotted on the same axes, the heating duty cycle is not
in temperature units; it is a unitless, proportional value.

One significant limitation of this method is the necessary assumption that the outdoor

temperature is constant. To account for this we filter for periods of time across which the

mean outdoor temperature remains relatively stable. We assume that small variations in

outdoor temperature should not have a huge effect and therefore do not filter for complete

stationarity of this value. There is a trade-off between over-filtering the data in the search for

periods which are closest to the ideal and retaining many periods over which we can average

the values obtained. The full set of filters used to preprocess the data for this method are

shown in Table 2.2.6

For each building, multiple decay curves are extracted, one for each subset of the time
6An additional input for this and the following method was an initial guess for the parameters being

predicted. This initial guess does not constitute a filter, but rather a hyperparameter, but is also given in the
relevant table.
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Table 2.2: Decay curve filters

Filter Value

Stationarity of Mean in Outdoor Temperature 1.0
Minimum Indoor-Outdoor Temperature Difference 5◦

Maximum Proportion of Time Heating is Added 0.1
Maximum Time Period 6 hours
Minimum Time Period 10 minutes

series which meets the filtering criteria described above. This extraction is deterministic; as

long as the filters are the same, the same decay curves will always be extracted for a given

time series. The number of decay curves that were found for each building can be seen in

Figure 2.3.

Figure 2.3: Histogram of the number of decay curves per building.

After the decay curves are extracted, the parameters in equation 2.7 are determined using

a non-linear least-squares curve fitting method7 with two parameters, RC and T0. Using this

approach, an RC value is derived for each of the decay curves available for a given building,

7The scipy.optimize.curve_fit module is used, see https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.curve_fit.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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and the mean, median and standard deviations of these values are examined. RC values with

a small standard deviation will be the most reliable and most likely obtained for a building

for which there are many decay curves available.

Model 3: Energy Balance

This method was introduced to overcome the restriction on the decay curve method that

outdoor temperature must be constant and no heating can take place. It requires fewer

restrictions than the decay curve fitting as it can be applied to periods with heating and

unsteady outdoor temperatures, but it is not without limitations. Filters are required to

ensure that significant heating and sufficient variation of the indoor temperature occurs in

a given time period.8 The full set of filters used to preprocess the data for this method are

shown in Table 2.3.

Figure 2.4: A typical energy balance fit showing how the inside temperature output changes
depending on the heating duty cycle and outside temperature.

This method involves solving the differential equation in equation 4 and using Euler’s

8If there is not enough heating over a given time period the value for RK cannot be predicted. If there is
not enough variation in indoor temperature the rate of change is always 0 and RK can take on any value.
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Table 2.3: Energy balance filters & other parameters

Filter Value

Time Periods Used for Fit 30
Duration of Time Periods Used for Fit 3 hours
Fits Attempted for Each Building 10
Heating Duty Cycle Maximum 0.8
Heating Duty Cycle Minimum 0.05
Minimum Variance in Indoor Temperature 0.2

method of numerical integration. Euler’s method approximates the solution to a first-order

differential equation given an initial value. Using this method a new model parameterized

by RC and RK can be derived:

Tin,i+1 = Tin,i + ∆t[α((Text,i − Tin,i) + βδon,i)] (2.8)

where ∆t is a 5 minute timestep.

The equation above can be used to create a dataset for curve fitting, over which the

parameters α and β are optimized. The dataset is created as follows:

1. Create random initial guess for α and β.

2. Let i = 0. Use the real value of Ti, alongside the initial guess from step (1) to solve

for Ti+1.

3. Now let i = i + 1. Use the estimated value of Ti to solve Ti+1. Repeat for all n

timesteps.

To avoid overfitting and to prevent error propagation through time, the steps above

are repeated a number of times for different intervals in the data, specified by the variable

Time Periods Used for Fit. This process creates a dataset of temperature values that can be

compared to the real data. A non-linear curve fitting algorithm is then used to minimize the



22

Table 2.4: Pros and cons of each method

Model Pros Cons

Balance
point

1. Easy to implement
2. Works with aggregated
data so its applicable
to many data sources

1. Aggregated so cannot
describe variance in data
2. Produced many outlier results

Decay
curves

1. Produced few outlier results
1. Requires a lot of data filtering
2. Assumes outdoor temperature
is constant

Energy
balance

1. Less filtering than the
decay curves
2. Accounts for changes in
outdoor temperature

2. Produced many outlier results

difference between the generated data and the real data by changing α and β. In this process

a number of time periods of a certain length are selected at random from the filtered data.

Various period lengths were trialled, with 3 hours giving the best results.

Similar to the decay curve method, the effectiveness of this model can be significantly

reduced by disturbances such as internal gains, solar gains and ventilation, which affect the

RC and RK. Additionally, lag between heating runtime and actual heating in certain heating

systems can confuse the model.

2.2.3 Metrics for Model Comparison

Not all methods predict all characteristics, as shown in Table 2.1. For the decay curve and

energy balance methods, multiple values are generated and averaged, giving the opportunity

to judge individual model performance based on the spread of these values.

In order to compare the performance of the models in the absence of ground-truth data,

several basic statistical tests are implemented to assess the similarity of the characteristics

predicted for a given building. First, the final results for RK from the balance point method

and the energy balance method are plotted against each other, as well as the results for RC



23

from the decay curve and energy balance methods. In both cases, a perfect result would

be when the values are identical, that is, when all points fall exactly on the same line. By

measuring the correlations of these values, we can determine whether the results are correct,

relative to one another. Second, the standard deviation of the results from the decay curve

and energy balance methods are evaluated. Third, a statistical t-test is used to compare

population means and determine whether the absolute values produced from each method

are similar. Fourth, the relative differences in the results from each method are evaluated

using quantiles and plotted with a violin plot. These quantiles describe the percentages of

results that are similar.

2.3 Results

2.3.1 Individual Model Performance

Before comparing methods, the fitting error of the optimization functions and the standard

deviations for each method are evaluated to help us to understand how well the models

performed. The model fitting for each of the three methods has an associated error which

is discussed in sections 2.3.1 - 2.3.1. Standard deviation can be evaluated for the decay

curve and energy balance methods, since in each of these two methods multiple values are

returned for each building. The standard deviations of these values represent the reliability

of the result for a particular building.

Cases where the models perform poorly, as defined by the fitting error and the standard

deviations, are removed from the reported results. A summary of these values can be seen

in Table 2.5. In general, the thresholds were set to reduce the number of outliers while

also retaining a reasonable amount of buildings. After outlier removal there were 1443

remaining buildings, that is, 31% of the buildings produced reliable results — as defined by

the threshold values in Table 2.5.



24

Performance of the Balance Point Method

Linear regression returns metrics that represent the goodness of fit: p-value, r-value and

standard error. The null hypothesis for the p-value is that the slope of the line is zero. A

scatter plot with a slope of zero indicates that there is no correlation between the variables.

A result with a small p-value (below 0.05) has a statistically significant slope, meaning

that the dependent variable (heating load) is affected directly by the independent variable

(outdoor temperature). The standard error is measured in the units of the dependent variable,

and measures the standard deviation of the errors. The r-value is the correlation coefficient,

which quantifies the linear relationship between two variables. Together, these metrics can

be used to evaluate the quality of the estimated gradient.

In general, the balance point method returned results that had a relatively high standard

error and an r-value that did not represent a strong linear correlation. Of the three methods,

the balance points seemed to be the most unreliable.

Performance of the Decay Curves Method

For the decay curve method, the standard deviation and the fitting error represent the

quantitative performance of the model. In Figure 5 (d) these values are plotted against each

other to represent their relationship. Higher density areas represent values for standard

deviation and fitting error that were obtained for many buildings. It can be seen that there is

a general positive linear trend between these two values. This indicates that as the fitting

error increases, the standard deviation of the values for RC within a building also increases.

Buildings with higher fitting error and standard deviations are the least reliable.

Figure 5 (d) also gives the distribution of the standard deviations (right) and fitting

errors (top) for each building. This shows that the standard deviations are relatively tightly

clustered around 30h (compared to predicted values of RC of 50 to 200h) and moderate

fitting errors of around 50 to 100◦K2.
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Performance of the Energy Balance Method

As with decay curves, the fitting error and the standard deviation are interesting quantitative

indicators of model performance. The relationships between each of these measures can be

seen in Figure 5. Unsurprisingly, there is a positive linear correlation between the standard

deviation of RC and RK. This indicates that there is consistency in these results. On the

other hand, neither the standard deviations for RC or RK have a linear relationship with the

fitting error. This is an unexpected result that likely indicates that the fitting cost function is

not fully expressing the goodness of fit. This could be because there is information missing

from the model.

Figure 5 also shows the distribution of the standard deviations and fitting errors for each

building to the right and top of each plot respectively. This shows that the fitting errors

are very low, clustering very near to zero with almost all values below 50◦K2. Standard

deviations for RC are mostly clustered between between around 5h and 20h, which is slightly

lower than for the decay curve method. Standard deviations for RK are clustered around 5

to 15◦K (compared to predicted values of RK of 20 to 200◦K).

2.3.2 Model Comparison

A comparison of the three methods applied in this paper shows that there is a positive linear

correlation between: (1) the model fitting method and the balance point method (used to

solve for RK) and (2) the model fitting method and the decay curve method (used to solve

for RC), as shown in Figure 2.6 and in the correlation values in Figure 2.8. By examining

Figure 2.6, one can see that the balance point method results in some outlier values that were

not caught by the parameters presented in Table 2.5 and that the energy balance method

overpredicts RC compared to the decay curve method.

A t-test was performed to determine if the population means from the methods are
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(a) Energy Balance (RC vs. cost) (b) Energy Balance (RK vs. cost)

(c) Energy Balance (RK vs. RC) (d) Decay Curves (RC vs. cost)

Figure 2.5: The performance of the energy balance model fitting and the decay curve model
fitting. The scatter plots shows the correlation between the fitting costs and the standard
deviation of RC and RK predictions. The histograms on the axes show the frequency
distributions.

Figure 2.6: Comparison of the results for RC (energy balance and decay curve methods) and
RK (energy balance and balance plot methods), with lines of perfect agreement (dashed)
and actual fit (solid).

statistically similar. For RK the p-value is 0.25, indicating that the methods produce a

population of values with a similar mean. For RC, on the other hand, the p-value is far

below 0.05, which follows since the energy balance method systematically over predicts
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Table 2.5: Parameters for removal of unreliable results.

Type Model Threshold % of total

Standard error Balance point 0.0015 43.93
r-value Balance point -0.75 41.22
RK Standard deviation Energy balance 80 22.00
RC Standard deviation Energy balance 125 35.67
Fitting cost Energy balance 700 22.49
Intervals found Energy balance 4 31.83

Note that these values are not mutual exclusive. The % of total represents the amount of
outlier values of the given type.

when compared to the decay curve method.

The proportional differences between the methods for each building were examined

(see Figure 2.7). This proportional difference was obtained by dividing the difference in

result for each building by the result from the energy balance method. For example, a value

of 20% for RC means that the energy balance method overestimated by 20% compared

to the decay curve method. The median proportional difference for RK sits around zero,

further indicating that the balance point method and the energy balance method produce a

population with similar means. On the other hand, the energy balance method over-predicts

RC by a median value of around 20%. This may be explained by intermittent internal gains

or ventilation losses that are not taken account in equation 2.2 but are partially captured by

RC.

Overall, we found that there is a strong positive statistical correlation between the three

methods. The absolute values obtained for RK are similar, but the absolute values for

RC vary significantly between methods. The statistical correlation indicates that these

approaches may be viable in assessing the relative values for thermal characteristics of

homes, even if the estimates do not represent the ground truth. If the end goal is to build

a crude filter that can reasonably target potential retrofit candidates from a large dataset

then the methods do not need to have a very high accuracy; rather, they should be internally
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Figure 2.7: Distributions of the proportional difference between methods for a given building.

consistent. These approaches may therefore be viable in assessing the thermal characteristics

of homes, and thus help with filtering for envelope retrofit. Additionally, having shown that

the methods return results that have relative significance, if not absolute accuracy, we can

conclude there is a huge range in the thermal quality of the buildings in this study.

2.3.3 Results obtained for RC and RK

The decay curve method predicts RC values that range from 23h to 252h with a mean of

119h, while the full energy balance method predicts values from 55h to 365h with a mean

of 170h. For RK, the balance point method predicts values that range from 37◦K to 306◦K

with a mean of 99◦K, while the full energy balance method predicts values that range from

13◦K to 290◦K with an average of 99◦K. The full distributions of both parameters for both

methods are shown in Figure 2.6. It is notable that the RK distributions are tighter than

those for RC.

As a speculative exercise, dividing the RC values obtained by very approximate values

for C ranging from 10,000 to 20,000Wh/K (lightweight to heavyweight construction) and
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multiplying by a surface area of 1,000m2 gives area-averaged R values that range from 2

to 38 m2K/W with the mean values equating to around 7 m2K/W. Applying a similarly

broad assumption of a heating power K = 25, 000W gives area-averaged R values that range

from 0.1 to 14 m2K/W with the mean values equating to around 3 m2K/W. While there is

clearly significant variation between the methods, these values are all within the realm of

possibility.

The results for RC and RK obtained from these methods were compared with the building

metadata. We hypothesised that there would be a strong correlation with the age and size

of the building, but only weak correlations were found (see Figure 2.8). Further evaluation

revealed that the correlations remain weak even for cases with high similarity between all

three methods. This result is consistent with past studies; Tabatabaei et al. similarly did not

find a strong correlation between the age of the home and the R value [97].

Figure 2.8: Heatmap showing the correlations between parameters determined in the analysis
and building metadata.
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2.4 Discussion

The results from the previous section were acquired by applying the methods described in

section 2.2.2 and filtering out buildings that were not able to fit successfully. It is important

to recognize the quality of the results is highly dependant on this outlier filtering. For

example, a maximum value of 0.0015 is used as a threshold for the balance point method. If

that value is raised to 0.0025 the population means for RK are no longer statistically similar,

but less buildings are rejected from the final results. Clearly the outlier rejection results

in a tradeoff between more statistically significant results and the amount of data that is

retained. The chosen threshold values are up to the discretion of the user and will likely

change depending on the use case.

Each of the proposed methods exhibits its own strengths and weaknesses which are

summarized in Table 2.4. The balance point method is easy to implement and it can work

with aggregated data sources, but this means that there may be important information that is

not captured by the model. It follows that many buildings were rejected as outliers because

the balance point plots do not have a strong statistical linear relationship. On the other

hand, both the decay curve method and the energy balance method use detailed time series

information that is more descriptive than aggregated values, so they should be able to better

model building behaviour. The decay curve method requires a lot of filtering and assumes

that the outdoor temperature is constant, but it returns stable results with few outliers. The

energy balance method can be applied with less restrictions and it accounts for changes in

outdoor temperature, but there were more outlier values than with the decay curve method.

Of the three, the decay curve method appears to be the most stable, based on the small

proportion of outliers in the final results. Interestingly, though, its mean population is not

statistically similar to the energy balance method for RC, although the population means are

similar for RK from the balance point method and the energy balance method. This may
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be because both use less filtering than the decay curve method and unintentionally capture

extra heating and cooling behaviour from what is expected in the models.

We found that the energy balance method performed poorly for time periods where a

disproportionate amount of internal losses or gains could not be captured by equation 2.2.

Upon manual inspection of the time series data, we concluded that these periods seems to

contain events such as windows and doors opening. Further research into this area could

yield very interesting results.

One major limitation of all three methods is it is impossible to determine the parameters

R, C, and K independently. If information on the power of the heating system for a household

were available, R and C values could be isolated by determining RK via the balance point

or X methods and dividing by the known K, then finding RC values using the decay curve

or energy balance methods and dividing by R. We did not have sizing information in this

dataset, but this is a potential area for future research.

In general, the presented methods should be useful in large scale retrofit analysis, but no

method should be used independently. When using these methods, buildings should always

be evaluated relative to one another. Past studies in this area commonly evaluate only a few

buildings or only use a single method, so it is difficult to understand how useful they are

for wide-scale retrofit analysis [35][97][96][99]. To help other researchers reproduce this

work, the code is provided at https://gitlab.com/energyincities/besos-public/

publications.

2.5 Conclusion and Future Work

The purpose of this study was to explore how big data may be used to estimate the thermal

characteristics of homes. Naturally, real world data is messy, noisy and requires a lot of

filtering and preprocessing to be useable. Even so, it was determined that by using gray box

https://gitlab.com/energyincities/besos-public/publications
https://gitlab.com/energyincities/besos-public/publications
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models a reasonable estimate for relative values of RC and RK can be found, but absolute

values are harder to determine. A high degree of accuracy is not required to filter retrofit

candidates, so the three methods presented are likely sufficient for this purpose. Our methods

differ from past studies in several ways: we use temperature data rather than energy loads,

evaluate a large dataset and use granular time series data.

There are many interesting avenues of investigation still remaining. Better filtering

could allow an hourly-resolution energy balance plot to give meaningful results. More

investigation of the filtering trade-offs could improve the decay curve method. Resampling

the data at a coarser time resolution could be beneficial for the energy balance method, since

it will allow longer time periods to be assessed without compounding errors in the projection

of the equation. More comprehensive cross-validation for all three methods could identify

areas where they perform poorly or well. A dataset with more comprehensive metadata

on building envelope and system parameters would allow the models to be fully validated

against a known ground truth.

For the purpose of this study outlier values were rejected from the final results, but a

detailed analysis should be done to better understand what causes a building to produce bad

predictions for RC and RK. Research into this area could potentially result in data quality

control or fault detection strategies.

With the help of more detailed weather data, the energy balance model could be expanded

to consider solar gains via a solar susceptibility parameter. In conjunction with cooling

data available from ecobee and a term for cooling power, it would be possible to apply the

model to daytime and summer periods. If such a model proved more robust, it would be

worthwhile to expand the studied area to climates with more moderate winter temperatures.

Methodologically it would be particularly interesting to compare these gray-box methods

and a numerically-calibrated white-box approach, for example by using an optimization

algorithm to calibrate an EnergyPlus simulation model.
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Finally, it would be relatively easy to commission detailed energy audits for a tiny

sample of the buildings using traditional methods. These known datapoints would allow

much greater accuracy in the methods used here, through the improvements in filtering,

outlier identification, and model refinement.

This paper clearly demonstrates several distinct ways in which big data from existing

sources can provide meaningful insights into the state of the building stock. The lessons

learnt provide a valuable step towards understanding how big data may be used to derive the

thermal characteristics of buildings. It explores the types of problems that can and cannot be

addressed with existing datasets that do not include heating system power or ground-truth

data for calibration. Hopefully this will serve as an incentive to policy-makers and analysts

to deliver better sources of data so that the full potential of such methods can be realised.
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Chapter 3

Targeting Buildings for Energy Retrofit

Using Recurrent Neural Networks with

Multivariate Time Series

3.1 Introduction

A growing body of research confirms that retrofitting residential buildings provides a net

reduction in carbon and energy use, as well as monetary savings [26][69][63][103]. The

findings of these studies are reflected in international policies regarding building retrofits

[63]. The development of large-scale computational approaches to building performance

analysis are essential to the success of such retrofitting programs. Modern techniques for

building assessment often involve expensive in-situ measurements and on-site appraisal

[72][38][12][8], but researchers have started investigating the use of big data to scale this

process [97][99][35][50]. Supervised machine learning methods, however, are not typically

applied to building retrofit analysis, in part because there is a lack of data with useful labels.

Sensing technologies such as smart meters and thermostats are becoming increasingly

ubiquitous, but they are most commonly used for time series forecasting, load profile
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analysis or benchmarking, rather than prediction of particular building properties [74]. It is

not clear what types of building characteristics can be predicted based only on time series

measurement data.

With all of these considerations in mind, the contributions of this paper are threefold:

• The introduction of a deep learning approach that targets residential buildings for

retrofit.

• A showcase of the types of building metadata that can be derived from multivariate

time series data.

• Helping to overcome the data scarcity in the Civil Engineering domain by introducing

a novel methodology for dataset generation.

To accomplish these objectives two case studies will be presented - heat pump classifica-

tion and R-value prediction. Each of these cases focuses on a particular retrofitting strategy

that will be discussed in more detail in the following section. The remainder of this paper

includes a description of the deep learning methods and model architecture, preliminary

findings and a discussion of next steps.

3.2 Methodology

3.2.1 Case Studies

Heat Pump Classification: Load reduction measures in building retrofits involve up-

grading mechanical equipment such as appliances and HVAC systems [51]. Heat pumps

are a particularly efficient HVAC technology, and government programs already exist to

encourage system upgrades [1]. The ability to target homes that do not have heat pumps

would be highly beneficial to these types of programs.



36

R-Value Prediction: Thermal resistance, R (
◦K
W ) is a material property that describes the

effectiveness of insulation; the higher the R-value, the more effective the insulator. The area

weighted average of R-values for all external surface provides a proxy for the quality of the

building envelope. Envelope measures in building retrofits aim to increase the R-value by

improving the constructions. An effective program should target buildings with relatively

low values, but quantifying R is not trivial and the results can be difficult to experimentally

validate [72].

In this paper we propose a novel approach for predicting R using whole building

simulation software. In our approach, computational physical modelling is used to simulate

building behaviour based on inputs such as geometry and construction definitions. Unlike

typical building assessment methods which use measurement data to deduce quantities about

a building, our method uses building simulations to generate synthetic time series data. We

postulate that one could build a predictor for R by training a deep learning model on this

synthetic data. The model could then be used predict the R-value for a real building from

measured data. The work in this paper focuses on the creation of the synthetic dataset and

the model training; future work will validate the use of this approach on real buildings.

3.2.2 Data

The dataset used for heating system classification is acquired from ecobee’s Donate Your

Data program1. This dataset consists of smart thermostat time series data measured at

5 minute increments as well as metadata describing household attributes. A detailed

description of this dataset can be found at [49]. For the problem at hand indoor temperature,

outdoor temperature and heating system runtimes are the input variables and presence of

heat pump is the output variable. For the purpose of this study, only homes in Ontario and

New York were considered. Of this subset there was a disproportionate number of homes

1https://www.ecobee.com/donateyourdata/

https://www.ecobee.com/donateyourdata/
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with heat pumps. The dataset size was therefore reduced further to stratify the presence of

heat pump so there was an even split in both the test set and the training set. The resulting

data had 602 homes in the training set and 182 homes in the test set.

To predict R, a multivariate time series dataset with 10 minute granularity and 966 data

points was created: 773 in the training set and 193 in the test set. The input variables consist

of indoor temperature, outdoor temperature and heating power. Though the creation of

this dataset is a significant contribution of this work, a full explanation is reserved for the

Appendix.

For each case study the sequence length was limited to 2000 consecutive time steps per

building2, and mean imputation was used to handle missing values.

3.2.3 Model Definition, Optimization and Training

Given that the data structure for both of the above use cases is multivariate time series,

the Recurrent Neural Network (RNN) is a natural choice of architecture. Gated Recurrent

Units (GRUs) and Long-Short Term Memory Units (LSTMs) are extensions to the RNN that

help to overcome the vanishing gradient problem and make them more suitable for learning

long-term dependencies [43][18]. Both GRU and LSTM would be suitable for the work

presented in this paper, however GRU was chosen because it has been shown to occasionally

outperform LSTM in terms of convergence time and generalization [17]. Future work should

also consider LSTM, as well as other architectures such as 2-dimensional Convolutional

Neural Networks.

The same model architecture and optimization algorithm was used for both case studies.

The model consisted of 3 stacked GRU layers with 80 feature units in each hidden state. As

proposed by Cooijmans et al., batch normalization was included on each of the hidden-to-

hidden transitions [21]. Cyclical learning rates, introduced by Leslie N. Smith, were used

22000 time steps equates to one week for heat pump classification and two weeks for regression over
R-value.
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for training [92]; heat pump classification used a minimum rate of 1e-3, while prediction of

R used a minimum rate of 1e-2. A weight decay of 1e-2 was used.3 Finally, the training

loop for the former case study used binary cross entropy loss while the latter used mean

squared error loss.

3.3 Results

Figure 3.1: (a) The confusion matrix for heat pump classification. (b) Performance of
R-value predictor. (c) Distribution of R-value predictions and actual values.

For heat pump classification, a validation accuracy of 0.87 was achieved on the test set,

while the root mean squared error for prediction of R was 0.089 on the test set. The training

for heat pump classification took 100 epochs while the training for prediction of R took 150.

In both cases this is a relatively high level of performance with a relatively short training

time.

A more comprehensive understanding of the results can be seen in Figure 1. The

confusion matrix illustrates the precision-recall tradeoff in the heat pump classification

problem, with a precision 0.86 and a recall of 0.91. The scatter plot shows the linear

relationship between the predicted and actual values and the histogram represents the spread

of values for R. The majority of values lie between zero and one4. With respect to this
3The values for weight decay were chosen according to the defaults in the fastai library [48]. The learning

rates were chosen using a learning rate finder, also provided by fastai. Dropout was also tried but the accuracy
suffered.

4All of the values greater than one are from a building model with the same initial definition whose values
for R are quite different than the other building definitions
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distribution, one can see that an RMSE of 0.089 is relatively low.

These findings should be considered preliminary; while they do indicate the usefulness

of deep learning to building retrofit analysis, more work is required to improve accuracy and

ensure generalizability.

3.4 Discussion & Conclusion

The ability to easily and accurately identify homes for retrofit is essential to inform interna-

tional strategies for global energy and carbon reduction. Deep learning models in particular

are affordable, scalable and reusable, and their successful application could prove invaluable

in the building performance assessment industry. The findings in this paper are preliminary,

but they show potential for the use of deep learning in targeted retrofit analysis. Future

work should focus on continued data collection and model development in order to improve

accuracy and ensure generalizability of results.
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Chapter 4

Identifying Whole-Building Heat Loss Co-

efficient from Heterogeneous Sensor Data:

An Empirical Survey of Gray and Black

Box Approaches

4.1 Introduction

Digitization is transforming our understanding of a building from a passive, voiceless

space into a constantly communicating, active service provider for healthy and sustainable

living. At the core of this transformation is sensor data, which provides a continuous

stream of information on indoor comfort conditions and energy performance. Worldwide,

more than one billion smart metering devices will be installed by the end of 2020 [83],

and large construction markets have or will have (e.g. Canada [42]) nationwide coverage.

This provides viable source of information for building diagnostics and analysis, e.g. for

identifying thermal properties which enable more effective energy retrofits [72], for deriving

accurate building stock models to predict future energy behaviour [78], and for demand
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response targeting [102].

Meanwhile, high-impact changes to the built environment are required to meet global

emissions reduction targets. To this end, the ability to quantify building envelope per-

formance on a massive scale is imperative [26] [63]. Traditional approaches that rely on

walk-throughs, complex in-situ measurements or expert knowledge are not cost-effective or

scalable. The development and deployment of reliable and efficient data-driven methods for

building property characterization will therefore be integral in decarbonizing the building

stock.

Two paradigms for identifying thermal properties from building data exist: gray and

black box modelling.1 The former estimate building properties via incremental updates in

an optimization loop that reduces the error between the real time series data and data that is

simulated by the physical model (see Figure 4.2). The latter use generalized models without

domain knowledge and instead derive meaningful representations from large amounts

of training data [57]. In the buildings domain, the quantity of research into data-driven

modelling is astounding - for instance, in 2020 Hong et al. cite over 9,576 studies on

machine learning in buildings (including both gray and black box methods) [46]. However,

they note that the rate of industry adoption of these approaches is almost 0. Further, Roels

[80] and Yilmaz et al. [106] assert that established, cost-effective and scalable methods for

thermal performance characterization in buildings are lacking [15]. This is largely due to

lack of (1) large scale labelled data and (2) model transferability, reliability and robustness

[46].

Existing literature for building property characterization suffers from the problems

identified above. High-fidelity labels are rare [27] so ground-truth is not typically used

to evaluate the predictions. Rather, models are assessed according to the quality of the

1White box models are purely physics-based and therefore cannot identify thermal properties from data. In
this work, white box models are used to generate the synthetic dataset.
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calibrated model.2 Novel techniques that estimate thermal properties from large amounts

of sensor data are forced to use proxy-measurements, such as age or size of the buildings,

for validation [9] [97] [36]. Generally, a lack of ground-truth assessment inhibits an honest

appraisal of both new and existing methods.

It is also common that studies are conducted in isolation; a single approach is applied

on an undisclosed and small subset of building data [75] [38] [88] [72] [41] [33] [11]

[12] [27] [55]. This makes it difficult to compare approaches to one another and erodes

industry trustability in upcoming methods. A few studies are beginning to benchmark model

performance [79] [26] [87], but much work is still required. The existing studies do not

consider robustness of approaches to heterogeneous building properties, the data and code is

not open sourced so the works are difficult to extend, and the scope of the compared methods

is limited.

More research is required to assess the efficacy of existing approaches for thermal

property prediction from large scale, heterogenous building sensor data. Recently, black box

approaches have shown promise in this domain [10], so they should also be benchmarked

against existing work. This study therefore focuses on ground-truth assessment of gray and

black box models for practical application cases such as large-scale retrofit analysis, building

stock modelling and demand-response targeting. Whole-building heat loss coefficient

(HLCwb), which measures the rate at which heat is lost through the building envelope, was

chosen for identification in this study due to its practical applicability and prevalence in the

literature. The specific contributions of this work are as follows:

• A concise overview of the barriers that prevent the deployment of gray and black

modelling paradigms in practice.

• Ground-truth benchmarking for seven models (including deep learning approaches
2The US Department of Energy, for example, outlines acceptable calibration tolerances for the monthly

mean bias error (MBE) and the normalized error of variability (Cv(RMSE)) between the measured and
predicted data [32].
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that are novel to the domain) that estimate HLCwb from whole-building, sub-hourly

metered data3, including a qualification of robustness towards heterogeneity in the

building stock (i.e. climate, construction materials, air-infiltration and stochastic

occupant behaviour). The analyzed methods include Energy Signatures (ES) ie.

balance point plots, 1st and 2nd order resistance-capacitor networks (RC1 and RC2),

and surrogate-based building energy simulation using genetic algorithms (GA-BES)

and Bayesian optimization (B-BES), a recurrent neural network (RNN) and a residual

convolutional neural network (CNN) (Figure 4.1).

• An open-source, extensible, synthetically generated dataset of 16,000 buildings with

ground-truth labels4. All of the model code is also provided.

Figure 4.1: The investigated research paradigms and model implementations.

The following section provides a brief overview of thermal property characterization us-

ing gray and black box modelling approaches, with a particular focus on practical application

3Measurement variables include indoor and outdoor temperature, solar radiation and heating system power.
4https://gitlab.com/energyincities/bp-benchmarker

https://gitlab.com/energyincities/bp-benchmarker
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barriers.

4.2 Background

The bandwidth of thermal characteristics that can be extracted from buildings is large and

includes both categorical information, like the installed heating system type [104][13], and

quantitative information, like heating system efficiency [20] or the HLCwb. In this paper we

focus on the prediction of HLCwb from sub-hourly measurement data using both gray and

black box approaches. Figure 4.2 illustrates the workflows for each of these two modelling

paradigms, while Table 4.1 and the remainder of this section describe the key differences

between them. Within each paradigm the model complexities and optimization process

differ, as well as the shape of the input data. These details are withheld until see Sections

4.3.1 and 4.3.2, respectively.

Figure 4.2: Flow diagrams describing the calibration process for gray box models and the
training and inference procedures for black box models. Blue represents model inputs and
green represents model outputs.

In the literature, the dominant approach for retrieving HLCwb is using physics-based

whole building models, whose parameters are calibrated using measurement data for a single
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building at a time. These gray box models are commonly applied in the context of building

control [64] [6] [76], but they are also used specifically to find building characteristics [41]

[12] [73] [75] [38]. The complexity of the underlying physical model ranges from the 1 or 2

parameter ES models [35], to RC network models of various orders of complexity [11], and

to complex BES model calibration approaches [20]. RC network and BES model calibration

are highly dependent on the representativeness of the building model; RC network modellers

use residual analysis to determine the appropriate model order for a given building [11]

[27] [26] [79], and segmenting a building stock into groups of similar buildings (archetype

classification) and deriving a suitable building energy model (architecture characterization)

are decisive steps in BES calibration processes [93][56][52]. In practice, the use of gray box

methods on large data depends on the scalability of the model identification process, which

is currently expensive and requires expert intervention [77].

In contrast to gray box calibration, black box prediction (commonly with neural net-

works) is desirable because the models require no prior knowledge of system dynamics.

They create a domain-agnostic mapping from inputs to the quantity of interest [57] which

is then used to predict the quantity from unseen examples. However, supervised deep

learning traditionally requires huge amounts of data5 with high-fidelity labels which are not

always available in this domain. Compared with calibration, applications of supervised deep

learning to thermal property estimation, and HLCwb identification in particular, are therefore

fairly limited [62] [82] [90] [10].

Even though datasets with high-fidelity HLCwb labels are rare, it was chosen for study

because (1) of its relevance for building decarbonization, (2) it is estimated natively by ES

and RC model calibration - both of which are highly popular in the literature - but their

robustness has not been well verified and (3) state-of-the-art machine learning research helps

reduce the stringency of data requirements. The application barriers presented above are

5Models that classify images with 95% accuracy are trained on more than 14 million labelled images [28].
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Gray Box Black Box
Depend on a representative building model. Model is generic and agnostic to the domain.

Calibrated on a single building at a time. Trained on many buildings.
Predict on a single building at a time.*

No labels required. Require high-fidelity labels for training.
Well researched for HLCwd identification. Not well researched for HLCwd identification.

Robustness not established.

Table 4.1: Key, practical differences between the gray and black box paradigms. See [20]
for further information. *Although black box methods predict on a single building at a time,
the prediction time is very fast, especially compared with building-by-building calibration.

therefore surmountable, but we propose here that reliable ground-truth performance must be

asserted first. The focus of this paper is therefore on benchmarking a broad set of methods,

rather than diving deeply into a single approach. The methodology and results section in

this paper therefore focus on this benchmarking.

4.3 Methodology

The flow diagram in Figure 4.3 illustrates the methodology of this work, and this section

provides the technical information of the seven models studied including: the model identifi-

cation procedures for the RC network calibration and the BES surrogate training6, the data

requirements for each of the models (Section 4.3.2), the performance metrics that are used

to assess the models (Section 4.3.3), and the synthetic dataset design and creation (Section

4.3.4).

4.3.1 Models

Figure 4.2 illustrates that, within each of the two modelling paradigms, approaches differ

according to (1) the gray or black box model formulation and (2) the optimization process.

6The building model used for BES calibration is identical to the model that generated the measurement
data, so no model identification is required.
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Figure 4.3: Flow diagram describing the methodology presented in this section, including
the dataset design parameters, the data creation pipeline and the inputs and outputs of the
models. Note that the 1,000 material thicknesses are different for the wooden and concrete
buildings (B.3).

Below, these are described for each of the seven studied approaches. The RC model section

includes the residual analysis of the selected models to show that the appropriate model order

was used in this work. The BES section includes information on the surrogate modelling

process. The number of free parameters in each model are listed in Table 4.2.

Energy Signature (ES) Calibration

(1) Model: The underlying model for ES calibration is a basic reformulation of the whole-

building energy balance (B.1). When outdoor temperatures are lower than a certain point,

known as the ‘balance point’, the heat exchange in the building is described with the linear7

7Recent advances in the literature also use non-linear formulations of this approach [77]. Future work
should investigate the ground truth performance of these novel and promising methods, but to manage the
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equation:

Q̇h,d(T ext) = HLCwb(T in − T ext) + Q̇solar − Q̇baseline (4.1)

where Q̇h is the heating system supply, T ext is the external temperature, T in is the internal

temperature, Q̇solar
8 is the solar heat gain and Q̇baseline is the baseline heat gain. Typically,

T ext and T in are aggregated daily.

(2) Optimization: HLCwb is found using linear regression to find line-of-best-fit for to

the measurement data, which is described by Equation 4.1. This is a standard approach in

building energy modelling [39] [35] [36] [73] [24] [14].

Resistance-capacitor (RC) network calibration

(1) Models: In this popular approach, a building is modelled using an RC network that can

be defined at differing orders of complexity, from simple networks with a single lumped

capacitance to complex, multi-order systems [11] [65]. RC order 1 (RC1), i.e. Ti and RC

order 2 (RC2), i.e. TiTe from [11] were chosen for review in this work. These two model

orders were selected according to the criteria described below. They are described by a set

of first-order stochastic differential equations (see [11]) whose parameters are calibrated

until the model outputs match the observed indoor temperature.

To apply RC models, the appropriate model order must be selected. [11] describe an

iterative forward selection procedure using likelihood ratio testing. They suggest choosing a

model above which all extensions have likelihood ratio p-value above a specified limit (e.g.

0.05). Due to large computational runtimes, the full iterative procedure is not feasible for

large data. Instead, we validate RC2 by assuring that the p-value of the t-tests is below 0.05

scope of this work we only focus on the linear formulation.
8In this work Q̇solar is included and the equation is fit with a multiple linear regression. It is often the case

that solar is not included in the ES model. The number of free parameters in the ES model scales linearly with
the amount of measurement terms that are included.
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(a) RC1 residuals do not have the required white noise properties and that the residuals are not
independent of the inputs.

(b) RC2 residuals exhibit the required properties.

Figure 4.4: The auto-correlation function and cummulated periodogram of the residuals
indicate whether the selected RC network adequately models the physical building behaviour,
as suggested by [11].

for the estimated state parameters, and by visually evaluating the autocorrelation function

(ACF) and the cumulative periodogram (CP) of the residuals to ascertain whether they
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have the appropriate white-noise properties (Figure 4.49). For RC2, any models whose

state variable estimates have p-values over 0.05 are filtered out of the results. For RC1,

no model validation was performed, but the results are still included to demonstrate the

relative performance of the most simple model with the lowest number of parameters. The

limitations of this model selection approach are discussed further in Section 4.5.1.

(2) Optimization: Statistical maximum likelihood estimation is applied to estimate the

unknown parameters in the model. Specifically, a Kalman filter is used to estimate the

likelihood function, and an optimization algorithm is used to find the set of parameters that

maximize the likelihood function. Refer to [11] and [65] for more detail.

Surrogate-based BES calibration

(1) Model: Calibration of BES models (here, EnergyPlus) can be computationally expensive,

so machine learning based surrogate models are used inplace of the energy simulator [93]

[41] [67]. A surrogate model approximates the BES model by learning from a few simulation

runs to estimate the effect of changes in parameter values (surrogate model inputs) to changes

in simulation outcomes (surrogate model outputs) [105].

(1) Optimization: Two optimization procedures to calibrate the BES model parameter,

here the heat-loss coefficient, are used in this work: a genetic algorithm (GA-BES) and

Bayesian optimization (B-BES). These are each discussed in turn.

In building design, black box optimization approaches such as genetic algorithms

(GAs) are often applied. They can also be used to minimize the summed difference of

simulated daily heating demand and measured daily heating demand [25]. Here, the NSGA-

II optimization algorithm is used (population size = 200, offspring size = 100, iterations

9For brevity only 4 example buildings are included in Figure 4.4. The plots represent randomly selected
buildings from the experimental condition for which RC2 produced the widest spread of HLCwb estimates
(see the Section 4.4.2 for more details on the performance per experimental condition). This was done to show
that even in the worst performing case RC2 has residuals with the required properties. Our analysis showed
similar behaviour across all buildings and experimental conditions.
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= 3000). The approach is similar to [71], but uses higher frequency data (daily instead of

monthly).

Following Bayes’ theorem, a posterior for the unknown building parameters, i.e. a

probability density function approximation of the calibration parameters, can be inferred

using the difference between the measurements and simulated model outputs, and a prior

probability for the unknown building parameters [41][29]. 10 Markov-Chain Monte Carlo

(MCMC) sampling, here the Metropolis-Hastings (MH) algorithm, is used to approximate

the posterior. That MCMC sampling process requires thousands of simulation runs and

motivates the use of surrogate models. Commonly a Gaussian Process surrogate model is

used (e.g. [41]). For the using of non-GP surrogate models, we follow the approach found

in [68]. 11

Supervised deep learning

(1) Models: Neural networks (NNs) are non-linear transformations of input data which are

determined by thousands of trained parameters. Two NN architectures are implemented in

this work: recurrent neural networks with gated recurrent units (RNNs) [16] and residual

convolutional neural networks (CNNs) [40]. RNNs account for temporal input structure

and are therefore a natural choice of architecture for time series data. CNNs are also used

because they have exhibited state-of-the-art performance on various tasks, including time

series prediction [31] [57].

(2) Optimization: NNs are typically trained using stochastic gradient-based optimization.

Here, Adam optimization is used [53]. This is an extension to vanilla gradient-based

optimization, where the learning rate is adapted as the model trains.

10We specified a uniform prior distribution for each parameter bound by the maximum and minimum heat
loss coefficient observed in the data.

11The likelihood equals the sum-of-squared errors between measurements and BES time series outputs.
This assumes identically distributed errors with zero mean and constant variance σ2, see [68].
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4.3.2 Model Inputs

# Free Target
Model Input Variables Granularity Period # Buildings Params Variable

ES

outdoor temp.

daily 1 year 3200 3
indoor temp. heating
heating power power
solar gain

RC1
outdoor temp.

5
minutely

Jan.
1st-7th

3200
6

RC2
indoor temp.

10
indoor

heating power temp
solar gain

GA-BES
heating power* daily 1 month

12,800 (train)
1

heating
B-BES 3,200 (test) power

RNN

outdoor temp.

5
minutely

Jan.
1st-7th

12,800 (train)
3,200 (test)

> 1000

HLCwb

CNN

indoor temp.

> 1000

(required
heating power for
solar gain training
HLCwb (label) only)

Table 4.2: Data requirements for each method and the BES-surrogate. *The weather file
(here in the EnergyPlus format, .epw) containing the historical weather on building site is
required for running the simulations to train the surrogate model, but not for calibration.
The collection of the weather file is assumed to be perfect and not further addressed for this
study.

Table 4.2 summarizes the inputs for each of modelling approaches described above. The

data inputs were selected according to results of previous studies [79] [11] and empirical

tests. The RC models were tested several datetime scenarios: in January and July, with 7

and 14 days worth of data. They performed the best on one weeks worth of data in January,

so that is the period that is used in this work. ES was tested with 24 hour, 48 hour and 72

hour aggregates. There was no significant difference between the results, so daily aggregates

(the most popular in the reviewed literature) are used.

The dataset size requirements are different between the methods, as described in Figure

4.2. Calibration is performed on a building-by-building basis, so the validation dataset

can be of any size. A size of 3,20012 was chosen to manage runtime while still producing
12200 buildings in each of the 16 experimental conditions described in Section 4.3.4.
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statistically significant results. Black box methods require both a training and a validation

set. The BES surrogate model is trained NN so it also requires a large training and test set

(see Section 4.3.1 for more information).

4.3.3 Ground-Truth Performance Metrics

Metric Measure Worst Best Description
Relative
ordering

slope 0* 1 This is the marginal effect, which tells us how
much the predicted HLCwb changes when the
actual HLCwb changes, when all other building
properties are held equal.

Relative
ordering

R2 − score 0 1 Indicates how much of the variability in the
predicted HLCwb values is attributed to the actual
HLCwb value.

Robustness error
distribution

significant
difference

identical Error distributions must be similar regardless of
extraneous building properties. Models whose
error distributions are shifted for certain conditions
systematically over/under predict.

Table 4.3: The metrics that are used to determine (1) whether the models correctly order
buildings by HLC, and (2) whether the models are robust to extraneous building properties.
(1) is determined by performing regression analysis for buildings that differ by only HLC,
but all else is held equal. (2) is determined by evaluating the difference in error distributions
for heterogeneous buildings. *The slope can also be less than 0 or greater than 1.

A high degree of accuracy is not required for building stock modelling or to filter retrofit

candidates; it is most important for these cases that (1) the relative relationship of the

buildings is captured by the models, and (2) that the models are robust, that is, that they do

not systematically over or under predict when exposed to particular conditions. To test these

criteria, two cases can be considered: homogenous buildings that differ only by HLCwb and

heterogeneous buildings that differ according to extraneous properties aside from HLCwb (ie.

climate, thermal mass, air-infiltration rate and stochastic occupant behaviour, as described

in the section below). The descriptive statistics that capture these criteria are highlighted in

Table 4.3.
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4.3.4 Synthetic Dataset

Date Creation Pipeline

The dataset is designed to test the aforementioned performance metrics. It is generated by

running parametric simulations using BESOS [30] and EnergyPlus [22]; a process similar

to that in [10]. The Building and Energy Simulation, Optimization and Surrogate-modelling

(BESOS) platform enables quasi-random latin-hypercube-sampling of building design

parameters [34]. These parameter combinations are fed as input to the building simulation

software EnergyPlus, Version 9.2.0, which outputs a myriad of variables describing the

detailed temporal behaviour of a building over the course of a simulation. Some of these

represent time-series variables that can be measured with sensors in real buildings13, and

others include detailed information on the building’s material properties. HLCwb was

calculated from the latter (B.2) A set of relevant time series variables and the computed

HLCwb values were stored to form the final, labelled dataset. The distribution of the HLCwb

values in the final dataset are displayed in Figure 4.5.

Figure 4.5: Histogram for the whole-building HLC values in the generated dataset.

13Such as external temperature, internal temperature, heating system power and solar gains
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Dataset Design

To generate the building dataset, two baseline building models - ie.e 5mx5mx3m = 75 m3

box with one zone, four 4mx1.5m = 6m2 windows and no unconditioned spaces - were

defined: one wooden building and one concrete building. For each of the wooden and

concrete building baselines, the material thicknesses were varied to create 1000 buildings

with distinct HLCwb values. The thickness ranges for each of the materials were defined

according to engineering standards and randomly sampled for each new building (B.3). Each

of these sets of buildings was then simulated with annual weather data from two different

climates (Victoria, CA and Chicago, USA), with and without air-infiltration (maximum

flow per exterior surface area of 0 and 0.00085 m3/s ∗ m2), with and without equipment and

occupancy loads14, for a total of 1000 ∗ 2 ∗ 2 ∗ 2 ∗ 2 = 16, 000 simulated buildings; 1,000

buildings differing only by HLCwb for each of the 16 experimental conditions described

above (Figure 4.3).

Additional modelling assumptions are listed below:

• The floors are adiabatic. Ground heat loss effects are difficult to simulate and therefore,

neglected for now [79].

• No mechanical systems were modelled, EnergyPlus ideal air loads were used instead.

• Constant setpoint schedules were employed across all cases.

• Complex airflow networks and ventilation were ignored.

• Infiltration cases were modelled according to the DOE-2 standard by modifying

the Field: Flow per Exterior Surface Area on the Zone Infiltration:DesignFlowRate

object.15

14The stochastic equipment and occupancy loads were generated with the richardsonpy library from
https://github.com/RWTH-EBC/richardsonpy

15https://bigladdersoftware.com/epx/docs/9-2/input-output-reference/
group-airflow.html#zoneinfiltrationdesignflowrate

https://github.com/RWTH-EBC/richardsonpy
https://bigladdersoftware.com/epx/docs/9-2/input-output-reference/group-airflow.html##zoneinfiltrationdesignflowrate
https://bigladdersoftware.com/epx/docs/9-2/input-output-reference/group-airflow.html##zoneinfiltrationdesignflowrate
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4.4 Results

This section presents the performance of the models according to their ability to capture the

relative ordering of HLCwb and their robustness to extraneous building properties.

4.4.1 Relative Ordering

Figure 4.6a shows the instantaneous effect size of the actual HLCwb on the predicted HLCwb

values. A slope of 0 indicates that the change in actual HLCwb value has no effect on the

model and a slope greater than 1 indicates that the model is biased towards buildings with

higher or lower HLCwb values. Naturally, a slope of 1 indicates perfect model performance

with respect to marginal effect of HLCwb (see Table 4.3 for a brief description of marginal

effect).

The BES calibration approaches have a marginal effect on the predicted values that are

closest to 1 (i.e. a slope close to 1), with Bayes calibration slighting outperforming GA

calibration. The deep learning approaches perform best after the BES calibration, and the

CNN outperforms the RNN. ES finds slopes less than 1, indicating that the actual HLCwb has

a low effect on this model. RC2 performs the worst, but even so this method achieves a slope

of 1 ± 0.1 for 6/16 cases. RC1 tends to find slopes above 1, indicating that buildings with

high or low HLCwb values might have a disproportionate effect on the estimated HLCwb.

The prediction variabilities (i.e. R2-scores) for each method are presented in Figure 4.6b.

All of the methods aside from RC2 achieve a score > 0.8 for every experimental condition,

which indicates that most of the variability in the predictions is described by changes to

the actual HLCwb value. The CNN consistently achieves the highest R2-score, while RC2

performs the worst by far. It is especially surprising that RC1 outperforms RC2, because

RC2 had a better model validation score (see Section 4.3.1). Generally, the performance

within each model is the worst for the cases with stochastic schedules; of the tested building
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(a) Slope: The marginal effect of the actual on the predicted HLC values. 1 is perfect, 0 indicates that
the actual HLC values have no effect on the predicted values. Values greater than 1 indicates that the
model is biased towards buildings with higher or lower HLC values.

(b) R2 − score: The amount of variability in the predictions that is attributed to the variability in the
actual HLC values. A perfect score of 1 means that 100% of the prediction variability is due to actual
HLC values, and 0 means the opposite.

Figure 4.6: Metrics that describe the ability of a model to find the correct relative orderings
for building HLCs when all other building properties are held equal.
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properties, stochastic loads cause the largest variability in the prediction results.

Based on the results above, all of the models except RC2 are able to correctly identify

the relative ordering of building HLCwb, while all else is held equal. This indicates that

all of the models are suitable for application on a homogenous building stock, while also

providing further validation that the models are working as expected.

4.4.2 Robustness

Figure 4.7 uses boxplots to show their error distributions, and figure 4.7 provides a numerical

summary of the mean absolute errors (MAEs) for each method within each experimental

condition. A statistically significant difference (p<0.05) between the error distributions for

the different building properties was found for all of the evaluated methods, using Wilcoxon

signed-rank16 tests between the distributions for each of the binary experimental conditions

(for example, all wooden against all concrete buildings). In other words heterogenous

building properties cause statistically significant, systematic bias in all of the models. The

size of the difference between the error distributions, however, varies significantly between

the methods, and is not always practically significant. In this section we will therefore

analyze the error distributions from each model individually. This will also highlight which

of the studied building properties have the most significant effect on the modelling results.

For brevity, only the most important features of the data are discussed; the interested reader

is encouraged to analyze the results further.

• ES: For this method, the buildings with infiltration result in a much higher MAE than

the buildings without infiltration. This is a practically significant, systematic bias in

the modelling results.

• RC1: There is a fairly large difference in the error distributions between the cases for

16This is a non-parametric statistical test that is used to compare paired samples that are not normally
distributed.
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(a) Error Distributions within each experimental condition.

(b) Mean absolute errors (MAEs) of the above distributions.

Figure 4.7: Differences between error distributions capture robustness of the models to
climate, stochastic schedules, infiltration and construction material.

this model. The mean and spread of the errors are systematically higher for cases with

stochastic occupancy. Moreover, the mean of the distributions for wooden buildings
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are lower than those for the concrete buildings. Overall, this model is not robust to

the tested extraneous properties.

• RC2: This method has clearly poor performance and cannot be considered robust.

• GA-BES: Like RC1, the errors for the cases with schedules are larger and more variant

for this model. The largest MAE is 1.4 and the lowest is 0.34. In a practical scenario

this is likely insignificant, but it is up to the modeller to decide. This approach

produces unexpected outliers with poor performance.

• B-BES: The results for Bayesian Calibration are very similar to those for GA Calibra-

tion.

• RNN: Unlike the other methods, the RNN exhibits low errors for buildings with

occupancy schedules. Overall, it tends to perform most poorly in the infiltration cases

without schedules. Compared with the surrogate-based BES calibration approaches,

the RNN has larger differences between the distributions, but these differences are

still much smaller than those for the gray box calibration approaches. Again, it is

up to the practitioner to decide whether the differences in the error distributions is

significant in practice.

• CNN: For the CNN the MAE is less than or equal to 1 in every case, and there are few

outliers with high errors. The greatest differences in error distributions are caused by

infiltration and stochastic schedules, but these differences are likely insignificant in

practice

4.5 Discussion

In this work we generated a synthetic data set which offers an experimental environment

to test the methods’ robustness towards four factors that possibly confound meter-data
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based thermal building characterization accuracy. The discussion starts by addressing the

assumptions and limitations of our approach. The experimental results will then be analyzed

with these constraints in mind. Finally we propose promising directions for future work,

where we set the focus on young machine learning based paradigms like BES calibration

and deep learning.

4.5.1 Assumptions and Limitations

Assumptions and limitations in this work arise both from the modelling approaches and

from the use of synthetic data which will be discussed independently. Each limitation can

be overcome in future and presents an opportunity for further research, which we present at

the end of this section.

Modelling Assumptions

The constraints of the experimental design in this work bias the results in favour of the BES

calibration and the deep learning approaches. For the former, the BES model parameters that

are not calibrated are assumed to be perfectly known (for example, the building geometry or

the building environment) and the BES calibration model is the same one that was used to

generate the synthetic data. In reality, the BES simulations used for training the surrogate

model will not perfectly represent the buildings to be calibrated. Future work should focus

on evaluating performance depreciation from imperfect BES models. For the latter, the

models are trained across all buildings and are overfit to this dataset. More work is required

to study how well they generalize to more complicated data.

As mentioned in the methodology section, the model identification in this work is limited

compared to the full forward selection procedure suggested in [11]. Regardless, the residual

analysis of the RC2 models in this work was promising and suggested that they should

outperform RC1. Future studies should consider expanding the scope of this work to include
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more robust model selection, however, it is important to note that large data applications

are constrained by practical limitations such as computational runtime, which limit the

feasibility of finding and deploying higher order models.

Limitations of the Dataset

We used a synthetic data set to conduct controlled experiments on the robustness of building

characterization methods. It allows for the estimation of model robustness to the four

considered impact factors, but the actual errors will be higher in the case of real buildings.

This has multiple reasons including that the heterogeneity of the synthetic building stock is

small, eg. only one geometry was considered, that micro-climates were ignored, and that

all time series measurements were assumed to be perfect. Future work should consider

addressing these points to develop more realistic synthetic datasets.

4.5.2 Summary and Analysis of Results

Figure 4.8: Summary of the metrics for relative ordering (R2 and slope) and robustness
(MAE). Some of the results were outside of the axis in the plots but they were excluded for
visibility.

Figure 4.8 presents a precise graphical summary of the results. This a quick visual

reference of the same points that were discussed in the results sections.

For buildings that only differ by HLCwb (homogeneous building stock, i.e. the buildings

within each experimental condition), the relative ordering of the buildings was captured by
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all of the models, except the RC2 model17. This means that for use cases where the building

stock is homogenous, that is the buildings only differ by the envelope, but all else is held

equal, any of the models (aside from RC2) can be used. However, none of ES, RC1 or RC2

exhibit robustness to heterogeneous building properties (see Section 4.3.4), which is likely

the more common use case in practice.

It is particularly interesting to note that RC1 outperformed RC2 in terms of ground-truth

performance, even though RC2 performed better in terms of model validation. This is

likely because RC2 is overparameterized compared to RC1; the addition of more model

parameters will inevitably result in lower calibration error (see 4.3.1) because, statistically

there is less bias in the model, but this does not mean that the building characteristics

estimates approach ground-truth. This result strongly suggests that calibration error is not a

sufficient metric for thermal property identification for use cases such as retrofit analysis;

ground-truth performance evaluation on synthetic data should be a focus in future studies.18.

Further, the results highlight the sensitivity of well-established methods towards building

material choice, air infiltration, stochastic occupant behaviour, and climate.

BES calibration and the black box methods, on the other hand, all perform reasonably

well in terms of both model validation and comparison to ground truth, providing a first

indication that they may become a key element in data-driven retrofits, stock modelling and

demand-response management. The following section therefore suggests future research

directions that should be explored to overcome the barriers to application (Section 4.2) of

these approaches.

17Even though RC2 performs the worst by far; for many cases its R2 -score is close to 0. Still, in some
cases (for example the wooden building with infiltration in Victoria) the method performs well. This shows
that a single case study might yield the method to be reliable, even if this is not the case in general. Literature
tends to run case studies that validate methods on only a single building without varying properties or climatic
conditions; the result here provides strong evidence that this is not sufficient.

18It is worth emphasizing here that this result does not indicate that calibration approaches should not be
used. BES calibration, for instance, was able to identify HLCwb with high accuracy and robustness. Based on
the RC results, however, we hypothesize that the performance of the BES calibration will depreciate as more
parameters are added. This should be explored in future work.
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4.5.3 Future Work

Following from the above discussion, three broad categories for future work are suggested:

(1) improving the synthetic dataset, (2) overcoming application barriers and (3) extending

this study to benchmark more models against more thermal properties. Suggestions to

improve the dataset were already discussed in Section 4.5.1, so this section will focus on the

remaining two points.

Based on the current study, we propose that overcoming barriers to application for BES

calibration and supervised deep learning should become a primary focus of future work. For

BES calibration, future work should integrate model selection and archetype identification

into the framework presented in this paper to determine how closely the underlying building

simulation model must represent the real building. Regarding the black box models, transfer

learning [98] and self supervised learning [70] are state-of-the-art techniques in the machine

learning domain that reduce data requirements while maintaining high prediction accuracy.

We encourage researchers to expand on this work to provide more comprehensive

benchmarking and to support innovation in this domain. The poor performance of the

RC models should be further verified and novel modelling approaches should undergo

standardized, ground truth benchmarking. Finally, the results of this study illustrate the

challenges of identifying HLCwb from large, heterogeneous sensor data. We therefore highly

suggest that other - more simple - approaches to building performance characterization are

explored and validated using the approach in this work.

4.6 Conclusions

The goal of this paper was to evaluate gray and black box methods for identification of the

HLCwb from large scale, heterogeneous datasets using synthetic labelled data. Comparing

the outputs of the models to ground truth lead to several significant findings. First, the only
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approach studied in this work that does not suffer from significant application barriers (ES

calibration) is not able to produce results that are robust to heterogenous building properties.

Second, it is shown that calibration error and residual analysis are not sufficient to validate

models for thermal property estimation. This is particularly consequential for RC modelling

studies (and other calibration studies that rely on high parameter orders), which are highly

prevalent in the literature. Third, BES calibration and supervised deep learning both showed

strong performance given the constraints of this study. Neither are ready for deployment

in a practical context, but this result indicates that they may become a key component of

automated building characterization.

Overall, the results indicate that a strong research effort will be required before methods

to predict HLCwb from heterogenous buildings can be established for practical use. To

support carbon reduction in the existing building stock, we encourage future work to use this

data and to contribute code to the online repository to develop reliable, data-driven methods

for building property characterization.
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Chapter 5

Visual Explanations from Neural Networks

Trained on Simulated Building Sensor Data

5.1 Introduction

Epistemology, the discipline concerned with the nature of knowledge, has piqued the interest

of philosophers for centuries. To humankind it is unsatisfactory simply that we “know”, we

rather seek justification and rationalization for our beliefs and modes of understanding. Thus

it is unsurprising that the scientific community is seeking answers to the epistemic questions

raised by black-box machine learning models, with supervised deep neural networks at the

forefront of this inquiry. Although these networks are highly successful at regression and

classification tasks, the nature of a network’s predictions - the why - remains speculative.

The goal of interpretable machine learning is to provide such speculations with the

overarching tenets of fairness and ethical decision making, alongside model transparency,

trustworthiness and informativeness [61]. In deep learning, two major approaches to

interpretability include the development of proxy models and the creation of saliency maps

[37]; the latter is the focus of this work. Saliency maps are used to highlight which features of

input data are most important to the model, thus providing transparency and informativeness
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with regards to the model predictions [5] [37] [47].

Up until now, saliency maps have most commonly been developed on and applied to

image classification, likely because vision tasks are easily interpretable by humans so the

maps are clearly meaningful. Modern saliency techniques are rarely used for time series

prediction tasks, with only a few examples in the literature [7] [89]. Moreover, saliency

maps have seen very limited uptake for interesting application cases (such as those presented

by the recent onslaught of building data collection) in which the input data is less easy to

interpret by humans. These types of high-impact application cases could, however, prove to

be where interpretable machine learning is most advantageous.

This work focuses on one of these application cases. There is a foreseeable future in

which the decarbonization of the building stock is supported by integrated sensor networks,

big-data collection and analysis and the strategic application of machine learning. Super-

vised deep learning is state-of-the-art in the buildings domain. It has shown promise for

applications such as thermal property estimation and heating system identification for retrofit

analysis [10], and socio-demographic classification [101]. Further, machine learning experts

recognize the opportunity to improve energy-efficiency in buildings as a high-leverage

area for artificial intelligence related to climate change [81]. As such, we believe that

interpretable machine learning applied to building data presents a valuable opportunity for

enquiry. Particular questions explored in this paper include: what types of features do the

models learn, do they discover anything about the physical behaviour of a building, what

types of data are most effective for prediction and are any notable ethical or privacy concerns

illuminated by the prediction process?

With this vision in mind, this paper presents the novel application of saliency maps (i.e.

gradient-based activation maps) to a time series regression task in the buildings domain. Four

residual neural networks (ResNets) are trained on a synthetic dataset of 16,000 simulated

buildings, and the resulting activation maps are visualized and analyzed. The four models
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predict heat loss coefficient (HLC), a physical property that dictates the thermal behaviour

of a building. Overall, this paper serves as both a pragmatic foray into machine learning

interpretability for a valuable application case and a deep dive into supervised deep learning

for infrastructure decarbonization. Along with addressing the questions posited above, this

work provides essential insight into the usefulness of simulated building data for supervised

deep learning.

5.2 Background

Before the aforementioned questions are addressed we provide a detailed overview of

saliency methods. In general, saliency maps, also known as explanation maps, are highly

popular and numerous proposed implementations exist. To narrow this scope, this paper

focuses specifically on Gradient-based Class Activation Maps (Grad-CAMs) [85] [84]. This

section of the paper provides a brief review of existing saliency methods and justifies the

use of Grad-CAMs in particular. Gradient-based saliency methods are defined formally and

intuitively. Finally, the technical details of Grad-CAMs are presented.

5.2.1 Saliency Maps

Saliency maps, also known as explanation maps, are used to estimate the influence of

a datum’s features on a particular prediction. For example, the saliency map in Figure

5.3 highlights the pixels that were most important in classifying the image as a meerkat.

Formally, a saliency map E : Rd → Rd maps inputs and input vector x ∈ Rd to an output

object of the same shape [5]. The output object provides a "mapping" that represents input

feature importance.

Gradient-based explanation maps are a particular type of saliency method where input

feature importance is calculated by finding the gradient for input x with respect to the
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model output. The model, S : Rd → RC, maps an input vector to an output of C classes.1

Egrad(x) = dS
dx thus represents a gradient-based explanation map for a prediction S(x) with

respect to input x. Intuitively, a large gradient for a particular input feature indicates a high

rate of change in the prediction, with respect to that feature. In other words, the larger the

gradient for a particular input feature, the more influence that feature has on the model

output.

A myriad of gradient-based explanation approaches have been studied in the literature; a

full overview is outside of the scope of this paper. Hooker et al. and Adebayo et al. provide a

robust literature review of existing approaches and, most importantly, provide a quantitative

benchmark of existing saliency methods. The methods assessed by these works include base

estimators such as Guided Backprop [94], Integrated Gradients [95] and Guided GradCAM

[84] as well as ensembling method such as SmoothGrad [91] and VarGrad [4].

According to both Adebayo et al. and Hooker et al., many popular saliency methods may

not be suitable for practical application because their feature attribution is not dependent

on the trained model. In other words, many saliency methods act similarly to deterministic

edge-detectors or randomly assign feature importance. In these cases the saliency method is

not an appropriate explanatory tool.

Grad-CAM, which is a highly popular method in the literature, is one of the few saliency

maps that passes the criteria defined by Adebayo et al.. While Hooker et al. do not consider

Grad-CAM directly, they do study ensemble methods that are based on this approach.

According to the criteria defined by these authors, ensemble based approaches perform the

best, however, they have a high associated computational cost.

Based on the benchmarking of saliency methods discussed above, Grad-CAM was

selected for application in this paper; it passes sanity checks that specify a method’s practical

applicability without the computational burden of more sophisticated ensemble methods.

1In the case of regression, C = 1
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An advantage that ensemble methods have over basic Grad-CAM is that the tend to better

localize feature importance. Figure 5.3, for instance, provides an example of an activation

map that could be better localized. It should be kept in mind that, as with the meerkat

example, the discovered gradient maps may not be perfectly discriminative.

5.2.2 Grad-CAM

Gradient-weighted Class Activation Mapping, or Grad-CAM, is a technique developed by

Selvaraju et al. to provide visuale explanations for predictions from convolutional neural

networks (CNNs) [84]. Designed for classification problems, Grad-CAM is based on the

assumption that the last convolutional layers in a neural network retain the most spatial and

semantic information about an input datum. The gradient of the output class (yc) is therefore

taken with respect to the output activations (Ak) for each of the K feature maps in the final

convolutional layer of a trained neural network. For regression, there is only a single output

class, that is C = 1, so the shorthand y will be used. Global average pooling is used on the

resulting gradient to obtain the neuron importance, αk.

αk = AvgPool
( dy
dAk

)
(5.1)

This process is repeated for each of the K feature maps in the convolution last layer.

The outputs αk are then combined linearly and passed through a ReLU function as seen in

equation 5.2.

EGrad−CAM = ReLU
(∑

k

αkAk
)

(5.2)

where EGrad−CAM is the explanatory saliency map that represents the final attribution of

feature importance. Overlaying EGrad−CAM onto the original input that was used for prediction

illustrates which input features were most influential for a prediction (see Figure 5.3).
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5.3 Methods

As mentioned above, Grad-CAM was originally defined for classification problems; we are

using it for regression simply by specifying C=1. For the remainder of the paper we will

therefore refer to Gradient-based Activation Maps (Grad-AM, instead of Grad-CAM).

For this work, EGrad−AM was found for all the buildings in the validation dataset for four

deep neural networks. The networks were trained on a synthetic dataset of 16,000 buildings.

The buildings were programmatically generated using the Building Simulation, Optimization

and Surrogate Modelling (BESOS) platform [30], and simulated using EnergyPlus2 version

9.2.0 using a process similar to that in [10]. Each of the four neural networks was trained

to predict a building’s HLC using a distinct set of multivariate time series inputs that were

chosen to match sensor data that might be collected in a real world context. The same

network structure (shown in Figure 5.2) was used for each case. From these networks,

Grad-AMs were extracted, analyzed and compared in order to interpret the prediction results

for each of the four models. The Grad-AMs were visualized both as overlays on the original

input (as is common with image data) and as time series plots (which is an approach unique

to this paper). The data creation, model structure and visualization approaches will now be

discussed in more detail.

5.3.1 The Dataset

Building energy simulation (BES) software such as EnergyPlus allows for the generation

of synthetic building datasets that can be used to run controlled and tractable experiments.

This sandboxed environment provides a simplified antecedent to the real world, where

computational models can be tested and explored. As such, a synthetic dataset was generated

for this study, using the process described below.

2https://energyplus.net/
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Figure 5.1: The building properties that were manipulated to create the synthetic dataset.

A single EnergyPlus simulation takes a building model as input, and outputs a variety

of information including construction details and time-resolved building behaviour. By

running many such simulations, a time series dataset for machine learning model training

was created. BESOS was used to support rapid the creation of many building prototypes

by programmatically manipulating the underlying building model according to the set of

predefined attributes (Figure 5.1).3 Temporal EnergPlus outputs such as outdoor and indoor

temperatures, solar gains, and heating power consumption were used as model inputs (X).

HLCs were calculated analytically from the simulation outputs and used as training labels

(y).4 Each time series input was scaled to be between 0 and 1 before model training.

5.3.2 Model Structure & Training

In total, four distinct models were trained using different lengths and subsets of the afore-

mentioned time series inputs. Two of the models accept daily inputs (288, 5 minute time

3Note that the generated dataset does not represent the full complexity of a real world building stock, but
rather provides us with tractable constraints and cases for comparative analysis.

4HLC includes both the thermal resistivity of the envelope and the infiltration rate.
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steps) and two accept weekly inputs (2000, 5 minute time steps). The included input data

was from either the first week or the first day in January.

Each of the four models included solar gains, outdoor temperature and indoor tem-

perature, but only two of the four included the heating power. Otherwise, the training

and validation data for each of the four models was identical. Throughout this paper the

models will be referred to by a short-hand name that describes their inputs, specifically (1)

Daily-NoHeat, (2) Daily-Heat, (3) Weekly-NoHeat and (4) Weekly-Heat.

A convolutional ResNet (Figure 5.2) was used for the four models trained on the time

series input types described above. ResNets allow for the training of very deep convolutional

networks by including shortcut connections that propagate information from lower layers to

higher layers in the network [40]. As demonstrated in by Fawaz et al., convolutional ResNets

have achieved high accuracy on time series classification tasks [31]. The output HLC is

numerical so its prediction is a regression rather than a classification task but similarly high

performance should be expected.

The building dataset was divided into training data and validation data using an 80/20

split which was stratified according to the cases presented in Figure 5.1. The model was

trained over 100 epochs with decreasing learning rates (starting at 1x10−3 and ending at

1x10−5). Adam optimization [54] was used for all cases, and mean-squared error (MSE)

was the defined error metric. The training and validation errors are presented in the results

section.

5.3.3 Visualizing Grad-AM for Time Series

As mentioned previously, saliency maps are most commonly used for image classification

tasks. In this paper they are repurposed for time series regression. The gradients presented

in the next section represent the derivative of the predicted HLC value with respect to the

last convolutional layer in the ResNet, as indicated by Figure 5.2 and explained in Section
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Figure 5.2: The convolutional, ResNet architecture pictured above was used for all four
training cases, two of which accept daily inputs (288 time steps) and two of which accept
weekly inputs (2000 time steps). The Grad-AMs were retrieved by taking the gradient of
the prediction with respect to the last convolutional layer in the network.

5.2.2. These gradients are expanded by a factor of 16 (from 18 to 288 values in the daily

case and from 124 to 2000 vales in the weekly case) to match the original input size so that

they can be more easily attributed to particular input features.5 Saliency maps for image data

are relatively easy to understand: it is clear when we look at the explanation map overlaying

a meerkat that the head and upper body are the most important indicators for prediction.

Evaluating time series data is not so easy because the data itself is less interpretable for

humans.

Figure 5.3 illustrates an analogy between image-based explanation maps and time series-

based explanation maps. The displayed time series includes four input variables over one

week. The x-axis represents 2000 timesteps at 5-minute intervals. The yellow portions of

the time series overlay represent the areas of highest feature importance. In this example the

most relevant features fall periodically in the middle of the day.

5This same process is used to reshape gradients calculated on image data so that they overlay the original
input.
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Figure 5.3: Saliency maps are commonly used on image data to attribute picture importance
to a final prediction. Analogous heatmaps can be created for time series data to attribute
importance to a particular time step. For temporal input, the discovered Grad-AM is
technically a 1-D vector so it can also be represented as a time series plot.

Though plotted in Figure 5.3 (b) as a coloured overlay, the time series Grad-AM is

really a 1-D vector, where each index is a time step and the value at an index represents the

relative influence of that particular time step on the final prediction. The activation maps

can therefore also be plotted as time series, as seen in Figure 5.3 (c). This is a valuable way

of visualizing the gradients; using this approach, activation maps from many inputs can be

plotted on the same axes for comparison.
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5.4 Results

This section of the paper presents the Grad-AMs retrieved for buildings in the validation set

for each of the four neural networks. Important features of the plots are highlighted in this

section, with a full interpretation of the results in the discussion section.

First, the training and validation errors for each of the four neural networks are presented.

Next, the activation maps for the networks are visualized for a small subset of cases.

Evaluating fewer cases helps to highlight distinctive features of each of the models and

build intuition about the Grad-AMs. The time series interpretation of the activation maps

are then plotted and compared for all of the buildings in the validation set so that patterns of

behaviour across the data and models can be discovered. Finally, correlations between the

input variables and the discovered Grad-AMs will be presented and used to quantitatively

analyze the feature importance across all cases.

5.4.1 Model Performance

The prediction results for each of the four models on the training and the validation data are

presented in Table 5.1. In terms of validation error, the worst performing model was Daily-

NoHeat, followed by Weekly-NoHeat, so heating power input improved model performance

in general, as we would expect.

Weekly-Heat had a lower validation MSE than training MSE. This result is somewhat

unusual; overfitting most commonly occurs when the validation error is higher than the

traininer error, while underfitting occurs when both errors are high. A lower validation error

than training error likely indicates something else about the data, perhaps that the training

set contains more outlier examples than the validation set.

Note that the relative model errors on the validation set might impact the quality of the

retrieved Grad-AMs. Models with higher errors may exhibit Grad-AMs that are less well



77

Figure 5.4: Grad-AMs for a wooden building in Chicago. Remember that heating power is
always included in the building simulation. It is only excluded as a model input.

localized when compared to those from models with very low errors. Similarly, gradients

from models with high validation error are more likely to misattribute feature importance

because the final prediction is further away from the ground truth.

Table 5.1: Model prediction results.

Model Name Training MSE Validation MSE

Daily-NoHeat 0.9843 5.4405
Daily-Heat 0.5410 0.8378
Weekly-NoHeat 0.5468 2.7195
Weekly-Heat 1.1359 0.4889

5.4.2 Single-Building: Heatmap Representation

Figure 5.4 displays gradient heatmaps for a randomly selected building. It is a wooden

building in Chicago that includes stochastic occupancy and equipment load schedules: for

subplot (a) the building has no infiltration, while for subplot (b) infiltration is included.

Everything else about the building is identical, including its material composition. Gradient

heatmaps for each of the four model types are displayed for both cases. These are now

qualitatively examined with respect to each of the four trained models.

(a) Without Infiltration
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• Daily-NoHeat: For this building, this model attributes the highest feature impor-

tance to the end of the day, followed by the early morning. On first glance it

appears that the model is discovering the most information during the periods

when the heating power is dropping.

• Daily-Heat: In direct contrast, this model attributes the highest feature impor-

tance to the middle of the day. It is very interesting that it is at this time that the

heating power is the lowest - for this particular building it is actually 0 - so the

model uses its knowledge of heating input to find periods where it is minimal.

• Weekly-NoHeat: This model attributes the highest feature importance to the first

half of the time series. The weekly model and daily models without heating

power attribute the highest feature importance to the night times.

• Weekly-Heat: Similar to the daily model, the weekly model with heating power

periodically attributes the highest feature importance to periods in the middle of

the day.

(b) With Infiltration

• Daily-NoHeat: This model finds a relatively similar Grad-AM for the cases

with and without infiltration. For both, the highest feature importance occurs

in the middle of the night when the indoor temperature is dropping. Unlike the

no infiltration case, the infiltration case also finds an important period in the

middle of the day, again, when the indoor temperature is dropping. In general,

for the infiltration case there is less distinction between features of high and low

importance.

• Daily-Heat: For this model, the discovered Grad-AM more closely resembles

Daily-NoHeat than Daily-Heat in the no infiltration case. That is, instead of

finding the period in the middle of the day when heating power input is low it
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finds the period at the end of the day when indoor temperature starts dropping.

• Weekly-NoHeat: This model does not exhibit as strong a periodicity for the

infiltration case, as compared to the non infiltration case. Rather, it seems to find

one moment of particularly high importance.

• Weekly-Heat: Unlike Daily-Heat with infiltration, which attributed feature im-

portance to the night times, Weekly-Heat attributes feature importance to the

middle of the day. Thus, Weekly-Heat in the infiltration cases exhibits similar

behaviour to Daily-Heat in the non infiltration case.

5.4.3 Multi-Building: Time Series Representation

As shown in Figure 5.3, the Grad-AM heatmaps can also be plotted as univariate time series

variables. Figure 5.5 plots the activation maps in this way for all of the buildings in the

validation set. Evaluating these plots helps to highlight the patterns of behaviour of the

neural networks across the all of the buildings.

The plots in Figure 5.5 are divided to match the 16 cases shown in Figure 5.1 that were

used to create the synthetic dataset but, for brevity, the cases with and without stochastic

schedules were combined into one.

• Daily-NoHeat: This model exhibits activation maps that have variation within each

of the cases displayed, especially compared to the models with heating power input.

Even so, some patterns arise. Across all cases aside from the infiltration case in

Chicago, Daily-NoHeat tends to find the highest feature importance in the night times

or early mornings. It is also notable that the no infiltration and infiltration cases exhibit

a pattern of behaviour that is somewhat comparable.

• Daily-Heat: The discovered activations for this model are indubitably different from

Daily-NoHeat. For the cases without infiltration the model consistently finds the



80

Figure 5.5: Univariate time series representation of the Grad-AM for every building in the
validation set and for all four models.



81

highest importance in the middle of the day when the heating power input is at its

lowest, with a spike at the end of this period when the heating power turns on and the

indoor temperature begins to drop. The infiltration cases exhibit a distinctly different

(but consistent) pattern in which the last timestep exhibits the highest influence on the

prediction.

• Weekly-NoHeat: It is not immediately easy to discern patterns of behaviour for this

model simply by examining the time series plots. We might conclude that the cases

without infiltration exhibit some periodicity, but must also point out that it is not very

well defined. The infiltration cases in Chicago show a distinct spike at a particular

time (as seen in the single building case in Figure 5.4) but, otherwise, no distinct

pattern of behaviour is discernible.

• Weekly-Heat: The periodicity in this model is much stronger than that for Weekly-

NoHeat. It seems clear by examining the gradients that the weekly model with heating

input finds feature importance at similar times of day as the daily model with heating

input. This periodicity is apparent for the buildings with and without infiltration, but

much more clear for the former.

The Grad-AMs for Daily-Heat and Weekly-Heat show distinct and consistent patterns

between the infiltration and no infiltration cases. Such distinctions are not as clear for

Daily-NoHeat and Weekly-NoHeat. There are also noticeable patterns in the Grad-AMs

between Victoria and Chicago for each of the models.

The variability within each case for Daily-NoHeat and Weekly-NoHeat is high. This

is mostly caused by the buildings with schedules; our analysis showed that the addition of

schedules had a much larger effect on the models without heating power. An illustrative

example is included in Figure C.1 in the Appendix.
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5.4.4 Correlations Between Grad-AMs and Input Variables

Figure 5.6: Histograms of the Pearson correlation between the time series input and the
discovered Grad-AMs for all of the buildings in the validation set for each of the four trained
models.

In the previous two sections, the Grad-AMs for all buildings and all four neural networks

were evaluated qualitatively. In order to quantify this analysis, correlations between input

variables and discovered activations are now considered. Specifically, the Pearson correlation

between the various time series inputs and the gradient-based activation values was found

for each of the buildings and a histogram of these correlations were plotted.6 Note that these

correlations only provide a partial picture of the nature of the activation maps. Future work
6During the initial analysis, the correlation was also taken with the slopes of the time series inputs, but

almost no correlation was found.
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should emphasize patterns as well, perhaps through clustering.

• Daily-NoHeat: For the Victoria infiltration cases and for the wooden building without

infiltration in Victoria, there is a strong negative correlation between the gradient-base

activations and the indoor and outdoor temperatures for this model. This means that

the model is most influenced when the indoor and outdoor temperatures are both

low. From the time series plot in Figure 5.4 we can see that this occurs in the early

mornings. The Chicago cases, on the other hand, do not exhibit strong correlations.

This makes sense considering the large variation in the Grad-AMs for these cases

(seen in Figure 5.5).

• Daily-Heat: For the cases without infiltration and for the infiltration cases in Chicago,

the Daily-Heat Grad-AMs exhibit a strong negative correlation with the heating power

input (which is in the middle of the day, so it also when solar power is high). This is

consistent with the patterns seen in Figures 5.4 and 5.5. It indicates that the portions

in the time series with the lowest heating input are the most influential on model

prediction. For the Victoria cases with infiltration, on the other hand, the gradient

correlations are not very strong.

• Weekly-NoHeat: In general, Weekly-NoHeat exhibits the weakest correlations of all

the models. Moreover, the correlations do not match those of Daily-NoHeat, which

indicates that the weekly model without heat input does not always distinguish the

same patterns as its associated daily model. In the Chicago cases there is a weak

correlation with solar, which might indicate a slight daily periodicity in the data.

• Weekly-Heat: The correlations in model this are similar to Daily-Heat, confirming

the apparent periodicity that can be seen in Figure 5.5. In the infiltration cases, the

correlation with heating power input is stronger than the correlation with solar input,
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which indicates that the model is specifically seeking periods of low heat input, as

opposed to the periods in the middle of the day.

5.5 Discussion

The section above presented a quantitative and qualitative analysis of the Grad-AMs that

were retrieved for the whole validation set of synthetically generated buildings. In this

section, the results will be interpreted and contextualized. We are particularly concerned

with the features that the models learn, whether or not they discover physically meaningful

behaviour characteristics, the types of data that are most effective for prediction, whether or

not privacy concerns are raised and how we might use saliency maps to inform the design a

more robust synthetic dataset. A hypothesis regarding model behaviour will be formulated.

Future work should address this hypothesis in more detail.

5.5.1 Does the Model Learn Physically Meaningful Features?

Before continuing, it is important to consider the how difficult this prediction problem was

for the model. The dataset used was generated by manipulating the material properties of 16

baseline buildings (Figure 5.1). Within each of these 16 cases, the relationship between the

building HLC and the sum total of the heating input is highly linear. For the models with

heating power as an input variable, this might therefore be considered a simple prediction

problem. In theory, the models simply need to classify the buildings into one of the 16 cases

and then find the linear relationship between the sum total of the heat input and the building

HLC.

Keeping this in mind it is highly interesting to note that, for the cases without infiltration,

the models with heating power actually attribute the highest feature importance to periods

of time where the heating power is the lowest. We hypothesize that the models are therefore
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learning about the building behaviour when there is no heat input.

This is an interesting and relevant outcome that warrants more exploration. Consider

a building’s behaviour when the heating power input is low. At these periods of time the

thermal behaviour of the building is governed by solely physical properties such as the HLC.

The model learns the most during these periods, indicating that it is perhaps learning about

the physical, thermal dynamic behaviour of the building.7

The correlations with between the gradients and heating power input were weakest for

the buildings with infiltration in Victoria. This is likely because the infiltration cases the

buildings do not exhibit as distinct a drop in heating power input as in the no infiltration

cases; in the former case cold air blows through the buildings at all times of day so heating

is more consistently required.8

From Figure 5.5 we can see that, for the buildings with infiltration, Daily-Heat and

Weekly-Heat consistently consider the period at the end of the day and in the early mornings

to make their prediction. Evaluating the input time series we see that at these times the

indoor temperature is dropping. Considering that we are trying to predict the building HLC,

or the rate at which heat is lost from the building, it seems very logical that the models learn

the most from these periods.

The models that did not include heating power did not perform as well as the models

that did. There are two plausible reasons for this. First, it could simply be due to the linear

relationship between building HLC and sum total heating power discussed above. In this

case, if heating power is not provided as input, it would be difficult for the model to find

this relationship. Second, it might be because the models cannot as easily find places in the

input time series that are most informative, that is, periods where the thermal dynamics are

7It is also possible, however, that the model is using this time period to classify the building signature into
one of the 16 cases. This can be tested by introducing more diversity into the dataset, as described in the
Section 5.6.

8Visual inspection of the plots further confirms this, but, for the sake of brevity, the time series for all the
building cases were not included.
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governed by HLC, opposed to heating power.

While the first explanation is plausible, the behaviour of the models with heating power

input seems to provide evidence for the second. That is, the models that do not accept

heating power as an input cannot find the periods of time where the thermal behaviour of the

building is dictated by physical thermal properties such as the HLC. If this were true, the

implication is that the deep learning models do in fact "learn" building physics. The future

work section discusses how this hypothesis could be tested and verified. The remainder of

this section provides brief discussions on some of other practical implications uncovered

through interpretability analysis.

5.5.2 Effective Data Collection

The validation errors of the four trained neural networks (Table 5.1) seem to indicate that

including heating power in the input data improves model performance. Analysis of the

Grad-AMs, however, indicates that what is actually the most important is the periods of

time in which the building has no heat input. This knowledge might assist in targeted data

collection programs.

Additionally it is important to note that, based on the correlations in Figure 5.6, indoor

temperature is an important indicator for prediction. This is relevant because many data

collection initiatives (for example, smart meters that collect temporal energy usage) do

not include indoor temperature. These data may not contain enough information for the

deep learning models to learn the physical characteristics of buildings that govern thermal

behaviour.

5.5.3 Privacy and Ethical Concerns

Any data collection program must consider ethics and privacy. The collection of building

data for targeted retrofit programs might introduce equity issues that should be considered.
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For instance, if models that include heating input or occupancy information provide much

higher performance than those that do not, only building owners with access to this type of

data (eg. through ownership of a smart thermostat) will receive benefits in the design of data

collection programs. This should be acknowledged and addressed early.

Regarding privacy, tests should be run to ensure that Grad-AMs from a trained model

do not attribute highest feature importance to periods in the day for which a building is

unoccupied. If this were the case this could pose a security threat.

5.6 Limitations & Future Work

The results and discussion presented provide insight into the behaviour of the deep learning

models, but there is still a large degree of subjectivity to the interpretation. More work must

be done to confirm the hypothesis that the machine learning models learn the most about the

building HLC because of the physical, thermal dynamic behaviour at periods of low heating.

Future work should focus on (1) exploring this hypothesis further and (2) expanding this

study by improving the dataset.

In order to better understand if the machine learning models learn physically meaningful

building features, a new dataset should be created in which no heating power is included in

the building simulation. The diversity of the dataset should be increased to include differing

geometries, load schedules, infiltration rates, climates and mechanical system types. Using

interpretability methods with this dataset could help to clarify some of the questions raised

by this study.

The discovered features could provide deeper insight into learned physical behaviours.

For example, we might expect that the model attributes the highest importance to periods

of time where the indoor temperature is dropping and the outdoor temperature is stable,

because at these periods the rate of decay of the indoor temperature directly depends on
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the building HLC. Other thermal properties such as the building capacitance should also

be examined using this dataset. Finally, infiltration rates must be considered further. The

HLC used for prediction in this paper included heat loss from infiltration. Comparison of

Grad-AMs found for prediction on HLC with and without infiltration might indicate what the

model learns in either case. For example, the model that predicts HLC with infiltration might

find correlations with wind speed, while the model that predicts HLC without infiltration

might not.

As noted, the dataset used for training and validation can be significantly improved; many

variables were not considered in this study. Diversifying the dataset will help overcome

overfitting, reduce the linearities in the data and improve our confidence that the model is

learning meaningful features.

Despite the simplicity of the dataset, it is a surprising and interesting result to find that

the model learns the most at periods where the heating power is the lowest. Presumably,

when the thermal dynamics of the building are dictated by the HLC. The models that do

not include heating power as an input may perform more poorly because they have trouble

finding these periods. If this were true, the implication is that the deep learning model does

in fact "learn" building physics. This would be significant, as it likely means that neural

networks trained on synthetic data could be re-purposed for use on real world data, for

example through transfer [98] or self-supervised [70] learning.

5.7 Conclusion

Innovation has long been driven by epistemological enquiry. The improvement of com-

putational models should be no exception. The application of modern machine learning

interpretability methods to real-world cases is rare, but the results of this paper show that

this should not be the case. By applying gradient-based saliency maps to four neural net-
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works trained on building data, this paper penetrates the black-box nature of the networks

to provide novel and applicable insights into their behaviour. Based on these results, we

suggest that the continued application of interpretability approaches can help to accelerate

the strategic use of machine learning for decarbonizing the existing building stock.



90

Chapter 6

Conclusions

Challenges such as (1) a lack of data, (2) limited model generalizability and reliability and

(3) un-reproducible studies have resulted in restricted industry adoption of machine learning

research [45]. The purpose of this thesis was to rigorously evaluate multiple methods

for identifying quantitative building characteristics from large, heterogeneous datasets,

considering these challenges.

In the first chapter, it was determined that by using gray box models an accurate ranking

of RC and RK is achievable, but that absolute values are harder to determine. A high degree

of accuracy is not required to filter retrofit candidates, so it was concluded that the three

methods presented are likely sufficient for this purpose. A major point of future work

identified in this chapter was to validate model performance against a known ground truth.

This inspired the work in Chapter 4.

Chapter 3 was motivated by the observation that deep learning models in particular are

affordable, scalable and reusable, and their successful application could prove invaluable

in the building performance assessment industry. The findings in this study indicated the

potential for the use of deep learning in targeted retrofit analysis. These methods are unused

in the literature and it is not clear how well they perform when compared to gray box

approaches.
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The work comprising Chapter 4 was a natural synthesis of the previous two chapters,

which identified (1) a requirement for validation against ground truth and (2) the need for

performance benchmarking of novel methods. This chapter benchmarked multiple methods

to estimate the heat loss coefficient on quantitative building characteristics, on a novel,

extensible synthetic building meter data set. The findings of this work were significant;

based on qualitative and quantitative criteria it was determined that none of the evaluated

methods are currently suitable for the identified application cases, but that deep learning and

surrogate-based calibration showed the most promising ground truth performance. The gray

box methods did not perform well in terms of robustness towards heterogenous building

properties. This result indicates serious shortcomings to the state-of-the-art in the literature.

A major barrier for supervised deep learning is a lack of datasets containing relevant

labels. Chapter 5 begins to address this limitation by evaluating the learning behaviour of

models that are trained on synthetic data to see if they might be transferable to real data.

This work provides first indication that the models learn physically meaningful features

from synthetic data, but there is still a large degree of subjectivity to the interpretation of the

results. More work must be done to confirm this result. Long-term, this work could help to

overcome the data shortage in this domain and encourage the use of machine learning for

energy reduction in buildings.

An important consideration when performing research in this domain (and one reason

for the aforementioned data scarcity) is data privacy and ethics. This should always be a

fundamental consideration for researchers, industries, governments or other stakeholders

who are looking to develop and deploy data-driven methods. Residential building data in

particular offers insight into occupant behaviour and lifestyle, so special care should be

taken to anonymize and protect user information. Researchers and other stakeholders should

work closely together to ensure best practices, in order to provide the most safe and secure

future possible.
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In conclusion, this thesis provides insight into the use of gray and black box models for

thermal property estimation in buildings. It summarizes the state of research in terms of

empirical model performance, and determines that significant effort is needed to support

the adoption of methods for data-driven applications such as large-scale, targeted retrofit

analysis and building stock modelling.
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Chapter 7

Future Work

Significant research and development effort will still be required to identify scalable meth-

ods for estimating physical thermal properties for retrofit analysis from large data. The

methodology presented in Chapter 4 should be used to evaluate more methods, including

the decay curve and energy balance methods from Chapter 2 (balance points i.e. energy

signatures were already included within the scope of Chapter 4). The same methodology

should be used to aid in the development and validation of novel approaches for thermal

property characterization.

A major focus of this work was the whole-building HLC, but additional properties are

often needed by building energy modellers. They may be continuous or discrete, e.g. the

primary heating system of a building [104]. Future work should extend this scope to include

more types of building properties. The data creation pipeline used for this work can easily

accommodate this.

Chapters 3 and 4 identify strong predictive performance of black box methods, and

Chapter 5 indicates that synthetic data might help ease real-world requirements for labelled

data. This should be a strong focus of future work. Possible avenues of study include

transfer learning [98], self-supervised learning [70], and pretraining with labelled synthetic

data sets.
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Chapter 4 showed that, in addition to deep learning, surrogate-based calibration shows

strong promise. This should also be explored in future work. In particular, surrogate-baesd

calibration relies on an underlying physical model. Representative archetype models can be

derived if a large number of buildings is to be calibrated. In fact, segmenting a building stock

into groups of similar buildings (archetype classification) and deriving a suitable building

energy model (architecture characterization) are decisive steps in common calibration

processes [93][56][52]. The generalizeability of these apporaches must be explored further.

Finally, the synthetic dataset that was used in this work should be extended to include

more building properties such as geometry and number of zones. A more comprehensive

dataset will support all of the aforementioned future works.

Overall, significant effort will be required to identify useable models for thermal property

estimation from large datasets in practice.
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Appendix A

Chapter 3

The synthetic dataset used for regression over R was generated using the Building Energy

Simulation, Optimization and Surrogate Modelling (BESOS) platform1 and EnergyPlus, as

described in Figure 2. BESOS is a cloud-based research platform used for building energy

simulation and optimization. Amongst other things, the platform provides functionality

to produce many distinct sample buildings by parameterizing model inputs. Usually the

generated samples are used for optimization (ex. using Genetic Algorithms) or for training

surrogate models (ex. using Artificial Neural Networks). For the purpose of this project,

the sampling functionality provided by BESOS was used to randomly vary the thickness

and the density of each of the building materials, thus varying the whole building R-value

and the simulated energy usage. 10 initial building designs were used to generate a total

of 966 homes. Future work will continue to use the BESOS platform to generate a more

robust dataset by including more building geometries, parameterizing more model inputs

other than material properties and varying inputs such as weather and occupant schedules.

After many building designs were generated using BESOS, the energy use of each design

was simulated with EnergyPlus, a standard software for building energy modelling [23].

This produced a multivariate time series dataset at 10 minute granularity, where the input

1https://besos.uvic.ca/
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Figure A.1: Step 1: Use the BESOS platform to generate many example buildings from
a single EnergyPlus model. Step 2: Use EnergyPlus to run an annual simulation for each
building generated in step 1.

variables consist of indoor temperature, outdoor temperature, and heating system power, for

each thermal zone in the building. The time series are summed together for each thermal

zone to produce a total of 3 features for each building. The output variables for prediction

are the whole-building values for R, as derived from the EnergyPlus input data.
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Appendix B

Chapter 4

B.1 Whole-building heat loss coefficient

The whole-building HLC quantifies the rate at which heat is lost through the building

envelope via convective, conductive and radiative forces. This knowledge is instrumental

for estimating the benefits of building retrofits [72] or assessing the quality of a building

post-construction [66]. HLC can be determined by evaluation the thermal energy balance of

a building.

Equation B.1 describes the dynamic heat flows in a building as a function of timestep t,

where Q̇int is the heat flow from internal gains, Q̇hsys is the heating system supply, Q̇sol is the

heat flow from solar gains, Q̇env is the heat flow through the envelope, Q̇in f is the heat flow

due to infiltration,1 C is the effective heat capacity, or capacitance, in J/K, and dTin/dt is

the rate of change of the indoor temperature. All of the heat flows are measured in W.

C
dTin

dt
(t) = Q̇int(t) + Q̇hsys(t) + Q̇sol(t) + Q̇env(t) + Q̇in f (t) (B.1)

Rearranging equation B.1 shows that infiltration is implicitly included in the whole-

building HLC values. This is relevant for calculating HLC from EnergyPlus outputs in the

1For simplicity, ventilation is not considered here.
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data creation pipeline (B.2).

Equations B.2 and B.3 express Q̇env and Q̇in f in terms of the difference between external

and internal temperature.

Q̇env(t) =
1
R

(Text(t) − Tin(t)) (B.2)

where R is the thermal resistance of the building envelope [K/W], Text is the external

temperature and Tin is the internal temperature.

Q̇in f (t) = m ∗ cp,air(Text(t) − Tin(t)) (B.3)

where m is the air mass flow rate [kg/s] and cp,air is the air specific heat capacity [J/kg K].

Equation B.1 can thus be rewritten as:

C
dTin

dt
(t) = Q̇int(t) + Q̇hsys(t) + Q̇sol(t) + HLCwb(Text − Tin) (B.4)

HLCwb = HLCin f + HLCenv (B.5)

where HLCin f = ṁ ∗ cp,air is the heat lost due to infiltration and HLCenv = 1
R , where R is the

thermal resistivity of the building envelope in K/W. HLCwb is the whole-building heat loss

coefficient. We can see now that HLC depends on both the infiltration rate and the thermal

resistivity of the building envelope.

B.2 Calculating HLC from EnergyPlus outputs

In [86] Senave et al. present a methodology for solving these values from the Trnsys

simulation software. In this work we adapt their approach to use EnergyPlus outputs.

HLCin f (B.1) is the product of the air mass flow rate, ṁ, and the air specific heat capacity,
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cp,air. The air mass flow rate was calculated directly by EnergyPlus and recorded as a time

series output.2 The mean yearly value of this output variable was multiplied by the specific

heat capacity for air to calculate HLCin f .

Note that for all the cases in which infiltration was 0, HLCin f was also 0. The calculation

for HLCenv is considerably more complicated. It can be calculated using an analogy to

RC circuit model, where the thermal resistances of the building envelope are analogous to

resistors in a circuit. The building envelope can be represented by three resistors in series:

(1) the interior surface resistance, Rint, (2) the resistance of the material layers, Rmat, and (3)

the exterior surface resistance, Rext:

HLCenv = (Rint + Rmat + Rext)−1 (B.6)

Rint, Rmat and Rext represent the respective resistances of all the building surfaces in

parallel. For instance, Rint represents the parallel resistances for each individual indoor

surface. These values can therefore be found by taking the sum of the reciprocals of the

resistances of each surface, as seen in equation B.7. The resistances of each surface are

reported by EnergyPlus, but the models outputs do not account for area. Therefore, the

reciprocals of the resistances are multiplied by their associated surface areas as follows:

1
Ri

=
∑
s∈S

As ∗
1

Ri:s
(B.7)

where i ∈ {int, mat, ext}, S is the set of all surfaces, Ri:s is the resistance of the surface and

As is the area of the surface.

The values for Ri:s are calculate differently for the three resistance types. Rmat:s is output

directly by EnergyPlus. The calculation for Rint and Rext requires the evaluation of time-

resolved heat transfer coefficients (HTCs), measured in W/m2K. HTCs are proportionality

2The EnergyPlus output variable is called: Zone Infiltration Current Density Volume Flow Rate
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constants that dictate the given amount of heat exchange by convective and radiative forces

at a building surface. Each HTC can be viewed as the inverse of a resistance. Each HTC at a

given surface acts in parallel, so htotal = h1 + h2 + ... + hn. In EnergyPlus, the equations for

heat exchange due to convection and radiation depend directly on HTCs so

Ry:s = 1/mean(hy:s:conv + hy:s:rad) (B.8)

where y ∈ {int, ext}, hy:s:conv is the surface convective HTC and hy:s:rad is the surface radiative

HTC.

The remaining calculation considerations for each of the three R values are summarized

below:

1. Rint:s: The internal surface radiation HTCs calculated by EnergyPlus are modelled by

the software internally and are not easily accessible to the user (see the EnergyPlus

documentation3 for more information). Therefore, for the purpose of this study, only

convection is included in the calculation for Rint:s. The exclusion of the radiative

HTCs may result in a slightly larger absolute errors in HLC estimation, but it should

not affect the comparisons between methods or the parametric analysis within the

methods.

2. Rmat:s: The material R value is the sum of the resistance of the material layers that

compose the surface. It is calculated directly by EnergyPlus and is reported as the

surface U-value, or 1/Rmat:s, in [W/m2K].

3. Rext:s: As described by the EnergyPlus documentation,4 at the external surfaces

convection and radiation to the ground, air and sky are modelled by EnergyPlus and

3https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/
inside-heat-balance.html

4https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/
outside-surface-heat-balance.html#outside-surface-heat-balance

https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/inside-heat-balance.html
https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/inside-heat-balance.html
https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/outside-surface-heat-balance.html##outside-surface-heat-balance
https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/outside-surface-heat-balance.html##outside-surface-heat-balance
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the associated HTCs are directly available to the user as time-resolved output variables.

These output variables are used to find Rext:s.

B.3 Material Property Ranges

Surface Material Layers Thickness Ranges (m)

Wall

Stucco [0.015, 0.030]
Plywood or Concrete [0.006, 0.03] or [0.2, 0.3]

Insulation [0.035, 0.3048]
Gypsum [0.00633, 0.0159]

Window
Glass [0.001, 0.01]

Air Gap [0.006, 0.02]
Glass [0.001, 0.01]

Floor Plywood or Concrete 0.0127 or 0.1016

Roof
Roof Membrane [0.0012, 0.0095]

Insulation [0.1, 0.3]
Metal Decking [0.0007, 0.0015]

Table B.1: Material composition of the buildings and the thickness ranges used for parametric
generation of buildings meter data for our synthetic data set.
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Appendix C

Chapter 5

The variation in Grad-AMs within a particular case for the models without heating input

(Figure 5.5) is mostly attributed to the buildings that include stochastic schedules. Figure

C.1 illustrates this by plotting heatmaps for Daily-Heat for a subset of the buildings. The

buildings in each row have the same HLC, they only differ according to their occupancy and

equipment schedules.
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Figure C.1: Grad-AMs for the daily models for wooden buildings in Victoria with infiltration,
separated by the schedule and no schedule cases. The heat maps are plotted in ascending
ordered according to predicted HLC.
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