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ABSTRACT

Exploiting high altitude wind energy using power kites is an emerging topic in the

field of renewable energy. The claimed advantages of power kites over traditional wind

power technologies are the lower construction costs, less land occupation and more

importantly, the possibility of efficiently harvesting wind energy at high altitudes,

where more dense and steady wind power exists. One of the most challenging issues

to bring the power kite concept to real industrialization is the controller design.

While traditional wind turbines can be inherently stabilized, the airborne nature of

kites causes a strong instability of the systems.

This thesis aims to develop a novel economic model predictive path-following

control (EMPFC) framework to tackle the path-following control of power kites, as

well as provide insightful stability analysis of the proposed control scheme.

Chapter 3 is focused on the stability analysis of EMPFC. We proceed with

a sampled-data EMPC scheme for set-point stabilization problems. An extended

definition of dissipativity is introduced for continuous-time systems, followed by giving
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sufficient stability conditions. Then, the EMPFC scheme for output path-following

problems is proposed. Sufficient conditions that guarantee the convergence of the

system to the optimal operation on the reference path are derived. Finally, an example

of a 2-DoF robot is given. The simulation results show that under the proposed

EMPFC scheme, the robot can follow along the reference path in forward direction

with enhanced economic performance, and finally converges to its optimal steady

state.

In Chapter 4, the proposed EMPFC scheme is applied to a challenging nonlinear

kite model. By introducing additional degrees of freedom in the zero-error manifold

(i.e., the space where the output error is zero), a relaxation of the optimal operation

is achieved. The effectiveness of the proposed control scheme is shown in two aspects.

For a static reference path, the generated power is increased while the kite is stabilized

in the neighborhood of the reference path. For a dynamic reference path, the economic

performance can be further enhanced since parameters for the reference path are

treated as additional optimization variables. The proposed EMPFC achieves the

integration of path optimization and path-following, resulting in a better economic

performance for the closed-loop system. Simulation results are given to show the

effectiveness of the proposed control scheme.

Finally, Chapter 5 concludes the thesis and future research topics are discussed.
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Chapter 1

Introduction

1.1 Airborne Wind Energy

Exploring new renewable energy technologies has become one of the most urgent and

strategic issues that mankind is facing today. With the development of non-OECD

(Organization for Economic Co-operation and Development) countries, the world

energy consumption has increased about 52% from 1990 to 2012, and is predicted to

grow by 48% from 2012 to 2040 [1] (cf. Figure 1.1). Unfortunately, almost 70% of

the electric power is currently generated by fossil sources (e.g., oil, coal and nature

gas), which contributes to the growth of energy-related CO2 emission by 2.4% per

year since 2000 [10,11]. Such global energy situation has world-widely arose concerns

about environmental pollution, climate change and energy crisis.

Figure 1.1: Total world energy consumption, 1990-2040 (quadrillion Btu) [1].
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Developing renewable energy is a key point to tackle this issue. According to

IEO2016 Reference Case [1], the renewable energy is the fastest-growing source of

energy from 2012 to 2040, at an average increasing rate of 2.6% per year. In fact,

the projected share of renewables for total energy consumption increases from 22%

in 2012 to 30% in 2040, cf. Figure 1.2. Wind power is the second largest renewable

energy source, apart from hydropower, with a global installed capacity increasing

from 60 GW in 2005 to 350 GW in 2014 (at an average growth rate of 22% per

year) [10]. Actually, if only 20% the wind energy that is profitable for the traditional

wind technology based on wind turbines, can be captured, the global energy demand

for all purposes will be satisfied [12]. However, traditional wind power technologies,

based on wind turbines, has two major limitations in terms of energy production costs

and land occupation. Specifically, wind turbines require heavy towers, foundations

and huge blades, resulting in much higher energy production costs with respect to

thermal plants. As for the land occupation, wind farms based on wind turbines 2.5

MW rated power have an average power density of 3.7 MW/km2 [13], about 260 times

lower than that of large thermal plants. Thus, traditional wind energy generators,

wind turbines, are not yet competitive with thermal generators, despite the increasing

price of oil and gas.

Figure 1.2: World energy consumption by different energy source,
1990-2040 (quadrillion Btu) [1].

To overcome these limitations of traditional wind energy technology, many re-
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search groups and renewable energy companies nowadays are developing High Alti-

tude Wind Energy technology since the wind power density increases with the height

above the ground. In fact, at the altitude of 500-1000 m, the average wind power

density is about three times higher than that at 100 m, and at the altitude of 10,000

m, it is 40 times higher [14]. This motivates novel technologies of wind energy gen-

eration which can be realized by capturing wind energy at high altitudes over the

ground (200m-10km) where more dense and steady wind power exists. These tech-

nologies have been classified using an umbrella-name, Airborne Wind Energy (AWE)

technology. Today, research institutions and commercial entities such as KiteGen

(Italy), Makani Power (Google X, USA) and AmpyxPower (The Netherlands) con-

tribute to an emerging development of AWE technology, cf. Figure 1.3. Next, we

give a classification of various concepts of AWE systems.

Figure 1.3: Airborne wind energy research and development activities in 2017 [2].

1.1.1 Classification of Airborne Wind Energy Systems

Different concepts of airborne wind energy systems (AWESs) have been well developed

these years. Generally, they can be divided into two types: Ground-generator systems

(GGs) and Fly-generator systems (FGs). As the name suggested, the power genera-

tion of GGs is done by a generator on ground station while in FGs such generation

is done by on-board turbines (see Figure 1.4). A further classification can be made
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between configurations adopting rigid wings [15–17], and configurations that employ

flexible wings like power kites [9,18–20]. Other AWE concepts based on lighter-than-

air structures [21] and multi-wing structures [5,22,23] will also be introdunced in the

following sections.

Figure 1.4: Comparison between GGs (left) and FGs (right) [3].

Ground-Gen AWE Systems

In GGs, the power generation is based on exploiting high tension in the cables to

pull a generator on the ground. The power generation of most GGs are in so called

pumping mode, which can be divided into two phases: traction (or reel-out) phase

and retraction (or reel-in) phase. During the traction phase, the tethered aircrafts

are in crosswind flight condition (flying roughly perpendicular to the wind speed

direction) to access a high apparent wind speed, and thus the efficiency of harnessing

wind power is greatly increased. Actually, it has been investigated that crosswind

power generation can provide a power one or two orders of magnitude higher than

non-crosswind generation [24]. A typical periodic path for traction phase is a figure-

eight path, since by following this kind of path, the aircraft can maintain crosswind

flight condition as well as avoid entangling of cables. Once the tether is completely

reeled out, retraction phase begins. During the retraction phase, the generators act as

motors to recoil the cables and we want to minimize the dissipative power by reducing

tension on cables. This is realized by decreasing the angle-of-attack of airfoils and

moving them to a position with high elevation angle where the tension on cables is

significantly reduced. Therefore, only a fraction of the previously generated power is

spent to rewind the tether. This way of two-phase power generation is called pumping
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mode, which can be illustrated in Figure 1.5.

Figure 1.5: Illustration of pumping mode power generation [4]. The traction phase
(green), flying a crosswind pattern, and the retraction phase (red), flying outside
the power zone (orange). The wind direction is indicated by the arrows (blue).

Fly-Gen AWE Systems

In FGs, the power is generated by on-board turbines carried by airfoils flying in

crosswind condition. These AWE systems are in so-called drag mode, since the on-

board generators add additional drag force to produce electricity, see Figure 1.4a.

The electricity is transmitted via conductive cables to the ground-based power grid.

Compared to GGs, the advantage of FGs is its potential capability of autonomous

take-off and landing using on-board propellers (generators) to provide thrust and lift

force. One of most famous prototypes of Fly-Gen AWE Systems is made by Makani

Power [25]. Their latest prototype, MAKANI-M600, has 26m wing span and 600KW

rated power. It employs a carbon fiber wing with multiple on-board generators and

propellers. In contrast to GGs, a constant tether is employed during the power

generation phased and it is sustained by the incoming wind. When the tether has

reached its operation length, the airfoil starts to fly in crosswind condition with

circular path. The orientation of the airfoil is controlled by an on-board computer in

order to follow the desired path.
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Multi-wing Systems

In single wing configuration of AWE systems, while employing a longer tether to reach

a higher altitude, the aerodynamic drag force on the cables may become significantly

large in crosswind flight condition. Therefore, the motion of tethers imposes a limit on

the efficiency of the overall system. To address this issue, concepts based on dual-wing

configuration have been investigate in [5,22] (on-board generation) and [23] (ground-

based generation). The main idea of the dual-wing design is to separate the tether

into two parts: the main tether and the secondary tethers. Since the two airfoils are

connected to the main tether in a balanced manner, the main tether is almost static

in the air and the extra drag force is significantly reduced, as visualized in Figure 1.6.

For this reason the operating length of cables can be longer in dual-wing AWESs and

the optimal flight altitude is relatively high.

Figure 1.6: Schematic diagram of a dual-wing AWE system [5].

Another concept of multi-wing configuration adopts several wings attached on

a single tether. In order to increase the total characteristic area and realize a large

scale power generation, the wings are stacked evenly on the main tether, one after the

other. This concept has been previously investigated by W. Ockels, using the idea of

laddermill. The power generation can be in pumping or laddering mode [26]. In these

configurations, the distance between wings should be appropriately chosen such that

the total power generation is maximized. Inspired by these conceptions, a prototype

with 500 kW rated power has been built by a Chinese company [6, 27], see Figure
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1.7. This prototype employs several kite-guided umbrellas in a ladder system which

makes the mechanical structure of wings even more simple and lighter. The umbrellas

ascends in an open-state and huge pulling force is used for power generation. When

the tether reaches its maximum length, the umbrellas descend in a closed-state.

Figure 1.7: An artistic vision (left) and an implemented prototype (right) of an
umbrella-ladder system [6].

1.2 Pumping Kites with Fixed Ground Generators

1.2.1 Concept of Kite Generators in Pumping Mode

Among various concepts of AWE system, a popular one is based on using large power

kites to extract wind power at high altitude (up to 1000m). In fact, many groups have

built kite generator prototypes to test their practical power generation capability (e.g.,

KiteGen, KitePower, KITEnergy and Windlift). A kite generator system is mainly

consists of three parts: a large power kite, high-strength cables and a ground-level

generator, as shown in Figure 1.8. Similar to most of ground-based AWESs, the power

generation for a kite generator is in so called lift mode [24] since the high tension in

cables is mainly resulted from the lifting force of the kite in the crosswind flight

condition. The cables can transmit traction force to the generator, as well as control

the position and orientation of the kite. When the cables reach their maximum length



8

in the traction phase, retraction phase begins and only a portion of the generated

power is consumed to pull the kite back to its initial position. We call this two-phase

of power generation as pumping mode which has been widely investigated through

literature (e.g. [8, 19,20,28,29]).

Figure 1.8: A typical configuration of a kite generator system. Illustration from [7].

In general, there are three advantages of kite generators compared to traditional

wind turbines. First of all, they have the capability of harvesting wind energy at

a high attitude where the wind power density is much larger. Since the generated

power grows with the cube of apparent wind speed, the rated power of kite generators

can be much larger with respect to those of wind towers placed in the same location.

Moreover, the low operating altitude affects not only the performance but also the

location where a wind turbine can be mounted. The steadier and stronger wind power

at a high altitude allows kite generators to be installed in a much larger number of

locations. The third advantage is the high efficiency of the area utilization, which can

be illustrated by Figure 1.9. In traditional wind turbines, the 20% outer part of the

rotor blades contribute to 80% of the power generation. This is because the apparent

wind speed at the outer part of the blade is much larger than that at the inner part,

and the generated power grows with the cube of apparent wind speed. In contrast, in

a kite system, the tethered kite flying in crosswind conditions acts as the outer part

of the blades and the less-productive inner blades are replaced by the tether. Hence,
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there is no such bulky structure like heavy foundations, towers or huge blades which

makes kite generators much lighter and cheaper to construct.

Figure 1.9: Comparison between kite generators and traditional wind turbines in
power generation. Illustration from [8].

The control design of power kites is a challenging task. While traditional wind

turbines can be inherently stabilized, the airborne nature of kites causes a strong

instability of the systems. The tethered flight is a fast, unstable and perturbed

process. For this reason, automatic control of the kite system flying in all wind

and weather conditions is required. The applied controller should not only stabilize

the kite in a pre-designed flight pattern but also optimize the generated power in a

transient phase (e.g., under varying wind speed and wind turbulence).

1.2.2 Literature Review of Controlling Kites

As mentioned before, the idea of using kites for high altitude wind power generation

can be traced back to Loyd’s seminar paper [24] in which he analyzed the maximum

energy can be theoretically generated by power kites (neglecting the drag force of

cables). However, the related research was then almost abandoned. Until 2001,

Moritz Diehl firstly proposed a nonlinear point-mass model of kites on the basis of

Newton’s law of motion [30]. Under the assumption that the apparent wind speed

vector is always contained in kite’s symmetry plane, which is reasonable when the
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kite is flying in crosswind condition, the direction of the aerodynamic forces can be

determined by the apparent wind speed, kite’s roll angle ψ (the only input variable)

and the angle of attack. Then, a more accurate kite model is developed by considering

aerodynamic force and gravity of cables [9]. In [23, 31], a Lagrangian model of kites

is formulated considering the effect due to the elasticity and the internal friction of

the cables.

Considering these nonlinear kite models and the objective of maximizing the gen-

erated power under constraints, Nonlinear Model Predictive Control (NMPC) can be

such a candidate control strategy. In NMPC, the control input at each sampling time

is obtained by solving a finite horizon optimal control problem (FHOCP), where the

measured state vector is used as the initial condition for each optimization problem

and the prediction of system behavior can be obtained by using the available nonlin-

ear model. In the existing works of kite controller design, both standard (tracking)

NMPC [32–34] and economic MPC (EMPC) [8, 9, 35] have been successfully applied

to the aforementioned kite models. In [32], several optimized reference trajectories

are precomputed which are parameterized by different wind speeds. Then, the NMPC

scheme is employed to track such optimized reference obits. In [8, 9, 35], however, no

precomputed trajectory is needed and the corresponding EMPC scheme is designed

by using pure economic cost function associated with the generated power. Using

additional technical constraints, the kite is forced to go along the desired trajectories

(figure-eight orbits). The trajectories obtained from the EMPC scheme intuitively

have better economic performance than those from a standard NMPC scheme, be-

cause they are not limited to be periodic. However, in these works using EMPC, there

is no closed-form expression of the reference path. Therefore, the shape of closed-loop

trajectories can not be adjusted directly, and it is difficult to analyze the stability.

Besides, when the wind speed changes, the kite can not be always stabilized in a

reasonable area (i.e., may be too close to the border of the wind window), resulting

in the stall of the kite.

In fact, most optimization-based control schemes like Model Predictive Control

may be not practical for the kite project, since they require solving complex non-

linear optimization problems in real time and measuring the kite’s position, speed,

the nominal wind speed at the kite’s altitude, and the forces acting on the tethers.

Particularly, it is difficult to acquire the wind speed at the kite’s altitude with only

a few measurement points, since the wind field changes over distance and time. To

tackle these problems, simple feedback strategies with simplified kite models need to
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be developed. In this direction, a simplified model was originally studied based on

concepts of turning angle (see e.g., [18], [36]), but the model parameters were ob-

tained from experiments. In [20], an explicit expression of these model parameters

is derived and a more convincing linearized model is obtained. Such control-oriented

models are particularly suitable for feedback control since they have the advantage

of being single-input and single-output. These models have been proved to be quite

accurate in crosswind conditions through experimental data [18].

Now, we give an overview of the controller design using these simplified kite mod-

els. In [18], a hierarchical control scheme is proposed, where the overall controller is

separated into two layers of “guidance” and “control”. In the outer loop controller,

the reference heading angle is obtained according to the desired flight patterns in or-

der to acquire high apparent wind speeds and forces. Unfortunately, the inner control

loop is quite sophisticated and it requires the measure of apparent wind speeds at the

kite’s position. In [20], a simple guidance strategy is presented to obtain the reference

turning angle and the control command can be easily computed under the feedback

control law. The advantage of this hierarchical control scheme is that it can control

the kite fly along figure-eight orbits in the presence of certain wind turbulence using

only the measurements of the kite’s position. Then, such a linearized model and a

similar control strategy are employed to the kite retraction phase [29, 37] where a

fully autonomous flight of kites for the whole power generation phase is realized. In

addition, a real-time optimization algorithm is proposed [38] to compute the optimal

average position of the flight orbits by using traction forces as feedback variables.

This algorithm can be used as an extension of any existing controllers, providing a

reference average position of the reference flight path to maximize the average traction

force.

In summary, among the above-mentioned works based on simplified kite models,

the power optimization is considered in [38] by using traction forces as feedback vari-

ables, but others [20, 29, 36, 37] are focused on the stabilization of the desired flight

pattern (i.e., figure-eight paths). Numerical and experimental results are presented to

validate corresponding control schemes, respectively in [20,29,36–38]. However, none

of these works considers a closed-form expression of the reference paths and no theo-

retical proofs for the stability are given. Thus, we can not directly adjust the shape

of closed-loop trajectories under these control schemes. Furthermore, some internal

information of systems is lost since only dynamics of turning angle is considered in

the simplified model.
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Some other interesting control strategies aiming to fulfill other requirements, are

introduced here. First of all, since some feedback variables such as the apparent wind

speeds are not easy to measure, so-called robustified optimal control problem is for-

mulated [31,39]. By solving periodic Lyapunov differential equations, an intrinsically

open loop stable trajectory is found such that the kite generates as much power as

possible. Thus, there is no need to employ any feedback in these schemes. Secondly,

as mentioned before, it is generally hard to obtain an accurate kite model when kites

are flying in different flight conditions. To tackle the model uncertainty of kites, non-

model-based approaches have been also proposed [40], which is based on the concept

of direct-inverse control [41]. In this work, an inverse model of the kite is directly

computed from measured input-output data, and thus avoiding the need to derive an

accurate kite model.

Another challenging issue for power kites to really foster its industrial development

is autonomous takeoff and landing. Currently, even no related approach has been

proposed, at least from public literature. Alternatively, we can find the solution in

rigid aircrafts for autonomous takeoff [42], where a model-based, hierarchical feedback

controller is designed. This work aims to stabilize the aircraft during the takeoff

and to achieve figure-eight flight patterns parallel to the ground. For autonomous

landing, further efforts should be made not only on control aspect, but also on the

development of new aircraft configurations and concepts specifically designed for this

purpose. However, these issues such as the mechanical design of the kite systems are

beyond the scope of this thesis.

1.3 Objectives and Challenges

1.3.1 Objectives

In this thesis, we aim to formulate output path-following control problems for kites

with economic consideration (generated power). In this work, there are three require-

ments of the controller design for a kite generator system:

• The kite can be stabilized on the reference paths in the presence of wind tur-

bulence.

• The kite system has the optimal transient performance with respect to certain

economic criteria. Moreover, when the kite flys along the reference paths, the
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forward speed is optimal with respect to the economic criteria.

• The state and input constraints of the kite system are satisfied. For example,

the kite should be avoided to fly close to the border of the wind window (where

the stall of kite mostly happens) or near the ground.

For the first requirement, we want to prove the closed-loop trajectory is asymptotic

convergent to the reference path for the nominal kite system and the robustness

of the controller can be shown by simulation results. In the second requirement,

the transient economic performance represents the economic performance when the

system is disturbed and deviates from the reference path. Besides, since the reference

path is usually defined in the output space, additional degrees of freedom such as

kite’s forward speed and its orientations are allowed along the reference path. Thus,

the economic performance can be further improved even if the system has no deviation

from the reference path in output space. This objective motivates our choice of so-

called Economic Predictive Path-following Control to be a candidate control scheme,

which is discussed in detail later. Finally, the third requirement of constraints can be

satisfied under the scheme of MPC.

1.3.2 Challenges

In general, crosswind flight of tethered kites is a fast, strongly nonlinear, unstable and

constrained process. Controlling such process is a very challenging task. More specif-

ically, designing a controller fulfilling aforementioned requirements for kite generators

is challenging due to the following reasons:

• In order to reduce the weight of the kite, there are limited actuators on the kite.

In fact, there are only two control inputs (kite’s roll angle and the reeling speed

of cables) in the kite model we employed. Thus, the limited inputs make the

kite an under-actuated system. For this under-actuated system, some internal

states can not be controlled which makes the stability and robustness of the

system hard to be guaranteed. More importantly, due to the limited inputs,

the system behavior is somehow confined. This intrinsically-existed constraint

requires us to design a suitable output reference path.

• The varying wind speed can be treated as an unknown external input. This ex-

ternal input influences the system behavior considerably. Specifically, it affects
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the apparent wind speed, orientations of the kite and the traction forces on the

cables. Hence, the speed of kites on the reference path can not be determined.

• The kite model is a fast and strongly nonlinear dynamics, which makes optimization-

based controllers difficult to be implemented.

1.4 Motivations and Contributions

1.4.1 Motivations

Output Path-following vs. Trajectory Tracking

In [32–34], NMPC scheme has been formulated to solve trajectory tracking problems

of kite systems. However, as we mentioned before, the forward speed of kites on the

reference path can not be pre-computed due to the varying wind speed. When the

wind turbulence is large or the wind speed varies in a wide range, the kite may not

be able to be stablized on a reference trajetory with a pre-specified timing law. Even

if it could be stabilized, the generated power is disspative since the glider ratio of the

kite may be decreased in order to track the inconsistent kite’s speed. Thus, trajectory

tracking is not appropriate in this case. In contrast, path-following is more flexible

than trajectory tracking, since its objective is driving the system to reach and follow

a geometric path, without a pre-specified timing law. Here is a brief description of

path-following problems using θ to describe the path evolution. Given a system

ẋ = f(x, u)

y = h(x, u) t ≥ 0,

with state x ∈ Rnx , input u ∈ Rnu , output y ∈ Rny and a predefined reference path

P = {p̄ ∈ Rny |p̄ = p(θ), θ ∈ [0,∞)}.

The objective of the path-following problem is to drive the system to the zero-path-

error manifold

eP (t) := y(t)− p(θ(t)) = 0 t ≥ 0,
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where θ : [0,∞) → [0,∞) is a timing law to be specified which gives an additional

degree of freedom for the zero-path-error manifold.

Moreover, the intention of defining the reference path in output space is to allow

additional degrees of freedom such as the kite’s orientations along the reference path.

Thus, the economic performance can be further improved on the zero-path-error man-

ifold. In other words, we want to design a controller to regulate the time-varying error

dynamics at the origin of output space, meanwhile optimize other internal states to

further enhance the economic performance.

Why Economic Model Predictive Path-following Control?

• Path Convergence: The kite system is asymptotically convergent to the ref-

erence path.

• Economic Performance: When stabilizing kites on a given output reference

path, economic performance can be further enhanced in two aspects. First of all,

when the system is disturbed and deviates from the reference path, the transient

economic performance can be enhanced while the closed-loop trajectory is still

asymptotically convergent to the reference path. In other words, the system is

driven to the reference path optimally with respect to certain economic criteria

under the designed control law. Secondly, after the kite is stabilized along the

output reference path, the economic performance can be further improved due

to additional degrees of freedom such as kite’s orientations.

• Constraint Satisfaction: The kite system is subject to state and input con-

straints.

• Varying Wind Speed: Due to the varying wind speed, the speed assignment

along the reference path can not be predefined which motivates our choice of

path-following control.

In summary, considering aforementioned objectives and requirements, so-called

Economic Model Predictive Path-following Control (EMPFC) is a possible solution

and the main idea is to solve the path-following problem from an EMPC perspective.
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1.4.2 Contributions

• Stability analysis of EMPFC. To access the stability and feasibility of

EMPFC, optimal steady state set for the output path-following problems is

defined. The existence of the optimal steady state set implies that the eco-

nomic cost function is chosen such that the optimal steady state is at the origin

of the error space and the corresponding steady state set is not empty. New

definition of dissipativity for the output path-following problems is given. Suf-

ficient conditions that guarantee the convergence of the system to the optimal

operation on the reference path are derived. In addition, an example of a 2-

DoF robot shows that, the proposed EMPFC scheme achieves better economic

performance while the system can follow along the reference path in forward

direction and finally converge to its optimal steady state.

• Sampled-data EMPC for set-point stabilization problems. Most exist-

ing literature on EMPC is in a discrete-time manner [43–46]. We extent the

assumption of dissipativity to continuous-time systems. With this “continu-

ous dissipativity” and other stability conditions, the stability of sampled-data

EMPC for set-point stabilization problems is guaranteed.

• Kite controller design during traction phase using EMPFC. The pro-

posed EMPFC scheme is successfully applied to a challenging nonlinear kite

model. On the one hand, it achieves the trade-off between the convergence and

the economic performance. On the other hand, due to the relaxation of the

optimal operation, it adapts to a wide range of wind speed and considerable

wind turbulence. The effectiveness of the proposed control scheme is shown

in two aspects. For a static reference path, the generated power is increased

while the kite is stabilized in the neighborhood of the reference path. For a

dynamic reference path, the economic performance can be further enhanced

since parameters for the reference path are treated as additional optimization

variables. Thus, the proposed EMPFC scheme achieves the integration of path

optimization and path-following, resulting in a better economic performance for

the closed-loop system. Numerical experiments have been done to testify the

effectiveness of the proposed control scheme.
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Chapter 2

Kite Model Descriptions

Developing an accurate kite model is a very challenging task since its soft natural

leads to an easy deformation. The deformation of inflatable flexible wings affects the

orientation of the aerodynamic lift and drag forces, and thus affecting the motion of

the kite.

To overcome this challenge, various kite modeling methods have been proposed

in the literature. One realistic way to model the global dynamics and deformation

of kites is using a finite element model [47]. In a finite element model, the structure

and the physical material properties of kites are intrinsically included, hence the sys-

tem parameters can be directly obtained. Another simpler approach is using a rigid

body model [48–50]. In these models, the moments of inertial of kites or tethers are

included, hence deformations can be investigated. For example, Houska [49] superim-

poses bending of the arced shape of the kite as an additional state by introducing a

second order differential equation. Together with the three degrees of freedom (DoFs)

of the body, the three DoFs of the tether model and the two DoFs from the control

mechanism, he formulates a 9-DoF kite model.

The above-mentioned models can describe the dynamics of kites realistically to

some extend. However, from a control perspective, an overly complicated model is

not necessarily required. A simple model helps us to understand the basic laws that

govern the movement of the kite, in order to do preliminary analysis of trajectory

optimizations and system performances. Moreover, it allows us to implement compu-

tationally demanding controllers such as optimization-based controllers.

In this chapter, we introduce a point-mass kite model [9] where the motion is in-

fluenced by controlling the roll angle and the angle of attack, and thus the orientation

of the lift and drag forces can be changed. Three different coordinate systems are
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introduced and the detailed derivation of each force acting on the kite is given. In

addition, the applied wind shear model is introduced.

2.1 A Point-mass Kite Model

One simple way to model a kite is using a point-mass kite model. In 2001, Moritz

Diehl firstly proposed a nonlinear point-mass model of kites on the basis of Newton’s

law of motion [30]. Under the assumption that the effective wind speed vector is

always contained in kite’s symmetry plane, which is reasonable when kite is flying

in crosswind condition, the direction of the aerodynamic forces can be determined

by the effective wind speed, roll angle of the kite ψ (also the only input variable)

and the angle of attack α. Based on this model, a more accurate kite model was

developed considering aerodynamic forces and gravity of cables [9]. Furthermore, the

elasticity and the internal friction of cables were additionally considered to model the

kite [23, 31]. These point-mass models may not be very accurate since they neglect

the flexibility and moments of inertial of kites. Nevertheless, they are appropriate to

be used for controller design and system performance evaluation.

In this section, we introduce a point-mass kite model [9] considering the effect of

cables (gravity and aerodynamic forces). To begin with, three coordinate systems are

introduced in order to easily describe the motion and the orientation of the tethered

kite moving on a spherical plane. These coordinate systems are listed as follows:

• Global Coordinate (G): An inertial Cartesian coordinate system is defined by

(x, y, z) whose origin is located at the ground station of the kite system. A basis

of this coordinate system is (~ex, ~ey, ~ez) where ~ex is aligned with the nominal wind

speed and ~p is the position of the kite center of mass, as shown in Figure 2.1.

• Local Coordinate (L): The local coordinate system is a non-inertial spherical

coordinate system defined by (θ, φ, r) whose origin is located at the kite center

of mass. A basis of this coordinate system is (~eθ, ~eφ, ~er) (shown in Figure 2.1,

red frame).

• Body Coordinate (B): The body coordinate system is a non-inertial Cartesian

coordinate system to describe the orientation of the kite. A basis of this coor-

dinate system is (~xb, ~yb, ~zb) where ~xb coincides with the kite longitudinal axis

pointing forward, ~yb coincides with the kite transversal axis pointing from the
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left to the right wing tip (looking from behind), together with the third unit

vector ~zb completes a right-handed coordinate system.

Figure 2.1: Illustration of the kite coordinate systems.

2.1.1 Newton’s Law of Motion in Spherical Coordinates

The rotation matrix from the local coordinate to the global coordinate is given by

RLG =

− sin(θ) cos(φ) − sin(φ) − cos(θ) cos(φ)

− sin(θ) sin(φ) cos(φ) − cos(θ) sin(φ)

cos(θ) 0 − sin(θ)

 = (~eθ, ~eφ, ~er). (2.1)

The position of the point-mass of the kite can be expressed by local coordinates

(θ, φ, r)

~p{G} =

xy
z

 = r

cos(θ) cos(φ)

cos(θ) sin(φ)

sin(θ)

 . (2.2)

From the Newton’s law of motion, we obtained

~̈p =
d2~p

dt2
=

~F

m
,
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where ~F ∈ R3 is the total force acting on the kite and m is the mass of the kite.

From (2.1) and (2.2), the partial derivatives of ~p with respect to θ, φ, r can be

expressed in the basis of local coordinate

∂~p

∂θ
= r~eθ,

∂~p

∂φ
= r cos(θ)~eφ,

∂~p

∂r
= −~er.

Hence, ~̇p can be obtained in local coordinate

~̇p{L} =
∂~p

∂θ
θ̇ +

∂~p

∂φ
φ̇+

∂~p

∂r
ṙ =

 rθ̇

rφ̇ cos(θ)

−ṙ

 . (2.3)

Similarly, second partial derivatives of ~p are given by

∂2~p

∂θ2
= r~er,

∂2~p

∂φ2
= r sin(θ) cos(θ)~eθ + r cos2(θ)~er,

∂2~p

∂r2
= 0,

and

∂2~p

∂θ∂φ
= −r sin(θ)~eφ,

∂2~p

∂θ∂r
= ~eθ,

∂2~p

∂φ∂r
= cos(θ)~eφ.

Then, we have ~̈p in local coordinate:

~̈p{L} =
d

dt

(
∂~p

∂θ
θ̇ +

∂~p

∂φ
φ̇+

∂~p

∂r
ṙ

)
=
∂2~p

∂θ2
θ̇2 +

∂2~p

∂φ2
φ̇2 +

∂2~p

∂r2
ṙ2 + 2

∂2~p

∂θ∂φ
θ̇φ̇+ 2

∂2~p

∂θ∂r
θ̇ṙ + 2

∂2~p

∂φ∂r
φ̇ṙ

+
∂~p

∂θ
θ̈ +

∂~p

∂φ
φ̈+

∂~p

∂r
r̈

=

 rθ̈ + rφ̇2 sin(θ) cos(θ) + 2ṙθ̇

rφ̈ cos(θ)− 2rθ̇φ̇ sin(θ) + 2ṙφ̇ cos(θ)

−r̈ + rθ̇2 + rφ̇2 cos2(θ)

 =
~F{L}
m

, (2.4)

where ~F{L} denotes the overall force acting on the kite in the local coordinate system.
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2.1.2 Overall Gravity Force

There are two parts of gravity forces affecting the behavior of the kite system and we

evaluate them at the kite center of the mass. The first one is the weight of kite which

can be obtained directly. The second one is the contribution of the weight of cables

Fc,grav, which can be computed by using the equivalent torque equation around the

point where the cables are attached to the ground generator. Assuming the gravity

of each cable is applied at half of its length, we have

Fc,gravr cos(θ) = 2× 1

2
r cos(θ)

ρcπd
2
cr

4
g,

where ρc is the density of cables, dc is the diameter of each cable and g is the gravi-

tational acceleration. Then, we can obtain the magnitude of the overall gravity force

and by using the rotation matrix (2.1), the overall gravity force ~Fgrav is given in local

coordinate as follows

~Fgrav{L} =


−
(
m+ ρcπd2cr

4

)
g cos(θ)

0(
m+ ρcπd2cr

4

)
g sin(θ)

 . (2.5)

2.1.3 Aerodynamic Force of the Kite

The aerodynamic force of the kite ~Faer depends on the apparent wind speed vector

~va and the roll angle ψ of the kite. The apparent wind speed is the relative velocity

of the wind with respect to the kite and can be expressed by:

~va = ~vw − ~̇p,

where ~vw is the absolute wind speed and the kite speed ~̇p can be obtained in (2.3).

Similarly to the aforementioned body coordinate system, now we define the wind

coordinate system (~xw, ~yw, ~zw) for the convenience of describing the aerodynamic

forces. Briefly speaking, it is an non-inertial coordinate system with origin located

at the kite’s center of mass, with basis vector ~xw pointing towards the apparent wind

speed, ~zw contained in the kite symmetry plane and pointing towards the top side of

the kite, and ~yw completing the right-handed coordinate system (see [9] for a more
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detailed illustration). Basis vector ~xw can be obtained in the local coordinate:

~xw =
~va{L}∥∥~va{L}∥∥ . (2.6)

Assuming that the kite’s trailing edge is always pulled by the tail into the direction

of the apparent wind vector, i.e., basis vector ~xw and ~zw are always contained in the

kite symmetry plane. Note that this assumption also indicates that vector ~yw coincides

with ~yb pointing from the left to the right wing tip (looking from behind).

In [30], by introducing three requirements that ~yw is perpendicular to ~xw, that its

projection on the ~er equals sin(ψ) and that the kite is always in the same orientation

with respect to cables, ~yw can be uniquely determined. Following along this line, we

can derive ~yw in our setup:

~yw = ~ew(cos(ψ) sin(η))− (~er × ~ew) cos(ψ) cos(η) + ~er · sin(ψ), (2.7)

where ~ew is the unit vector of apparent wind speed vector projecting onto the tangent

plane spanned by ~eθ and ~eφ:

~ew =
~va − ~er(~er · ~va)
‖~va − ~er(~er · ~va)‖

,

and

η = arcsin (tan(∆α) tan(ψ)) , ∆α = arcsin

(
−~er · ~va
‖~va‖

)
.

Here ∆α is the angle between the apparent wind speed and the tangent plane at

the kite’s position. Roll angle of kite ψ is the control input which influences the kite

motion by changing the direction of aerodynamic force ~Faer{L}. The magnitudes of

lift and drag force of the kite are respectively given by:

FL =
1

2
ρACL ‖~va‖2 , FD =

1

2
ρACD ‖~va‖2 , (2.8)

where ρ is the air density, A is the characteristic area of the kite, CL and CD are

the kite lift and drag coefficients, respectively. Note that we assume CL and CD to

be constant, since the kite angle of attack α is almost a constant during the traction

phase (around 13◦). During the traction phase, an appropriate regulating mechanism

and the massive aerodynamic force help to keep α in a low value thus the kite glider
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ratio CL
CD

is large and huge traction force is generated.

By combing (2.6),(2.7) and (2.8), we obtain the aerodynamic force of the kite
~Faer{L} as follows:

~Faer{L} = FD~xw + FL~zw, (2.9)

where the wind basis vector ~zw = ~xw × ~yw.

2.1.4 Aerodynamic Force of Cables

Aerodynamic force of cables generally decreases the apparent wind speed and slows

the kite down. The effect of this force reduces the efficiency of the system and cannot

be neglected especially with long tethers. According to [9,23], this drag force can be

estimated by integrating the angular momentum along the cables. Since the apparent

wind speed at each line segment is mainly determined by the motion of the kite and

cables, we assume it is proportional to the distance from the ground generator. Then

we obtain the overall angular momentum ~Mc of two cables:

~Mc = 2

∫ r

0

(s~er) ×
1

2
ρCD,cdc cos(∆α)

(
s|~va|
r

)2

~xw ds

=2r~er ×
1

8
ρCD,cdc cos(∆α)|~va|2~xw

=r~er × ~Faer,c ,

where ρ is the air density, CD,c is the drag force coefficient of cables and ~Faer,c is

the estimated cable drag force. Note that the effective area of two cables equals

2rdc cos(∆α) which is the projection of the cable front area on the plane perpendicular

to the apparent wind vector (see Figure 2.2).
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Figure 2.2: Illustration of effective front area of cables [9].

Then, the estimated cable drag force can be expressed by

~Faer,c{L} =
1

4
ρCD,crdc cos(∆α)|~va|2~xw. (2.10)

In (2.10), the magnitude of ~Faer,c{L} grows linearly with cables length r. Thus the

aerodynamic force of cables can not be neglected for the kite system with long tethers

(e.g. 500-1000m).

2.1.5 Wind Shear Model

Employing a realistic wind speed profile along z-axis is crucial in numerical experi-

ments. First of all, the absolute wind speed ~vw greatly affects the system behavior,

such as the generated power, the force acting on cables and the closed-loop trajec-

tory. Secondly, one of the main advantages of kite generators over conventional wind

turbines is its capability to access a more constant and denser wind power. Thus, a

realistic wind model helps us to evaluate the economic performance of kite systems

accurately and makes the obtained results more convincing.
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There has been many wind models proposed in the past years. In this thesis, we

employ the wind shear model in the form of logarithmic function [51] to describe the

nominal wind speed along x-axis vx(z):

vx(z) = v0

ln
(
z
z0

)
ln
(
zr
z0

)
where zr and v0 are the reference height and the corresponding reference wind speed,

respectively. z0 is the surface roughness length [52] which is used to characterize the

roughness factor of the considered terrain. Actually, for a given wind speed data set,

these parameters can be computed using least square approximation.

Then, the absolute wind speed vector is given in the ground coordinate system:

~vw{G} =

vx(z)

0

0

+ ~vt, (2.11)

where ~vt is the unknown wind turbulence in the ground coordinate system, which

may have components in all directions. In chapter 4, we will give a more detailed

description of the applied wind model.

2.1.6 Overall Kite Model

The total force acting on the kite ~F{L} in (2.4) is given by

~F{L} = ~Fgrav{L} + ~Faer{L} + ~Faer,c{L} +

 0

0

Ftrac

 , (2.12)

where Ftrac is the traction force on cables.

By introducing the reference reeling out speed ṙref (t), the traction force Ftrac can

be regarded as a control input such that limt→∞ ṙ(t)− ṙref (t) = 0.

Consider the first-order system:

r̈ − r̈ref = −
~F{L}r
m
− r̈ref ,
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where ~F{L}r denotes the third component of vector ~F{L} in the local coordinate.

During the traction phase, ṙref is chosen to be constant or changes very slow, and

thus r̈ref can be treated as small disturbance and ṙ − ṙref converges to zero if

−
~F{L}r
m

= K(ṙ − ṙref ), K ≤ 0,

where k is the feedback gain. Then we have

Ftrac = −(~Fgrav{L}r + ~Faer{L}r + ~Faer,c{L}r)−mK(ṙ − ṙref ). (2.13)

By combining equation (2.4)-(2.13), we can obtain the overall kite model:

ẋ(t) =



θ̇

φ̇

ṙ
~F{L}θ
rm
− φ̇2 sin(θ) cos(θ)− 2 ṙ

r
θ̇

~F{L}φ
rm cos(θ)

+ 2θ̇φ̇ tan(θ)− 2 ṙ
r
φ̇

−
~F{L}r
m

+ rθ̇2 + rφ̇2 cos2(θ)


=f(x(t), u(t), ~vw(t), ṙref (t)),

where x = [θ φ r θ̇ φ̇ ṙ] is the state vector and u = ψ is the control input, ~F{L}θ

and ~F{L}φ are the second and third component of the overall force ~F{L}, respectively.
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Chapter 3

Economic Model Predictive

Path-following Control

In this chapter we give the formualtion and the stability analysis of the proposed con-

trol scheme: economic model predictive path-following control (EMPFC). To begin

with, we consider the case of sampled-data EMPC for set-point stabilization problems

which is an extended version of traditional MPC (e.g., [53] and [54]) using a general

economic cost. Sufficient conditions of stability are given. In Section 3.2 we study

the output path-following problems considering economic performance. The proposed

EMPFC scheme achieves better economic performance with guaranteed convergence

to the optimal operation on the output reference path. At the end of the chapter,

an example of a fully actuated robot is given to demonstrate the effectiveness of the

proposed control scheme.

3.1 EMPC for Set-point Stabilization Problems

In [43], the stability of EMPC for nonlinear discrete-time system is proved under the

assumption of strong duality of the steady-state problem. In [44], the assumption

of strong duality is relaxed by using dissipativity. In fact, it has been shown that

dissipativity is a sufficient condition for characterizing the optimality of steady-state

operation. Hence, it plays an important role in establishing stability of EMPC. In

essence, this assumption guarantees that the optimal operation with respect to the

give economic cost is at the optimal steady state.

In this section, we firstly give an extended definition of dissipativity for continuous-
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time systems. Then, we show that this definition of “continuous dissipativity” is

applicable in a simple linear system. Finally, sufficient convergence conditions of

sampled-data EMPC for set-point stabilization problems are given.

3.1.1 Dissipativity for Continuous-time System

To begin with, we consider a continuous time, constrained system

ẋ(t) = f(x(t), u(t)) (3.1)

where states x are restricted to the simply connected and closed set X ⊆ Rnx . The

input signal is a piecewise continuous function with values in the compact set U ⊂ Rnu ,

i.e. input signal u(·) ∈ PC(U) (ensure the system has an absolutely continuous

solution).

The optimal steady state is defined by

(xs, us) = arg min{`(x, u)|x ∈ X , u ∈ U , f(x, u) = 0}

where `(x, u) is a general economic cost. For the simplicity, we assume the optimal

steady state (xs, us) to be unique.

Definition 1 (Dissipativity for continuous time system).

For all x ∈ X and u ∈ U , if there exists a differentiable function (storage function)

S : Rnx → R such that

∂S

∂x
f(x, u) ≤ `(x, u)− `(xs, us), (3.2)

then system(3.1) is dissipative with respect to the stage cost function `(·, ·).

If moreover a positive definite continuous function ρ : X → R≥0 exists such that

∂S

∂x
f(x, u) ≤ `(x, u)− `(xs, us)− ρ(x), (3.3)

then system(3.1) is said to be strictly dissipative.

Remark 1. The dissipation inequality (3.2) ensures that the increasing rate of the

storage function ∂S
∂x
f(x, u) cannot exceed the supply rate `(x, u)− `(xs, us). It is easy

to show that strict dissipativity is a sufficient and necessary condition for the rotated
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stage cost function L(x, u) := `(x, u) − ∂S
∂x
f(x, u) − `(xs, us) to be positive definite

on X × U with respect to (xs, us). This rotated stage cost function will be used to

construct an auxiliary cost function later.

Next, we show that this assumption of “continuous dissipativity” is indeed appli-

cable by the following example.

Example 1. Consider the following continuous-time linear system:

ẋ = (1− α)(−x+ u)

where α ∈ [0, 1) is a parameter to be determined later. Consider the non-convex cost

function

`(x, u) = (x+
u

3
)(2u− x) + (x− u)4.

Regardless α, the system admits equilibrium points on x = u, hence

`(x, u)|x=u =
4

3
u2.

So, the optimal steady-state is (xs, us) = (0, 0), and `(xs, us) = 0. However, point

(0, 0) is not a global minimum of `(x, u). In fact, `(·, ·) has two global minima of

(x, u) = ±(21
√

6
64
, 7
√

6
192

) and (0, 0) is a saddle-point which can be visualized in Figure

3.1. Obviously, `(x, u) is not positive definite with respect to (xs, us).

Next, we show that S(x) = kx2 is a candidate storage function for dissipativity.

From (3.2), strict dissipativity holds if there exists k and ε ≥ 0 such that

(x+
u

3
)(2u− x) + (x− u)4 − 2kx(1− α)(−x+ u) ≥ εx2

⇐ (x+
u

3
)(2u− x)− 2kx(1− α)(−x+ u) ≥ εx2

⇔

[
−1 + 2k(1− α) 5

6
− k(1− α)

5
6
− k(1− α) 2

3

]
is PD,

which can be satisfied when α = 0.3, k = 1.5.
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Figure 3.1: Non-positive definite cost function `(·, ·).

In fact, if we define the rotated stage cost function by

L(x, u) =`(x, u)− `(xs, us)−
∂S

∂x
ẋ

=(x+
u

3
)(2u− x) + (x− u)4 − 2kx(1− α)(−x+ u),

the strict dissipativity ensures that this rotated stage cost function is positive definite,

cf. Figure 3.2.

Hence, we conclude that indeed some systems are strictly dissipative with respect

to some `(·), even though `(·) is not positive definite.
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Figure 3.2: Positive definite rotated stage cost function L(·, ·), when α = 0.3,
k = 1.5.

3.1.2 Apply Dissipativity to Stability Analysis

First of all, we introduce the overall formulation of the proposed sampled-data EMPC

scheme. Here, the sampled-data setting for continuous-time systems is similar to the

ones studied in [53], [54]. The stage cost function we applied here is a general economic

stage cost.

With a constant sampling period δ, at each sampling time tk = t0 + k · δ, k ∈ Z+, the
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following open-loop optimal control problem (OCP) is solved repeatedly

min
u(·)∈PC(U)

J(x(tk), x(·), u(·)) =

∫ tk+Tp

tk

`(x(τ), u(τ))dτ + Vf (x(tk + Tp)) (3.4a)

s.t. ẋ(τ) = f(x(τ), u(τ)) (3.4b)

x(tk) = x(tk) (3.4c)

x(τ) ∈ X (3.4d)

u(τ) ∈ U (3.4e)

x(tk + Tp) ∈ Xf . (3.4f)

Here, x̄ and ū indicate the predicted values which are not necessarily same as the

system real evolutions. ` : X ×U → R is a general economic cost function. Vf : Xf →
R and the set Xf is the terminal cost function and the terminal region, respectively,

which are used to guarantee the feasibility and stability. Tp = N · δ is the prediction

horizon, where N is a positive integer. At each sampling time tk, we do the prediction

of the system behavior over the horizon [tk, tk + Tp], and the optimal solution of the

optimization problem (3.4) is denoted by ū∗(·, x(tk)) over the time span [tk, tk + Tp].

Then, the following input profile is applied to the system (3.1)

u∗k(t) = u∗(t, x(tk)), t ∈ [tk, tk + δ], (3.5)

while the remaining part of the ū∗(·, x(tk)) is discarded. At next sampling time tk+1,

the new states vector is available and this procedure is repeated.

Additionally, we suppose the solution to system (3.1) from any initial states x(t0) ∈ X ,

driven by an piecewise continuous and right continuous input signal u(·) ∈ PC(U)

uniquely exists for any t ≥ t0, which is denoted by x(t, x(t0)|u(·)).
Next, we construct an auxiliary OCP and show that it is equivalent to the original

OCP (3.4). The rotated stage cost and rotated terminal cost for the auxiliary problem

are defined by

L(x, u) := `(x, u)− ∂S

∂x
f(x, u)− `(xs, us) (3.6)

Ṽf (x) := Vf (x) + S(x)− Vf (xs)− S(xs) (3.7)
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Then, the auxiliary cost function is

J̃(x(tk), x(·), u(·)) =

∫ tk+Tp

tk

L(x(τ), u(τ))dτ + Ṽf (x(tk + Tp)). (3.8)

By using (3.8) as the objective function, together with the constraints (3.4b)-(3.4f),

the auxiliary OCP can be defined.

Now, we make assumptions as follows.

Assumption 1 (Input and state constraints): The input signal u(·) is piecewise

continuous and right continuous with values in a compact set U ⊂ Rnu with us ∈ U ,

i.e. u(·) ∈ PC(U). The state constraint set X ⊆ Rnx is closed and simply connected

with xs ∈ X .

Assumption 2 (System dynamics): Function f : X × U → Rnx in system (3.1) is

Lipschitz continuous on X × U .

Assumption 3 (Continuity of system evolution): For any x0 ∈ X0 and any input

function u(·) ∈ PC(U), the system (3.1) has an absolutely continuous solution.

Assumption 4 (Cost function): The stage cost function ` : X × U → R is contin-

uous. The terminal cost function Vf : Xf → R is continuously differentiable in x and

the terminal region Xf ⊂ X is closed.

Assumption 5 (Strictly dissipativity): A differentiable storage function S : Rnx →
R and a continuous positive definite function ρ : X → R≥0 exist such that

∂S

∂x
f(x, u) ≤ `(x, u)− `(xs, us)− ρ(x− xs), (3.9)

for all x ∈ X and u ∈ U .

Lemma 1: If the assumption of strict dissipativity (3.9) holds, then the rotated

stage cost (3.6) is lower bounded by a class κ function β(||x − xs||) on X × U and

L(xs, us) = 0.

Proof. L(xs, us) = 0 can be directly obtained. In strict dissipation inequality

(3.3), the positive definite function ρ : X → R≥0 denotes that ρ(x − xs) ≥ 0 for all

x ∈ X\{xs} and ρ(0) = 0. Hence, there exists a class κ function β(·) such that

ρ(x− xs) ≥ β(||x− xs||), ∀x ∈ X .
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From (3.6), we have

L(x, u) = `(x, u)− ∂S

∂x
f(x, u)− `(xs, us)

≥ ρ(x− xs) ≥ β(||x− xs||), ∀(x, u) ∈ X × U .

Lemma 2: The auxiliary OCP using objective function (3.8) and the original OCP

(3.4) share identical solutions.

Proof. The auxiliary cost function is

J̃(x(tk), x(·), u(·)) =

∫ tk+Tp

tk

L(x(τ), u(τ))dτ + Ṽf (x(tk + Tp))

=

∫ tk+Tp

tk

`(x(τ), u(τ))dτ − S(x(tk + Tp)) + S(x(tk))− `(xs, us) · Tp

+ Vf (x(tk + Tp)) + S(x(tk + Tp))− Vf (xs)− S(xs)

=J(x(tk), x(·), u(·)) + C,

where C is a constant which equals to S(x(tk))−`(xs, us) ·Tp−Vf (xs)−S(xs). Due to

the same constraints in the auxiliary OCP and the original OCP, they share identical

solutions.

Lemma 3: Given a control input u ∈ U , the pair (Ṽf (·), L(·, ·)) satisfies

∂Ṽf
∂x

f(x, u) + L(x, u) ≤ 0 ∀x ∈ Xf ,

if and only if (Vf (·), `(·, ·)) satisfies the following condition

∂Vf
∂x

f(x, u) + `(x, u)− `(xs, us) ≤ 0 ∀x ∈ Xf .

Proof. Using the definition of rotated stage cost (3.6) and rotated terminal cost

(3.7), we have

∂Vf
∂x

f(x, u) + `(x, u)− `(xs, us) ≤ 0

⇔ (
∂Vf
∂x

+
∂S

∂x
)f(x, u)− ∂S

∂x
f(x, u) + `(x, u)− `(xs, us) ≤ 0

⇔ ∂Ṽf
∂x

f(x, u) + L(x, u) ≤ 0
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Theorem 1 (Convergence of EMPC for regulation problems).

Given system (3.1) and sampling period δ ≥ 0, assume Assumptions 1 − 5 hold.

Moreover, a terminal region Xf , a terminal penalty Vf and a region of attraction X0

exist such that the following conditions hold:

i. The optimization problem (3.4) is feasible for all x0 ∈ X0.

ii. For all x(t) ∈ Xf , there exists a scalar δ+ ≥ δ > 0 and a control signal uf (·) ∈
PC(U) such that for all τ ∈ [t, t+ δ+]

∂Vf
∂x

f(x(τ, x(t)|uf (·)), uf (τ)) + `(x(τ, x(t)|uf (·)), uf (τ))− `(xs, us) ≤ 0, (3.10)

and the trajectory always stays in terminal region, i.e., x(τ, x(t)|uf (·)) ∈ Xf .

Then, the optimization problem (3.1) is feasible for all sampling time tk = t0 + kδ,

k ∈ N and the closed-loop system resulting from EMPC strategy is asymptotically

stable in the sense that limt→∞ ||x(t)− xs|| = 0.

Proof. From lemma 3, we know that the stability condition (3.10) is equivalent to

that of the auxiliary problem using rotated stage cost (3.6) and rotated terminal cost

(3.7). Then, the second condition in Theorem 1 is equivalent to:

For all x(t) ∈ Xf there exists a scalar δ+ ≥ δ > 0 and a control signal uf (·) ∈ PC(U)

such that for all τ ∈ [t, t+ δ+]

∂Ṽf
∂x

f(x(τ, x(t)|uf (·)), uf (τ)) + L(x(τ, x(t)|uf (·)), uf (τ)) ≤ 0, (3.11)

and the trajectory always stays in terminal region Xf .
From Lemma 1, we know that Assumption 5 (strict dissipativity) ensures the rotated

stage cost L(·, ·) is lower bounded by a class κ function β(||x − xs||) over X × U .

Together with Lemma 2 and condition (3.11), Theorem 1 is equivalent to the following

rotated theorem:

Given system (3.1) and sampling period δ ≥ 0, assume Assumptions 1 − 4 hold. In

addition, the rotated stage cost L(·, ·) is lower bounded by a class κ function β(||x−
xs||) over X ×U . Moreover, a terminal region Xf , a terminal penalty Vf and a region

of attraction X0 exist such that the following conditions hold:

i. Replacing (3.4a) by the rotated stage cost function (3.8), the corresponding auxiliary

OCP is feasible for all x0 ∈ X0.

ii. For all x(t) ∈ Xf , there exists a scalar δ+ ≥ δ > 0 and a control signal uf (·) ∈
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PC(U) such that for all τ ∈ [t, t+ δ+]

∂Ṽf
∂x

f(x(τ, x(t)|uf (·)), uf (τ)) + L(x(τ, x(t)|uf (·)), uf (τ)) ≤ 0,

and the trajectory always stays in terminal region, i.e., x(τ, x(t)|uf (·)) ∈ Xf .

Then, the auxiliary optimization problem is feasible for all sampling time tk = t0 +

kδ, k ∈ N, and the closed-loop system is asymptotically stable in the sense that

limt→∞ ||x(t)− xs|| = 0.

This rotated theorem, with the auxiliary OCP using (3.8), positive definite rotated

stage cost (3.6) and condition (3.11), has been proven in existing literatures (e.g.,

[54]—Theorem 3, [55]—Theorem 2.1).

Remark 2. Dissipation condition (3.9) can be verified by constructing the following

optimization problem

D = max
S(·)

min
(x,u)∈X×U

L(x, u). (3.12)

If D = 0, the system is dissipative. Furthermore, if L(x, u) = 0 holds if and only

if (x, u) = (xs, us), the system is strictly dissipative. Normally, we choose a storage

function S(x) in linear or quadratic form. In the case of linear storage function, the

dissipation condition (3.2) becomes strong duality condition which is widely used in

the context of infinite horizon optimal control, cf. [56]. The procedure for checking

dissipativity would be further demonstrated in the example of a fully actuated robot in

Section 3.2.4.

3.2 EMPC for Output Path-following Problems

In last section, we discuss EMPC for regulation problems which is an extended version

of traditional MPC (e.g., [53] and [54]) in a sampled-data setting for continuous-

time systems using economic cost. While most results of EMPC are in discrete-time

(e.g., [43], [44] and [57]), we focus on continuous-time systems in order to have a

more insightful discussion of path-following problems. In this section, we start with

defining the output path-following problems with economic consideration. Then, we

describe the formulation of the proposed EMPFC scheme followed by giving sufficient

convergence conditions. Finally, an example of a fully actuated 2-DoF robot is given

to illustrate the proposed control scheme. The simulation results show that under the

proposed EMPFC scheme, the robot can follow along the reference path in forward
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direction with enhanced economic performance, and finally converges to its optimal

steady state.

3.2.1 The Path-Following Problems with Economic Enhance-

ment

We consider the nonlinear system as follows

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t)),
(3.13)

where x ∈ X and u ∈ U are states and inputs subject to state constraints and input

constraints correspondingly.

The reference path is defined in output space

P = {p̄ ∈ Rny |p̄ = p(θ), θ ∈ [θ0, θm]} (3.14)

where the function p : R → Rny is continuously differentiable, and θ is the path

evolution variable. The time evolution of θ(t) is not necessarily to be known a priori,

and hence the forward speed on the reference path can be treated as an additional

degree of freedom. Note that θm can be replaced by +∞ when we consider a infinitely

long or periodic reference path.

The forward speed on the reference path is determined by a virtual dynamics of

θ. For simplicity, we use an integrator chain to describe the virtual path dynamics

ż = g(z, v) = Az +Bv, z(t0) = z0 ∈ Rr̂+1

θ = Cz
(3.15)

where z is the path evolution vector representing each derivative of θ; r̂ is the value

of the largest component in vector relative degree of (3.13) (see [55] for a detailed

definition); v is a virtual input controlling the forward motion on the reference path,

and

A =

[
0r̂×1 Ir̂×r̂

0 01×r̂

]
, B = [0, · · · , 0, 1]T ∈ Rr̂+1

C = [1, 0, · · · , 0] ∈ R1×(r̂+1).
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We use Z and V to denote the state constraints and input constraints of the

virtual system, respectively. By combining the original system (3.13) with the virtual

system (3.15), we obtain the augmented system

ξ̇ =

[
ẋ

ż

]
=

[
f(x, u)

g(z, v)

]
= fξ(ξ, ω)

e = h(x)− p(Cz) = h̃(ξ),

(3.16)

where ξ = (xT, zT)T ∈ Rnx+r̂+1 and ω = (uT, vT)T ∈ Rnu+1 are the augmented states

and inputs respectively. Furthermore, we define the constraints for the augmented

system to be ξ ∈ Ξ := X × Z and ω ∈ Ω := U × V . The constraint for the error

vector can then be defined by E := {h̃(ξ)|ξ ∈ Ξ}.
Then the output path-following problems (OPFP) with economic enhancement for

constrained system (3.13) can be defined to design a controller such that the following

requirements are satisfied.

1. Path Convergence: The output error e = h(x)− p(θ) converges to zero, i.e.,

limt→∞ ||e(t)|| = 0.

2. Forward Motion: The system follows the path P in the direction of θ̇ ≥ 0.

3. Constraint Satisfaction: The system constraints x ∈ X and u ∈ U are

always satisfied.

4. Economic Enhancement: The closed-loop trajectory is suboptimal with re-

spect to a predefined economic cost while the above three requirements are sat-

isfied.

For this output PF problems with economic consideration, our first priority is to

guarantee the path convergence. Then, among all solutions that are asymptotically

convergent in the output space, we want to find the best solution regarding economic

performance. Hence, in the fourth requirement, we only require the closed-loop tra-

jectory to be suboptimal and the economic enhancement is regarded as the secondary

task in this problem.

3.2.2 Economic Model Predictive Path-Following Control

Now, we present our EMPC scheme to tackle the PF problems with economic consid-

eration. The formulation of our control scheme is very similar to the one used in [58],
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but the stage cost function here is a general economic cost. Hence, the convergence

analysis is different.

The cost function to be minimized at each sampling time is

J(ξ(tk), e(·), ξ(·), ω(·)) =

∫ tk+Tp

tk

`(e(τ), ξ(τ), ω(τ))dτ

+ Vf (ξ(tk + Tp)),

(3.17)

where ` : E ×Ξ×Ω→ R is a general economic stage cost, Vf : Ξf → R is the terminal

cost. In order to account for the economic performance in state space, augmented

state vector ξ is considered in the economic cost `(·, ·, ·).
Consider a constant sampling period δ, at each sampling time tk = t0 + k · δ,

k ∈ Z+, the following OCP is solved repeatedly

min
ω(·)∈PC(Ω)

J(ξ(tk), e(·), ξ(·), ω(·)) (3.18a)

s.t. ξ̇(τ) = fξ(ξ(τ), ω(τ)), ξ(tk) = ξ(tk) (3.18b)

e(τ) = h̃(ξ(τ)) (3.18c)

ξ(τ) ∈ Ξ (3.18d)

ω(τ) ∈ Ω (3.18e)

ξ(tk + Tp) ∈ Ξf ⊂ Ξ. (3.18f)

At the first sampling time t0, the initial condition for the virtual dynamics can be

obtained by

θ(t0) = arg min
θ∈[θ0,0]

||h(x(t0))− p(θ)||,

z(t0) = (θ(t0), 0, · · · , 0)T.

(3.19)

At the following sampling time tk = t0 + k · δ, k ∈ Z+, the initial states for

the virtual dynamics z(tk) are exactly the predicted value at time tk from the last

open-loop OCP, since there is no model mismatch or disturbance in the virtual system

(3.15). Then, the minimizer of (3.18) can be obtained, which is denoted by ω̄∗(·, ξ(tk))
over the prediction horizon [tk, tk+Tp]. Similar to Section 3.1.2, only the first sampling

period t ∈ [tk, tk + δ] of ω̄∗(·, ξ(tk)) is applied to the system (3.13) and the virtual

system (3.15). The remaining part of ω̄∗(·, ξ(tk)) is discarded.
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In order to ensure the forward motion along P , the states for the augmented

system (3.16) are additionally constrained in

Ξ = {X × [θ0, θm]× [0,+∞)× Rr̂−1} ⊂ Rnx+r̂+1. (3.20)

We want to guarantee that the closed-loop trajectory converges to the reference

path in the output space, besides we want the closed-loop trajectory bounded in the

state space (not necessarily convergent) to achieve a better economic performance.

Hence, in (3.17), the stage cost function ` is only assumed to be dissipative in the

output space, while the terminal cost Vf and the terminal region Ξf are defined in

state space to ensure a bounded closed-loop state trajectory. Compared to OCPs for

regulation problems in Section 3.1.2, these OCPs (3.18) additionally involves optimal

evolutions of the virtual system, i.e., the optimal speed assignment on the reference

path. Note that the terminal cost Vf in (3.17) is not necessarily positive definite.

However, to satisfy the stability conditions we present in next section, we usually

choose a positive definite terminal cost.

3.2.3 Convergence Analysis

The augmented error system is defined by

ζ̇ =

[
ė

ż

]
=

[
∂h
∂x
f(x, u)− ∂p

∂z1
ż1

g(z, v)

]
:= fζ(ξ, ω), (3.21)

where ζ = (eT, zT)T ∈ Rny+r̂+1, ξ and ω is defined in (3.16).

Obviously, the mapping from ξ to ζ can be defined by

ζ =

[
h(x)− p(Cz)

z

]
:= ĥ(ξ). (3.22)

The constraints mapping to the augmented error space can be obtained by

Γ = {ĥ(ξ)|ξ ∈ Ξ}, (3.23)

where ĥ(·) is from (3.22).

Before introducing the optimal steady state for the output path-following prob-

lems, we define a set in ξ-space (steady state set). For a given pair (ζ, ω) ∈ Γ × Ω,
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the steady state set is defined as follows:

Ξs(ζ, ω) := {ξ|ĥ(ξ) = ζ, fζ(ξ, ω) ≡ 0, ξ ∈ Ξ}. (3.24)

Here, fζ(ξ, ω) ≡ 0 ensures that ∀ξ ∈ Ξs(ζ, ω), (ζ, ω) is an equilibrium in the aug-

mented error space, i.e., for all ξ(t) ∈ Ξs(ζ, ω), and τ ≥ t

fζ(ξ(τ, ξ(t)|ω), ω) = 0.

It follows that (3.24) is a positive invariant set under the constant input signal ω.

Note that in (3.24), ξ itself is not necessarily an equilibrium.

Suppose that the economic cost function in (3.17) is chosen such that the optimal

steady state (ζs, ωs) is at the origin of the error space and the corresponding steady

state set Ξs(ζs, ωs) is not empty. Then, the following optimization problem

min
ξ,ω

`(e, ξ, ω)

s.t. ξ ∈ Ξs(ζ, ω)

h̃(ξ) = 0

ω ∈ Ω,

(3.25)

has the solution in the form of (ζs, ωs) = ([01×ny , θs,0
1×r̂]T, ωs), and ξs ∈ Ξ∗s(ζs, ωs) ⊆

Ξs(ζs, ωs). We assume the first part of the solution (ζs, ωs) uniquely existed and

Ξs(ζs, ωs) is not empty. For simplicity, the solution of (3.25) is expressed by

Σ∗(ζs, ωs) = {(ζ, ω, ξ)|ζ = ζs, ω = ωs, ξ ∈ Ξ∗s(ζs, ωs)}, (3.26)

which defines the optimal steady state set of (3.16) with respect the stage cost function

in (3.17). Note that the element in Σ∗(ζs, ωs) is not necessarily a global minimizer of

` over E × Ξ × Ω. In essence, Σ∗(ζs, ωs) indicates that (ζs, ωs) is the optimal steady

state in ζ-space, and the augmented state vector ξ is confined in a set (or manifold),

i.e., ξ ∈ Ξ∗s(ζs, ωs). According to (3.24)-(3.25), Σ∗(ζs, ωs) is a positive invariant set

under ωs which ensures the invariance of the optimality. Since we want to guarantee

the convergence to the output reference path, the economic cost function is chosen

such that Σ∗(ζs, ωs) is at the origin of the error space, i.e., on the reference path.

Remark 3. The optimal operation defined by (3.25)-(3.26) means to find the op-
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timal path parameter θs and the corresponding ωs that keeps the system staying at

the optimal point on the reference path. This optimal operation is not necessarily

an equilibrium in the state space but its projection in the output space is an equilib-

rium. Actually, the optimal operation of ξ(·) and ω(·) can be functions of time if

only the convergence to the output reference path is required. However, we assume

a constant ωs and define a steady state set Ξs(ζs, ωs) for simplicity of the stability

analysis. Assuming without loss of generality θs = 0, consequently ζs = 0. In the

following discussions, we assume the optimal steady state to be Σ∗(0, ωs) and (3.25)

admits a unique solution for the pair (0, ωs).

Remark 4. The optimal steady state set Σ∗(ζs, ωs) can be generalized from optimal

steady state defined in state space (cf. [43, 44]). If the output vector is defined to be

same as the state vector, the invariant set Σ∗(ζs, ωs) becomes the unique solution ξs in

state space, and the output path-following problem becomes state space path-following

problem.

Since Σ∗(0, ωs) is the solution of (3.25), substituting any element in Σ∗(0, ωs) to

the stage cost function, we obtain an unique optimal value

`s(0, ωs) =`(e, ξ, ω)|(ζ,ξ,ω)∈Σ∗(0,ωs)

=`(0, ξ, ωs)|ξ∈Ξ∗s(0,ωs).

Definition 2 (Strict Dissipativity for output path-following problems).

If there exist a continuously differentiable storage function S : Γ→ R and a positive

definite continuous function ρ : Γ→ R≥0 such that

∂S

∂ζ
fζ(ξ, ω) ≤ `(e, ξ, ω)− `s(0, ωs)− ρ(ζ), (3.27)

for all ξ ∈ Ξ and ω ∈ Ω, then the augmented error system (3.21) is strictly dissipative

with respect to the supply rate function: `(e, ξ, ω)− `s(0, ωs).

For simplicity, we use the augmented state vector ξ to express the stage cost

function
˜̀(ξ, ω) := `(h̃(ξ), ξ, ω) = `(e, ξ, ω), (3.28)

in which ˜̀ : Ξ× Ω→ R is reformulated from the economic cost `.

Similarly to Section 3.1.2, we construct an auxiliary OCP from OCP (3.18). The



43

rotated stage cost and rotated terminal cost are defined to be

L(ξ, ω) := ˜̀(ξ, ω)− ∂S

∂ζ
fζ(ξ, ω)− `s(0, ωs) (3.29)

Ṽf (ξ) := Vf (ξ) + S(ĥ(ξ))− S(0). (3.30)

Then, the auxiliary cost function is

J̃(ξ(tk), ξ(·), ω(·)) =

∫ tk+Tp

tk

L(ξ(τ), ω(τ))dτ

+ Ṽf (ξ(tk + Tp)).

(3.31)

The auxiliary OCP of (3.18) is obtained by

min
ω(·)∈PC(Ω)

J̃(ξ(tk), ξ(·), ω(·)) (3.32a)

subject to

ξ̇(τ) = fξ(ξ(τ), ω(τ)), ξ(tk) = ξ(tk) (3.32b)

ξ(τ) ∈ Ξ (3.32c)

ω(τ) ∈ Ω (3.32d)

ξ(tk + Tp) ∈ Ξf . (3.32e)

Compared to OCP (3.18), the constraint (3.18c) is removed since it is inherently

included when constructing (3.28)-(3.30). In fact, these constraints (3.32b)-(3.32e) in

the auxiliary OCP can be replaced by (3.18b)-(3.18f) and vice versa.

Now, we give the following assumptions.

Assumption 6 (Input and state constraints): For the augmented error system

(3.21), the input signal ω(·) is piecewise continuous and right continuous with values

in a compact set Ω ⊂ Rnu+1, i.e., ω(·) ∈ PC(Ω). The constraint Γ ⊆ Rny+r̂+1 is closed

and simply connected.

Assumption 7 (System dynamics): Function f : X × U → Rnx in system (3.13)

is Lipschitz continuous on X × U . The output mapping h : Rnx → Rny in (3.13) is

continuously differentiable.

Assumption 8 (Continuity of system evolution): For any initial ζ0 ∈ Γ and any

input function ω(·) ∈ PC(Ω), the augmented error system (3.21) has an absolutely
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continuous solution.

Assumption 9 (Cost function): The stage cost function ` : E × Ξ × Ω → R is

continuous. The terminal cost function Vf : Ξf → R is continuously differentiable

and the terminal region Ξf is closed.

Assumption 10 (Admissible reference path): The reference path in (3.14) is con-

tained in the interior of the state constraints X under output mapping h : Rnx → Rny

in (3.13), that is, P ⊆ int(h(X )). In addition, the function p̄ : R → Rny in (3.14) is

continuously differentiable.

Assumption 11 (Strictly dissipativity): The assumption of strict dissipativity de-

fined in Definition 2 is satisfied.

Lemma 4: If the assumption of strict dissipativity (3.27) holds, then the rotated

stage cost (3.29) is lower bounded by a class κ function βζ(||ζ||) over Ξ × Ω and

L(ξ, ωs) = 0, ∀ξ ∈ Ξ∗s(0, ωs).

Proof. From (3.26), (3.28) and (3.29), we have

L(ξ, ωs) = `(0, ξ, ωs)−
∂S

∂ζ
fζ(ξ, ωs)− `s(0, ωs)

= 0, ∀ξ ∈ Ξ∗s(0, ωs)

In strict dissipation inequality (3.27), the positive definite function ρ : Γ → R≥0

denotes that there exists a class κ function βζ(·) such that

ρ(ζ) ≥ βζ(||ζ||), ∀ζ ∈ Γ.

From (3.27)-(3.29), we have

L(ξ, ω) = ˜̀(ξ, ω)− ∂S

∂ζ
fζ(ξ, ω)− `s(0, ωs)

= `(e, ξ, ω)− ∂S

∂ζ
fζ(ξ, ω)− `s(0, ωs)

≥ ρ(ζ) ≥ βζ(||ζ||), ∀(ξ, ω) ∈ Ξ× Ω.

Lemma 5: The auxiliary OCP (3.32) and OCP (3.18) share identical solutions.
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Proof. The auxiliary cost function is

J̃(ξ(tk), ξ(·), ω(·))

=

∫ tk+Tp

tk

L(ξ(τ), ω(τ))dτ + Ṽf (ξ(tk + Tp))

=

∫ tk+Tp

tk

˜̀(ξ(τ), ω(τ))dτ − S(ζ(tk + Tp)) + S(ζ(tk))− `s(0, ωs) · Tp

+ Vf (ξ(tk + Tp)) + S(ĥ(ξ(tk + Tp)))− S(0)

=

∫ tk+Tp

tk

`(e(τ), ξ(τ), ω(τ))dτ + Vf (ξ(tk + Tp)) + C

=J(ξ(tk), e(·), ξ(·), ω(·)) + C,

where C is a constant which equals to S(ζ(tk)) − `s(0, ωs) · Tp − S(0). As disscused

previously, the constraints (3.32b)-(3.32e) are equivalent to (3.18b)-(3.18f). Hence,

OCP (3.32) and OCP (3.18) share identical solutions.

Lemma 6: Given ∀ω ∈ Ω, the pair (Ṽf (·), L(·, ·)) satisfies

Ṽf
∂ξ
fξ(ξ, ω) + L(ξ, ω) ≤ 0 ∀ξ ∈ Ξf ,

if and only if (Vf (·), `(·, ·, ·)) satisfies the following condition

∂Vf
∂ξ

fξ(ξ, ω) + `(e, ξ, ω)− `s(0, ωs) ≤ 0 ∀ξ ∈ Ξf .

Proof. We firstly calculate the time derivative of the storage function S : Γ→ R in

(3.27). Since S(ζ) = S(ĥ(ξ)), we have

Ṡ =
∂S

∂ζ
fζ(ξ, ω) =

∂S

∂ĥ

∂ĥ

∂ξ
fξ(ξ, ω).

Using definitions of the rotated stage cost (3.29) and the rotated terminal cost (3.30),
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we have

∂Vf
∂ξ

fξ(ξ, ω) + `(e, ξ, ω)− `s(0, ωs)

=
∂Vf
∂ξ

fξ(ξ, ω) +
∂S

∂ζ
fζ(ξ, ω)− ∂S

∂ζ
fζ(ξ, ω) + `(e, ξ, ω)− `s(0, ωs)

=
∂Vf
∂ξ

fξ(ξ, ω) +
∂S

∂ĥ

∂ĥ

∂ξ
fξ(ξ, ω)− ∂S

∂ζ
fζ(ξ, ω) + ˜̀(ξ, ω)− `s(0, ωs)

=
Ṽf
∂ξ
fξ(ξ, ω) + L(ξ, ω).

Since the constraints of these two inequalities are consistent, Q.E.D..

Theorem 2 (Convergence of EMPC for output path-following problems).

Given system (3.13) and sampling period δ ≥ 0, assume Assumptions 6 − 11 hold.

Suppose the following conditions hold:

i. The optimization problems (3.18) and (3.19) have feasible solutions at the initial

time t0.

ii. A terminal region Ξf and a terminal cost function Vf : Ξf → R exist such that

for all ξ(t) ∈ Ξf there exists a scalar δ+ ≥ δ > 0 and a control signal ωf (·) ∈ PC(Ω)

such that for all τ ∈ [t, t+ δ+]

∂Vf
∂ξ

fξ(ξ(τ, ξ(t)|ωf (·)), ωf (τ))

+ `(e(τ, e(t)|ωf (·)), ξ(τ, ξ(t)|ωf (·)), ωf (τ))− `s(0, ωs) ≤ 0,

(3.33)

and the closed loop trajectory always stays in terminal region, i.e., ξ(τ, ξ(t)|ωf (·)) ∈
Ξf .

Then, the optimization problem (3.18) is feasible for all sampling time tk = t0 + kδ,

k ∈ N and the closed-loop system resulting from EMPFC strategy based on (3.18)

is asymptotically convergent to the output reference path P (3.14) in the sense that

limt→∞ ||e(t)|| = 0, and the system moves along P in forward direction and finally

converges to its optimal steady set, i.e., θ̇(t) ≥ 0 and limt→∞ θ(t)− θs = 0.

Proof. We firstly show that Theorem 2 is equivalent to a rotated theorem. Lemma

6 shows the stability condition (3.33) is equivalent to the following inequality using
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rotated stage cost (3.29) and rotated terminal cost (3.30)

∂Ṽf
∂ξ

fξ(ξ(τ, ξ(t)|ωf (·)), ωf (τ)) + L(e(τ, e(t)|ωf (·)), ξ(τ, ξ(t)|ωf (·)), ωf (τ)) ≤ 0. (3.34)

From Lemma 4, we know that Assumption 11 (strict dissipativity) ensures the rotated

stage cost (3.29) is lower bounded by a class κ function β(||ζ||) over ξ × ω. Together

with Lemma 5 and condition (3.34), Theorem 2 is equivalent to the following rotated

theorem:

Given system (3.13) and sampling period δ ≥ 0, assume Assumptions 6 − 10 hold.

Moreover, the rotated stage cost (3.29) is lower bounded by a class κ function β(||ζ||)
over ξ × ω. Suppose the following conditions hold:

i. The optimization problems (3.32) and (3.19) have feasible solutions at the initial

time t0.

ii. A terminal region Ξf and a terminal cost function Vf : Ξf → R exist such that

for all ξ(t) ∈ Ξf there exists a scalar δ+ ≥ δ > 0 and a control signal ωf (·) ∈ PC(Ω)

such that for all τ ∈ [t, t+ δ+]

∂Ṽf
∂ξ

fξ(ξ(τ, ξ(t)|ωf (·)), ωf (τ)) + L(e(τ, e(t)|ωf (·)), ξ(τ, ξ(t)|ωf (·)), ωf (τ)) ≤ 0,

and the closed-loop trajectory always stays in terminal region, i.e., ξ(τ, ξ(t)|ωf (·)) ∈
Ξf .

Then, the optimization problem (3.32) is feasible for all sampling time tk = t0 + kδ,

k ∈ N and the closed-loop system based on (3.32) is asymptotically convergent to the

output reference path P (3.14) in the sense that limt→∞ ||e(t)|| = 0, and the system

moves along P in forward direction and finally converges to its optimal steady set,

i.e., θ̇(t) ≥ 0 and limt→∞ θ(t)− θs = 0.

For this rotated theorem, the proofs can be obtained by a reformulation of continuous-

time NMPC for set-point stabilization problems (e.g., [54]). The reformulation is

directly achieved by constructing the augmented error system (3.21).

Following along lines of [54], the upper bound of the piecewise “MPC value func-

tion” can be obtained by

V δ(t, ξ(t)) ≤ V δ(t0, ξ(t0))−
∫ t

t0

βζ(||ζ(τ)− ζs||)dτ,
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where V δ(·, ·) is the remainder of the value function for each sampling period t ∈
[tk, tk+1) (see [54] for detailed definition). Here, we only require the rotated stage

cost (3.29) to be lower bounded by a class κ function of the augmented error vector

ζ, not the state vector ξ. Hence, the application of Barbalat’s Lemma only leads to

the convergence of ζ to ζs, i.e., limt→∞ ζ(t) − ζs = 0. Furthermore, (3.26) ensures

that the economic stage cost is chosen such that the optimal steady state (ζs, ωs) =

([01×ny , θs,0
1×r̂]T, ωs). It then follows that limt→∞ ||e(t)|| = 0 and limt→∞ θ(t)− θs =

0. Finally, with the choice of state constraints Ξ (3.20) and Ξf ⊂ Ξ, the forward

motion of the closed-loop system θ̇(t) ≥ 0 can be guaranteed.

3.2.4 An Illustrating Example: Path-following Control of a

Robot

In this section, we consider a fully actuated robot with 2-DoF. We firstly propose an

economic stage cost function and show the corresponding optimal steady state is in

the form of (3.26). Then, the assumption of dissipativity is satisfied by introducing

the storage function S(ζ) in a quadratic form. Finally, the design of the terminal

region and terminal cost is given. Using the proposed EMPFC scheme, the robot

can economically converge to the reference path and finally stay at its optimal steady

state on the reference path. Simulation results are given to show the effectiveness of

the proposed control scheme.

The system dynamics is[
ẋ1

ẋ2

]
=

[
ẋ2

B−1(x1)(u− C(x1, x2)x2 − g(x1))

]
y = x1

yca = hca(x1),

(3.35)

where x1 = (q1, q2)T ∈ R2 and x2 = (q̇1, q̇2)T ∈ R2 are the vector of joint angles

and joint velocities, respectively; B : R2 → R2×2 describes the inertia of the robot;

C : R4 → R2×2 describes the centrifugal and Coriolis forces; g : R2 → R2 represents

the effect of gravity; the output y = x1 is defined in the space of joint angles x1 and

the output yca = hca(x1) is the position of the end effector in Cartesian coordinates.

For all x1 ∈ R2, the matrix B is invertible, and C and g are bounded. The terms
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B,C, g, hca are listed as follows

B(q) =

[
b1 + b2 cos(q2) b3 + b4 cos(q2)

b3 + b4 cos(q2) b5

]

C(q, q̇) = −c1 sin(q2)

[
q̇1 q̇1 + q̇2

−q̇1 0

]

g(q) =

[
g1 cos(q1) + g2 cos(q1 + q2)

g2 cos(q1 + q2)

]

hca(q) =

[
l1 cos(q1) + l2 cos(q1 + q2)

l1 sin(q1) + l2 sin(q1 + q2)

]
.

The state and input constraints of (3.35) are

U = {u ∈ R2 | ‖u‖∞ ≤ ū}

X = {x = (x1, x2)T ∈ R4 | ‖x2‖∞ ≤ ¯̇q},
(3.36)

where ū = 4000 [Nm] and ¯̇q = 1.5π [rad/s].

Table 3.1 shows the system parameters. The details of this model can be found

in [59].

Table 3.1:
System parameters of the robot (3.35).

b1 200.0 [kg m2/rad] b2 50.0 [kg m2/rad]
b3 23.5 [kg m2/rad] b4 25.0 [kg m2/rad]
b5 122.5 [kg m2/rad] c1 -25.0 [Nms−2]
g1 784.8 [Nm] g2 245.3 [Nm]
l1 0.5 [m] l2 0.5 [m]

For the reference path, we refer to [58]. The reference path is given by

P =

{
p̄ ∈ R2|p̄ = p(θ) =

[
θ − π

3

ω1 sin(ω2 sin(θ − π
3
))

]
, θ ∈ [θ0, 0]

}
, (3.37)

where θ0 = −5.3, ω1 = 5, ω2 = 0.6. Then the output error e = y − p(θ).



50

Similarly to (3.21), the augmented error system can be represented in the form of

ζ̇ =

[
ζ̇e

ζ̇z

]
=

[
Ae 04×2

02×4 Az

][
ζe

ζz

]
+

[
Be 04×1

02×2 Bz

][
uFL − p̈(z1)

v

]
, (3.38)

where ζe = (eT, ėT)T ∈ R4, ζz = (z1, z2)T = (θ, θ̇)T ∈ R2, v is the virtual input of

the path evolution dynamics, uFL ∈ R2 is the input after feedback linearization of

(3.35), that is uFL = B−1(x1)(u− C(x1, x2)x2 − g(x1)), and p̈(z1) = ∂2p
∂2z1

z2
2 + ∂p

∂z1
v is

the second derivative of p(·) with respect to time. Here, the feedback linearization of

(3.35) leads to ẋ2 = uFL. The system matrices of (3.38) are listed as follows

Ae =

[
02×2 I2×2

02×2 02×2

]
, Az =

[
0 1

0 0

]
, Be =

[
0 0 1 0

0 0 0 1

]T

, Bz =

[
0

1

]
.

It is easy to compute the vector relative degree of (3.35) r̂ = 2 [58]. Since we

apply a piecewise continuous input v, it is unnecessary to choose a path dynamics as

described in (3.15). Here, we choose an integrator chain of length two as the path

dynamics, i.e., the ζz-dynamics in (3.38). The constraints for the path dynamics are

Z = {(z1, z2)|z1 ∈ [−5.3, 0], z2 ∈ [0, 6]} and V = {v|v ∈ [−50, 50]}.

Economic stage cost function

The economic stage cost function is consisted of two parts as follows:

`(ζ, ω) = ||(e, ė, z1, z2)||2Q + ||(u− ũ, v)||2R + βz1z
2
2 , (3.39)

where ω = (uT, v)T, Q = diag([105, 105, 10, 10, 5, 0.8]), R = diag([10−6, 10−6, 10−4]),

β = 3, and ũ = [229.5,−162.9]T = g(p(0)) is the torque required to keep the ma-

nipulator staying at its finial position p(0) (also the optimal steady state). Here,

the first two terms penalize the deviation of the system to its optimal steady state,

and contribute to convergence of the system. The third term, i.e., βz1z
2
2 , accounts

for the economic performance. This term evaluates the forward speed of two joints

on the reference path, but the value of this term is decreasing to zero as the system

approaches to the optimal steady state.
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Optimal steady state

We show that the optimal steady state of (3.38) with respect to (3.39) is in the form

of (3.26).

By solving the following optimization problem

min
ζ,ω

`(ζ, ω)

s.t. ζ̇ = 0[
ζ1

ζ2

]
= x1 − p(z1),

[
ζ3

ζ4

]
= x2 −

∂p

∂z1

z2

ζ5 = z1, ζ6 = z2

x ∈ X , z ∈ Z, ω ∈ (U × V),

the optimal steady state can be obtained, that is

(ζs, ωs) = (06×1, [ũT, 0]T). (3.40)

Obviously, (3.39) is not positive definite with respect to (ζs, ωs). We want to show

that the system can economically converge to its optimal steady state with choice of

(3.39) and appropriately designed terminal region and terminal cost, which will be

discussed later.

Checking dissipativity

Then we show that (3.38) and (3.39) satisfy the dissipativity assumption with respect

to pair (ζs, ωs).

Consider a storage function in quadratic form: S(ζ) = λ1ζ
2
1 +λ2ζ

2
2 +λ3ζ

2
3 +λ4ζ

2
4 +

λ5ζ
2
5 + λ6ζ

2
6 . Combining (3.38)-(3.40), the rotated stage cost is given by

L(ζ, ω) =`(ζ, ω)− ∂S

∂ζ
ζ̇ − `(ζs, ωs)

=||(e, ė, z1, z2)||2Q + ||(u− ũ, v)||2R + βz1z
2
2 − 2λ1ζ1ζ3 − 2λ2ζ2ζ4

− [2λ3ζ3, 2λ4ζ4]

(
B−1(x1)(u− C(x1, x2)x2 − g(x1))− ∂2p

∂2ζ5

ζ2
6 −

∂p

∂ζ5

v

)
− 2λ5ζ5ζ6 − 2λ6ζ6v − 0.
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Clearly, x1 =

[
ζ1

ζ2

]
+ p(ζ5) and x2 =

[
ζ3

ζ4

]
+ ∂p

∂ζ5
ζ6.

Then, the dissipativity condition can be verified by solving the following optimiza-

tion problem (cf. Remark 2)

max
λ∈R6

min
ζ,ω

L(ζ, ω)

s.t.

∥∥∥∥∥
[
ζ3

ζ4

]
+
∂p

∂ζ5

ζ6

∥∥∥∥∥
∞

≤ 3

2
π[

ζ5

ζ6

]
∈ Z, ω ∈ (U × V).

(3.41)

Note that the solution of (3.41) is not unique. For each optimal λ∗, there exists

the same minimizer of L(ζ, ω), that is (ζs, ωs).

Now, we give a candidate λ to examine the strict dissipativity of the system.

For λ = [0.9, 1.25, 0, 0, 8.2, 0]T, there exists a unique minimizer of L(ζ, ω), equals

(ζs, ωs), and L(ζs, ωs) = 0. Then, it directly follows that (3.38) and (3.39) are strictly

dissipative with respect to (ζs, ωs).

Design of terminal region and terminal cost

Then, we are ready to apply Theorem 2 to design the terminal region and terminal

cost such that the condition in (3.33) is satisfied. The design procedure can be referred

to [58] and we show that the obtained terminal region and terminal cost also satisfy

the stability condition in (3.33) using an economic stage cost function (3.39).

In (3.38), the dynamics of ζz can be handled independently since it is not influ-

enced by the dynamics of ζe. Hence, we firstly design the terminal region Zf for the

path evolution dynamics.

Consider a state feedback controller

vf = Kzζz, (3.42)

where Kz = (k1, k2). The closed-loop system is asymptotically stable if all the eigen-

values of Az +BzKz have negative real parts. Furthermore, to ensure the closed-loop

solution stays in Z = {(z1, z2)|z1 ∈ [−5.3, 0], z2 ∈ [0, 6]}, Az + BzKz should also

have real eigenvalues to avoid the system oscillating around the origin. Therefore, Kz

should be chosen such that Az + BzKz has two negative and real eigenvalues. This



53

can be achieved by choosing k1 and k2 satisfying

k1 ≤ 0, k2 ≤ 0, k2
2 + 4k1 > 0.

Besides, we need to ensure that Zf is positively invariant under the control law

vf = Kzζz. To this end, for all states ζz initiated at the boundary of Zf , the closed-

loop solution should points inside of Zf . In order to simplify the design of Zf , we

further bound z2 from above so that z2 ∈ [0, ¯̇θ]. Then, we obtain (see [58] for a

detailed explanation)

k1θ0 + k2
¯̇θ < 0, z2 ≤

k2 −
√
k2

2 + 4k1

2
z1. (3.43)

We set ¯̇θ = 0.4, and consequently a possible feedback gain could be Kz =

(−0.1,−1.33). Together with (3.43), the terminal region for ζz is given by

Zf = {(z1, z2)|z1 ∈ [−5.3, 0], z2 ∈ [0, 0.4], z2 ≤ −1.25z1}. (3.44)

It can be easily verified for all ζz ∈ Zf , vf = Kzζz ∈ V = {v|v ∈ [−50, 50]}.
For the ζe-part of the augmented error system in (3.38), we consider the linearized

input

uFL = −Keζe + p̈(z1) = −Keζe +
∂2p

∂2z1

z2
2 +

∂p

∂z1

v. (3.45)

The application of (3.45) to (3.38) leads to a closed-loop system governed by ζ̇e =

(Ae − BeKe)ζe. By substituting uFL = B−1(x1)(u − C(x1, x2)x2 − g(x1)) to (3.45),

we obtain the terminal control law for ζe-dynamics

uf = C(x1, x2)x2 + g(x1) +B(x1)(−Keζe + p̈(z1)). (3.46)

We want to find a terminal region Ef such that ∀x ∈ X , ζz ∈ Zf and ζe ∈ Ef ,
uf ∈ U . Here, we refer to [58] to find the normed upper bound of (3.46) and ensure

uf ∈ U by restricting ζe inside a level set of a Lyapunov function V (ζe). For all x ∈ X ,

we have

||B(x1)|| ≤ B̄ = 266.4, ||C(x1, x2)|| ≤ C̄ = 269.6, ||g(x1)|| ≤ ḡ = 1059.0. (3.47)
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Note that the reference path P is sufficiently smooth and Zf is compact. With the

application of vf = Kzζz, for all ζz ∈ Zf , we have

||p̈(z1)|| =
∥∥∥∥ ∂2p

∂2z1

z2
2 +

∂p

∂z1

vf

∥∥∥∥ ≤ ∥∥∥∥ ∂2p

∂2z1

∥∥∥∥ ¯̇θ2 +

∥∥∥∥ ∂p∂z1

∥∥∥∥∥∥∥k2
¯̇θ
∥∥∥ = ¯̈p = 1.47. (3.48)

In order to compute the normed upper bound of (3.46), we introduce the tightened

constraints transformed from (3.36):

Ū = {u ∈ R2 | ‖u‖ ≤ ū} ⊂ U

X̄ = {x = (x1, x2)T ∈ R4 | ‖x2‖ ≤ ¯̇q} ⊂ X ,

Then, it follows that ∀x ∈ X̄ ⊂ X and ζz ∈ Zf

‖uf‖ ≤ C̄ ¯̇q + ḡ + B̄(‖Ke‖ ‖ζe‖+ ¯̈p)

⇒ ‖ζe‖ ≥
‖uf‖ − C̄ ¯̇q − ḡ − B̄ ¯̈p

B̄ ‖Ke‖
.

Thus, if the following inequality holds

‖ζe‖ ≤
ū− C̄ ¯̇q − ḡ − B̄ ¯̈p

B̄ ‖Ke‖
, (3.49)

then ∀(x, ζz)T ∈ X̄ × Zf , ‖uf‖ ≤ ū, i.e., uf ∈ Ū ⊂ U .

Next step is to find a sub-level set of V (ζe) such that (3.49) holds. Since the

pair (Ae, Be) is stabilizable, the stabilizing feedback gain Ke and the corresponding

Lyapunov function V (ζe) can be obtained by LQR method with Q = I4×4, R = I2×2

Ke =

[
1 0 1.732 0

0 1 0 1.732

]

V (ζe) = ζT
e Peζe = ζT

e


1.732 0 1 0

0 1.732 0 1

1 0 1.732 0

0 1 0 1.732

 ζe.

Considering that

V (ζe) = ζT
e Peζe ≥ λmin(Pe) ‖ζe‖2 ,
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where λmin(Pe) is the smallest eigenvalue of Pe, it follows that

‖ζe‖ ≤
ū− C̄ ¯̇q − ḡ − B̄ ¯̈p

B̄ ‖Ke‖
∀ζe ∈

{
ζe ∈ R4|ζT

e Peζe ≤
(
ū− C̄ ¯̇q − ḡ − B̄ ¯̈p

B̄ ‖Ke‖

)2

λmin(Pe)

}
.

From (3.47)-(3.48), we have
(
ū−C̄ ¯̇q−ḡ−B̄ ¯̈p

B̄‖Ke‖

)2

λmin(Pe) = 2.42 × 0.732 = 4.21.

Together with (3.44), the overall terminal region mapping to (x, z) coordinates is

given by

Ξf = {(x, z) ∈ R6|ζT
e Peζe ≤ 4.21, z ∈ Zf} ⊂ X × Z, (3.50)

where ζe =

[
x1 − p(z1)

x2 − ∂p
∂z1
z2

]
.

Finally, we show that with the choice of (3.50), and the terminal control law (3.42)

and (3.46), the stability condition (3.33) of Theorem 2 is satisfied, even with terminal

cost function Vf (ζ) = 0.

Along the closed-loop solution in the terminal region Ξf under the control laws

(3.42) and (3.46), we have the following bounds

‖ζz‖ =
∥∥(z1, z2)T

∥∥ ≤ αze
−βzt, ‖vf‖ ≤ ‖Kz‖αze−βzt (3.51)

‖ζe‖ =
∥∥(eT, ėT)T

∥∥ ≤ αee
−βet (3.52)

‖uf − ũ‖ ≤ αue
−βut, (3.53)

where αz, αe, αu, βz, βe and βu are all positive scalers. For the linearized augmented

system (3.38), it is easy to see that the closed-loop system controlled by (3.42) and

(3.46), is exponentially stable. Thus, (3.51) and (3.52) can be obtained directly. The

explanation of upper bound for ‖uf − ũ‖ is more complicated. From (3.46), we have

‖uf − ũ‖ ≤ ‖C(x1, x2)x2‖+ ‖B(x1)(−Keζe + p̈(z1))‖+ ‖g(x1)− g(p(0))‖ .

The main idea is to find the exponential bounds of each term using the exponential

bounds of x1, x2 and p̈(z1). For the detailed derivation of (3.53), we refer to [58].

From (3.40), (3.51)-(3.53) and βz1z
2
2 ≤ 0, we can directly obtain the upper bound

of `(ζ, ω) (3.39) on Ξf along the closed-loop trajectories under control laws (3.42) and
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(3.46)

`(ζ(t), ω(t))− `(ζs, ωs) ≤ α`e
−β`t, a` ≥ 0, β` ≥ 0. (3.54)

Then, with a choice of a purely time dependent terminal cost Vf (t) = α`
β`
e−β`t, the

stability condition (3.33) of Theorem 2 is satisfied. Such a terminal cost function is not

influenced by the inputs computed by the OCPs (3.18), hence can be dropped during

the optimization. This implies that Vf (ζ) = 0 is an appropriate choice. Compared

to the similar example in [58], we do not require that `(ζ, ω) is positive definite

with respect to (ζs, ωs) and the economic performance can be enhanced while the

convergence to the optimal steady state on the reference path is guaranteed.

Remark 5. It is worth noting that (3.54) is satisfied no matter how large the value

of β is. However, the value of β is actually restricted, since it influences the optimal

steady state and the dissipativity property. In other words, as long as (3.40) is satisfied

and a storage function can be found to examine the dissipativity, the terminal region

(3.50) and the terminal cost Vf (ζ) = 0 can be employed to ensure the asymptotic

convergence of the closed-loop system.

Remark 6. If we consider the energy consumption of the manipulator as the economic

performance, the economic term could be β||u||2, then the overall economic stage cost

becomes

`(e, ξ, ω) = ||(e, ė, z1, z2)||2Q + ||(u− ũ, v)||2R + β||u||2, β > 0.

In this case, even the absolute value of β is very small, the optimal steady state (ζs, ωs)

is no longer at the origin of the augmented error system (3.21). However, we can still

examine the dissipativity property by constructing a rotated stage cost in the form of

(3.29), lower bounded by a class κ function βζ(||ζ − ζs||). Following along the lines of

the aforementioned discussion, we can design the corresponding terminal region and

the terminal cost to guarantee the stability and feasibility of the proposed EMPFC.

Simulation results

We firstly give simulation results without consideration of economic performance,

i.e., we set β = 0 in (3.39). Figure 3.3 shows the system evolution with initial

condition x(0) = [−6.35,−3.09, 0, 0]T. Specifically, Figure 3.3(a) shows the evolution
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of joint positions x1(t) and the reference positions p(z1(t)). Figure 3.3(b) illustrates

the evolution of joint velocities x2(t) and the reference velocities ∂p
∂z1

(t)z2(t). We

can see the joint positions and velocities achieve fast convergence to their reference,

respectively. Figure 3.3(c) records the evolution of input u(t). As expected, they

are all within the corresponding ranges of permitted values (||u||∞ ≤ 4000). Figure

3.3(d) shows the evolution of virtual state z1(t), z2(t) and the virtual input v(t).

It can be observed that the path evolution variable z1(t) converges to the optimal

position θs = 0 and the speed z2(t) ≥ 0 for all t ≥ 0.
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Figure 3.3: Closed-loop system evolution (β = 0).

The simulation results with economic consideration (β = 3) are shown in Figure

3.4 in a similar fashion. The initial condition is x(0) = [−6.35,−3.09, 0, 0]T. From

Figure 3.3(a) and Figure 3.3(b), we can see that the joint positions and velocities can

also converge to their reference in a short time, respectively. Compared to the results

with β = 0, the forward speed on the reference path is much larger and it takes 43.6%

less time for the system to arrive at its optimal steady state along the reference path

(in Figure 3.3(d) the reaching time is around 5.5s, while in Figure 3.4(d) it is around

3.1s).

Figure 3.5 and Figure 3.6 illustrate the path-following results with different ini-

tial conditions in output space and in cartesian coordinates (defined by (3.35)), re-
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Figure 3.4: Closed-loop system evolution (β = 3).

spectively. It can be observed that all the closed-loop trajectories converge to their

reference paths and finally reach the optimal steady state.

This illustrating example of the fully actuated robot suggests that the design of

a suitable economic stage cost function plays a key role in guaranteeing the stability

of EMPFC. First of all, the optimal steady state with respect to this cost function

should be in form of (3.26). Furthermore, this cost function should be chosen such

that the strict dissipativity assumption (3.27) is satisfied. Finally, the conditions of

Theorem 2 can be used to design the corresponding terminal region and terminal

cost. If all these conditions are satisfied, the closed-loop system under EMPFC is

asymptotically convergent to the optimal operation on the reference path, while the

economic performance is enhanced.

3.3 Conclusion

In this chapter, we study the constrained output path-following problem from an

EMPC perspective. To begin with, a sampled-data EMPC framework for set-point

stabilization problems is studied. An extended definition of dissipativity is introduced

for continuous-time systems, followed by giving sufficient stability conditions. Then,
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Figure 3.5: The path-following results with different initial positions (in output
space, β = 3).
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Figure 3.6: The path-following results with different initial positions (in cartesian
coordinates, β = 3).
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we propose the EMPFC scheme for output path-following problems. In order to en-

hance the economic performance with guaranteed convergence to an output reference

path, we define an optimal steady state set which actually achieves a relaxation of the

optimal operation. New dissipativity assumption is defined for output path-following

problems. Sufficient conditions that guarantee the convergence of the system to the

optimal operation on the reference path are derived. Finally, an example of a 2-DoF

robot shows that, the proposed EMPFC scheme achieves better economic perfor-

mance while the system can follow along the reference path in forward direction and

finally converges to its optimal steady state.
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Chapter 4

Economic Model Predictive

Path-following Control for Power

Kites

4.1 Introduction

4.1.1 Research Background and Contributions

Exploiting high altitude wind energy using power kites is an emerging topic in the field

of renewable energy [3]. The claimed advantages of power kites over traditional wind

power technologies are the lower construction costs, less land occupation and more

importantly, the possibility of efficiently harvesting wind energy at high altitudes,

where more dense and steady wind power exists [60,61].

As discussed in Chapter 2, a challenging issue for power kites to really foster its

industrial development is the controller design due to the fast and highly nonlinear

dynamics. Model predictive control (MPC) has been successfully implemented for

controlling power kites because it can optimize system performance and well respect

system constraints. In [32–34], standard (tracking) MPC is employed for kites to

track a time-dependent reference path. However, trajectory tracking may not be

appropriate for kite control due to varying wind speed and limited controllability of

the kite speed. In [8,9,35], economic model predictive control (EMPC) has also been

employed for kite controller design. These EMPC schemes are designed by using pure

economic cost functions associated with the generated power. Compared to [32–34],

these EMPCs adapt to a wider range of wind speed and intuitively result in better
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economic performance since the closed-loop trajectories are not limited to be periodic.

However, in these EMPC schemes, there is no closed-form expression of the reference

path. Therefore, the shape of closed-loop trajectories can not be adjusted directly

and it is difficult to analyze the stability.

As a novel contribution, in this chapter, we tackle output path-following problems

for kites from an EMPC perspective. The unknown wind conditions, limited control-

lability of the kite speed, and the objective of maximizing generated power motivate

us to employ the EMPFC scheme. In order to enhance economic performance under

unknown wind conditions, additional degrees of freedom are added to the predefined

optimal operation. In other words, the reference path is relaxed in an output space

and its speed assignment is not known a priori. We show the effectiveness of the

proposed control scheme in two aspects. For a static reference path, the economic

performance is enhanced while the kite is stabilized in the neighborhood of the refer-

ence path. For a dynamic reference path, the economic performance can be further

improved since parameters for the reference path are treated as additional optimiza-

tion variables. Therefore, an integration of path optimization and path-following is

accomplished.

The closed-loop stability of EMPFC has been studied in Chapter 3 using as-

sumptions of dissipativity and the existence of a local controller ensuring that the

augmented cost function is always decreasing along the corresponding closed-loop

trajectory. However, for the underactuated kite system, it is generally very hard

to find an appropriate economic cost satisfying these conditions. In fact, rigorous

asymptotic stability is not necessarily required for this application of kite control.

Alternatively, we use terminal constraints to ensure that the system economically

converges to the neighborhood of the output reference path. Inspired by [62], an eco-

nomic cost with a logistic cost function is adopted to achieve a trade-off between the

economic performance and the convergent performance. The economic performance

enhancement by using the newly proposed economic cost function is reported in sim-

ulation results, for both cases (static and dynamic reference path). The robustness

of the proposed control scheme is shown in the simulation results under considerable

wind turbulence.
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4.2 Chapter Organization

The remaining part of this chapter is organized as follows. In Section 4.2, the proposed

EMPFC scheme is applied to solve the output path-following problem for power kites

using a static reference path. Simulation results are given to show the economic

performance enhancement and the robustness of the EMPFC method. In Section 4.2,

we extend the EMPFC scheme to the case of using a dynamic reference path. Finally,

Section 4.4 gives conclusion of this chapter.

4.3 EMPFC with a Static Reference Path

4.3.1 Augmented Kite System

In Chapter 2, we obtain the kite model (during the traction phase) as follows:

ẋ(t) =



θ̇

φ̇

ṙ
~F{L}θ
rm
− φ̇2 sin(θ) cos(θ)− 2 ṙ

r
θ̇

~F{L}φ
rm cos(θ)

+ 2θ̇φ̇ tan(θ)− 2 ṙ
r
φ̇

−
~F{L}r
m

+ rθ̇2 + rφ̇2 cos2(θ)


=f(x(t), u(t), ~vw(t), ṙref (t)),

(4.1)

where x = [θ, φ, r, θ̇, φ̇, ṙ]T is the state vector, u = ψ is the control input, ~vw is the

absolute wind speed vector at the kite’s position and ṙref is the reference reeling out

speed of cables. We assume the state constraints to be X ⊆ R6 and the input signal

is a piecewise continuous and right continuous function with values in the compact

set U ⊂ R, i.e., input signal u(·) ∈ PC(U).

For simplicity, we assume a constant ṙref during the kite’s traction and ~vw is a

function of the altitude of the kite, i.e., ~vw(t) = ~vw(r(t) sin θ(t)). Then, the kite model

can be expressed by

ẋ(t) = f̃(x(t), u(t)). (4.2)
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The output of the kite system is simply defined in (θ, φ) space, i.e.,

h(x) =

[
θ

φ

]
. (4.3)

First of all, we obtain an admissible reference path in the output space. Note

that this reference path might not be optimal with respect to the generated power,

but it is an admissible figure-eight path with high wind power generation. Then we

use a lemniscate curve to approximate this reference path since a reference path with

closed-form expression is required to formulate the path-following problem.

The static reference path can be described as follows:

P = {p̄ ∈ Rny |p̄ = p(z), z ∈ [z0,+∞)}, (4.4)

where z is the path evolution vector, the function p : R → Rny is continuously

differentiable, and ny = 2 is the dimension of the output space of the system (4.1).

The time evolution of z(t) is not known a priori, hence the forward speed on the

reference path is an additional degree of freedom.

Here, we assume an admissible reference path P . Firstly, it satisfies assumption

10 in Section 3.2.3, i.e., the reference path in (4.4) is contained in the interior of the

state constraints X under output mapping h : R6 → R2, that is P ⊆ int(h(X )). In

addition, the curvature of reference path P is limited such that it can be followed

respecting the input constraints under the given wind condition.

The virtual dynamics of the path evolution variable is described by a single inte-

grator

ż = v, (4.5)

where v is the virtual input to control the forward speed.

Combining equation (4.2)-(4.5), we obtain the augmented kite system:

ξ̇ =

[
ẋ

ż

]
=

[
f̃(x, u)

v

]
= fξ(ξ, ω)

e = h(x)− p(z) = h̃(ξ),

(4.6)

where ξ = [θ, φ, r, θ̇, φ̇, ṙ, z]T is the augmented state vector, ω = [ψ, v]T is the input for
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the augmented system, and h̃ : R7 → R2. The output error e ∈ R2 can be interpreted

as the output of the augmented system.

The state constraint for the augmented system is given by ξ ∈ Ξ = X × [z0,+∞).

Then the output constraint can be defined by E := {h̃(ξ)|ξ ∈ Ξ}. In order to

ensure the forward motion along P , the input ω is additionally confined such that

ω(·) ∈ PC(Ω), where Ω = U × [0,+∞).

4.3.2 The EMPFC Formulation

The employed EMPFC scheme is based on what we proposed in section 3.2.2. The

cost function to be minimized at each sampling time is

J(ξ(tk), e(·), ξ(·)) =

∫ tk+Tp

tk

`(e(τ), ξ(τ))dτ + Vf (e(tk + Tp)), (4.7)

where ` : E ×Ξ→ R is a general economic cost; Vf : Ef → R is the terminal cost and

Ef ⊂ E is the terminal region; e and ξ indicate the predicted values which are not

necessarily same as the system real evolutions; Tp = N · δ is the prediction horizon.

In order to account for the economic performance in state space, the augmented state

vector ξ is considered in the economic stage cost `(·, ·).
Consider a constant sampling period δ, at each sampling time tk = t0 + k · δ,

k ∈ N, the following OCP is solved repeatedly

min
ω(·)∈PC(Ω)

J(ξ(tk), e(·), ξ(·)) (4.8a)

s.t. ξ̇(τ) = fξ(ξ(τ), ω(τ)), ξ(tk) = ξ(tk) (4.8b)

e(τ) = h̃(ξ(τ)) (4.8c)

ξ(τ) ∈ Ξ (4.8d)

ω(τ) ∈ Ω (4.8e)

e(tk + Tp) ∈ Ef ⊂ E . (4.8f)

At each sampling time tk, we do the prediction of the system behavior over the

horizon [tk, tk + Tp] and the optimal solution of the optimization problem (4.8) is

denoted by ω̄∗(·, ξ(tk)) over the time span [tk, tk + Tp]. Then, only the first sampling

period of the optimal input profile ω̄∗(·, ξ(tk)) is applied to the augmented system
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(4.6), i.e., the closed-loop control signal ω∗(·) is

ω∗(t) = ω∗(t, ξ(tk)), t ∈ [tk, tk + δ], (4.9)

where ω̄∗(·, ξ(tk)) over the time span (tk + δ, tk + Tp] is discarded. At next sampling

time tk+1, the new states vector is available and this procedure is repeated.

At the first sampling time t0, the initial condition for the virtual dynamics can be

obtained by

z(t0) = arg min
z∈[z0,+∞]

||h(x(t0))− p(z)|| (4.10)

At the following sampling time tk = t0 + k · δ, k ∈ Z+, the initial state for the

virtual dynamics z(tk) is exactly the predicted value at time tk from the last open

loop OCP, since there is no model mismatch or disturbance in the virtual system

(4.5).

Unlike the standard MPC, the stage cost function in (4.7) is a general economic

cost, i.e., `(·, ·) is not necessary to be positive definite with respect to the output

error e. This function should be appropriately chosen so that the trade-off between

the economic performance and the stability can be accomplished.

4.3.3 Economic Cost with a Logistic Function

We give a candidate economic cost with a logistic function to assign appropriate

weights to two objectives, i.e., the path convergence and the economic performance.

The economic performance is chosen as the generated power in the form of

hg(ξ) = −Ftrac(x, vw, ṙref )ṙ. (4.11)

Here, Ftrac from (2.13) is the traction force on cables to compensate other forces and

regulate the reeling out speed ṙ to the desired value ṙref . We add the minus sign in

order to maximize the term Ftrac · ṙ by solving the minimization problem.

Then, the economic stage cost function in (4.7) is given by

`(e, ξ) = α(ε)||e||2Q + (1− α(ε))ηhg(ξ), (4.12)

where Q > 0 is the weighting matrix, α(·) is the designed function to assign weights to
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two objectives, and η ≥ 0 is a tunning term to make two objectives have comparable

values. Note that we do not consider the input ω in (4.12), because it is hard to

predefine the reference input along output reference path P . Here, α(·) is obtained

according to the logistic function

α(ε) =
1

1 + exp(−βε)
, (4.13)

where ε = ||e||2Q and β ≥ 0 is the tuning parameter to control the change rate of

the function. Note that the logistic function (4.13) is smooth and monotonic, and

α(ε) ∈ [0.5, 1) for ∀ε ≥ 0. Since the objective is to enhance the economic performance

in the neighborhood of reference path, i.e., the path convergence is a prior objective,

it turns out that (4.13) is an appropriate choice.

Choosing an appropriate economic cost accomplishing the trade-off between the

economic performance and the convergent performance, is generally not an easy task.

It is worth noting that if the system and the economic cost are satisfied with the dis-

sipative property [44] and the convergence conditions in Theorem 2, both transient

performance and zero-error performance with respect to the economic criteria can be

improved with guaranteed stability. However, both the assumption of dissipativity

and the convergence conditions are hard to be verified due to the high nonlinearity

and underactuation of the kite system. Here, we give a heuristic economic cost (4.12)

aiming to improve the performance when the system is stabilized in the neighbor-

hood of the reference path, and show the economic performance enhancement in the

simulation results.

4.3.4 Simulation Results

In this section, we present simulation results of the kite to follow a static reference path

using EMPFC. The numerical implementation of our continuous EMPFC scheme is

based on sampled-data manner. The OCP (4.8) in the sampled-data setting is solved

by using the sequential quadratic programming algorithm [63] of Matlab function

fmincon.

Parameter Selection

1. Model Parameters

m = 50 [kg], A = 100 [m2], dc = 0.025 [m], ρc = 970 [kg/m3], ρ = 1.2 [kg/m3],
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g = 9.8 [N/kg], CL = 1.2, CD = 0.15, CD,c = 1, ṙref = 2 [m/s], the local

controller gain K = −3.33.

Nominal wind shear model along x axis: vx = (0.015(r sin(θ)−100)+12) [m/s].

State constraints: θ ∈ [0.03π, 0.5π), φ ∈ (−0.5π, 0.5π).

Input constraints: Ω = {(u, v)|u ∈ [−0.07, 0.07], v ∈ [0, 1.6π]}.

2. Reference Path

The static reference path P (4.4) is defined by

p(z) =

arcsin
(
a1 sin(2z)

R

)
+ θa

arcsin
(
a2 cos(z)

R

)  , (4.14)

where θa is the average θ angle of the reference path, a1, a2 and R affect the

shape and size of the figure-eight reference path. θa = 0.45 [rad], a1 = 15,

a2 = 21 and R = 500.

3. EMPFC setup

δ = 0.1[sec], N=10, Q = diag([2, 1]), η = 10−7.

The terminal penalty Vf (e) = ||e||2Qf , where Qf = diag([0.2, 0.1]).

The terminal constraint Ef = {e|eTPe ≤ 0.01}, where P = diag([1, 1]).

Initial state ξ0 = [0.2π; 0; 500;−0.08;−0.08; 0; 0.5π]T.

EMPFC with a Static Reference Path

For a static reference path, we give the kite path-following results with different β

values. We find that the closed-loop trajectories converge to the reference path with

a large value of β (β ≥ 400). When β ≤ 400, the kite can still be stabilized in the

neighborhood of the reference path and the economic performance is improved.

Figure 4.1 shows the closed-loop trajectory with β = 400. As seen, the closed-loop

trajectory converges to the reference path successfully with a large initial error. Figure

4.2 records the closed-loop system evolution with β = 400. Specifically, Figure 4.2(a)

records the path-following error; Figure 4.2(b) and Figure 4.2(c) show the evolution

for control inputs. As expected, they are all within the corresponding ranges of

permitted values (Input constraints: Ω = {(u, v)|u ∈ [−0.07, 0.07], v ∈ [0, 1.6π]}).
Figure 4.2(d) records the generated power [kW].

Figure 4.3 shows the closed-loop trajectories with different β values. It can be

observed that when the kite is far away from the reference path, these trajectories
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Figure 4.1: Comparison between the closed-loop trajectory (β = 400, solid) and the
static reference path P (dashed).
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Figure 4.2: Closed-loop system evolution (β = 400).

with different β values are almost same. This is because when the output error

||e||2Q is large, the economic cost (4.12) is dominated by the output error. Hence,

all of these trajectories have fast convergence rate to the reference path which is a

desirable property. When the kite reaches the neighborhood of the reference path, the
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closed-loop behaviors start to be different since (4.12) is dominated by the economic

performance in this case. In other words, the main control objective is switched to

enhance the economic performance when the system is operated near the reference

path.
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Figure 4.3: Closed-loop trajectory with different β values.

Table 4.1 shows the average error ||e||Q and the average generated power |hg(ξ)|
for the closed-loop trajectories with different β values. As we can see, as the value of

β decreases, the convergence performance gets worse but the economic performance

is enhanced. Hence, β plays an important role in guaranteeing convergence. In fact,

if the value of β is infinitely large, the economic cost (4.12) becomes positive definite

and the assumption of dissipativity is satisfied. To some extent, this explains that

the closed trajectory converges to the reference path with a large value of β, as shown

in Figure 4.3.

Robustness Test

For real implementation of power kite systems, wind turbulence should be taken into

consideration. In this section, we present the simulation results with considerable

wind turbulence, with maximum absolute value 4.5 m/s, 33% of the nominal wind

speed at the altitude of 200 m. Sinusoidal wind turbulence ~vt,x and ~vt,y are introduced



71

Table 4.1:
Mean value of path-following error ||e||Q

and generated power |hg(ξ)| with different β values.

β Mean value of ||e||Q Mean value of |hg(ξ)|

400 1.55× 10−4 745 [kW]
200 2.64× 10−3 750 [kW]
100 6.25× 10−3 758 [kW]
50 1.12× 10−2 768 [kW]

along x and y axes, respectively:

~vt,x = 2 sin(ω0t) [m/s]

~vt,y = 4 cos(ω0t) [m/s],
(4.15)

where ω0 = 0.2π [rad/s]. In order to obtain a better convergent performance, we

choose a conservative value of β, β = 400.

Figure 4.4 illustrates the closed-loop trajectory under the wind turbulence (4.15)

with β = 400. Figure 4.5 records the corresponding closed-loop system evolutions.

Specifically, Figure 4.5(a) records the path-following error; Figure 4.5(b) and Figure

4.5(c) show the evolution for control inputs. Figure 4.5(d) records the generated

power [kW]. From Figure 4.4 and Figure 4.5(a), it can be observed that the closed-loop

trajectory still achieves good convergent performance with respect to the reference

path, even under a considerable wind turbulence.

4.4 EMPFC with a Dynamic Reference Path

The static reference path P may not be optimal with respect to the economic per-

formance under the varying wind condition. Hence, it is possible to further enhance

the economic performance using a dynamic reference path Pµ. In this section, we

propose EMPFC for path-following control of kites using a dynamic reference path.

A new augmented system is constructed and the path parameter µ is treated as the

additional optimization variable.
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Figure 4.4: The closed-loop trajectory under wind turbulence (β = 400, solid) and
the static reference path P (dashed).

4.4.1 Augmented Kite System with Dynamic Reference Path

By adding additional variable µ to the static reference path (3.14), the dynamic

reference path is defined by

Pµ = {p̄µ ∈ Rny |p̄µ = pµ(z, µ), z ∈ [z0,+∞), µ ∈M}, (4.16)

where µ ∈ M is a path parameter vector associated with the closed-form of the

reference path, influencing its shape, size, average position, etc; the constraint M⊆
Rnµ is a compact set; the function pµ : Rnµ+1 → Rny is continuously differentiable.

Generally, the path parameter vector µ affects the economic performance when the

system follows along Pµ.

Then, the output error eµ for the dynamic reference path is further defined as

eµ(t) = h(x(t))− pµ(z(t), µ(t)). (4.17)

Combining (4.2), (4.3), (4.5), (4.17) and the virtual dynamics of the path pa-
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Figure 4.5: Closed-loop system evolutions under wind turbulence (β = 400).

rameter vector, the augmented kite system with a dynamic reference path is defined

by

ξ̇µ =

ẋż
µ̇

 =

f̃(x, u)

v

vµ

 = fξµ(ξµ, ωµ)

eµ = h(x)− pµ(z, µ) = h̃µ(ξµ),

(4.18)

where vµ ∈ Vµ controls the change rate of path parameter vector µ, and Vµ ⊂ Rnµ is a

compact set; ξµ = [θ, φ, r, θ̇, φ̇, ṙ, z, µ]T is the augmented state vector; ωµ = [ψ, v, vµ]T

is the input for the augmented system; h̃µ : R7+nµ → R2 denotes the output mapping

for the augmented system.

The state constraint for (4.18) is given by ξµ ∈ Ξµ = X × [z0,+∞) ×M. Then

the output constraint can be defined by Eµ := {h̃µ(ξµ)|ξµ ∈ Ξµ}. The input ωµ is

additionally confined such that ωµ(·) ∈ PC(Ωµ), where Ωµ = U × [0,+∞)× Vµ.

Compared to (4.6), (4.18) additionally involves the dynamics of the path parame-
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ter vector µ. This allows us to formulate the path-following problem using a dynamic

reference path Pµ and analyze the relationship between µ and the system perfor-

mance.

4.4.2 The EMPFC Formulation with a Dynamic Reference

Path

We use the newly constructed augmented system (4.18) to formulate the OCPs.

Similarly to Section 4.2, the cost function to be minimized at each sampling time is

J(ξµ(tk), eµ(·), ξµ(·)) =

∫ tk+Tp

tk

`(eµ(τ), ξµ(τ))dτ + Vf (eµ(tk + Tp)), (4.19)

where ` : Eµ × Ξµ → R is a general economic cost, Vf : E ′f → R is the terminal cost,

and E ′f ⊂ Eµ is the terminal region.

At each sampling time tk = t0+k ·δ, k ∈ N, the following OCP is solved repeatedly

min
ωµ(·)∈PC(Ωµ)

J(ξµ(tk), eµ(·), ξµ(·)) (4.20a)

s.t. ξ̇µ(τ) = fξµ(ξµ(τ), ωµ(τ)), ξµ(tk) = ξµ(tk) (4.20b)

eµ(τ) = h̃µ(ξµ(τ)) (4.20c)

ξµ(τ) ∈ Ξµ (4.20d)

ωµ(τ) ∈ Ωµ (4.20e)

eµ(tk + Tp) ∈ Ef ⊂ Eµ. (4.20f)

Compared to OCP (4.8), (4.20) additionally solves the optimal solutions of the

path parameter vector µ.

Here, the economic stage cost function in (4.19) is chosen in the same form of

(4.12), i.e.,

`(eµ, ξµ) = α(ε)||eµ||2Q + (1− α(ε))ηhg(ξµ), (4.21)

where hg(·) and α(·) is from (4.11) and (4.12), respectively. We assume that there

exists an unique µs ∈M, such that Pµs is optimal with respect to hg(·), and Pµs can

be followed with the given input constraints u(·) ∈ PC(U).

Our first priority is forcing the kite system to fly in the desired flight pattern
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(figure-eight shape). This can be realized by penalizing the newly defined output

error (4.17) since for all µ ∈M, Pµ is always a lemniscate curve in figure-eight shape.

After the kite reaches the neighborhood of Pµ, i.e., ||eµ||2Q is small, the path evolution

variable z and the path parameter vector µ can be further optimized according the

predefined economic performance hg(ξµ).

We find that the economic cost defined by (4.21) is very suitable to realize the

above objective. When the system is far away from Pµ, i.e., ||eµ||2Q is large, the eco-

nomic cost function is dominated by path-following error and the system is forced into

the neighborhood of Pµ under the EMPFC strategy. Besides, the terminal constraints

(4.20f) are added to ensure the priority of the path convergence. When the kite reaches

the neighborhood of Pµ, i.e., ||eµ||2Q is small, (4.21) is dominated by the economic per-

formance hg(ξµ). Then, the path evolution variable z and the path parameter vector

µ are optimized with respect to hg(ξµ). Meanwhile, the output of the system h(x) is

driven into the neighborhood of the dynamic reference path Pµ since (4.21) gives first

priority to path convergence. Furthermore, if (4.21) is appropriately tuned, the path

convergence can be achieved in the sense that limt→∞ ||h(x(t))− pµ(z(t), µ(t))|| = 0.

This can be shown in the following simulation results when a large value of β is

chosen.

4.4.3 Simulation Results

In this section, we present simulation results of the kite to follow a dynamic reference

path using EMPFC. We choose the variable µ to represent θa (the average θ an-

gle of the reference path) which is a significant parameter influencing the generated

power when the kite is forced to follow a certain path. For comparison between the

simulation results using Pµ and P (4.14), the initial value µ0 = θa = 0.45 [rad].

Parameter Selection

1. Model Parameters

m = 50 [kg], A = 100 [m2], dc = 0.025 [m], ρc = 970 [kg/m3], ρ = 1.2 [kg/m3],

g = 9.8 [N/kg], CL = 1.2, CD = 0.15, CD,c = 1, ṙref = 2 [m/s], the local

controller gain K = −3.33.

Nominal wind shear model along x axis: vx = (0.015(r sin(θ)−100)+12) [m/s].

State constraints: θ ∈ [0.03π, 0.5π), φ ∈ (−0.5π, 0.5π), µ ∈ [0.05π, 0.4π].

Input constraints: Ωµ = {(u, v, vµ)|u ∈ [−0.07, 0.07], v ∈ [0, 1.6π], vµ ∈ [−0.03, 0.03]}.
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2. Reference Path

The dynamic reference path Pµ is given by

pµ(z, µ) =

arcsin
(
a1 sin(2z)

R

)
+ µ

arcsin
(
a2 cos(z)

R

)  ,

where a1 = 15, a2 = 21 and R = 500.

3. EMPFC setup

δ = 0.1[sec], N=10, Q = diag([2, 1]), η = 10−7.

The terminal penalty Vf (eµ) = ||eµ||2Qf , where Qf = diag([0.2, 0.1]).

The terminal constraint Ef = {eµ|eTµPeµ ≤ 0.01}, where P = diag([1, 1]).

Initial state ξµ0 = [0.2π; 0; 500;−0.08;−0.08; 0; 0.5π; 0.45]T.

EMPFC with a dynamic Reference Path

The economic performance enhancement and the convergence of µ to its optimal value

µs can be shown in the following simulation results.

Figure 4.6 shows the closed-loop trajectory using Pµ as reference path. To guar-

antee the convergence, β is chosen to be 400, which is a conservative value. Figure 4.7

records the corresponding closed-loop system evolutions. Specifically, Figure 4.7(a)

records the path-following error; Figure 4.7(b) and Figure 4.7(c) show the evolutions

for control inputs; Figure 4.7(d) records the generated power [kW], whose mean value

keeps increasing until µ reaches its optimal value (0.286 rad); Figure 4.7(e) records

the evolution of µ. As we can see, it converges to its optimal value at around 28 s;

The average generated power reaches its maximum (885 [kW]), which is increased

about 18.8% compared to the results of using a static reference path P (as shown in

Table 4.1).

4.5 Conclusion

In this chapter, we investigate the output path-following problem for power kites

using the proposed EMFPC scheme. Due to the unknown wind condition and wind

turbulence, it is hard or even impossible to predefine the optimal operation for the

kite system. Alternatively, we formulate the output path-following problem to involve

additional degrees of freedom in the zero-error manifold (i.e., the space where the
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Figure 4.6: Right side view of closed-loop trajectory (β = 400)
vs. dynamic reference path Pµ.

output error is zero). Thus, a relaxation of the optimal operation is accomplished.

We show the effectiveness of the proposed control scheme in two aspects. For a static

reference path, the generated power is increased while the kite is stabilized in the

neighborhood of the reference path. For a dynamic reference path, the economic

performance can be further enhanced since parameters for the reference path are

treated as additional optimization variables. The proposed EMPFC achieves the

integration of path optimization and path-following, resulting in a better economic

performance for the closed-loop system. Simulation results are given to show the

effectiveness of the proposed control scheme.
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Figure 4.7: Closed-loop system evolution with dynamic reference path Pµ (β = 400).
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis aims to tackle output path-following problems with enhanced economic

performance. A novel economic model predictive path-following control (EMPFC)

framework is developed. Sufficient conditions that guarantee the recursive feasibility

and closed-loop stability of the EMPFC is derived, followed by an illustrating example

of a 2-DoF robot. Then, the proposed EMPFC scheme is applied to a challenging

nonlinear kite model and the economic performance enhancement is shown in the

simulations.

Chapter 2 introduces a point-mass kite model considering the effect of cables

(gravity and aerodynamic forces). The definition of three different coordinates and

the detailed derivation of each force acting on the kite are given. Additionally, the

applied wind speed profile along z-axis is introduced.

Chapter 3 provides the stability analysis of EMPFC. First of all, a sampled-

data EMPC scheme for set-point stabilization problems is studied. An extended

definition of dissipativity is introduced for continuous-time systems, followed by giving

sufficient stability conditions. Then, we propose the EMPFC scheme for output path-

following problems. In order to enhance the economic performance with guaranteed

convergence to an output reference path, we define an optimal steady state set which

actually achieves a relaxation of the optimal operation. New dissipativity assumption

is defined for output path-following problems. Sufficient conditions that guarantee the

convergence of the system to the optimal operation on the reference path are derived.

Finally, an example of a 2-DoF robot shows that, the proposed EMPFC scheme
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achieves better economic performance while the system can follow the reference path

in forward direction and finally converge to its optimal steady state.

In Chapter 4, we apply the proposed EMPFC scheme to a challenging nonlinear

kite model. In order to enhance the economic performance under varying wind con-

dition, we formulate the output path-following problem to involve additional degrees

of freedom in the zero-error manifold (i.e., the space where the output error is zero).

The effectiveness of the proposed control scheme is shown in two aspects. For a static

reference path, the generated power is increased while the kite is stabilized in the

neighborhood of the reference path. For a dynamic reference path, the economic per-

formance can be further enhanced since parameters for the reference path are treated

as additional optimization variables. The proposed EMPFC achieves the integration

of path optimization and path-following, resulting in a better economic performance

for the closed-loop system. Simulation results are given to show the effectiveness of

the proposed control scheme.

5.2 Future Work

Reducing the computational burden. We discuss the EMPFC scheme for out-

put path-following problems from theoretical and practical perspective in Chapter

3-4, respectively. The main focus is to design the EMPFC scheme to guarantee the

convergence of the closed-loop system to the reference path, while enhancing the eco-

nomic performance. However, since virtual path dynamics is additionally involved in

the optimization problem, the computational complexity increases exponentially with

the problem size. For real implementation of the MPC, the heavy computational bur-

den must be taken into consideration, especially for the application of fast dynamics

like power kites. Hence, it is practically desirable to study an efficient implementation

of EMPFC that performs within the permitted sampling period, which is usually less

than 0.1 [sec.] in the applications of motion control.

Lyapunov-based economic model predictive control (LEMPC). Chapter

3 studies the stability of EMPFC using assumptions of dissipativity and the existence

of a desirable local controller. However, these assumptions are generally difficult to

be verified. Especially, there is no general approach to find an appropriate storage

function to examine the dissipativity. Moreover, the assumption of dissipativity may

be too conservative since it requires the corresponding rotated stage cost function to

be positive definite over the whole set of the state and input constraints. In contrast,
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Lyapunov-based economic model predictive control (LEMPC) takes advantage of a

two-mode control strategy and the stability is enforced by introducing Lyapunov-

based constraints (e.g., [64]). In LEMPC, we only require the existence of a Lyapunov-

based controller locally and no dissipativity assumption is needed. Thus, there is much

less restriction of the chosen economic stage cost function and it is of great interest

to investigate our proposed EMPFC using Lyapunov techniques.

Realizing a full-cycle power generation using EMPFC. In Chapter 4, we

only discuss the path-following control for the kite’s traction phase (where the cables

are reeling out under high traction force). In order to achieve a full-cycle power

generation, retraction phase should also be taken into consideration. From traction

phase to retraction phase, not only the kite model is changed, but also the control

objective is totally different. In traction phase, we aim to stabilize the kite on the

reference path and maximize the generated power. In retraction phase, the kite is

switched to a gliding flight pattern (thus the model is changed) and the objective is

to reel back the kite with minimum energy consumption. Therefore, it is necessary to

design a new EMPFC scheme considering the switched kite model and time-varying

economic cost during the full-cycle kite power generation.
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