
Image-Based Visual Servoing of a Quadrotor Using Model Predictive Control

by

Huaiyuan Sheng

B.Eng., University of Victoria, 2017

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Mechanical Engineering

c© Huaiyuan Sheng, 2019

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Image-Based Visual Servoing of a Quadrotor Using Model Predictive Control

by

Huaiyuan Sheng

B.Eng., University of Victoria, 2017

Supervisory Committee

Dr. Yang Shi, Supervisor

(Department of Mechanical Engineering)

Dr. M. Member One, Departmental Member

(Department of Same As Candidate)

iii

Supervisory Committee

Dr. Yang Shi, Supervisor

(Department of Mechanical Engineering)

Dr. M. Member One, Departmental Member

(Department of Same As Candidate)

ABSTRACT

With numerous distinct advantages, quadrotors have found a wide range of appli-

cations, such as structural inspection, traffic control, search and rescue, agricultural

surveillance, etc. To better serve applications in cluttered environment, quadrotors

are further equipped with vision sensors to enhance their state sensing and environ-

ment perception capabilities. In addition to the common sensor suite which includes

the global positioning system (GPS) and the inertia measurement unit (IMU), the

on-board vision system serves as an important complementary element for the local-

ization and navigation of the quadrotor. Using information extracted from a vision

sensor to control the motion of a robot is referred to as visual servoing in the litera-

ture. In this thesis, we identify the challenging problems arising in the area of visual

servoing of the quadrotor and propose effective control strategies to address these

issues.

The control objective considered in this thesis is to regulate the relative pose of the

quadrotor to a ground target using a sensor suite consisting of a monocular camera

iv

and an IMU. The camera is attached underneath the center of the quadrotor and

facing down, and the ground target is a planar object consisting of multiple points.

The image features used in the feedback loop are image moments defined in a “virtual

image plane” that is always parallel to the flat ground. The deliberate selection of

the image features enables the decoupling of the tilt motion of the quadrotor from

the image kinematics, so that a dual-loop control structure can be adopted. The

dual-loop structure consists of an outer-loop in charge of the vision guidance and an

inner-loop in charge of attitude tracking.

During visual servoing, the target object is required to be maintained in the field

of view (FOV) of camera, otherwise it would cause failure of control action gen-

eration. To ensure that the target object remains in the FOV, a nonlinear model

predictive control (NMPC) controller is proposed to explicitly bound the tilt motion

of the quadrotor when the quadrotor is maneuvering towards the target object. Fur-

thermore, the bounds on the tilt motion can be automatically adjusted based on the

vision feedback to reduce the conservativeness.

Moreover, due to a limited number of sensors on board, the linear velocity infor-

mation of the quadrotor is not directly measurable, especially in GPS-denied envi-

ronment, such as indoor or cluttered urban area. This poses challenges in the design

of the model predictive controller which typically requires the information of all the

system states. Accordingly, a high-gain observer is designed to estimate the linear ve-

locity of the quadrotor. Since the dual-loop control structure is adopted, the high-gain

observer-based NMPC control scheme is employed for the outer-loop control, while

the inner-loop control can be tackled by a proportional-derivative (PD) controller.

On the other hand, implementation of the NMPC controller requires solving the

proposed optimization problems in real-time, thus inevitably introducing considerable

computational load. Considering the limited computation resources on board, an

v

explicit model predictive control (EMPC) controller is designed to improve the real-

time performance.

Simulation and experimental studies are performed to verify the effectiveness of

the proposed control strategies. In addition, image feature extraction algorithms are

illustrated to show how the image features are extracted from the captured images.

vi

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents vi

List of Tables x

List of Figures xi

Acronyms xiv

Acknowledgements xv

Dedication xvii

1 Introduction 1

1.1 Literature Review . 1

1.1.1 Visual Servoing . 1

1.1.2 Image-Based Visual Servoing of Fully-Actuated Systems . . . 5

1.1.3 Image-Based Visual Servoing of a Quadrotor 6

1.2 Contributions . 15

1.3 Thesis Organization . 16

2 System Modelling 18

vii

2.1 Overview . 18

2.2 Reference Coordinate Frames . 18

2.2.1 Euler Angles and Rotation Matrices 20

2.3 Equations of Motion of the Quadrotor 22

2.3.1 Force and Torque Calculation 24

2.4 Image Feature and Kinematics . 26

2.4.1 Kinematics of a Point in the Real Image Plane 27

2.4.2 Kinematics of a Point in the Virtual Image Plane 28

2.4.3 Image Moments . 30

2.4.4 Kinematics of Image Moments 31

2.5 Equations of Image-Based Visual Servoing of a Quadrotor 35

2.6 Conclusion . 36

3 High-Gain Observer-Based Model Predictive Control 37

3.1 Overview . 37

3.2 Dual-Loop Control Structure . 38

3.3 High-Gain Observer . 39

3.3.1 Design Procedure . 39

3.3.2 Theoretical Analysis . 42

3.4 Nonlinear Model Predictive Control 43

3.4.1 Problem Formulation . 43

3.4.2 Control Input Transformation 45

3.4.3 Input Constraints . 46

3.5 Roll/Pitch Constraints Adjustment Law 47

3.6 Explicit MPC Formulation . 49

3.7 Inner-Loop Attitude Tracking Control 52

3.7.1 Feedback Linearization of Inner-Loop Dynamics 53

viii

3.7.2 Dynamics Inversion-Based PD Controller 54

3.8 Numerical Simulation . 56

3.8.1 Simulation Set-up . 56

3.8.2 Simulation Study: High-Gain Observer-Based Nonlinear Model

Predictive Controller . 57

3.8.3 Simulation Study: Incorporating the Roll/Pitch Constraints

Adjustment Law . 60

3.8.4 Simulation Study: Explicit MPC Controller 62

3.8.5 Simulation Study: Inner-Loop PD Controller 63

3.9 Conclusion . 64

4 Experimental Implementation 71

4.1 Overview . 71

4.2 Experimental Set-up . 71

4.2.1 Hardware . 72

4.2.2 Software . 73

4.3 Image Feature Extraction . 76

4.3.1 Camera Calibration . 76

4.3.2 Image Processing Algorithms 79

4.3.3 Consideration of Model Mismatch 84

4.4 Experimental Results . 88

4.4.1 Experimental Study: Nonlinear MPC Controller 88

4.4.2 Experimental Study: Explicit MPC Controller 91

4.5 Conclusion . 93

5 Conclusions 94

5.1 Concluding Remarks . 94

ix

5.2 Future Work . 96

Bibliography 98

x

List of Tables

Table 4.1 Bebop 2 Hardware Specifications. 73

xi

List of Figures

Figure 1.1 Perspective projection. 3

Figure 1.2 The resulting point coordinate trajectories in the field of view

by using three visual servoing controllers [3]. Dots represent

the initial point features, while stars represent the desired ones. 4

Figure 1.3 Image-based look-and-move structure [7]. 5

Figure 1.4 Dual-loop scheme for the motion control of a quadrotor. . . . 7

Figure 1.5 Spherical projection. 8

Figure 1.6 Basic structure of model predictive control. 14

Figure 2.1 Reference coordinate frames. 19

Figure 2.2 Definition of Euler angles. 20

Figure 2.3 Thrusts and reaction torques applied on the quadrotor. 25

Figure 2.4 Geometrical explanation of image moment s4. 34

Figure 3.1 Dual-loop control structure. 38

Figure 3.2 Plots of scaling factor functions. 48

Figure 3.3 Scaling factor distribution in the FOV. 49

Figure 3.4 Control regions partitioned in the state space. 52

Figure 3.5 Inner-loop attitude tracking using PD control. 55

Figure 3.6 Estimated and actual states obtained when ξ̂ is initialized by

[0, 0, 0, 0, 0, 0]T. 58

xii

Figure 3.7 Estimated and actual states obtained when ξ̂ is initialized by

[0.881, 0, 0.764, 0, 3, 0]T. 65

Figure 3.8 Closed-loop states and inputs trajectories obtained by using the

nonlinear MPC controller . 66

Figure 3.9 (a) Point coordinate trajectories in the real image plane (solid)

and in the virtual image plane (dotted) when φmax = θmax = 0.1

rad. (b) Point coordinate trajectories in the real image plane

(solid) and in the virtual image plane (dotted) when φmax =

θmax = 0.3 rad. 67

Figure 3.10 Point coordinate trajectories with Euler constraints adjustment

law. 68

Figure 3.11 (a) Scaling factor is averaged to avoid jumps. (b) Roll/pitch

angles under the adjustment law. 68

Figure 3.12 Closed-loop states and inputs trajectories obtained by using the

explicit MPC controller and the proportional yaw controller . 69

Figure 3.13 Point coordinate trajectories. 70

Figure 3.14 Attitude tracking performance obtained by the PD controller. 70

Figure 4.1 Bebop 2 drone used in the experiment. 72

Figure 4.2 Data flow diagram. The rectangles represent hardwares; the

ovals represent software modules, and the round rectangles rep-

resent control modes. 74

Figure 4.3 Ground station control panel. 75

Figure 4.4 Camera calibration using checkerboard pattern. 77

Figure 4.5 Camera calibration results. 78

Figure 4.6 Experiment implementation flow chart. 80

Figure 4.7 Visual servoing algorithm flow chart. 81

xiii

Figure 4.8 Illustration of effects of thresholding at different threshold levels. 83

Figure 4.9 Illustration of procedures of image feature extraction. 84

Figure 4.10 Coordinate frame modelling mismatch. 85

Figure 4.11 Experimental results obtained by implementing nonlinear MPC. 90

Figure 4.12 Point coordinate trajectories in the real image plane. Blue cir-

cles represent the initial scene, while blue dots represent the

final scene. 91

Figure 4.13 Experimental results obtained by implementing explicit MPC 92

Figure 4.14 Point coordinate trajectories in the real image plane. Blue cir-

cles represent the initial scene, while blue dots represent the

final scene. 93

xiv

Acronyms

UAV Unmanned Aerial Vehicle

IBVS Image-Based Visual Servoing

PBVS Position-Based Visual Servoing

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

EMPC Explicit Model Predictive Control

PID Proportional-Integral-Derivative

GPS Global Positioning System

IMU Inertia Measurement Unit

FOV Field of View

COG Center of Gravity

SF Scaling Factor

xv

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my supervisor, Professor

Yang Shi for his guidance and patience throughout my study in the past two years.

From him, I learned not only what constitutes of a capable researcher, but also how

to become a responsible man. I am always inspired by his diligence and attitude

towards work, and amazed by his strict attention to details. He is always there to

encourage me with great patience whenever I feel frustrated; he is always there to

support whenever I seek for help to carry on my project; he is always there to offer

valuable suggestions to help me improve in all aspects. Moreover, I appreciate the

opportunity that I was assigned to be a teaching assistant to work closely with him,

from which experience I learned how to work promptly and professionally.

I would also like to thank the committee members, Professor Ben Nadler and

Professor Panajotis Agathoklis, for their insightful comments.

I would like to extend my sincere gratitude to the group members at University

of Victoria. Special thanks go to Qi Sun, who offered substantial help throughout

the preparation and the realization of the experiments. I feel grateful for Kunwu

Zhang, Jicheng Chen and Kenan Yong, who helped me revise my paper manuscript.

I was motivated by their attitudes towards their works and benefited a lot from

their constructive suggestions. I thank Zhang Zhang, Henglai Wei, Xinxin Shang,

Chonghan Ma for their constructive suggestions and comments on my project. I also

thank Zhuo Li and Tianxiang Lu, who spent their precious time helping me record

research videos. I owe my thanks to Changxin Liu, Yuan Yang and Qian Zhang,

who are always willing to answer fundamental questions from me regarding control

theories, as well as Tianyu Tan, who is generous to offer rides to grab foods. Thank

Chen Ma for her amazing pastry and secret recipes. Thank Xiang Sheng for sharing

his knowledge of mechanical design and teaching me how to play foosball. Thank Dr.

xvi

Bingxian Mu for sharing his insights on job interview and industrial work.

Lastly, but most importantly, I would like to thank my parents. I could not have

completed this thesis without their selfless love and support. Many thanks to my

wife, Jinzhong Yang, who is always accompanying me making sure I am healthy and

happy.

xvii

To my parents.

Chapter 1

Introduction

1.1 Literature Review

In this section, literature review is conducted to summarize the recent development in

the field of visual servoing. First, the concept of visual servoing is introduced, with an

emphasis on its classifications. Then, we discuss the visual servoing of fully-actuated

systems, which lays the foundation for the succeeding discussion of the under-actuated

systems, e.g., quadrotors. Some challenging problems arising in the visual servoing of

the quadrotor are pinpointed and the prevalent control methods are also introduced.

1.1.1 Visual Servoing

Visual servoing is referred to as using computer vision data as feedback in the motion

control of robotics applications. Visual servoing is classified into eye-to-hand config-

uration and eye-in-hand configuration based on where the camera is attached. For

eye-to-hand configuration, the camera is fixed in the world frame, and the motion of

the robot and the target object is observed by the camera. For eye-in-hand configu-

ration, the camera is attached to the robot end effector and only the motion of the

2

target is observed. For example, the motion capture systems commonly installed in

the lab environment are typically eye-to-hand configuration, while a wheeled robot

equipped with an on-board camera belongs to eye-in-hand configuration.

Visual servoing can be also classified into image-based visual servoing (IBVS) and

position-based visual servoing (PBVS) based on types of features used in the feedback

loop. IBVS directly uses the 2-D visual information in the image plane, while PBVS

exploits the 3-D camera pose that is reconstructed from the image sequence.

These two methods have their own strength and weakness, respectively. PBVS

minimizes the feature errors defined in the 3-D space, and accordingly gives the cam-

era trajectory that is optimal in the 3-D space. Nevertheless, the resulting trajectory

in the image space given by PBVS can be unsatisfactory; that is, the object scene

could potentially leave the field of view (FOV) of the camera (see Figure 1.2(b)),

which causes the failure of control input generation. Furthermore, the reconstruction

of the camera pose requires the knowledge of camera’s intrinsic parameters and the

3-D model of the target object [1, 2]. This reconstruction process is typically sensitive

to the calibration errors and imaging noise, and thus PBVS is less robust than IBVS

with the presence of calibration errors and imaging noise.

On the other hand, since IBVS minimizes the feature errors defined in the image

plane, it favors the object scene staying in the FOV. Moreover, as mentioned before,

IBVS is robust against camera calibration errors and imaging noise. Yet, the main

drawback of IBVS, particularly when a monocular camera is employed, is the loss of

the depth information caused by perspective projection. As shown in Figure 1.1, the

same object scene can be produced either by a small object in close proximity or a

large one in the distance, and hence it is impossible to determine the depth of the

observed object. As a result, the depth of the target object needs to be estimated,

as required by the control law [1]. Even though it is feasible to approximate the

3

Figure 1.1: Perspective projection.

actual depth by the known desired value, this imperfect estimation may lead to the

compromise of control performance [1].

In addition, when confronting large displacement, especially large rotation, IBVS

may not provide good behavior of the 3-D space trajectory [1, 3]. In an example

illustrated in [3], where the initial camera pose deviates from the desired pose by

160◦ about the optical axis. Unlike PBVS which leads to a pure rotation motion (see

Figure 1.2(b)), IBVS induces the camera to retreat along the optical axis so that the

point features are following straight lines to their desired configuration (see Figure

1.2(a)). The phenomenon of camera retreat should be alleviated to avoid reaching

the joint/workspace limits of the robotic platforms.

Various hybrid approaches have been proposed to combine the strength of the

two methods while compensating their shortcomings. In [4], “2 1/2-D visual servo-

ing” is proposed to use 2-D image features and several 3-D parameters as feedback.

More specifically, the 3-D parameters are the rotation matrix and the direction of

the translation between the current and the desired camera pose. These information

4

(a) IBVS. (b) PBVS. (c) Switched visual servo-
ing.

Figure 1.2: The resulting point coordinate trajectories in the field of view by using
three visual servoing controllers [3]. Dots represent the initial point features, while
stars represent the desired ones.

are estimated by the homography method, which necessitates feature matching be-

tween the initial scene and the target scene. Moreover, the rotational control loop

is decoupled from the translational one, and global asymptotic stability (GAS) can

be attained by using this control scheme. A switching scheme is proposed in [3] to

address the camera retreat induced by IBVS, and the feature loss induced by PBVS.

The proposed switched mechanism is a state dependent switch, which triggers IBVS

when the image trajectory approaches boundaries of the FOV, and triggers PBVS

when the camera reaches boundaries of the robot workspace (see Figure 1.2(c)). As a

result, the switching scheme allows the visibility constraint and the joint/workspace

limit constraints to be simultaneously satisfied.

Moreover, advanced 2-D features are exploited to decouple the system dynamics

and simplify the controller design. In [5] and [6], the authors propose six image

moments that are invariant to a variety of 2-D transformation, such as translation,

rotation, and scale. These invariance properties give rise to fully partitioned visual

servoing such that each image moment corresponds to one degree of freedom of the

robot. The resulting controller provides good behavior of both image trajectory and

5

3-D trajectory and an enlarged domain of convergence as compared to using simple

2-D features, i.e., point coordinates.

1.1.2 Image-Based Visual Servoing of Fully-Actuated Sys-

tems

For image-based visual servoing of fully-actuated systems, e.g., manipulators, the

“look-and-move” control structure is widely adopted [7]. As shown in Figure 1.3,

there exist two control loops: the outer-loop and the inner-loop. In the outer-loop,

an image-based visual servoing controller receives the vision feedback and outputs

the desired joint trajectories, whereas in the inner-loop, a joint controller receives the

desired joint trajectories and tracks these signals by generating proper actuator level

commands, e.g., joint torques. Since the two controllers can be designed separately,

this structure simplifies the controller design and accounts for the different sampling

rates of the vision sensor and the joint sensor [7]. Furthermore, since many robots

have the interface for receiving joint position or joint velocity commands, the look-

and-move structure demonstrates good applicability.

Figure 1.3: Image-based look-and-move structure [7].

In addition, the typical image features used in the design of visual servoing con-

trol law for fully-actuated systems are point coordinates [8, 9, 10, 11]. Moreover,

6

the visual servoing controller solely considers the kinematic model of the robot and

generates the desired Cartesian/joint velocities, while a dynamics inversion-based con-

troller generates the actuator level commands, e.g., joint torques, to track the desired

velocities.

1.1.3 Image-Based Visual Servoing of a Quadrotor

In Section 1.1.2, we discussed the application of visual servoing in the field of fully-

actuated robotic platforms, where the dynamics of the platforms can be neglected,

and only the kinematic model is considered in the design of visual servoing control

law. The underlying reason for it is that the desired velocity commands generated by

the visual servoing controller can be well tracked by the inner-loop dynamics under

a high-gain control law. However, this assumption may not hold when confronting

high speed task and under-actuated platforms [12].

Quadrotor is a typical type of under-actuated systems for which the number of

actuators is less than degrees-of-freedom (DOF) of the system. With four motors

actuating six DOF, the quadrotor is not capable of tracking every six dimensional

reference velocity. As a result, the approaches used for fully-actuated systems [8, 9,

10, 11] cannot be directly applied to quadrotors.

However, since the quadrotor dynamics possesses a cascade triangular structure

[13], the dual-loop control structure can be adopted by incorporating the translational

dynamics into the outer-loop and considering the thrust magnitude and attitude as

the control inputs of the outer-loop dynamics. Meanwhile, the rotational dynamics

is handled by an inner-loop attitude tracking controller, which evaluates the required

torques to track the desired attitude signals. The dual-loop scheme for the motion

control of a quadrotor is illustrated in Figure 1.4. The outer-loop controller and the

inner-loop controller can be designed separately, and yet the stability of the entire

7

Figure 1.4: Dual-loop scheme for the motion control of a quadrotor.

system is proven by exploiting the theories of cascade systems [14].

Nevertheless, the dual-loop structure cannot be directly applied in the visual ser-

voing of the quadrotor for the reason that the cascade triangular form is destroyed

by the perspective projection [13]. To address this issue, researchers have put efforts

in finding proper image features that can recover the cascade triangular form of the

system dynamics.

Image Feature Selection

The two most popular methods proposed in the literature are spherical projection

approach [13, 15] and virtual camera approach [16, 17, 18]. Spherical projection ap-

proach is firstly proposed by Hamel et al. [13] in 2002. Centroids defined in a spher-

ical camera space are proposed to preserve the passivity-like property of the original

quadrotor dynamics and recover the cascade triangular structure. The passivity-like

property refers to that the norms of the image features are only functions of position

such that their derivatives are not affected by the angular motion of the quadrotor

[19]. Despite that global asymptotic stability can be attained by using this method,

the resulting interaction matrix is ill-conditioned and causes slow convergence in the

direction of focal axis [19]. To address this issue, the authors of [20] propose to prop-

8

Figure 1.5: Spherical projection.

erly scale the image features so that convergence rate among degrees of freedom can

be balanced.

On the other hand, virtual camera approach defines a “virtual image plane” that

is always parallel to the level ground. The object scene obtained through the perspec-

tive projection is reprojected onto this plane to remove the effects of the tilt of the

quadrotor. As a result, image features defined in the virtual image plane give rise to

the image kinematics that is independent of the roll and pitch motion of the quadro-

tor. This independence enables the recovery of the cascade structure of the overall

dynamics. The virtual camera approach is firstly proposed by Jabbari et al. [21] in

2013. By re-defining the image moments [5, 6] in the virtual image plane, a simple

and decoupled system dynamics can be obtained. Backstepping is employed in the

controller design, and the control inputs are derived up to the angular velocity level

to avoid unnecessary complexity, and then a low level high-gain controller is designed

to track the angular velocity. This work is further extended in [22] to consider a

moving target object. In [23], Xie et al. also explicitly consider system uncertainties

and measurement bias. Furthermore, asymptotic stability of the dual-loop control

structure in the application of IBVS of the quadrotor is developed in [24].

9

Explicit Consideration of Visibility Constraint

As discussed before, fruitful results have been witnessed in the IBVS of the quadrotor.

However, the fulfillment of “visibility constraint” during the IBVS of the quadrotor

remains as an open problem. In the course of visual servoing, the object of interest

is required to stay in the field of view (FOV) of the camera, otherwise it will cause

failure of the control input generation. This requirement is referred to as “visibility

constraint”. It is worth noting that the visibility constraint can be explicitly addressed

by model predictive control when the robot is fully-actuated [11, 25]. Since point

coordinates are used as the image features, the visibility constraint can be formulated

as an output constraint.

However, for the IBVS of under-actuated robots, the dynamics is required to

be taken into account, making the fulfillment of the visibility constraint even more

challenging. Moreover, since advanced image features such as centroids and moments

are used, it is nontrivial to formulate the visibility constraint as state or output

constraints [18]. Given these facts, input saturation control laws [16, 17] are proposed

in the literature to address this issue. In [16], an input saturated law is proposed to

sufficiently bound the reference roll and pitch to alleviate the feature loss. It adopts a

dual-loop control structure and focuses on the regulation of the translational dynamics

in the outer-loop. To ensure the boundedness of the rotational dynamics, the authors

of [17] propose the combination of an outer-loop bounded-input controller and an

inner-loop saturated controller. The overall system is proved to be asymptotically

stable by using the theory of cascade systems developed in [14]. On the other hand,

path planning of image trajectories proves to be effective for fulfilling the visibility

constraint [18]. The optimal paths of image moments are generated by minimizing

the fourth order time derivative of the paths which are characterized by polynomials.

When the object scene is about to leave the FOV, the planning time will be extended

10

to generate more intermediate waypoints, thus resulting in mild roll/pitch motion. In

short, saturating roll/pitch angles is an effective technique to improve the visibility,

even though it does not guarantee that the target object stays in the FOV for all

scenarios.

Estimation of Linear Velocity

Early works [13, 21] assume that the linear velocity measurements of the quadrotor

are available via either a global positioning system (GPS) or a motion capture system.

However, GPS signals are not available in indoor or cluttered urban area, and the

bandwidth is not high enough for the stabilization of the quadrotor [26]. Motion cap-

ture systems, e.g., OptiTrack, require an expensive multi-camera system and severely

limit the workspace of the robot.

There is a consensus that an inertia measurement unit (IMU) and a monocular

camera form the minimal sensor suite required for full state estimation and automatic

flight [27]. The inertia measurement unit is a combination of accelerometers, gyrome-

ters and magnetometers. The data from different sensors are fused to provide reliable

attitude and angular velocity information of the platform. A vision system serves

as a good complement to the IMU to estimate the position and linear velocity [26].

Using this sensor suite to estimate the full states of the system is referred to as visual-

inertia odometry [27] in the literature. The visual-inertia odometry reconstructs the

camera pose from the sensor data, and therefore it is similar to the aforementioned

position-based visual servoing. Even though this technique appears to be promising,

the performance of state estimator highly depends on the initialization and camera

calibration [27].

On the other hand, inspired by vision of insects, optical flow can be used to

estimate the linear velocity [26, 28]. However, the computation of optical flow involves

11

the numerical differentiation of the point coordinates, and thus the results are noisy.

Other approaches incorporate the estimation of the linear velocity into the con-

troller design. Since these methods exploit the features defined in the image place,

they inherit from IBVS the robustness to the imaging noise and calibration errors

[29]. These methods can be further classified into observer-based control and output

feedback control, based on whether the explicit estimate of the linear velocity has

been used in the controller design [15].

Observer designs are proposed in [29, 30] to estimate the linear velocity by ex-

ploiting the image kinematics of the spherical centroids. Nevertheless, these observers

require the knowledge of the depth information, which is typically available from a

stereo vision system. This requirement is relaxed in [31], where the image moments

defined in the virtual image plane are employed, and only the desired depth value

is required. One the other hand, output feedback control constructs an “implicit

observer” that does not provide an explicit estimate of the state, but contains aux-

iliary states to facilitate the design of controller [15, 32]. In [15], the requirement of

accelerometers and magnetometers is removed, and in [32], system uncertainties and

measurement bias are explicitly considered. Compared with output feedback control

scheme, the observer-based control scheme has the advantage that the parameters are

easier to be tuned due to its modularity.

Prevalent Control Methods

In this section, we introduce two prevalent control methods that are widely applied in

the field of visual servoing of robots. The first method is backstepping, which is a re-

cursive design procedure derived from the constructed Lyapunov function. Compared

with feedback linearization, backstepping avoids the cancellation of useful nonlinear-

ities and allows for additional nonlinear terms to improve the transient performance

12

[32]. The application of backstepping typically requires the system to be in a strict

feedback form [33], which possesses a cascade triangular structure as follows:

ż = G(z, ζ1) (1.1)

ζ̇1 = ζ2 (1.2)

...

ζ̇m = u (1.3)

where (z, ζ1, ... , ζm) are a series of vectors denoting state variables, G is a function

of state variables, and u is the control input.

First, the state ζ1 is considered as “virtual control input” of (1.1), and a state

feedback control law ζ1 = χ1(z) is designed such that ż = G(z,χ1(z)) is asymp-

totically stable with respect to the origin z = 0. Next, an error e1 is defined as

e1 = ζ1 − χ1(z), and (1.1) and (1.2) can be rewritten as:

ż = G(z,χ1(z) + e1) (1.4)

ė1 = ζ2 − χ̇1(z) (1.5)

Note that χ̇1(z) can be explicitly evaluated as:

χ̇1(z) =
∂χ1(z)

∂z
G(z, ζ1) (1.6)

We can define that ν = ζ2− χ̇1(z), and (1.4) and (1.5) can be further reduced to:

ż = G(z,χ1(z) + e1) (1.7)

ė1 = ν (1.8)

13

where ν is considered as the control inputs of the above cascade system. A state

feedback control law ν = χ2(z, e1) can be designed such that (1.7) and (1.8) are

asymptotically stable with respect to the origin (z = 0, e1 = 0). Accordingly, the

second virtual control input ζ2 is determined as:

ζ2 = ν + χ̇1(z)

= χ2(z, e1) +
∂χ1(z)

∂z
G(z, ζ1)

= χ2(z, ζ1 − χ1(z)) +
∂χ1(z)

∂z
G(z, ζ1)

(1.9)

The above procedure is implemented recursively until the expression of u is de-

rived. Every time a lower level dynamics is taken into account, the Lyapunov func-

tion needs to be augmented to incorporate the corresponding error variables, and the

design of the following virtual input needs to guarantee that the derivative of the

Lyapunov function is negative definite along the closed-loop system trajectories.

As discussed before, spherical projection approach and virtual camera approach

are proposed in the literature to decouple the roll/pitch motion from the image kine-

matics, so that the cascade triangular structural property is recovered and backstep-

ping can be applied to tackle the regulation of such system. By using backstepping,

the stability of the closed-lop system is guaranteed along the derivation of the control

law. Backstepping is a popular method applied in the visual servoing of the quadro-

tor, and there exist a number of works explicitly considering the visibility constraint

[16, 17, 18] and the linear velocity estimation [15, 29, 30, 31, 32].

On the other hand, model predictive control (MPC) is also adopted in many

works to address the system constraints appearing in the visual servoing of robots.

As suggested by its name, model predictive control relies on the dynamic model of

the plant, and provides control actions that take account of future behavior of the

plant. As shown in Figure 1.6, the future outputs of the plant are predicted based on

14

Figure 1.6: Basic structure of model predictive control.

the plant model and the current output, and then the controller evaluates a sequence

of control inputs that minimizes the cost function while conforming to the specified

constraints. The cost function is typically a weighted sum of squares of output track-

ing errors and control efforts, while constraints can be either imposed on the control

inputs or on the predicted future states. The control inputs are implemented until

the next sampling instant, when a new sequence of control inputs is obtained based

on the updated output measurement.

Since MPC has inherent advantages of accounting for system constraints, many

works [8, 9, 10, 11, 25] employ MPC to address joint limits, actuator saturation and

visibility constraint. In [25], the visibility constraint is explicitly addressed but only

the kinematic model of the camera is considered. This work is extended to fully-

actuated systems, such as manipulators [8, 9], ground robots [10], and underwater

vehicles [11]. However, very few works apply MPC in the area of visual servoing of

under-actuated systems, e.g., quadrotors, to address the visibility constraint.

On the other hand, model predictive control requires the full state information

to initialize the prediction. However, the linear velocity of the quadrotor, as part of

the states, is not directly available due to the use of a minimal sensor suite. Thus,

an observer is needed to provide the estimation of the linear velocity, as required

15

by the MPC controller. It would be convenient if we can design the observer and

the controller separately. Despite that there is no general “separation principle” for

nonlinear systems, Atassi and Khalil present and prove a separation principle for a

class of nonlinear system using the high-gain observer [34]. Furthermore, the authors

in [35] state that the high-gain observer can be used with a variety of NMPC control

schemes to achieve semi-global practical stability. That is, for initial conditions in

any compact set contained in the region of attraction of the NMPC controller, the

system states can enter any small set containing the origin, if the high-gain observer

is fast enough and the sampling frequency is sufficiently high [35]. Moreover, this

work is extended in [36], which states that, to allow the separate design of the NMPC

controller and the observer, the observer error needs be made sufficiently small in a

sufficiently fast manner. Besides high-gain observers, other observers satisfying this

requirement are moving horizon estimators, sliding mode observers, etc. Particularly,

compared to the moving horizon estimator [37], which would involve the solution of

an optimization problem in real-time [36], the high-gain observer is preferred due to

its low design complexity and relatively reduced computational load.

1.2 Contributions

As discussed before, IBVS of the quadrotor remains as an active area, and further

improvements can be expected in fulfilling the visibility constraint and linear velocity

estimation. In this thesis, we propose control strategies that improve the visibility

performance while utilizing the minimal sensor suite. The contributions of the thesis

can be summarized as follows.

• Image features are deliberately selected to decouple the system dynamics and

enable the simplification of the controller design.

16

• A dual-loop control structure is adopted such that the translational visual servo-

ing control law can be designed independent of the lower level attitude tracking

control.

• A high-gain observer is proposed to address the unavailability of the linear

velocity when a minimal sensor suite is utilized.

• A nonlinear model predictive controller is proposed to improve the visibility dur-

ing visual servoing by exploiting its inherent advantages in fulfilling state/input

constraints.

• A roll/pitch constraints adjustment law is proposed to automate the adjustment

of the constraints based on the point coordinates feedback, thus reducing the

conservativeness induced by constant constraints.

• An alternative explicit MPC controller is proposed to alleviate the online com-

putation load while improving the real-time performance.

• Experiments are conducted to verify the effectiveness of the proposed control

schemes, which extends the application of MPC to IBVS of the quadrotor.

1.3 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 illustrates the system modelling, which includes the reference coor-

dinate frames, the kinematics and dynamics of the quadrotor, as well as the

kinematics of a number of image features, ranging from point coordinates

to image moments.

17

Chapter 3 presents the main work of this thesis: A high-gain observer-based

NMPC controller along with a roll/pitch constraints adjustment law, and

an explicit MPC controller that offers faster online implementation. More-

over, a proportional-derivative controller is elaborated to demonstrate a

feasible solution for the inner-loop attitude tracking control. Simulation

results are provided to show the validity of the proposed control schemes.

Chapter 4 starts with introducing the overall set-up of the experiments. Then,

the image feature extraction process is elaborated. Lastly, the experimen-

tal results are presented to evaluate the performance of the proposed con-

trol schemes.

Chapter 5 concludes the thesis and highlights potential future work.

18

Chapter 2

System Modelling

2.1 Overview

In this chapter, the equations governing the dynamics of the image-based visual servo-

ing of a quadrotor are presented. We first introduce the necessary coordinate frames,

with respect to which all the equations are defined. Then, we present a nonlinear

model that describes the kinematics and dynamics of the quadrotor in the 3-D space.

Next, the image kinematics of a number of image features is derived, ranging from

point coordinates to image moments. Lastly, the model for the image-based visual

servoing of the quadrotor is shown to be comprised of the aforementioned image

kinematics and part of the quadrotor dynamics in the 3-D space.

2.2 Reference Coordinate Frames

Four reference coordinate frames are defined in this section to describe the IBVS

model [16]. Inertia frame N = {On, n1, n2, n3} is fixed on earth with its basis n1, n2, n3

orienting north, east, and down, respectively. This frame is used to describe the

location of the ground target and the flight trajectory of the quadrotor. The second

19

Figure 2.1: Reference coordinate frames.

coordinate frame is the body fixed frame B = {Ob, b1, b2, b3}, where the origin Ob

is located at the center of gravity (COG) of the quadrotor, and b1, b2 and b3 point

forward, right and down with respect to the quadrotor. Parameters that are closely

related to the geometry of the quadrotor can be easily expressed in the body-fixed

frame, e.g., the moment of inertia of the quadrotor. The third frame is the camera

frame C = {Oc, c1, c2, c3}, which is rigidly attached to the camera. Oc is located at

the optical center of the camera, and c3 is aligned with camera’s optical axis and

perpendicular to the lens. In case that the camera is attached underneath the center

of the quadrotor, it can be assumed that B = C by neglecting the displacement

between Ob and Oc. This assumption enables the simplification of the model. To

avoid confusion, only C is employed in the following analysis. Lastly, the fourth

coordinate frame is the virtual camera frame V = {Ov, c
v
1, c

v
2, c

v
3} whose origin Ov

20

coincides with Oc. c
v
3 is considered as the optical axis of the virtual camera, and it

is parallel to n3. The inertia frame N, camera frame C and virtual camera frame V

are illustrated in Figure 2.1.

2.2.1 Euler Angles and Rotation Matrices

The orientation relationship between two coordinate frames can be characterized by

a rotation matrix. For example, the orientation of C with respect to N is represented

by the rotation matrix RN
C . RN

C is parametrized by Euler angles {ψ, θ, φ} which

are referred to as the yaw, pitch and roll of the quadrotor, respectively. The Euler

angles are illustrated in Figure 2.2, in which X ′Y ′Z ′ and X ′′Y ′′Z ′′ are intermediate

frames obtained after the first and second elementary rotation, respectively. The

orientation of C is obtained by a rotation of N about its Z axis (n3) by ψ, followed

by two rotations about the Y ′ and X ′′ axes of the intermediate frames by θ and φ,

respectively.

Figure 2.2: Definition of Euler angles.

21

RN
C is the rotation matrix from C to N and calculated as [38]:

RN
C = Rz(ψ)Ry(θ)Rx(φ)

=


cψ −sψ 0

sψ cψ 0

0 0 1




cθ 0 sθ

0 1 0

−sθ 0 cθ




1 0 0

0 cφ −sφ

0 sφ cφ



=


cθcψ sθsφcψ − sψcφ sθcφcψ + sψsφ

cθsψ sθsφsψ + cψcφ sθcφsψ − sφcψ

−sθ cθsφ cθcφ



(2.1)

where Rz, Ry, Rx denote the rotation matrices for the three successive elementary

rotations, and the notations s(·), c(·) are shorthand forms of sin(·) and cos(·), respec-

tively.

Since frame V has no roll and pitch motion but the same yaw as C, the rotation

matrix from V to N is expressed as

RN
V = Rz(ψ) (2.2)

Based on (2.1) and (2.2), the rotation matrix from C to V is derived as:

RV
C = (RN

V)TRN
C = Ry(θ)Rx(φ) (2.3)

22

2.3 Equations of Motion of the Quadrotor

Equations governing the motion of the quadrotor are given by [39]:

ζ̇ = vn (2.4)

v̇n = F n/m+ gE3 (2.5)

ṘN
C = RN

C [Ωc]× (2.6)

Ω̇c = −I−1 [Ωc]× IΩc + I−1τ c (2.7)

where ζ = [x, y, z]T is the displacement of the COG of the quadrotor expressed in N;

vn is the linear velocity of the quadrotor expressed in N; F n is the total thrust force

generated by the four propellers expressed in N; m is the mass of the quadrotor; g

is the gravitational constant; E3 = [0, 0, 1]T; Ωc = [Ωc
1,Ω

c
2,Ω

c
3]

T denotes the angular

velocity of frame C relative to N expressed in C;

[Ωc]× =


0 −Ωc

3 Ωc
2

Ωc
3 0 −Ωc

1

−Ωc
2 Ωc

1 0

 ,

where × denotes cross product operation, and [a]×b = a × b; I is the moment of

inertia of the quadrotor expressed in C; I−1 is the inverse of I; τ c is the resultant

torque generated by the propellers expressed in C.

Equations (2.4) and (2.5) are the linear kinematics and translational dynamics

of the quadrotor, respectively. It is straightforward to derive them from Newton’s

second law. Equation (2.6) is the rotational kinematics and the detailed derivation is

given in [40]. Since RN
C is a matrix parameterized by the Euler angles, (2.6) describes

the time evolution of Euler angles driven by the angular velocities. An alternative

23

expression of (2.6) is given by [41]:

η̇ = W (η)Ωc (2.8)

where η = [φ, θ, ψ]T, and

W (η) =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


where t(·) denotes tan(·).

The derivation of (2.8) is given below. According to Figure 2.2, we have:

Ωn =


0

0

ψ̇

+Rz(ψ)


0

θ̇

0

+Rz(ψ)Ry(θ)


φ̇

0

0

 (2.9)

where Ωn is the angular velocity of frame C relative to N expresseed in N, and

therefore

Ωn = RN
CΩc = Rz(ψ)Ry(θ)Rx(φ)Ωc

Substituting the above equation into (2.9) and multiplying both sides byR−1x (φ)R−1y (θ)R−1z (ψ),

24

we have:

Ωc = R−1x (φ)R−1y (θ)R−1z (ψ)


0

0

ψ̇

+R−1x (φ)R−1y (θ)


0

θ̇

0

+R−1x (φ)


φ̇

0

0



=


1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ



φ̇

θ̇

ψ̇


= M (η)η̇

(2.10)

With reference to (2.8), W (η) is the inverse of M (η), i.e., W (η) = M−1(η).

Equation (2.7) is the rotational dynamics of the quadrotor expressed in frame C,

which can be derived from principle of angular momentum [42]. Writing the equation

in frame C enables the moment of inertia I to be a constant matrix.

2.3.1 Force and Torque Calculation

As shown in Figure 2.3, the resultant force generated by the four propellers are along

the −c3 direction, and thus

F n = −RN
CE3T

= −RN
CE3(f1 + f2 + f3 + f4)

(2.11)

where T is the magnitude of F n, and f1, f2, f3, f4 are the magnitude of the thrust

generated by each propeller. The torques generated by the propellers are expressed

25

Figure 2.3: Thrusts and reaction torques applied on the quadrotor.

as:

τ c =


τ c1

τ c2

τ c3

 =


√
2
2
l(f3 + f4 − f1 − f2)

√
2
2
l(f1 + f4 − f2 − f3)

τ2 + τ4 − τ1 − τ3

 (2.12)

where l is the arm length of the quadrotor, and τ1, τ2, τ3, τ4 are the reaction torques

generated at each propeller. The thrust and reaction torque generated by one pro-

peller are related to the its rotational speed by:

fi = KTw
2
i (2.13a)

τi = Kτw
2
i (2.13b)

where KT and Kτ are the aerodynamics constants dominated by the geometric prop-

erties of the propellers, and wi denotes the propeller rotational speed for 1 ≤ i ≤ 4.

26

According to (2.11)–(2.13), the following one-to-one mapping can be established.



T

τ c1

τ c2

τ c3


=



KT 0 0 0

0
√
2
2
lKT 0 0

0 0
√
2
2
lKT 0

0 0 0 Kτ





1 1 1 1

−1 −1 1 1

1 −1 −1 1

−1 1 −1 1


︸ ︷︷ ︸

M



w2
1

w2
2

w2
3

w2
4


(2.14)

It is straightforward to verify that the matrix M is nonsingular. That is to say,

whenever a set of (T, τ c1 , τ
c
2 , τ

c
3) is given, the propeller speed (w2

1, w
2
2, w

2
3, w

2
4) can be

correspondingly determined, provided that the aerodynamic constants have been ac-

curately identified. Thanks to the existence of such one-to-one mapping, it is common

to consider (T, τ c1 , τ
c
2 , τ

c
3) instead of (w2

1, w
2
2, w

2
3, w

2
4) as the control inputs, which sim-

plifies the controller design.

2.4 Image Feature and Kinematics

The ground target considered in this thesis is a planar object consisting of multiple

points. The coordinates of these points in the real image plane are first extracted

from the captured images, and then re-projected onto the virtual image plane that

is always parallel to the flat ground. In this section, we first derive the image kine-

matics of a single point in the real image plane. Then, we show its counterpart in

the virtual image plane. Next, we give the definitions of image moments which are

algebraic equations of multiple point coordinates in the virtual image plane. Finally,

the kinematics of the image moments is derived based on the preceding derivations.

27

2.4.1 Kinematics of a Point in the Real Image Plane

Consider a static point P whose coordinates in frame N are denoted by P n. Then,

its coordinates in frame C can be expressed as:

P c = RC
N [P n −On

c] (2.15)

where P c = [pcx, p
c
y, p

c
z]

T, andOn
c denotes the displacement of the origin of C expressed

in N. Based on the perspective projection equation [39], the projection of P on the

real image plane can be obtained as

uc
nc

 =
λ

pcz

pcx
pcy

 (2.16)

where λ is the focal length of the camera.

Taking the time derivative of (2.15), we have

Ṗ c = ṘC
N [P n −On

c] +RC
N [Ṗ n − Ȯn

c]

= − [Ωc]×R
C
N [P n −On

c] +RC
N [03 − vn]

= − [Ωc]×P
c − vc

(2.17)

where 03 = [0, 0, 0]T, and vc = [vc1, v
c
2, v

c
3]

T is the linear velocity of the quadrotor

expressed in frame C.

Taking the time derivative of (2.16), we have


u̇c = λ

ṗcxp
c
z − pcxṗcz
(pcz)

2
= λ

ṗcx
pcz
− uc ṗ

c
z

pcz

ṅc = λ
ṗcyp

c
z − pcyṗcz
(pcz)

2
= λ

ṗcy
pcz
− nc ṗ

c
z

pcz

(2.18)

Substituting the expressions of ṗcx, ṗ
c
y and ṗcy given in (2.17) into the right-hand

28

side of (2.18), then point kinematics in the real image plane is obtained as:

u̇c
ṅc

 =

− λ
pcz

0 uc

pcz

ucnc

λ
−λ2+(uc)2

λ
nc

0 − λ
pcz

nc

pcz

λ2+(nc)2

λ
−ucnc

λ
−uc


︸ ︷︷ ︸

Lc



vc1

vc2

vc3

Ωc
1

Ωc
2

Ωc
3


(2.19)

where the matrix Lc is called the interaction matrix or image Jacobian matrix. It

relates the velocity of the image projection of the point to the velocity of the camera.

Notice that this interaction matrix is affected by the current image projection of the

point, uc and nc, as well as the depth of the point with respect to the camera frame,

pcz.

2.4.2 Kinematics of a Point in the Virtual Image Plane

Since the selected image features are defined in the virtual image plane instead of the

real camera plane, the kinematics of a point in the virtual image plane needs to be

derived. Then, based on the point kinematics, the kinematics of image moments is

derived thereafter.

The point coordinates in the real image plane (uc, nc) are re-projected onto the

virtual image plane by [39]:


uv

nv

λ

 =
λ

λ0
RV
C


uc

nc

λ

 (2.20)

29

where λ0 is defined as:

λ0 =

[
0 0 1

]
RV
C


uc

nc

λ

 (2.21)

Notice that the defined projection enables the normal distance from the optical center

Ov to the virtual image plane being equal to λ.

To derive the point kinematics in the virtual image plane, the same approach is

taken as in (2.15)–(2.19). The coordinates of point P in frame V is expressed as:

P v = RV
N [P n −On

c] (2.22)

where P v = [pvx, p
v
y, p

v
z]

T. The projection of P on the virtual image plane is expressed

as uv
nv

 =
λ

pvz

pvx
pvy

 (2.23)

Taking the time derivative of (2.22), we have

Ṗ v = ṘV
N [P n −On

c] +RV
N [Ṗ n − Ȯn

c]

= − [Ωv]×R
V
N [P n −On

c] +RV
N [03 − vn]

= − [Ωv]×P
v − vv

= −
[
ψ̇E3

]
×
P v − vv

(2.24)

where Ωv is the angular velocity of frame V with respect to N expressed in V,

and vv = [vv1 , v
v
2 , v

v
3]T is the linear velocity of the quadrotor expressed in frame V.

Ωv = ψ̇E3 can be derived from (2.10) given that φ = 0 and θ = 0.

30

Taking the time derivative of (2.23), we have


u̇v = λ

ṗvxp
v
z − pvxṗvz
(pvz)

2
= λ

ṗvx
pvz
− uv ṗ

v
z

pvz

ṅv = λ
ṗvyp

v
z − pvyṗvz
(pvz)

2
= λ

ṗvy
pvz
− nv ṗ

v
z

pvz

(2.25)

Substituting the expressions of ṗvx, ṗ
v
y and ṗvy given in (2.24) into the right-hand

side of (2.25), then point kinematics in the virtual image plane is obtained as:

u̇v
ṅv

 =

− λ
pvz

0 uv

pvz
nv

0 − λ
pvz

nv

pvz
−uv


︸ ︷︷ ︸

Lv



vv1

vv2

vv3

ψ̇


(2.26)

where Lv is the interaction matrix when the point coordinates are defined in the

virtual image plane. Compared to (2.19), (2.26) is independent of the roll and pitch,

as uv and nv are defined in the virtual image plane which does not have roll or pitch

motion.

2.4.3 Image Moments

The selected image features are image moments defined in the virtual image plane,

and they are functions of uv and nv. The image moments s = [s1, s2, s3, s4]
T are

31

defined as [39]:

s1 = s3
uvg
λ

(2.27a)

s2 = s3
nvg
λ

(2.27b)

s3 =

√
a∗

a
(2.27c)

s4 =
1

2
arctan

(
2µ11

µ20 − µ02

)
(2.27d)

where uvg = 1
K

∑K
k=1 u

v
k, n

v
g = 1

K

∑K
k=1 n

v
k, u

v
k and nvk are the coordinates of the kth

point in the virtual image plane, K is the number of the points contained in the target

object, µij =
∑K

k=1(u
v
k − uvg)i(nvk − nvg)j, a = µ20 + µ02, a

∗ is the value of a measured

at the pre-defined desired height, Z∗.

2.4.4 Kinematics of Image Moments

The kinematics of the image moments is given by [39]:



ṡ1

ṡ2

ṡ3

ṡ4


=



− 1
Z∗ 0 0

0 − 1
Z∗ 0

0 0 − 1
Z∗

0 0 0




vv1

vv2

vv3

+



s2

−s1

0

−1


ψ̇ (2.28)

where Z∗ is the prescribed desired height.

Since s1 and s2 are functions of s3, we start from the derivation of ṡ3. We first

32

show that s3 =
√

a∗

a
= Z

Z∗ .

a = µ20 + µ02

=
K∑
k=1

(uvk − uvg)2 +
K∑
k=1

(nvk − nvg)2

=
K∑
k=1

(uvk − uvg)2 + (nvk − nvg)2

=
K∑
k=1

(
λ(pvx,k − p̄vx)

pvz,k

)2

+

(
λ(pvy,k − p̄vy)

pvz,k

)2

=
λ2

Z2

K∑
k=1

(pvx,k − p̄vx)2 + (pvy,k − p̄vy)2

=
λ2

Z2

K∑
k=1

||[pvx,k, pvy,k]T − [p̄vx, p̄
v
y]

T||2

(2.29)

where p̄vx = 1
K

∑K
k=1 p

v
x,k, p̄

v
y = 1

K

∑K
k=1 p

v
y,k, p

v
z,k are the same for 1 ≤ k ≤ K and

denoted by Z. || · || denotes the Euclidean norm of a vector. Note that the term∑K
k=1 ||[pvx,k, pvy,k]T − [p̄vx, p̄

v
y]

T||2 is a constant as it measures the squared sum of the

absolute distance from each individual point to the barycenter of the object. Since

Z2a is equal to a constant, we have:

s3 =

√
a∗

a
=

Z

Z∗
(2.30)

It is straightforward to derive that

ṡ3 =
Ż

Z∗
= − v

v
3

Z∗
(2.31)

Notice that the “−” sign in (2.31) results from the fact that the axis cv3 orients

downward.

To obtain the expressions of ṡ1 and ṡ2, we first derive the expressions of u̇vg and

33

ṅvg by substituting (2.26) into uvg = 1
K

∑K
k=1 u

v
k and nvg = 1

K

∑K
k=1 n

v
k, respectively.

u̇vg =
1

K

K∑
k=1

u̇vk

=
1

K

K∑
k=1

([
− λ
Z

0
uvk
Z

]
vv + nvkψ̇

)

=

[
− λ
Z

0 1
K

∑K
k=1

uvk
Z

]
vv +

1

K

K∑
k=1

nvkψ̇

=

[
− λ
Z

0
uvg
Z

]
vv + nvgψ̇

(2.32)

where vv = [vv1 , v
v
2 , v

v
3]T.

Similarly, we have

ṅvg =

[
0 − λ

Z

nv
g

Z

]
vv − uvgψ̇ (2.33)

Using (2.27a), (2.30), (2.31), (2.32), we have

ṡ1 =
1

λ
(ṡ3u

v
g + s3u̇

v
g)

=
1

λ

(
− v

v
3

Z∗
uvg +

Z

Z∗

([
− λ
Z

0
uvg
Z

]
vv + nvgψ̇

))
= − 1

Z∗
vv1 + s2ψ̇

(2.34)

Similarly, the expression of ṡ2 in (2.28) can be obtained using (2.27b), (2.30), (2.31),

(2.33).

34

s4 can be simplified as:

s4 =
1

2
arctan

(
2µ11

µ20 − µ02

)
=

1

2
arctan

(
2
∑K

k=1(u
v
k − uvg)(nvk − nvg)∑K

k=1(u
v
k − uvg)2 −

∑K
k=1(n

v
k − nvg)2

)

=
1

2
arctan

(
2 λ

2

Z2

∑K
k=1(p

v
x,k − p̄vx)(pvy,k − p̄vy)

λ2

Z2

∑K
k=1(p

v
x,k − p̄vx)2 − λ2

Z2

∑K
k=1(p

v
y,k − p̄vy)2

)

=
1

2
arctan

(
2
∑K

k=1(p
v
x,k − p̄vx)(pvy,k − p̄vy)∑K

k=1(p
v
x,k − p̄vx)2 −

∑K
k=1(p

v
y,k − p̄vy)2

)

= α = −ψ + β

(2.35)

where α is the angle from the axis cv1 to the principal axis of the ground object [5];

ψ is the yaw angle; β is the angle from the axis n1 to the principal axis (see Figure

2.4). Since the object is static with respect to frame N, β is a constant.

Figure 2.4: Geometrical explanation of image moment s4.

Thus, it is straightforward to derive that

ṡ4 = −ψ̇ (2.36)

35

2.5 Equations of Image-Based Visual Servoing of

a Quadrotor

When it comes to the IBVS of a quadrotor, the position information is not measur-

able due to the absence of a global positioning system or a motion capture system.

Therefore, the original linear kinematics of the quadrotor (2.4) is replaced by the

kinematics of image features (2.28).

On the other hand, the translational dynamics equation (2.5) is rewritten in frame

V to be consistent with (2.28).

v̇n = F n/m+ gE3

d

dt
(RN

V v
v) = RN

V F
v/m+ gE3

ṘN
V v

v +RN
V v̇

v = RN
V F

v/m+ gE3

RN
V [Ωv]×v

v +RN
V v̇

v = RN
V F

v/m+ gE3

[Ωv]×v
v + v̇v = F v/m+RV

NgE3

Rearranging the above equation, we have:

v̇v = −[Ωv]×v
v + F v/m+RV

NgE3

= −[ψ̇E3]×v
v −RV

CE3T/m+ gE3

(2.37)

where F v is the total thrust force generated by the four propellers expressed in frame

V. As mentioned before, Ωv = ψ̇E3 is derived from (2.10) given that φ = 0 and θ = 0.

In addition, RV
N is omitted in the final expression due to that RV

NE3 = E3.

To summarize, the model for the IBVS of the quadrotor is comprised of (2.28),

(2.37), (2.6), and (2.7). It is noticeable that the translational dynamics governed by

(2.28) and (2.37) is expressed in frame V, while the rotational dynamics governed by

36

(2.6), and (2.7) is expressed in frame C.

2.6 Conclusion

In this chapter, the modelling of the IBVS of the quadrotor is illustrated. The virtual

camera approach is adopted and the image features are selected as four image mo-

ments defined in the virtual camera plane. This deliberate selection of image features

leads to an image kinematics that is independent of the tilt motion of the quadro-

tor, which contributes to a nicely decoupled dynamics model for the IBVS of the

quadrotor.

37

Chapter 3

High-Gain Observer-Based Model

Predictive Control

3.1 Overview

In this chapter, we first illustrate the dual-loop control structure which consists of

an outer-loop controller and an inner-loop controller. Then, a high-gain observer-

based nonlinear MPC controller is employed in the outer-loop to regulate the relative

position and yaw of the quadrotor to the ground target while addressing:

1. the fulfillment of the visibility constraint during the visual servoing.

2. the unavailability of the linear velocity information due to the use of a minimal

sensor suite.

Furthermore, an adjustment law is developed to automatically adjust the constraints

on the roll/pitch angles to keep the target object within the FOV. Moreover, to

reduce the online computational load and improve the real-time performance, an ex-

plicit MPC controller is designed such that the optimization problem can be solved

38

Figure 3.1: Dual-loop control structure.

offline. On the other hand, given the inner-loop rotational dynamics can be feed-

back linearized, a dynamics inversion-based proportional-derivative (PD) controller

is accordingly designed to track the desired attitude signals received from the outer-

loop controller. Lastly, simulation results are presented to show the validity of the

proposed control algorithms.

3.2 Dual-Loop Control Structure

Instead of using vision feedback to directly generate actuator level commands, we

adopt the dual-loop control structure (see Figure 3.1). The outer-loop visual servoing

controller receives the extracted image features and outputs the desired thrust and

attitude signals to the inner-loop, while the inner-loop attitude tracking controller

tracks the desired attitude signals by outputting the desired torque to the quadro-

tor. The desired thrust and torque signals are then transformed into the propeller

speed commands to actuate the quadrotor. The advantages of the dual-loop control

structure lie in: First, it enables each loop effectively fully actuated even though the

overall dynamics is under-actuated; Second, it naturally fits the scenario where the

sampling rate of the outer-loop sensor (camera) is much slower than that of the inner-

39

loop sensor (IMU). Since the dual-loop structure allows for the separate design of the

outer-loop controller from the inner-loop controller, we thus focus on the design of

the visual servoing controller that regulates the outer-loop dynamics. A benchmark

attitude tracking controller developed in [43] is used as the inner-loop controller.

3.3 High-Gain Observer

A high-gain observer is developed to estimate the linear velocity of the quadrotor,

which is required by the design of the MPC controller.

3.3.1 Design Procedure

The observer design employs the outer-loop dynamics described by (2.28) and (2.37).

First, an input transformation is performed to simplify the observer design. We define

a variable f as

f = gE3 −RV
CE3T/m (3.1)

where f = [f1, f2, f3]
T. Then, (2.37) can be expanded as


v̇v1

v̇v2

v̇v3

 =


0 ψ̇ 0

−ψ̇ 0 0

0 0 0



vv1

vv2

vv3

+


f1

f2

f3

 (3.2)

Equations (2.28) and (3.2) together form a nonlinear system that belongs to a class

of nonlinear systems discussed in [44], and accordingly the high-gain observer design

technique can be applied. To better show the design procedure, (2.28) and (3.2) are

40

written into the form ẋ = F(x,u) as follows:

ẋ1 = − 1

Z∗
x5 + x2u1 ẋ2 = − 1

Z∗
x6 + x1u1

ẋ3 = − 1

Z∗
x7 ẋ4 = −u1

ẋ5 = x6u1 + u2 ẋ6 = −x5u1 + u3

ẋ7 = u4

(3.3)

where x = [x1, x2, x3, x4, x5, x6, x7]
T = [s1, s2, s3, s4, v

v
1 , v

v
2 , v

v
3]T, u = [u1, u2, u3, u4]

T =

[ψ̇, f1, f2, f3]
T.

State equations (3.3) can be further transformed into three chains of double inte-

grators by a mapping ξ = H(x,u):

ξ1 = x1 ξ2 = − 1

Z∗
x5 + x2u1

ξ3 = x2 ξ4 = − 1

Z∗
x6 + x1u1

ξ5 = x3 ξ6 = − 1

Z∗
x7

(3.4)

It is straightforward to verify that ξ̇1 = ξ2, ξ̇3 = ξ4, and ξ̇5 = ξ6. This is an observable

form that is sufficient for the application of high-gain observer [44]. Note that the

equation in (3.3) related to ẋ4 is omitted , as it does not contribute to the estimation

of the linear velocity.

By differentiating (3.4) and employing (3.3), the transformed state equations are

obtained as:

ξ̇ = Aξ +B∆(ξ,u) (3.5)

y = Cξ (3.6)

where ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]
T; y = [s1, s2, s3]

T; A = blockdiag(A1,A2,A3), B =

41

blockdiag(B1,B2,B3), C = blockdiag(C1,C2,C3), where blockdiag(·) denotes form-

ing a matrix by block diagonalizing the matrices within the parentheses,

Ai =

0 1

0 0

 Bi =

0

1

 Ci =

[
1 0

]

for 1 ≤ i ≤ 3; ∆(ξ,u) = [∆1,∆2,∆3]
T, where

∆1 =
∂ξ2
∂x

dx

dt
= − 1

Z∗
u2 + 2ξ4u1 + ξ1u

2
1

∆2 =
∂ξ4
∂x

dx

dt
= − 1

Z∗
u3 − 2u1ξ2 + ξ3u

2
1

∆3 =
∂ξ6
∂x

dx

dt
= − 1

Z∗
u4

(3.7)

Accordingly, the high-gain observer is designed as:

˙̂
ξ = Aξ̂ +B∆0(ξ̂,u) +H(y −Cξ̂) (3.8)

where ξ̂ is the estimate of ξ; ∆0(ξ̂,u) is the estimate of the nonlinear term ∆(ξ,u);

H = blockdiag(H1,H2,H3), where

Hi =

 αi1/ε
αi2/ε

2

 (3.9)

for 1 ≤ i ≤ 3. H is the observer gain matrix, and ε is the high gain parameter that is

required to be sufficiently small. Positive constants αij need to be selected such that

the roots of the quadratic polynomials

n2 + αi1n+ αi2 = 0 (3.10)

are all in the left-half plane, for i = 1, 2, 3.

42

Given ξ̂ is obtained by (3.8), the estimate of state x̂ is then determined by the

inverse of map (3.4), i.e., x̂ = H−1(ξ̂,u). H−1(ξ̂,u) is given as:

x̂1 = ξ̂1 x̂5 = −Z∗(ξ̂2 − ξ̂3u1)

x̂2 = ξ̂3 x̂6 = −Z∗(ξ̂4 + ξ̂1u1)

x̂3 = ξ̂5 x̂7 = −Z∗ξ̂6

(3.11)

where [x̂5, x̂6, x̂7]
T is the estimate of the linear velocity of the quadrotor.

3.3.2 Theoretical Analysis

We define the scaled estimation error as:

η =

[
ξ1 − ξ̂1
ε1

,
ξ2 − ξ̂2
ε0

,
ξ3 − ξ̂3
ε1

,
ξ4 − ξ̂4
ε0

,
ξ5 − ξ̂5
ε1

,
ξ6 − ξ̂6
ε0

]T
(3.12)

and it can be written in a compact form:

η = D(ε)−1(ξ − ξ̂) (3.13)

where D(ε) = blockdiag(D1,D2,D3), with Di =

ε 0

0 1

, for i = 1, 2, 3.

The dynamics of the scaled error can be derived according to (3.8), (3.5), (3.6),

(3.13):

η̇ = D−1(ξ̇ − ˙̂
ξ)

= D−1(Aξ +B∆(ξ,u)−Aξ̂ −B∆0(ξ̂,u)−H(y −Cξ̂))

= D−1((A−HC)Dη +B(∆(ξ,u)−∆0(ξ̂,u)))

(3.14)

43

Multiplying both sides by ε, we have:

εη̇ = εD−1(A−HC)Dη + εD−1B(∆(ξ,u)−∆0(ξ̂,u))

= A0η + εBg(ξ, ξ̂,u)

(3.15)

where A0 = εD−1(A−HC)D, g(ξ, ξ̂,u) = ∆(ξ,u)−∆0(ξ̂,u). It is easy to verify

that D−1B = B, and A0 is a constant matrix, which is independent of the high gain

parameter ε. A0 =blockdiag(A01,A02,A03), where A0i =

−αi1 1

−αi2 0

 for i = 1, 2, 3.

The eigenvalues of A0 are the union of the eigenvalues of A01, A02 and A03, and the

eigenvalues of A0i can be determined by solving the characteristic equation (3.10).

Since the selection of αi enables all the eigenvalues of A0 are placed in the left

half plane, A0 is thus Hurwitz. It is observed that a small ε can attenuate the effects

of g(ξ, ξ̂,u) and increase the convergence rate of the state estimation [45].

3.4 Nonlinear Model Predictive Control

3.4.1 Problem Formulation

To apply MPC, the outer-loop dynamics described by (3.3) is discretized by Euler

forward approximation with a sampling period Ts:

xk+1 = xk + F(xk,uk)Ts

= Fd(xk,uk)

(3.16)

where xk, xk+1 denote the states x at time step k and k + 1, respectively, and uk

denotes the control inputs u at time step k.

44

The expanded form of (3.16) is given as:



s1,k+1

s2,k+1

s3,k+1

s4,k+1

vv1,k+1

vv2,k+1

vv3,k+1



=



1 ψ̇kTs 0 0 −Ts/Z∗ 0 0

−ψ̇kTs 1 0 0 0 −Ts/Z∗ 0

0 0 1 0 0 0 −Ts/Z∗

0 0 0 1 0 0 0

0 0 0 0 1 ψ̇kTs 0

0 0 0 0 −ψ̇kTs 1 0

0 0 0 0 0 0 1





s1,k

s2,k

s3,k

s4,k

vv1,k

vv2,k

vv3,k



+



0 0 0 0

0 0 0 0

0 0 0 0

−Ts 0 0 0

0 Ts 0 0

0 0 Ts 0

0 0 0 Ts





ψ̇k

f1,k

f2,k

f3,k


(3.17)

Notice that the above discrete-time model is nonlinear, as it involves products of state

and input variables on the right hand side of the equation.

The regulation task can be formulated as a nonlinear programming problem [11]

as follows:

min
Uk

J(xk,Uk) (3.18)

45

with

J(xk,Uk) =

Np∑
j=1

(xj,k − xref)TQ(xj,k − xref)

+
Nc−1∑
j=0

(uj,k)
TR(uj,k)

(3.19)

subject to

xj+1,k = Fd(xj,k,uj,k), j = 0, 1, ..., Np − 1 (3.20)

x0,k = xk, (3.21)

uj,k ∈ U, j = 0, 1, ..., Np − 1 (3.22)

where J(xk,Uk) is the cost function, xk = [s1,k, s2,k, s3,k, s4,k, v̂
v
1,k, v̂

v
2,k, v̂

v
3,k]

T is the

state available at time k, which consists of the image moments measurements, and

the estimated linear velocity. xj,k and uj,k denote the predicted values of the model

states and inputs, respectively, at time k+j based on the state information available at

time k. Uk = [u0,k, · · · ,uNp−1,k] ∈ R4×Np is the decision variable of the optimization

problem. The first element u0,k is sent out and implemented on the quadrotor. Np is

the prediction horizon, while Nc is the control horizon, with Nc ≤ Np. The control

inputs are kept constant beyond the control horizon. Q and R are the weighting

matrices for states and inputs, respectively. U is the constraint set for control inputs.

xref = [0, 0, 1, 0, 0, 0, 0]T.

3.4.2 Control Input Transformation

The output of the nonlinear MPC controller is u∗ = [ψ̇d, f1d, f2d, f3d]
T, which needs to

be transformed into desired Euler angles ηd = [φd, θd, ψd]
T, as required by the attitude

46

tracking controller in the inner-loop. The transformation is given as:


f1d = − 1

m
Td sin(θd) cos(φd)

f2d =
1

m
Td sin(φd)

f3d = − 1

m
Td cos(θd) cos(φd) + g

⇒



Td = m
√

f21d + f22d + (f3d − g)2

φd = arcsin

(
f2d√

f21d + f22d + (f3d − g)2

)

θd = arctan

(
f1d

f3d − g

)
(3.23)

where the left equation set is derived from (3.1), and Td is the desired total thrust

force supplied by the propellers.

ψd is obtained by the integration of ψ̇d.

ψd(k + 1) = ψm(k) + ψ̇d(k)Ts (3.24)

where ψd(k+1) is the reference yaw angle for the inner-loop during the k+1 sampling

period, ψm(k) is the yaw angle measurement from IMU at the sampling instant k,

and ψ̇d(k) is the ψ̇d obtained at sampling instant k.

3.4.3 Input Constraints

As discussed before, saturating the roll/pitch angles is an effective technique to main-

tain the target object within the FOV of the camera. Therefore, constraints are

imposed on the desired roll/pitch angle signals.

|φd| ≤ φmax, |θd| ≤ θmax (3.25)

where φmax and θmax are upper bounds of the reference roll and pitch angles. With ref-

erence to (3.23), (3.25) can be formulated as nonlinear constraints in the optimization

problem.

47

Other input constraints can be

|ψ̇d| ≤ ψ̇max, Tmin ≤ |Td| ≤ Tmax (3.26)

where ψ̇max is the upper bound of the yaw rate, Tmin and Tmax are the lower bound

and upper bound of the thrust magnitude, respectively. (3.25) and (3.26) are explicit

forms of (3.22) as they address constraints on the control inputs.

3.5 Roll/Pitch Constraints Adjustment Law

As discussed before, imposing bounds on the desired roll/pitch angles is effective for

keeping the object of interest within the field of view (FOV). Even though a stringent

limit can enforce the ground target to be more probably within the FOV, it leads to

conservative maneuver and slow convergence. Therefore, instead of imposing constant

constraints on roll/pitch angles, we design a roll/pitch limit adjustment law that can

automatically adjust φmax and θmax based on the feedback of the point coordinates.

The adjustment law defines the scaling factor (SF), by which the initial limit is shrunk,

to obtain the updated limit. That is,

φmax,new

θmax,new

 =
1

SF

φmax,initial

θmax,initial

 (3.27)

The adjustment law is given as:

SF = −q
(

norm

boundary

)p
log

(
boundary − norm

boundary

)
+ 1 (3.28)

where norm = max{‖[uck, nck]‖∞}Kk=1 with K being the number of the points contained

in the ground target, and boundary is the pixel value at the boundaries of the FOV.

48

0 200 400 600 800 1000 1200 1400

1

10

20

30
S

ca
lin

g
fa

ct
or

p=1 q=5
p=10 q=5
p=100 q=5

(a) Plots of scaling factors with varied p.

0 200 400 600 800 1000 1200 1400
1

20

40

60

S
ca

lin
g

fa
ct

or

p=10 q=1
p=10 q=5
p=10 q=10

(b) Plots of scaling factors with varied q.

Figure 3.2: Plots of scaling factor functions.

p > 0 and q > 0 are two tuning parameters that can be used to modify the shape of

the scaling function.

Assuming that boundary = 1400, we plot the scaling function based on varieties of

parameters p and q, as shown in Figure 3.2. It shows that the parameter p affects the

width of the flat region, where the roll/pitch limit is maintained unchanged, while the

parameter q affects the growth rate of the scaling factor in the fast growing region.

We calculate p and q based on the following specifications:

norm = 1000, SF = 1.2;

norm = 1200, SF = 3.

Then the values of p and q can be determined and the explicit form of (3.28) is

given as:

SF = −5

(
norm

boundary

)10

log

(
boundary − norm

boundary

)
+ 1 (3.29)

The 2-D distribution of (3.29) in the FOV is illustrated in Figure 3.3.

49

1.01
1.01

1.01 1.01

1.01

1.21.2

1.
2

1.2 1.2
1.2

33

3

3 3

3
3

1010

10
10

10 10

10
10

100100

10
0

10
0

100 100

100
100

-1400-1200-1000-800 -600 -400 -200 0 200 400 600 800 100012001400

u (pixels)

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400

n
(p

ix
el

s)

Figure 3.3: Scaling factor distribution in the FOV.

3.6 Explicit MPC Formulation

The online implementation of MPC algorithms requires considerable computation

resources on board, which imposes challenges when confronting the real-time control.

In this section, we decouple the yaw control from the position control of the quadrotor

so that a linear model of the positional dynamics can be obtained. Accordingly,

an explicit MPC controller is designed to regulate the position, and a proportional

feedback controller is employed for the yaw regulation. To demonstrate the feasibility

of separate control of the two subsystems, a switching mechanism is proposed to

switch between the two controllers based on the current state of the quadrotor. More

specifically, the switching mechanism will trigger the yaw regulator after the quadrotor

has converged to the desired position under the explicit MPC visual servoing law. On

the other hand, ideally, the yaw regulation can be accomplished without changing the

position of the quadrotor. However, the quadrotor may drift away from the desired

50

position when undertaking a pure yaw rotation with the appearance of wind gusts.

For this reason, the switching mechanism is designed to re-activate the explicit MPC

controller, when the position error exceeds a pre-specified bound during the yaw

regulation.

To simplify the system dynamics, we assume that the yaw remains unchanged

during the position regulation, that is, ψ̇ = 0. Moreover, this assumption can be

justified by enforcing the desired yaw rate to be zero, i.e., ψ̇d = 0. A linearized model

of (3.17) can thus be obtained as follows:



s1,k+1

s2,k+1

s3,k+1

vv1,k+1

vv2,k+1

vv3,k+1


=



1 0 0 −Ts/Z∗ 0 0

0 1 0 0 −Ts/Z∗ 0

0 0 1 0 0 −Ts/Z∗

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





s1,k

s2,k

s3,k

vv1,k

vv2,k

vv3,k


+



0 0 0

0 0 0

0 0 0

Ts 0 0

0 Ts 0

0 0 Ts




f1,k

f2,k

f3,k



(3.30)

Since the above model is linear, we can conveniently solve the MPC optimization

problem offline and implement the explicit solution during online implementation.

After the quadrotor is regulated to the desired position, the yaw regulation will be

triggered and applied. The yaw of the quadrotor is regulated by a simple proportional

feedback controller:

ψ̇d = Kψs4 (3.31)

where Kψ is a positive gain. Substituting (3.31) into (2.36) gives the closed-loop yaw

dynamics:

ṡ4 = −Kψs4 (3.32)

51

which is globally exponentially stable.

The overall outer-loop system dynamics described by (3.17) has been divided into

two subsystems: a translational subsystem described by (3.30) and a yaw subsystem

described by (2.36). Theoretically, each subsystem can be stabilized without affecting

the states of the other. Switching rules between the two controllers are defined as

below:

• Switch from the position regulator to the yaw regulator, when the position

regulation has been achieved and the yaw regulation had not been achieved yet.

• Switch from the yaw regulator to the position regulator, if the position error

exceeds a pre-specified upper bound during yaw regulation or the yaw regulation

has been achieved.

The first switching rule indicates that the position regulation is executed prior to

the yaw regulation, since this sequence benefits keeping the target object within the

FOV. Moreover, the second switching rule can effectively address a practical issue:

The target object may leave the FOV during yaw regulation due to the presence

of external disturbance, e.g., wind gusts. By constantly monitoring the position

error, the position regulator can be triggered and applied when the yaw regulation is

interrupted by wind gusts.

Explicit MPC approximates the solution to the nonlinear programming problem

(3.18)–(3.22) by a series of piecewise affine (PWA) functions through parametric pro-

gramming. This process is done offline and thus dramatically saves the computation

time during online implementation. The pre-specified state space is firstly divided

into multiple control regions, and then for each control region, the corresponding

PWA is computed (see Figure 3.4). The obtained explicit MPC controller stores the

coefficients of parametric representations of the control regions, as well as the coeffi-

cients of the corresponding PWAs. During online implementation, given the current

52

state information, the control region containing the state will be found and then the

corresponding PWA coefficients will be used to evaluate the control action.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
PWA representation of the optimal control input

Figure 3.4: Control regions partitioned in the state space.

3.7 Inner-Loop Attitude Tracking Control

In the preceding sections, two MPC-based visual servoing controllers are proposed

to regulate the outer-loop translational dynamics of the quadrotor. In this section,

a proportional-derivative (PD) controller is designed for the attitude tracking in the

inner-loop. We first show that the inner-loop dynamics can be linearized to a dou-

ble integrator by feedback linearization, and then a PD controller is applied to the

linearized system.

53

3.7.1 Feedback Linearization of Inner-Loop Dynamics

Recall that the rotational dynamics of the quadrotor is governed by (2.6) and (2.7):

ṘN
C = RN

C [Ωc]×

Ω̇c = −I−1 [Ωc]× IΩc + I−1τ c

In addition, (2.6) has the following equivalent expression as proved in (2.10):

Ωc = M (η)η̇ (3.33)

Differentiating (3.33) on both sides gives:

Ω̇c = Ṁ(η)η̇ +M(η)η̈ (3.34)

Substituting (3.33) and (3.34) into (2.7) gives:

Ṁ(η)η̇ +M(η)η̈ = −I−1[M (η)η̇]×IM(η)η̇ + I−1τ c (3.35)

Multiplying both sides by I and rearranging the equation gives:

IM(η)η̈ + (IṀ (η) + [M (η)η̇]×IM(η))η̇ = τ c (3.36)

The above equation can be written in a compact form:

D(η)η̈ +C(η, η̇) = τ c (3.37)

where D(η) = IM(η), and C(η, η̇) = Ḋ(η, η̇)η̇ + [M (η)η̇]×D(η)η̇.

54

3.7.2 Dynamics Inversion-Based PD Controller

A dynamics inversion controller can be designed as:

τ c = D̂(η)τ̃ + Ĉ(η, η̇) (3.38)

where D̂(η) and Ĉ(η, η̇) are the approximation of D(η) and C(η, η̇), respectively.

τ̃ is the virtual control input that is to be generated by the PD controller. η and η̇

are assumed to be measurable from the IMU.

Suppose that the system parameters are perfectly identified, i.e., D̂(η) = D(η),

and Ĉ(η, η̇)=C(η, η̇), then we have the resulting closed-loop dynamics:

η̈ = τ̃ (3.39)

Notice that it is a double integrator, and accordingly a PD controller can be designed

as:

τ̃ = η̈d +Kp(ηd − η) +Kd(η̇d − η̇) (3.40)

where ηd = [φd, θd, ψd]
T is generated by the outer-loop controller, and Kp and Kd are

positive gain matrices. η̇d and η̈d can be either computed by numerical differentiation,

or assumed to be 0, which leads to a simplified version of (3.40):

τ̃ = Kp(ηd − η)−Kdη̇ (3.41)

The overall control system is illustrated by a block diagram, as shown in Figure 3.5.

55

Figure 3.5: Inner-loop attitude tracking using PD control.

If we define the attitude tracking error as:

e = η − ηd (3.42)

By substituting (3.40) into (3.39), the error dynamics can be derived as:

ë = −Kpe−Kdė (3.43)

We can write the above equation in the state-space form:

d

dt

e
ė

 =

 03 I3

−Kp −Kd


e
ė

 (3.44)

It is straightforward to verify that the state transition matrix is Hurwitz, i.e., all

its eigenvalues are in the left half plane, and therefore the system is asymptotically

stable. In other words, η will eventually converge to ηd.

If the system is perfectly identified, the inverse dynamics method enables the non-

linearity of the original system to be effectively compensated, and the controller can

be designed based on the linearized model. However, the drawback of inverse dynam-

ics method is its sensitivity to modelling uncertainties. For example, the uncertainty

56

of the moment of inertia I will lead to imperfect compensation of D(η) and C(η, η̇),

that is,

D(η)η̈ +C(η, η̇) = D̂(η)τ̃ + Ĉ(η, η̇) (3.45)

The resulting closed-loop system has an additional error term on the right hand side,

compared to (3.39):

η̈ = D−1(η)D̂(η)τ̃ +D−1(η)(Ĉ(η, η̇)−C(η, η̇))

= τ̃ + (D−1(η)D̂(η)− Im)τ̃ +D−1(η)(Ĉ(η, η̇)−C(η, η̇))

= τ̃ +E(η, η̇, τ̃)

(3.46)

where Im is the identity matrix.

The error term E(η, η̇, η̈d) can possibly accumulate with time and destabilize the

overall system [46]. However, it is believed that the adverse effects of E(η, η̇, η̈d)

can be well treated by some control techniques such as sliding mode control [47] and

neural network-based control approach [11]. One of future work would be to explicitly

consider E(η, η̇, η̈d) in our attitude tracking controller design.

3.8 Numerical Simulation

Simulations are performed in MATLAB/Simulink to verify the effectiveness of the

controller designs proposed in Section 3.1–3.7.

3.8.1 Simulation Set-up

The control objective is to regulate the quadrotor to 1 m above the barycenter of the

ground target, with its yaw direction aligned with the principal axis of the ground

target. That is, sref = [0, 0, 1, 0]T, and Z∗ = 1 m. The mass of the quadrotor is m =

57

1.2 kg, and the moment of inertia I is estimated to be diag([0.013, 0.013, 0.023]), based

on the mass and the overall dimension of the quadrotor. The gravitational constant

g = 9.8 m/s2. The ground targets are four coplanar points on the level ground,

with their coordinates in N being [0.25, 0.2, 0]T, [−0.25, 0.2, 0]T, [−0.25,−0.2, 0]T,

and [0.25,−0.2, 0]T. The initial position of the quadrotor in N is [−1,−0.6,−3]T m,

and the initial Euler angles are [0, 0,−0.174]T rad. The corresponding image features

obtained at the initial pose are sinitial = [0.881, 0.764, 3, 0.174]T. The quadrotor is

assumed to start from static and thus the initial velocity is set to [0, 0, 0]T. By

definition, a∗ is calculated to be 3.572× 10−7 at the desired pose.

For parameters used in the camera model: The focal length λ is set to be 2.8 mm;

pixels are assumed to be squares with side length of 1.4 × 10−6 m, and the field of

view is a square of 2800× 2800 in pixels.

3.8.2 Simulation Study: High-Gain Observer-Based Nonlin-

ear Model Predictive Controller

In the first simulation, we use the high-gain observer (3.8)–(3.11) and the nonlinear

MPC controller (3.18)–(3.26). In the high-gain observer: ε = 10−2, α1
1 = α2

1 = α3
1 =

10, α1
2 = α2

2 = α3
2 = 9. In the NMPC controller: Np = 10, Ts = 0.03 s. Nc is set

to 1 to reduce the computational load. Q =diag([10, 10, 10, 1, 1, 1, 1]). R = 04×4.

The sampling period of the inner-loop is set to 1
10

of Ts. Input constraints are set as:

φmax = θmax = 0.1 rad, ψ̇max = 0.4 rad/s, Tmin = 0.5mg and Tmax = 1.5mg.

Figure 3.6 shows the evolution of state estimates when ξ̂ is initialized by [0, 0, 0, 0, 0, 0]T.

It is observed that the estimated values can converge to the actual states promptly,

but a considerable observation error may be witnessed during the transient phase.

We can alleviate the initial observation error by initializing ξ̂ with image moment

measurements. Hence, the initial value of ξ̂ is set to [0.881, 0, 0.764, 0, 3, 0]T, and the

58

obtained state estimate trajectories are shown in Figure 3.7.

0 2 4 6 8 10

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2
0

0.2

0.4

0.6

0.8

(a)

0 2 4 6 8 10

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2
0

0.2

0.4

0.6

0.8

(b)

0 2 4 6 8 10

Time(s)

-2

-1

0

1

2

3

4

0 0.1 0.2
0

1

2

3

(c)

0 2 4 6 8 10

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2

-60

-40

-20

0

(d)

0 2 4 6 8 10

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2

-40

-20

0

(e)

0 2 4 6 8 10

Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.1 0.2

-200

-100

0

(f)

Figure 3.6: Estimated and actual states obtained when ξ̂ is initialized by
[0, 0, 0, 0, 0, 0]T.

59

0 2 4 6 8 10

Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 2 4 6 8 10

Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

0 2 4 6 8 10

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

4

(c)

0 2 4 6 8 10

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2

-0.15

-0.1

-0.05

0

(d)

0 2 4 6 8 10

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2
0

0.1

0.2

(e)

0 2 4 6 8 10

Time(s)

-1

-0.5

0

0.5

1

1.5

2

(f)

Figure 3.7: Estimated and actual states obtained when ξ̂ is initialized by
[0.881, 0, 0.764, 0, 3, 0]T.

60

Figure 3.8 shows the closed-loop trajectories of the system states. Figure 3.8(a)

shows that the moment features successfully converge to the desired value [0, 0, 1, 0]T.

Fig. 3.8(b) shows the flight trajectory of the quadrotor in frame N. It can be seen

that the quadrotor successfully converges to the desired pose, which is 1m above the

barycenter of the ground target. Figures 3.8(c) and 3.8(d) show the control input

trajectories and the desired Euler angle trajectories, respectively. The desired roll

and pitch angles abide by the pre-defined bounds, 0.1 rad.

0 2 4 6 8 10

Time(s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

M
om

en
t f

ea
tu

re
s

(a) Time evolution of moment features.

0 2 4 6 8 10

Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P
os

iti
on

 (
m

)

(b) Flight trajectory of the quadrotor w.r.t
the inertia frame.

0 2 4 6 8 10

Time(s)

-2

-1

0

1

2

3

4

5

6

C
on

tr
ol

 in
pu

ts

(c) Closed-loop control inputs trajectories.

0 2 4 6 8 10

Time(s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

E
ul

er
 a

ng
le

s
(r

ad
)

(d) Attitude setpoints sent to the inner-loop.

Figure 3.8: Closed-loop states and inputs trajectories obtained by using the nonlinear
MPC controller

61

-1400 -700 0 700 1400

u (pixels)

-1400

-700

0

700

1400

n
(p

ix
el

s)

Field of View

(a)

-1400 -700 0 700 1400

u (pixels)

-1400

-700

0

700

1400

n
(p

ix
el

s)

Field of View

(b)

Figure 3.9: (a) Point coordinate trajectories in the real image plane (solid) and in
the virtual image plane (dotted) when φmax = θmax = 0.1 rad. (b) Point coordinate
trajectories in the real image plane (solid) and in the virtual image plane (dotted)
when φmax = θmax = 0.3 rad.

62

In Figure 3.9, the point coordinate trajectories in the real image plane are plotted

by solid lines, while point coordinate trajectories in the virtual image plane are plotted

by dotted lines. Figure 3.9(a) and Figure 3.9(b) show cases when the roll/pitch angles

are bounded by 0.1 rad, 0.3 rad, respectively. It is observed that the dotted lines in

the two figures are quite similar due to that the virtual image plane is not affected

by the roll/pitch motion of the quadrotor. On the other hand, the solid lines in

Figure 3.9(a) are better confined in the FOV compared to those in Figure 3.9(b),

which demonstrates the improved visibility performance through properly tightening

the roll/pitch constraints.

3.8.3 Simulation Study: Incorporating the Roll/Pitch Con-

straints Adjustment Law

In the first simulation, we apply constant constraints on the roll/pitch angles. It shows

that by properly tightening this constraints, the target scene can be maintained in the

FOV. Nevertheless, as discussed in Section 3.5, we can design a roll/pitch constraints

adjustment law to automatically adjust the constraints according to the location

of object scene with respect to the FOV. Figure 3.10 shows the point coordinate

trajectories obtained when the roll/pitch adjustment law (3.29) is applied. It can be

seen that the trajectories in Figure 3.10 are quite similar to those in Figure 3.9(a).

Yet, the scaling factor is continuously updated and the bounds on the pitch/roll are

correspondingly adjusted, as shown in Figure 3.11.

Figure 3.11(a) shows the evolution of the scaling factor defined in (3.29). There

are several peaks in the curve as the scaling factor function is very responsive to the

location of the point coordinates in the FOV. To avoid the scaling factor jumping back

and forth, we can calculate the scaling factor by taking the average of the current and

previous values. As a result, the curve of the scaling factor is smooth out, as shown

63

-1400 -700 0 700 1400

u (pixels)

-1400

-700

0

700

1400

n
(p

ix
el

s)

Field of View

Figure 3.10: Point coordinate trajectories with Euler constraints adjustment law.

in Figure 3.11(a). The corresponding roll/pitch angle bounds are shown in Figure

3.11(b). The roll/pitch bounds rapidly decrease at the acceleration phase to mitigate

aggressive rotation, and then recover to the original bounds after the quadrotor has

gained velocity. The resulting desired roll/pitch angles strictly satisfy the bounds

throughout the flight simulation.

64

0 2 4 6 8 10

Time(s)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

S
ca

lin
g

fa
ct

or
s

SF
Averaged SF

0.3 0.4

2.8

2.9

(a)

0 2 4 6 8 10

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
ol

l/P
itc

h
(r

ad
)

(b)

Figure 3.11: (a) Scaling factor is averaged to avoid jumps. (b) Roll/pitch angles
under the adjustment law.

3.8.4 Simulation Study: Explicit MPC Controller

The Multi-Parametric Toolbox (MPT) is used to generate an explicit MPC controller

based on the linear model in (3.30). Most of the parameters are the same as those in

Section 3.8.1, except a few to be discussed below. In the discrete-time model used in

MPT, the prediction time is set to 5 s with a time step of 0.5 s. Since a linear model

is used in our prediction, a larger time step would not induce as much prediction

error as in the nonlinear model. On the other hand, this extended prediction horizon

contributes to more robust performance in the presence of disturbance, e.g., wind

gusts, as observed in the experimental trials. Q =diag([100, 100, 100, 10, 10, 10]), and

R=diag([1, 1, 1]). s1 and s2 are constrained in the set {si|−2 ≤ si ≤ 2} for 1 ≤ i ≤ 2,

while s3 is constrained in {s3|−5 ≤ s3 ≤ 5}. The velocity vv1–vv3 are constrained in the

set {vvi | − 0.5 ≤ vvi ≤ 0.5} for 1 ≤ i ≤ 3, and the control inputs f1–f3 are constrained

in {fi| − 2 ≤ fi ≤ 2} for 1 ≤ i ≤ 3. The explicit MPC controller is comprised of 3825

control regions.

For the proportional yaw controller, the control gain Kψ is set to 2.

65

0 5 10 15 20

Time(s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

M
om

en
t f

ea
tu

re
s

(a) Time evolution of moment features.

0 5 10 15 20

Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P
os

iti
on

 (
m

)

(b) Flight trajectory of the quadrotor w.r.t
the inertia frame.

0 5 10 15 20

Time(s)

-0.5

0

0.5

1

1.5

C
on

tr
ol

 in
pu

ts

(c) Closed-loop control inputs trajectories.

0 5 10 15 20

Time(s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

E
ul

er
 a

ng
le

s
(r

ad
)

(d) Attitude setpoints sent to the inner-loop.

Figure 3.12: Closed-loop states and inputs trajectories obtained by using the explicit
MPC controller and the proportional yaw controller

Figure 3.12(a) and Figure 3.12(b) show the convergence of the states in the image

space and the 3-D space, respectively. Figure 3.12(c) shows the control inputs gener-

ated by the explicit MPC position controller and the proportional yaw controller. It

can be seen that the yaw controller is triggered at 9 s, and then the yaw regulation

is accomplished at 14.8 s, when the position regulator is switched on again. Since a

pure yaw motion does not change the position of the quadrotor, small control efforts

are observed when the position regulator is switched on again. Figure 3.12(d) shows

the corresponding desired Euler angles.

66

-1400 -700 0 700 1400

u (pixels)

-1400

-700

0

700

1400

n
(p

ix
el

s)

Field of View

Figure 3.13: Point coordinate trajectories.

The motion of the target object in the virtual image plane and the real image plane

is shown in Figure 3.13. It is observed that the trajectories in virtual image plane

deviate from those in the real image plane at the starting phase due to large roll/pitch

motion as illustrated in 3.12(d). On the other hand, it is observed that a pure yaw

rotation is experienced at the ending phase of the flight when the proportional yaw

controller is switched on.

3.8.5 Simulation Study: Inner-Loop PD Controller

The PD controller governed by (3.41) can be used for the attitude tracking in the

inner-loop. The control gains are selected as: Kp =diag([3600, 3600, 3600]);Kd =diag([100,

100, 100]). Figure 3.14(a) shows that the PD controller enables the desired Euler an-

gles to be well tracked in a prompt manner. The desired roll, pitch, yaw signals are set

to the same square waves, and accordingly the curves representing the actual Euler

67

angles are coinciding with each other. The time evolution of the generated torques is

shown in Figure 3.14(b).

0 1 2 3 4 5 6 7

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

D
es

ire
d

an
d

ac
tu

al
 E

ul
er

 a
ng

le
s

(r
ad

)

(a) Attitude tracking trajectories.

0 1 2 3 4 5 6 7

Time(s)

-30

-20

-10

0

10

20

30

40

T
or

qu
es

 (
N

m
)

(b) Torques generated by the inner-loop PD
controller.

Figure 3.14: Attitude tracking performance obtained by the PD controller.

3.9 Conclusion

In this chapter, we first present a high-gain observer-based NMPC scheme for the

visual servoing of the quadrotor. The high-gain observer is employed to estimate the

linear velocity of the quadrotor, and the NMPC generates the desired Euler angles

to provide guidance to the lower level control. To address the visibility constraints, a

roll/pitch constraints adjustment law is designed to properly bound the Euler angles

so that the target object is maintained within the FOV of the camera. Then, to

improve the real-time performance of the controller, an explicit MPC controller is

designed such that the solution of the online optimization problem can be obtained

offline through parametric programming. As a result, the online evaluation time is

significantly reduced and a faster sampling rate can be achieved. Moreover, a PD

controller is designed for the inner-loop rotational dynamics to track the desired

68

attitude signals generated by the visual servoing controller. Lastly, simulation results

are presented in the end to demonstrate the effectiveness of the proposed control

schemes.

69

Chapter 4

Experimental Implementation

4.1 Overview

Experiments are conducted to verify the effectiveness of the controller designs pro-

posed in Chapter 3. The experimental set-up is firstly introduced in Section 4.2.

Then, in Section 4.3, several preparation works for image feature extraction are elab-

orated: Section 4.3.1 illustrates the camera calibration that is performed to determine

the intrinsic parameters of the camera; Section 4.3.2 presents the image processing

algorithms that are developed to extract the point coordinates; and Section 4.3.3

discusses that a compensation term is needed to add to the image moments calcu-

lation to account for the model mismatch. Lastly, experimental results are provided

to evaluate the performance of the nonlinear MPC controller and the explicit MPC

controller.

4.2 Experimental Set-up

The hardwares and softwares used in the experiments are introduced in this section.

70

Figure 4.1: Bebop 2 drone used in the experiment.

4.2.1 Hardware

The quadrotor used in the experiment is a Bebop 2 drone developed by Parrot, as

shown in Figure 4.1. The Bebop 2 drone weighs 500 g and offers 25 minutes of

flight time. The on-board units are summarized in Table 4.1. The drone is equipped

with a wide-angle fisheye lens with digital image stabilization feature. The digital

image stabilizer can virtually pitch the camera upwards and downwards, enabling the

observation of the objects in front of and below the drone body. Digital stabilization

system functions as an economical and compact alternative to a physical gimbal

system.

The video stream is transmitted to a ground station at the rate of 30 frames

per second (fps). The ground station is a ThinkPad laptop with an Intel i7-6600U

processor (2.60 GHz) and 16 GB memory. The ground station is used for processing

image sequences, extracting image features, and generating control commands.

71

Specifications

Processor
Parrot P7 dual-core CPU Cortex 9 with quad-core GPU
8GB flash

Sensors

MPU6050 for accelerometers and gyroscope (I2C)
AKM 8963 compass
MS5607 barometer
Furuno GN-87F GPS
Sonar
Optical-flow
HD camera

Interfaces
1x UART serial ports
USB
Built-in Wi-Fi

Dimensions
33×38×3.6cm
500g

Operating
System Linux (Busybox)

Table 4.1: Bebop 2 Hardware Specifications.

4.2.2 Software

Pyparrot [48] is a Python application programming interface (API) for Parrot Bebop

drones. API is a library that provides all the building blocks for the development

of a software. For example, Pyparrot includes the communication protocols that

facilitate the communication between the drone and the ground station, and some

basic piloting commands such as take-off and landing.

Figure 4.2 shows the data flow between the hardwares and the softwares. The red

dashed box contains the processes taking place within the ground station, whereas

the blue dashed box contains the processes taking place on board the quadrotor.

As shown in the blue dashed box, the autopilot collects sensor measurements and

sends them to the ground station. On the other hand, the autopilot receives the

piloting commands from the ground station and assigns PWM signals to actuate the

motors.

72

Figure 4.2: Data flow diagram. The rectangles represent hardwares; the ovals repre-
sent software modules, and the round rectangles represent control modes.

As shown in the red dashed box, VLC, PyQt5, OpenCV, CasADi are installed

in the ground station. VLC is a cross-platform media player that is used to handle

the video stream, and its functionalities can be accessed by Python using libVLC

module. PyQt5 is a set of Python bindings for Qt, a C++ library containing a

variety of APIs for building functionalities commonly seen on modern desktops and

mobile systems. Using PyQt5, a control panel interface (see Figure 4.3) is designed

to allow the human pilot to modify the operating modes of the quadrotor. Since the

camera is facing forward by default, the camera will be rotated to face downward by

using a proportional controller when the “camera rotation” mode is enabled. This

mode is usually activated before the take-off to extend the operation time in the

air. The “manual piloting” mode allows the human operator to manually pilot the

quadrotor using several piloting commands. This mode helps to obtain a suitable

initial position for triggering the visual servoing mode, which requires the target

73

Figure 4.3: Ground station control panel.

object to be observed in the FOV of the camera. After visual servoing is triggered,

image processing algorithms developed in OpenCV extract the point coordinates from

the images and then the image moments are calculated. The image moments together

with the IMU measurements, linear velocity information are sent to the CasADi

module that is responsible for solving the optimization problem and generating the

control commands.

CasADi is an open-source tool for nonlinear optimization. For a continuous-

time system, the dynamics model can be firstly discretized by Runge-Kutta method,

and then the nonlinear programming problem (3.18)–(3.26) can be formulated as a

boundary value problem by direct multiple shooting method and solved by an interior

point optimizer (IPOPT).

74

4.3 Image Feature Extraction

4.3.1 Camera Calibration

In Chapter 3, the point coordinates in the image space are measured in meters or

millimeters when we design the control law. However, in the real experiment, the

location of the a blob with respect to the field of view is described in pixels. A camera

calibration is required to acquire the intrinsic parameters of the camera to realize the

conversion between the two quantities. We employ MATLAB Camera Calibrator

App [49] to compute the camera intrinsic parameters, such as pixel dimension and

principal points.

The camera model considered in the calibration is a standard camera model:

pcz

[
ucp ncp 1

]
=

[
pnx pny pnz 1

] RN
C

(tnc)T

K (4.1)

where ucp and ncp are the pixel coordinates of a point in the real image plane; [pnx, p
n
y , p

n
z]

is the 3-D coordinates of a point in the inertia frame; (tnc)T is a row vector that denotes

the position of the origin of the inertia frame On expressed in the real camera frame

C. RN
C and (tnc)T are referred to as the extrinsic parameters of the camera, and the

intrinsic parameters are characterized by the intrinsic matrix K which is defined as:

K =


λmu 0 0

γ λmn 0

cu cn 1

 (4.2)

where λ is the focal length of the camera, expressed in millimeters; mu and mn are

the scaling factors relating the distance to pixels, expressed in pixels/millimeters; γ

is the skew parameter, which is equal to 0 when u axis and n axis are perpendicular,

75

(a) Checkerboard pattern used for camera
calibration.

(b) Processed checkerboard pattern with de-
tected points.

Figure 4.4: Camera calibration using checkerboard pattern.

and (cu, cn) is the principal point that would be ideally in the center of the image.

Notice that (4.1) is an augmented version of (2.15) and (2.16) which depict a perfect

pin-hole camera and do not consider the distance to pixels conversion.

The camera calibration is performed with a checkerboard pattern, as shown in

Figure 4.4(a). The side length of the checkerboard squares is 22 mm. The calibration

algorithm first detects a set of points from each image, as shown in Figure 4.4(b).

Then, based on (4.1), the intrinsic and extrinsic parameters of the camera can be

solved using the least square minimization [49].

Since a large number of images increases the accuracy of the calibration, we take

76 photos of the checkerboard from a variety of distance and direction. The algorithm

computes the re-projection error to evaluate the performance of the calibration. The

re-projection error compares the detected points with the re-projected points which

are obtained by projecting the checkerboard points from the world coordinate frame

into the image coordinate frame. As shown in Figure 4.5(d), the calibrated camera

model gives an average re-projection error of 0.19 pixel that is considerably below the

acceptable level, i.e., 1 pixel. Figures 4.5(a)–4.5(c) show the pattern-centric views

which illustrate the relative position and orientation of the camera to the checkerboard

76

pattern. These figures are consistent with how the camera is actually positioned when

76 photos are taken.

(a) X-Y pattern-centric view of the camera. (b) X-Z pattern-centric view of the camera.

(c) Y-Z pattern-centric view of the camera. (d) Re-projection errors.

Figure 4.5: Camera calibration results.

77

The intrinsic matrix is obtained as:

K =


535.32 0 0

0 525.75 0

434.46 238.34 1

 (4.3)

It is observed that the principal point (434.46, 238.34) is not exactly at the center

of the image, which has the dimension of 856 pixels × 480 pixels. The focal length

of the camera is given as 1.8 mm [50], and therefore mu and mn can be calculated as

297.4 pixels/mm and 292.1 pixels/mm, respectively.

4.3.2 Image Processing Algorithms

A flow chart is created to illustrate the procedures of the experiment, as shown

in Figure 4.6. The designed procedures prepare the quadrotor and the camera for

triggering the visual servoing mode.

The visual servoing process is illustrated by another flow chart, as shown in Fig-

ure 4.7. Since it cannot be guaranteed that every time the point coordinates are

correctly extracted from the image, a loop structure is employed to make sure that

valid moment information is used in the control algorithm. Moreover, the state error

is constantly monitored to identify whether the visual servoing task has been accom-

plished. After the state error has decreased to below a threshold value, the quadrotor

is commanded to perform automatic landing.

The point coordinates extraction algorithm is shown in Algorithm 1. It is observed

that not only the blobs but also the contour of the white paper are detected in the

algorithm. This is because the detection of the white paper contour helps to narrow

down the area where the valid blobs are being searched. The first step of point

coordinates extraction is to do thresholding and search through all the found contours

78

Figure 4.6: Experiment implementation flow chart.

79

Figure 4.7: Visual servoing algorithm flow chart.

to find a parent contour that contains multiple valid child contours (see Algorithm

2). Then, the four corners of the parent contour are extracted using Algorithm 3, and

these coordinates help to estimate the missing blobs using homography method. This

auxiliary procedure complements the imperfection of Algorithm 2 when confronting

varieties of lighting conditions.

80

Algorithm 1 Point Coordinates Extraction Algorithm

Input: A color image
Output: Coordinates of the four valid blobs

1: Read the color image as a grayscale image
2: Search for a parent contour that contains more than one but less than five valid

child contours through iterations of thresholding (Algorithm 2)
3: Compute the convex hull of the valid parent contour
4: Find four corner coordinates of the rectangle simplified from the convex hull

(Algorithm 3)
5: if The valid parent contour contains less than 4 valid child contours then
6: Compute the remaining blob coordinates based on the four corner points

using homography method
7: end if

Algorithm 2 Find Valid Parent Contour Algorithm

Input: A grayscale image, threshold value = 120
Output: A valid parent contour containing valid blobs

1: repeat
2: Threshold the image by threshold value
3: Find all the contours and generate the hierarchy tree
4: Search through the hierarchy tree to find the parent contour whose area

≤ 100000, convexity ≥ 0.92, and with the most number of valid child contours
satisfying that 30 ≤ area (child contours) ≤ 1000

5: threshold value = threshold value+ 10
6: until A parent contour that contains more than one but less than five valid child

contours is found

Algorithm 3 Find Rectangle Algorithm

Input: Convex hull of the parent contour
Output: Corner coordinates of a rectangle contour

1: repeat
2: for each point P on the convex hull do
3: Compute the normal distance from P to the line connecting the points

before and after P
4: end for
5: Remove the point P with the smallest normal distance
6: until Only four points remain

81

(a) Original image taken by the on-board
camera.

(b) Processed image after thresholding at
120.

(c) Processed image after thresholding at
140.

(d) Processed image after thresholding at
160.

Figure 4.8: Illustration of effects of thresholding at different threshold levels.

To demonstrate the effects of thresholding, Figure 4.8 shows the processed images

obtained by executing thresholding at different levels. As the thresholding level in-

creases, only the white paper remains to be white, while the other parts in the image

turn to be black, which benefits the contour of the white paper being detected.

As shown in Figure 4.9(a), Algorithm 2 can accurately detect the parent contour

containing the most number of valid blobs. However, it cannot be guaranteed that

all the four target blobs can be detected by incremental thresholding. To address this

issue, the corner coordinates of the parent contour are used to estimate the remaining

undetected blobs using homography method given the knowledge of the location of the

blobs with respect to the white paper (see Figures 4.9(c), 4.9(d)). It is worth noting

that the geometric information of the target object is not used in our controller design

82

(a) Detect a valid parent contour through in-
cremental thresholding.

(b) Extract the convex hull from the parent
contour.

(c) Identify the largest inner approximate
rectangle of the convex hull.

(d) Estimate the remaining child contours us-
ing homography.

Figure 4.9: Illustration of procedures of image feature extraction.

as assumed by the case of IBVS. It is exploited to improve the success rate of the

point extraction algorithm subject to undesired illumination conditions. In addition,

notice that we used different colors for the target blobs, but actually there is no need

to differentiate the blobs as only high level information of the blobs is needed. That

is to say, we can paint the target blobs all in black, which would significantly increase

the likelihood that all the target blobs are detected by Algorithm 2.

4.3.3 Consideration of Model Mismatch

In Section 2.2, we assume that the origin of the virtual camera frame Ov coincides

with that of the real camera frame Oc. This assumption is not valid as the camera

is mounted in the front of the drone body, and has a considerable displacement from

83

the center of gravity (COG). This displacement should be taken into account in our

analysis, otherwise it would induce steady state error in the regulation task and lead

to imperfect landing.

Figure 4.10: Coordinate frame modelling mismatch.

Since the control objective of the experiment is to regulate the COG of the quadro-

tor to right above the barycenter of the target object, it is appropriate to attach the

origin of the virtual camera to the COG of the drone body, while keeping the origin

of the real camera frame at the optical center, as shown in Figure 4.10. The displace-

ment from Ov to Oc is denoted by d. The coordinates in the real and virtual image

planes are symbolized by the green dot and the red dot, respectively. Moreover, the

red dashed circle denotes the projection of the green dot onto the virtual image plane

84

as defined in (2.20) and (2.21), and it differs from the red dot due to the presence of

d. This difference should be considered in our image moments calculation to mitigate

the steady state error induced by the model mismatch. The point coordinates in the

newly defined virtual image plane are derived as below:

[
uv nv λ

]T
=

λ

ET
3R

V
C (P c + dc)

(
RV
C (P c + dc)

)
=

λ

ET
3R

V
C
λ
pcz

(P c + dc)

(
RV
C

λ

pcz
(P c + dc)

)

=
λ

ET
3R

V
C
λ
pcz

([
pcx pcy pcz

]T
+ dc

) (RV
C

λ

pcz

([
pcx pcy pcz

]T
+ dc

))

=
λ

ET
3R

V
C

([
uc nc λ

]T
+ λ

pcz
dc

) (RV
C

([
uc nc λ

]T
+
λ

pcz
dc

))

(4.4)

where P c = [pcx, p
c
y, p

c
z]

T is the coordinates of a point P with respect to frame C;

dc = [dc1, d
c
2, d

c
3]

T is the displacement from Ov to Oc, expressed in frame C. The

right-hand side of (4.4) can be simplified by assuming that the magnitude of P c is

considerably larger than dc so that λ
pcz
dc can be neglected in the denominator.

Accordingly, it yields that:

[
uv nv λ

]T
≈ λ

ET
3R

V
C

[
uc nc λ

]TRV
C

[
uc nc λ

]T
+

λ

ET
3R

V
C

[
uc nc λ

]TRV
C

λ

pcz
dc

=

[
ûv n̂v λ

]T
+

λ

ET
3R

V
C

[
uc nc λ

]TRV
C

λ

pcz
dc

(4.5)

where [ûv, n̂v, λ]T is the point coordinates in the previously defined virtual image

85

plane when d is neglected. Notice that the last term on the right-hand side contains

RV
C and pcz, which are time-varying. Since we aim to mitigate the steady state error,

we can simply consider the case at the desired pose, that is, RV
C = Im, and pcz = Z.

As a result, the right-hand side can be further reduced to:

[
uv nv λ

]T
≈
[
ûv n̂v λ

]T
+
λ

Z
dc (4.6)

From (2.30), we have Z = s3Z
∗. Hence, it yields that:

[
uv nv λ

]T
≈
[
ûv n̂v λ

]T
+

λ

s3Z∗
dc (4.7)

where λ
s3Z∗d

c is the mismatch term that should be considered in the moment calcula-

tion. dc is a constant vector and is measured as [0.12, 0, 0]T m. Since it only has one

nonzero element dc1, it will only affect the calculation of uvg and further the calculation

of s1.

Based on (4.7) and the definition uvg = 1
K

∑K
k=1 u

v
k, it is straightforward to derive

that:

uvg ≈ ûvg +
λdc1
s3Z∗

(4.8)

where ûvg = 1
K

∑K
k=1 û

v
k.

Then, based on (2.27a) and (4.8), the corrected form of s1 is given as:

s1 ≈ s3
ûvg
λ

+
dc1
Z∗

(4.9)

Replacing (2.27a) by (4.9) enables the model mismatch to be effectively compensated,

and thus more accurate localization of the Bebop drone with respect to the ground

target can be achieved. Furthermore, better performance in automatic landing and

object tracking can be expected.

86

4.4 Experimental Results

The control objective of the experiment is to regulate the quadrotor to 1.35 m above

the barycenter of the ground target with its yaw aligned with the principal axis of

the target. Prior to the automatic flight, the quadrotor is manually piloted to the

desired pose, where a∗ is determined to be 5.5× 10−8.

The high-gain observer was not able to be deployed due to that it requires high

frequency sampling of the image features, and thus imposing intensive computation

load for image processing. Recall that the high-gain observer designed in (3.8) consid-

ers the continuous-time system dynamics (3.3), which implies that the acquisition of

image features needs to be sufficiently fast to enable the convergence of the observer.

However, since we execute both the image processing algorithm and the control algo-

rithms on the ground station, it would be challenging to guarantee an uninterrupted

supply of image features. In addition, the current image processing algorithm cannot

guarantee 100% accuracy of the extracted point coordinates, and therefore it may de-

teriorate the performance of the high-gain observer which is sensitive to measurement

noise.

Nonlinear MPC and explicit MPC are implemented in the experiments and the

corresponding experimental results are presented in Section 4.4.1 and Section 4.4.2,

respectively.

4.4.1 Experimental Study: Nonlinear MPC Controller

Online tuning has been executed to achieve a satisfactory flight performance in the

sense that the tuned controller is responsive to the given setpoint and has certain

robustness against the external disturbance, e.g., wind gusts. In the simulation, we

assume that the prediction time step equals the sampling period, and we specify the

87

prediction horizon by the number of prediction steps. However, during online tuning,

it is observed that an extended prediction time step can generate smooth maneuvers

and effectively reduce the computational burden. In the experiment, we specify the

prediction horizon by seconds and set it to 4 s. The control horizon is also set to 4,

which indicates that four sets of control inputs are generated and each set of con-

trol inputs accounts for 1 s which is considerably larger than the sampling period.

The first set of control inputs is sent to the on-board autopilot and implemented

for 0.1 s. The tuning parameters are set as: Q =diag([200, 200, 200, 2, 10, 10, 10]);

R =diag([1, 1, 1, 1]). Since it is not straightforward to specify the nonlinear con-

straints (3.25) and (3.26) in CasADi, instead we directly bound the control inputs.

With reference to the definitions of φmax and θmax in (3.25), we can specify the

bounds of states and control inputs as: s1,max = s2,max = 2; s3,max = 5; s4,max = 3.14;

vv1,max = vv2,max = vv3,max = 0.5; ψmax = 0.06; f1,max = f2,max = f3,max = 2.

The experimental data is collected and plotted in Figure 4.11. As shown in Figures

4.11(a) and 4.11(b), the states are converging to the desired values, and yet small

steady state errors can be observed in the end. This is because we design the visual

servoing process to be terminated when the state error weighted sum in (3.19) has

diminished to below 0.8. This threshold value is selected based on multiple successful

trials with acceptable convergence time.

The trajectories of control inputs f1d–f3d are shown in 4.11(c), and the trajectories

of s4 and ψ̇d are shown in 4.11(d) to illustrate the evolution of yaw. Different from

the case using explicit MPC controller, the position and the yaw of the quadrotor are

regulated simultaneously thanks to the use of a nonlinear model. Also, it is observed

that all the states and control inputs are constrained within the prescribed bounds.

In addition, the average sampling frequency is calculated to be 1.8 per second.

The evolution of the object scene in the real image plane is illustrated in Figure

88

0 2 4 6 8 10 12 14 16

Time(s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
om

en
t f

ea
tu

re
s

(a) Time evolution of moment features.

0 2 4 6 8 10 12 14 16

Time(s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Li
ne

ar
 v

el
oc

ity

(b) Time evolution of linear velocity.

0 2 4 6 8 10 12 14 16

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
on

tr
ol

 in
pu

ts

(c) Control inputs for translational dynamics.

0 2 4 6 8 10 12 14 16

Time(s)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Y
aw

 a
nd

 y
aw

 r
at

e

(d) Time evolution of yaw.

Figure 4.11: Experimental results obtained by implementing nonlinear MPC.

4.12. By convention, the origin of the FOV is located at the left upper corner, and

the two axes are measured in pixels. Because the camera is mounted at the front

of the drone body, when the COG of the quadrotor is converging to right above the

barycenter of the ground target, the object scene will not converge to the center of

the FOV, but slightly closer to the bottom edge of the FOV. Besides, a video of this

experiment is available at https://www.youtube.com/watch?v=BE9NwYZGwT0.

https://www.youtube.com/watch?v=BE9NwYZGwT0

89

0 214 428 642 856
n axis

0

120

240

360

480

-u
 a

xi
s

Figure 4.12: Point coordinate trajectories in the real image plane. Blue circles repre-
sent the initial scene, while blue dots represent the final scene.

4.4.2 Experimental Study: Explicit MPC Controller

In this experiment, the tuning parameters are set identical to those used in the sim-

ulation in Section 3.8.4, except that Kψ is set to 10.

Figures 4.13(a) and 4.13(b) illustrate the convergence of the states, and Figure

4.13(c) shows the evolution of the control inputs f1d–f3d. Figure 4.13(d)) shows that

the yaw of the quadrotor remains unchanged during position regulation until 2.4 s,

when the state error weighted sum has diminished below 0.1 and the yaw regulator is

triggered. Then, the yaw regulation is accomplished at 3.6 s, and the explicit MPC

controller is switched on again to alleviate the position deviation occurring during

the yaw regulation.

The average sampling frequency is 5.4 per second, which is three times faster than

that of using nonlinear MPC. In addition, it is observed in the experiment that fast

feedback enhances the robustness against the wind gusts.

90

0 1 2 3 4 5 6

Time(s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
om

en
t f

ea
tu

re
s

(a) Time evolution of moment features.

0 1 2 3 4 5 6

Time(s)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Li
ne

ar
 v

el
oc

ity

(b) Time evolution of linear velocity.

0 1 2 3 4 5 6

Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
on

tr
ol

 in
pu

ts

(c) Control inputs for translational dynamics.

0 1 2 3 4 5 6

Time(s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Y
aw

 a
nd

 y
aw

 r
at

e

(d) Time evolution of yaw.

Figure 4.13: Experimental results obtained by implementing explicit MPC

The evolution of the object scene in the real image plane is shown in Figure 4.14.

It is observed that the object scene successfully converges to the desired configu-

ration, and the final scene is comparable to what is obtained in Figure 4.12. Be-

sides, a video of this experiment is available at https://www.youtube.com/watch?

v=-zWwaA7CCgQ&t=10s.

https://www.youtube.com/watch?v=-zWwaA7CCgQ&t=10s
https://www.youtube.com/watch?v=-zWwaA7CCgQ&t=10s

91

0 214 428 642 856
n axis

0

120

240

360

480

-u
 a

xi
s

Figure 4.14: Point coordinate trajectories in the real image plane. Blue circles repre-
sent the initial scene, while blue dots represent the final scene.

4.5 Conclusion

Experiments have been executed to evaluate the performance of the proposed con-

troller designs. In this chapter, the experimental set-up is firstly introduced. Then,

the camera calibration is performed to determine the intrinsic parameters of the cam-

era, as required by the evaluation of control action. Next, the image processing

algorithms are presented to illustrate how the image features are extracted from the

images. Furthermore, considering that there exists mismatch between the model and

the real system, a compensation term is suggested being added to the moment calcu-

lation to reduce the induced steady state error. Lastly, the experimental results are

presented to show the validity of the proposed controller designs.

92

Chapter 5

Conclusions

5.1 Concluding Remarks

In this thesis, we propose control algorithms that address challenging problems arising

in the field of image-based visual servoing of a quadrotor. Due to the under-actuation

nature of the quadrotor, the conventional image feature and control method cannot

be directly applied to the visual servoing of the quadrotor. Thus, advanced image

features are proposed in the literature to recover the structural property of the system

dynamics such that the translational control can be separated from the lower level

attitude tracking control. We adopt the virtual camera approach and select four

image moments defined in the virtual image plane as image features for the design

of the controller. In Chapter 2, the image kinematics of image features together

with the equations of motion of the quadrotor are provided to form the state-space

equations for the IBVS of the quadrotor.

This thesis explicitly considers the visibility constraint, that is, the target object

is required to be maintained in the FOV of the camera during visual servoing. In

the literature, many works claim that the visibility constraint can be fulfilled by

93

properly bounding the roll and pitch angles. Since model predictive control has

inherent advantages of addressing system constraints, model predictive control is

employed in this thesis to design the visual servoing control law, as in Chapter

3. The bounds on the roll/pitch angles are formulated as nonlinear constraints of

control inputs. Furthermore, considering that constant bounds on the pitch/roll

angles may impose conservativeness, a constraints adjustment law is proposed to

update the bounds of roll/pitch based on the feedback of point coordinates. As a

result, the bounds are able to recover to the prescribed values when good visibility

is maintained. In addition, the design of MPC controller assumes the knowledge of

full states. However, the linear velocity information is not directly available due to

the use of a minimal sensor suite. Hence, a high-gain observer is designed to estimate

the linear velocity based on the outer-loop dynamics. Moreover, due to intensive

computational load involved in the online optimization, the image sampling frequency

is as low as 1.8 per second, which deteriorates the robustness of the controller against

external disturbances, i.e., wind gusts. Accordingly, an explicit MPC controller is

designed to improve the real-time performance and has boosted the image sampling

frequency by three times. In addition, we also show that the inner-loop rotational

dynamics can be feedback linearized so that a dynamics inversion-based PD controller

can be employed for the inner-loop control. Finally, the proposed control schemes

are verified though simulation and the obtained results are presented in the end of

Chapter 3.

To further verify the effectiveness of above-mentioned controllers, experiments

have been conducted, as detailed in Chapter 4. We first introduce the experimental

set-up, which includes the hardwares and softwares. Then, to accurately extract the

image features from the images, we use a MATLAB camera calibrator toolbox to

determine the intrinsic parameters of the camera. Following this, the image process-

94

ing algorithms are illustrated to show how the image features are extracted from the

images. Moreover, since there exists mismatch between the model and the real plat-

form, modification in the image moments evaluation has been suggested to effectively

compensate the induced steady state error. Lastly, experimental results are presented

to show the validity of the proposed control strategies.

5.2 Future Work

In this thesis, an observer-based MPC control scheme has been proposed for the

image-based visual servoing of a quadrotor. Simulation and experiments have been

executed to verify the effectiveness of the proposed control schemes. Despite that the

convergence of the high-gain observer has been proved in Section 3.3.2, the proof for

the stability of the overall closed-loop system has not been provided. [51] suggests

that terminal constraints can be introduced to claim the recursive feasibility and

asymptotic stability of the MPC controller subject to time-invariant input constraints.

However, a comprehensive proof will need to address the following difficulties:

• Stability analysis of the MPC controller subject to time-varying input con-

straints when the roll/pitch adjustment law is implemented.

• Stability analysis of the MPC controller when the observation error in the linear

velocity estimation is taken into account.

• Stability analysis of the overall closed-loop system when the inner-loop attitude

tracking error is taken into account.

Hence, future work will focus on the stability proof by addressing the above-mentioned

challenges.

95

This thesis addresses the fulfillment of the visibility constraint by explicitly bound-

ing the roll/pitch angles. This strategy induces hover-like motion, thus limiting the

maneuverability of the quadrotor. The authors of [52] propose a PBVS control scheme

that compensates the quadrotor’s tilt motion by moving upwards so that the scene

projected within the FOV is increased. This strategy can lead to aggressive maneuver

that offers shorter convergence time. To the best of author’s knowledge, none of IBVS

controllers has claimed to result in such motion in the literature. Hence, more efforts

are expected to be made to address the visibility constraint without sacrificing the

maneuverability of the quadrotor.

Last but not least, a rigorous analysis is expected to evaluate the robustness of

the proposed control scheme. Future work is to enhance the robustness of the existing

work and extend it to the application of tracking moving targets.

96

Bibliography

[1] F. Chaumette and S. Hutchinson, “Visual servo control part I: Basic approaches,”

IEEE Robotics Automation Magazine, vol. 13, no. 4, pp. 82–90, Dec. 2006.

[2] W. Wilson, C. Hulls, and G. Bell, “Relative end-effector control using cartesian

position based visual servoing,” IEEE Transactions on Robotics and Automation,

vol. 12, pp. 684–696, Oct. 1996.

[3] N. Gans and S. Hutchinson, “An asymptotically stable switched system visual

controller for eye in hand robots,” in Proceedings of the 16th IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, Las Vegas, NV, USA,

2003, pp. 735–742.

[4] E. Malis, F. Chaumette, and S. Boudet, “2 1/2 D visual servoing,” IEEE Trans-

actions on Robotics and Automation, vol. 15, no. 2, pp. 238–250, Apr. 1999.

[5] F. Chaumette, “Image moments: a general and useful set of features for visual

servoing,” IEEE Transactions on Robotics, vol. 20, no. 4, pp. 713–723, Aug. 2004.

[6] O. Tahri and F. Chaumette, “Point-based and region-based image moments for

visual servoing of planar objects,” IEEE Transactions on Robotics, vol. 21, no.

6, pp. 1116–1127, 2005.

97

[7] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,”

IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651–670, Oct.

1996.

[8] M. Sauvee, P. Poignet, E. Dombre, and E. Courtial, “Image based visual servoing

through nonlinear model predictive control,” in Proceedings of the 45th IEEE

Conference on Decision and Control, San Diego, CA, USA, 2006, pp. 1776–1781.

[9] A. Hajiloo, M. Keshmiri, W. Xie, and T. Wang, “Robust online model predictive

control for a constrained image-based visual servoing,” IEEE Transactions on

Industrial Electronics, vol. 63, no. 4, pp. 2242–2250, Apr. 2016.

[10] S. Heshmati-alamdari, G. C. Karras, A. Eqtami, and K. J. Kyriakopoulos, “A

robust self triggered image based visual servoing model predictive control scheme

for small autonomous robots,” in Proceedings of the 2015 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, Hamburg, Germany, 2015,

pp. 5492–5497.

[11] J. Gao, A. A. Proctor, Y. Shi, and C. Bradley, “Hierarchical model predictive

image-based visual servoing of underwater vehicles with adaptive neural network

dynamic control,” IEEE Transactions on Cybernetics, vol. 46, no. 10, pp. 2323–

2334, Oct. 2016.

[12] F. Chaumette and S. Hutchinson, “Visual servo control part II: Advanced ap-

proaches,” IEEE Robotics and Automation Magazine, vol. 14, no. 1, pp. 109–118,

Mar. 2007.

[13] T. Hamel and R. Mahony, “Visual servoing of an under-actuated dynamic rigid-

body system: An image-based approach,” IEEE Transactions on Robotics and

Automation, vol. 18, no. 2, pp. 187–198, Apr. 2002.

98

[14] I. Fantoni, R. Lozano, and F. Kendoul, “Asymptotic stability of hierarchical

inner-outer loop-based flight controllers,” in Proceedings of the 17th International

Federation of Automatic Control World Congress, Seoul, Korea, 2008, pp. 1741–

1746.

[15] F. Le Bras, T. Hamel, R. Mahony, and A. Treil, “Output feedback observation

and control for visual servoing of VTOL UAVs,” International Journal of Robust

and Nonlinear Control, vol. 21, no. 9, pp. 1008–1030, Jun. 2011.

[16] H. Xie and A. F. Lynch, “Input saturated visual servoing for unmanned aerial

vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 952–

960, Apr. 2017.

[17] H. Jabbari Asl and J. Yoon, “Bounded-input control of the quadrotor unmanned

aerial vehicle: A vision-based approach,” Asian Journal of Control, vol. 19, no.

3, pp. 840–855, May 2017.

[18] D. Zheng, H. Wang, W. Chen, and Y. Wang, “Planning and tracking in image

space for image-based visual servoing of a quadrotor,” IEEE Transactions on

Industrial Electronics, vol. 65, no. 4, pp. 3376–3385, Apr. 2018.

[19] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and L. Eck,

“Image-based visual servo control of the translation kinematics of a quadrotor

aerial vehicle,” IEEE Transactions on Robotics, vol. 25, no. 3, pp. 743–749, Jun.

2009.

[20] N. Guenard, T. Hamel, and R. Mahony, “A practical visual servo control for an

unmanned aerial vehicle,” IEEE Transactions on Robotics, vol. 24, no. 2, pp.

331–340, Apr. 2008.

99

[21] H. Jabbari, G. Oriolo, and H. Bolandi, “Dynamic IBVS control of an under-

actuated UAV,” in Proceedings of the 2012 IEEE International Conference on

Robotics and Biomimetics, Guangzhou, China, 2012, pp. 1158–1163.

[22] H. Jabbari Asl, G. Oriolo, and H. Bolandi, “Output feedback image-based visual

servoing control of an underactuated unmanned aerial vehicle,” Proceedings of

the Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, vol. 228, no. 7, pp. 435–448, Aug. 2014.

[23] H. Xie, G. Fink, A. F. Lynch, and M. Jagersand, “Adaptive visual servoing of

UAVs using a virtual camera,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 52, no. 5, pp. 2529–2538, Oct. 2016.

[24] X. Zhang, Y. Fang, X. Zhang, J. Jiang, and X. Chen, “A novel geometric hierar-

chical approach for dynamic visual servoing of quadrotors,” IEEE Transactions

on Industrial Electronics, to be published.

[25] G. Allibert, E. Courtial, and F. Chaumette, “Predictive control for constrained

image-based visual servoing,” IEEE Transactions on Robotics, vol. 26, no. 5, pp.

933–939, Oct. 2010.

[26] R. Mahony, P. Corke, and T. Hamel, “Dynamic image-based visual servo control

using centroid and optic flow features,” Journal of Dynamic Systems, Measure-

ment, and Control, vol. 130, no. 1, pp. 011 005–01–011 005–12, Dec. 2007.

[27] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile monocular

visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4,

pp. 1004–1020, Aug. 2018.

100

[28] F. L. Bras, R. Mahony, T. Hamel, and P. Binetti, “Dynamic image-based visual

servo control for an aerial robot: theory and experiments,” International Journal

of Optomechatronics, vol. 2, no. 3, pp. 296–325, Sep. 2008.

[29] R. Mebarki, V. Lippiello, and B. Siciliano, “Nonlinear visual control of unmanned

aerial vehicles in GPS-denied environments,” IEEE Transactions on Robotics,

vol. 31, no. 4, pp. 1004–1017, Aug. 2015.

[30] R. Mebarki and B. Siciliano, “Velocity-free image-based control of unmanned

aerial vehicles,” in Proceedings of the 2013 IEEE/ASME International Confer-

ence on Advanced Intelligent Mechatronics, Wollongong, Australia, 2013, pp.

1522–1527.

[31] D. Zheng, H. Wang, J. Wang, S. Chen, W. Chen, and X. Liang, “Image-based

visual servoing of a quadrotor using virtual camera approach,” IEEE/ASME

Transactions on Mechatronics, vol. 22, no. 2, pp. 972–982, Apr. 2017.

[32] H. Xie, K. H. Low, and Z. He, “Adaptive visual servoing of unmanned aerial vehi-

cles in GPS-denied environments,” IEEE/ASME Transactions on Mechatronics,

vol. 22, no. 6, pp. 2554–2563, Dec. 2017.

[33] R. Olfati-Saber, “Nonlinear control of underactuated mechanical systems with

application to robotics and aerospace vehicles,” Ph.D. dissertation, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, Cambridge, MA, USA, 2001.

[34] A. N. Atassi and H. K. Khalil, “A separation principle for the stabilization of a

class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 44,

no. 9, pp. 1672–1687, Sept. 1999.

101

[35] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss, “Output feedback stabi-

lization of constrained systems with nonlinear predictive control,” International

Journal of Robust and Nonlinear Control, vol. 13, no. 3, pp. 211–227, Feb. 2003.

[36] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss, “State and output feed-

back nonlinear model predictive control: an overview,” European Journal of

Control, vol. 9, no. 2, pp. 190–206, Jan. 2003.

[37] H. Michalska and D. Q. Mayne, “Moving horizon observers and observer-based

control,” IEEE Transactions on Automatic Control, vol. 40, no. 6, pp. 995–1006,

Jun. 1995.

[38] M. W. Spong, S. Hutchinson, and M. Vidyasagar, “Rigid motions and homoge-

neous transformations,” in Robot Modeling and Control, 1st ed. Wiley, 2005, ch.

2, sec. 4, pp. 42–44.

[39] H. Jabbari, G. Oriolo, and H. Bolandi, “An adaptive scheme for image-based

visual servoing of an underactuated UAV,” International Journal of Robotics

and Automation, vol. 29, no. 1, pp. 92–104, Jul. 2014.

[40] S. Zhao, “Time derivative of rotation matrices: A tutorial,” Computing

Research Repository, vol. abs/1609.06088, Sept, 2016. [Online]. Available:

https://arxiv.org/abs/1609.06088 (accessed Mar. 11, 2019).

[41] T. Bresciani, “Modeling, identification and control of a quadrotor helicopter,”

Master’s thesis, Department of Automatic Control, Lund University, Lund, Swe-

den, 2008.

[42] D. Gross, W. Hauger, J. Schröder, W. Wall, S. Govindjee, “Dynamics of

rigid bodies,” in Engineering Mechanics–Dynamics, 3rd ed. Berlin, Germany,

Springer, 2011, ch. 3, sec. 4, pp. 182–189.

102

[43] T. Lee, M. Leok, and N. H. McClamroch, “Nonlinear robust tracking control of a

quadrotor UAV on SE(3),” Asian Journal of Control, vol. 15, no. 2, pp. 391–408,

Mar. 2013.

[44] A. Tornambe, “High-gain observers for non-linear systems,” International Jour-

nal of Systems Science, vol. 23, no. 9, pp. 1475–1489, Sept. 1992.

[45] H. K. Khalil and L. Praly, “High-gain observers in nonlinear feedback control,”

International Journal of Robust and Nonlinear Control, vol. 24, no. 6, pp. 993–

1015, 2014.

[46] M. W. Spong, S. Hutchinson, and M. Vidyasagar, “Multivariable control,” in

Robot Modeling and Control, 1st ed. Wiley, 2005, ch. 8, sec. 3, pp. 266–272.

[47] G. P. Incremona, A. Ferrara, and L. Magni, “MPC for robot manipulators with

integral sliding modes generation,” IEEE/ASME Transactions on Mechatronics,

vol. 22, no. 3, pp. 1299–1307, Jun. 2017.

[48] A. McGovern. pyparrot 1.5.3 documentation.

https://pyparrot.readthedocs.io/en/latest/# (accessed Oct. 4, 2019).

[49] The MathWorks Inc. “Single camera calibrator app.” R2019b Documen-

tation. https://www.mathworks.com/help/vision/ug/single-camera-calibrator-

app.html (accessed Oct. 4, 2019).

[50] Parrot. “Focal length of camera.” Parrot For Developers.

https://forum.developer.parrot.com/t/focal-length-of-camera/311 (accessed

Oct. 4, 2019).

[51] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model predictive

control scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205–

1217, Oct. 1998.

103

[52] B. Penin, R. Spica, P. R. Giordano, and F. Chaumette, “Vision-based minimum-

time trajectory generation for a quadrotor UAV,” in Proceedings of the 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems, Van-

couver, Canada, 2017, pp. 6199–6206.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Acknowledgements
	Dedication
	Introduction
	Literature Review
	Visual Servoing
	Image-Based Visual Servoing of Fully-Actuated Systems
	Image-Based Visual Servoing of a Quadrotor

	Contributions
	Thesis Organization

	System Modelling
	Overview
	Reference Coordinate Frames
	Euler Angles and Rotation Matrices

	Equations of Motion of the Quadrotor
	Force and Torque Calculation

	Image Feature and Kinematics
	Kinematics of a Point in the Real Image Plane
	Kinematics of a Point in the Virtual Image Plane
	Image Moments
	Kinematics of Image Moments

	Equations of Image-Based Visual Servoing of a Quadrotor
	Conclusion

	High-Gain Observer-Based Model Predictive Control
	Overview
	Dual-Loop Control Structure
	High-Gain Observer
	Design Procedure
	Theoretical Analysis

	Nonlinear Model Predictive Control
	Problem Formulation
	Control Input Transformation
	Input Constraints

	Roll/Pitch Constraints Adjustment Law
	Explicit MPC Formulation
	Inner-Loop Attitude Tracking Control
	Feedback Linearization of Inner-Loop Dynamics
	Dynamics Inversion-Based PD Controller

	Numerical Simulation
	Simulation Set-up
	Simulation Study: High-Gain Observer-Based Nonlinear Model Predictive Controller
	Simulation Study: Incorporating the Roll/Pitch Constraints Adjustment Law
	Simulation Study: Explicit MPC Controller
	Simulation Study: Inner-Loop PD Controller

	Conclusion

	Experimental Implementation
	Overview
	Experimental Set-up
	Hardware
	Software

	Image Feature Extraction
	Camera Calibration
	Image Processing Algorithms
	Consideration of Model Mismatch

	Experimental Results
	Experimental Study: Nonlinear MPC Controller
	Experimental Study: Explicit MPC Controller

	Conclusion

	Conclusions
	Concluding Remarks
	Future Work

	Bibliography

