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ABSTRACT

The development of sustainable and practical technologies is essential for the continuation of civiliza-

tion. Two problems that are particularly imperative for society to resolve are 1) water insecurity and

2) antimicrobial resistance. Water insecurity may be alleviated with desalination technologies, however,

desalination is prone to a membrane fouling that hinders its practicality for low-resource contexts. The

two primary types of membrane fouling are scaling – mineral precipitation and deposition upon the

membrane – and biofouling – microbial colonization of the polymeric filtration membrane. The treat-

ment of biofouling with antibiotics is intertwined with the antimicrobial resistance (AMR) crisis, where

AMR infections are projected to exceed cancer in annual deaths by the mid-21st century. The AMR

crisis may be mitigated through photodynamic inactivation (PDI), which uses reactive oxygen species

(ROSs) to non-selectively oxidize and kill pathogens sufficiently fast to avoid adaptive mechanisms that

result in AMR. The innumerable possible combinations of control and experimental variables in studies

of membrane fouling and PDI are unlikely to be completely explored experimentally, where resource

limitations restrain experimentation. This Thesis, therefore, developed models and Python application

programming interfaces (APIs) that can 1) explore continuums of parameter values and 2) predict the

efficacy of desalination or PDI systems. These open-source Python modules may expedite the develop-

ment of practical technologies that resolve water insecurity and stymie antibiotic resistant epidemics,

thereby improving the likelihood of a long-lived civilization far into the future.
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WISDOM

All models are wrong; some models are useful.

George E. Box

It is not the strongest nor the most intelligent of the species that survives.

It is the one that is most adaptable to change.

Charles Darwin

The credit belongs to the man who is actually in the arena, whose face is marred by dust and sweat and

blood; who strives valiantly; who errs, who comes short again and again, because there is no effort with-

out error and shortcoming; but who does actually strive to do the deeds; who knows great enthusiasms,

the great devotions; who spends himself in a worthy cause; who at the best knows in the end the triumph

of high achievement, and who at the worst, if he fails, at least fails while daring greatly, so that his place

shall never be with those cold and timid souls who neither know victory nor defeat.

Theodore Roosevelt



Chapter 11

Introduction2

1.1 Motivation3

This Thesis sought to develop practical tools that can cultivate a sustainable society. The two specific4

problems that are addressed herein are 1) water insecurity and 2) antimicrobial resistance (AMR), which5

converge in desalination technologies. The research of this Thesis produced application programming6

interfaces (APIs) as computational tools that can facilitate technological development towards resolving7

these growing problems in society.8

1.2 Water security9

Fresh water resources are diminishing [1, 2], despite that water is one of the most abundant chemicals on10

Earth [3]. This is a consequence of global warming [4, 5] and climate change [6] that disrupt the water11

cycle, and pollution [7, 8, 9] and over-consumption [10, 11] that contaminate and deplete water reserves,12

respectively. One of the many consequences of less available freshwater is that billions of people [12],13

who disproportionately reside in developing nations, experience water insecurity each year [13]. This14

disparity in access to potable water is recognized as a top global priority in the 6th UN Sustainable15

Development Goal [14].16

Desalination is a promising technology that may resolve water insecurities. Desalination enables17

municipalities to generate potable freshwater from diverse feed sources, especially oceans [15, 16] that18

are both within 100km for ≈ 1
2

of the human population [17] and are practically inexhaustible relative19

to the magnitude of human consumption. The most common desalination method is the spiral-wound20

reverse osmosis (RO) design, since it optimizes the filtration surface area per unit volume. A cross-21

sectional schema of RO is represented in Figure 1.1. These membranes, when operational, selectively22

permit the diffusion of water across the membrane while impurities are retained in the feed channel.23

The accumulation of ionic, chemical, and microbial impurities in the feed channel during desalination24

compromises filtration via membrane fouling [18], of which scaling – mineral precipitation and deposition25
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Figure 1.1: A cross-section of the RO polyamide filtration membrane [35]. The quantitative specifications
are representative of the default values for our RO model, which are primarily based upon the DOW
FILMTEC BW30-400 module.

upon the membrane surface [19, 20, 21, 22] – and biofouling [23, 24, 25, 26, 27, 28, 29, 30, 31, 32] –26

microbial colonization of the polymeric filtration membrane [33, 34] – are the primary types.27

1.2.1 Scaling28

Scaling in Figure 1.2 is a geochemical phenomena that can occlude and tear the filtration membrane. The29

geochemical equilibria that result in scaling are difficult to experimentally study; hence, computational30

software that predict scaling have been developed [35]. These software, however, are expensive and/or31

not accessible via an API, which limits its accessibility and its ability to guide investigators through32

experimental design. We therefore developed a one-dimensional reactive transport model of desalination,33

which is sufficiently simple to be numerically encoded in PHREEQC. This PHREEQC expression of our34

model is the basis of our software, ROSSpy (Reverse Osmosis Scaling Software in Python), which is an35

intuitive and open-source API that meets identified needs of the RO community to predict brine and36

scaling from desalination systems. This project is detailed with validation and use cases in Chapter 2.37
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Figure 1.2: A cross-section of RO desalination, which depicts the geochemical environment and the
physical hindrance of scaling upon the membrane surface. Membrane flux decreases over the module
distance as a function of the pressure difference between the applied pressure of the feed and the osmotic
pressure between the filtered (permeate) water and brine (concentrate) solution.
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1.2.2 Biofouling38

Biofouling is a microbial phenomena, where a surface is colonized and eventually biodegraded. Bioci-39

dal treatments can limit biofouling [36], however, these treatments have substantial collateral effects40

of chemically degrading the filtration membrane [37] and possibly exhibiting off-target effects in the41

environment [38, 39]. The design of benign anti-biofoulants [40] is therefore essential to improve the42

efficacy and sustainability of RO desalination. Innovation here [41] can be accelerated by computational43

tools that allow investigators to predict the effect of different chemical agents and biofilm conditions.44

We therefore developed the WCMpy (Whole Cell Model in Python) suite of packages to foster the45

development of such computational tools, which is detailed in Chapter 3.46

1.3 Antimicrobial resistance47

The treatment of RO biofouling with antibiotics is intertwined with the AMR crisis, where AMR in-48

fections are projected to exceed cancer in annual deaths, and globally cost 1013 USD in lost economic49

production, by the mid-21st century [42]. The AMR crisis may be mitigated through the use of reactive50

oxygen species (ROSs), which non-selectively oxidize and kill pathogens while avoiding the mechanisms51

that result in AMR. ROSs, primarily singlet oxygen (1∆g), can be wielded on demand through photo-52

dynamic inactivation (PDI) by simply exposing a photosensitizer (PS) catalyst to incident light of the53

porper wavelength, which is illustrated in Figure 1.3. The innumerable possible combinations of PSs54

and undesirable microbial targets are unlikely to be completely explored with experiments before mid-55

century, since resource limitations restrain experimentation. We therefore developed the PDIpy module56

(Photodynamic Inactivation in Python) to rapidly predict PDI efficacy over a continuum of variable57

values, which can elucidate effective systems within the space of possible PDI technologies. This project58

is detailed in Chapter 4.59

1.4 Thesis work60

All of the figures and tables in this Thesis are original. The Python modules that have been published61

in the PyPI (Python Package Index) repository, at least partially for the completion of this Thesis, are62

listed in Table 1.1 with their respective quantity of PyPI downloads.63

1.5 Future64

The future aspirations for these projects are detailed in Chapter 5. The most notable far-term aspira-65

tions include the following: (1) amalgamate the WCMpy suite into a single module that simulates the66

biochemical effects of an anti-biofilm treatment; and (2) couple the mature module from (1) with the67

brine predictions from ROSSpy to comprehensively represent the effects of scaling and biofouling, and68
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Figure 1.3: A conceptualization of the PDI process: 1) incident light first strikes and excites a PS; 2)
the excited PS catalyzes the generation of 1O2 from a ground-state oxygen; and 3) the 3O2 oxidizes a
biological target to the point of cellular death.

Project Module PyPI downloads Total

ROSSpy
ROSSpy 10,013

21,956
ChemW 11,943

WCMpy
Codons 4,316

5,662BiGG SABIO 511
dFBApy 835

PDIpy PDIpy 2,013 2,013
Total 29,631

Table 1.1: The cumulative PyPI downloads according to PePy (https://pepy.tech/) – per March
23th, 2022 – for each of the modules and projects of this Thesis. The GitHub repositories for each
module are hyperlinked with the respective module name.

https://github.com/freiburgermsu/ROSSpy
https://github.com/freiburgermsu/ChemW
https://github.com/freiburgermsu/Codons
https://github.com/freiburgermsu/BiGG_SABIO
https://github.com/freiburgermsu/dFBApy
https://github.com/freiburgermsu/PDIpy
https://pepy.tech/
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their interdependence [43, 44], from RO desalination. This may include the assessment of halophilic69

bacteria [45] that could thrive in RO brine.70
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Chapter 271

A one-dimensional model of scaling in72

Reverse Osmosis: ROSSpy73

2.1 Introduction74

Desalination technologies, most notably reverse osmosis (RO) [46], are imperative for meeting the 6th75

UN Sustainable Development Goal [14] of universalizing potable freshwater. Arid Middle-Eastern coun-76

tries, who are both relatively affluent and geographically prone to water scarcity, are embracing RO77

desalination to satisfy domestic water needs; Israel, for example, supplies 3
4

of its domestic water from78

desalination [47] and Saudi Arabia is responsible for ≈ 22% of global water desalination [48]. RO is79

the most economical desalination technology [49, 50], however, it remains insufficiently efficient and80

economical for the low-resource communities. RO efficiency can be improved [51, 52] a) with energy81

recovery devices [17], that allow RO to approach the thermodynamic limit of desalinating seawater [53],82

and b) by mitigating membrane fouling such as scaling [19, 20, 21, 22], where minerals deposit upon the83

membrane surface and decrease membrane permeability such that greater applied pressures and energy84

usage are required to maintain a permeate flux over time. Scaling occurs mechanistically either through85

homogeneous precipitation from the highly concentrated brine byproduct of RO [54, 55] – which is itself86

hazardous [56, 57, 58, 59] but can be processed into useful salts [60, 61] in zero-liquid waste management87

systems [62, 63] or used in mixing-entropy batteries [64] – or through heterogeneous deposition upon88

nucleation sites on the membrane surface [65, 66]. The heterogeneous mechanism specifically occurs in a89

hyper-concentrated layer adjacent to the membrane called the concentration polarization (CP) [67, 68,90

69, 70, 71, 72], which is achieved as a consequence of the no-slip boundary condition – analogous to the91

capillary effect – that prevents the CP from mixing with the bulk solution since the velocity gradient of92

the fluid reaches zero adjacent to the stationary filtration membrane [73].93

Scaling, unfortunately, is experimentally elusive [74, 75, 76]. Computational programs [77, 78] may94

supplement experimental procedures [79, 80] as a means to investigate scaling and optimize RO efficiency;95

however, current programs are either unspecific to RO [81] or focus upon other aspects of RO: e.g. plant96
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operation [82, 83, 84, 85], permeate flux [86, 87], brine geochemistry [88], or fluid dynamics of the97

CP [89]. Mathematical programs [43, 90] and some with a user interface [91, 35] have been developed98

that simulate RO scaling, however, these lack an application programming interfaces (APIs), which is99

essential for the broad analyses, over a continuum of variables, that could accelerate geochemical scaling100

research.101

We therefore developed a unique one-dimensional model that captures both the geochemistry of102

scaling equilibria and the reactive transport of desalination, in contrast to existing one-dimensional103

RO models that utilize the steady-state approximation and the solution-diffusion model [35]. This104

one-dimensional RO model – similar only to the WaterTap model [92] – is critically amenable with105

PHREEQC [93, 94], which provides a rigorous and open-source numerical implementation of our model,106

similar to previous studies of scaling [95, 66] and RO [96, 97, 98, 99]. We exemplify our model through107

replicating experimental literature and conducting numerous sensitivity analyses across continuums of108

parameter values. We further developed the only, to our knowledge, open-source API of RO reactive109

transport (ROSSpy: RO Scaling Software in Python) based upon our model, which fulfills identified110

needs of a scaling software for RO research [100], where users can create, execute, process, visualize, and111

export simulations with predicted scale mass per membrane filtration area ( g scale
filtration m2 ) and ionic brine112

concentrations. Developers are encouraged to contribute to ROSSpy, which we believe is an important113

stride towards satisfying research needs in scaling and ultimately reducing water insecurity, especially114

in low-resource contexts.115

2.2 Methods116

2.2.1 Conceptual117

Our model represents RO desalination as a one-dimensional reactive transport process along the membrane-118

solution interface. The feed is represented by the single-domain model in Figure S4, where the bulk and119

CP solutions are aggregated into a single solution, as opposed to the more resolved dual-domain model,120

where the bulk and CP solutions are distinguished (Figure S5) [101, 102, 103, 104]. The dual-domain121

remains elusive within the confines of PHREEQC code (Section 6 of the Supporting Information) and122

moreover we demonstrate that the single-domain model is sufficient to recapitulate experimental results.123

Our model represents feed at the RO inlet with the Dirichlet boundary condition [105, 106] – a math-124

ematical description of constant conditions at a model boundary – where the influent feed is assumed125

to be an infinite reservoir and thus its concentration is immutable. Our model represents the RO outlet126

with the Cauchy boundary condition [107] – a mathematical description of dynamic conditions at a127

model boundary – where the effluent concentrations dynamically depend upon desalination. A glossary128

of parameters and variables for the equations and calculations are provided in Table S1.129
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2.2.2 Numerical130

The geochemistry and reactive transport components of our RO model are numerically detailed in the131

following sub-sections.132

Permeate Flux133

The permeate flux in our model is assumed to be 100% water, similar to other RO models [108], and134

it is calculated as the change in moles (∆Φe) of feed solution in any examined cell e. Permeate flux is135

proportional to the difference between feed pressure P and osmotic pressure π [54, 109, 110]136

∆Φe α (P − π), (2.1)

however, these pressures are not readily measured or reported; hence, we calculate the permeate flux137

via two comparable methods that are elaborated in the following sub-sections.138

Method 1: Linear permeate flux One method assumes that permeate flux decreases linearly along139

the RO module. This causes the concentration – which is represented by the concentration factor (CF)140

[111, 98, 112, 99, 113]141

CF =
initial

final
, (2.2)

as the quotient of initial to final ionic concentrations (influent vs. effluent), solution masses, or permeate142

moles [98, 99] – to increase exponentially along the RO module. The negative slope of permeate flux is143

calculated between the first cell 1 and the last cell n144

slope =
(∆Φn −∆Φ1)

n
, (2.3)

where the simulated membrane-solution interface is discretized into n equal fractions (cells) of the total145

module length lmodule. The permeate fluxes in these border cells, ∆Φ1 and ∆Φn, are calculated through146

a system of equations. One of these equations147

∆Φe =
∆Φmodule

n
=

∆Φn + ∆Φ1

2
(2.4)

equates two definitions of the average permeate flux per cell e: 1) ∆Φe = ∆Φmodule
n

from the total148

permeate flux over the module ∆Φmodule, and 2) ∆Φn+∆Φ1

2
, as the average between the border cells. The149

other equation is the definition of relative pressure loss over the RO module [114, 115] (HL; 0 ≤ HL ≤ 1)150

per eq. (2.1),151

∆Φn = ∆Φ1 ∗ (1−HL), (2.5)

which is ≈ 10% [116, 113, 117]. The substitution of eq. (2.5) into eq. (2.4) – given HL, ∆Φmodule, and152

n – permits calculating ∆Φ1 and ∆Φn, the flux slope of eq. (2.3), and subsequently ∆Φe from a linear153



10

expression of permeate flux per module cell154

∆Φe = (slope ∗ e+ ∆Φ1). (2.6)

The calculation sequence for this permeate flux method is summarized:155

1. Define HL, ∆Φmodule, and n156

2. Calculate the permeate flux slope [eqs. (2.3) to (2.5)]157

3. Calculate the permeate flux in each cell e [eq. (2.6)]158

Method 2: Linear Concentration Factor The second method of calculating the permeate flux159

assumes that the CF increases linearly, which causes the permeate flux to decrease non-linearly, along160

the RO module. The CF slope is calculated analogously to eq. (2.3):161

slopeCF =
CFn − CF1

n
. (2.7)

The effluent CFn is the average CF of all effluent ion concentrations162

CFn =

∑j
i=1(Ci,brine)∑j
i=1(Ci,feed)

, (2.8)

where Ci,brine is the effluent concentration and Ci,feed is the influent concentration of ion i, for all j ions.163

Defining CF from eq. (2.2) in terms of moles of feed solution (Φ, which is assumed to be 100% water)164

reveals an equation165

CFe =
Φ0

Φe

=
Φ0

Φ0 −∆Φ(1,e)

(2.9)

that can calculate the moles of feed at the end of an arbitrary cell e (Φe), where ∆Φe = Φ0 − ∆Φ(1,e)166

and ∆Φ(1,e), as the sum of permeate flux that occurred between cell 1 and the end of cell e, is separately167

the sum168

∆Φ(1,e) = ∆Φe + ∆Φ(1,e−1) (2.10)

of permeate flux before the start of cell e (∆Φ(1,e−1) =
∑e−1

j=1(∆Φj)) and the permeate flux over cell e169

(∆Φe). The initial moles of feed Φ0 is calculated170

Φ0 = Vfeed ∗MWH2O ∗ ρH2O, (2.11)

from the volume of the feed channel Vfeed, which is the product of the module length lmodule and the171

cross-sectional area of the feed channel Afeed172

Afeed = (Amodule − Apermeate) ∗
thfeed
thunit

, (2.12)
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where Amodule and Apermeate are the cross-sectional areas of the whole module and the permeate tube,173

respectively, and thfeed and thunit are the thicknesses of the feed channel and the repeating membrane174

unit in Figure S1, respectively. The linear expression for CFe175

CFe = (slopeCF ) ∗ e+ CF0 , (2.13)

is then substituted into eq. (2.9), with the slope from eq. (2.7), to yield an expression for the permeate176

flux (a negative change in feed moles) at the end of each examined cell e177

−∆Φ(1,e) =
Φ0

((CFn−CF0

n
) ∗ e+ CF0)

− Φ0 , (2.14)

which can be substituted into eq. (2.10) with the sum of previous permeate fluxes (∆Φ(1,e−1)) to yield178

the permeate flux over any examined cell e (∆Φe), analogously to eq. (2.6). Note that ∆Φ(1,e−1) = 0179

when e = 1, since there are no previous cells.180

The calculation sequence for this permeate flux method is summarized:181

1. Define the effluent CF182

2. Calculate the feed capacity of the module [eqs. (2.11) and (2.12)]183

3. Calculate the CF slope [eq. (2.7)]184

4. Calculate the permeate flux in each cell [eqs. (2.9), (2.10), (2.13) and (2.14)]185

Comparison of permeate flux methods Scaling predictions from these two permeate flux meth-186

ods are juxtaposed in Figure 2.1. The most significant difference is observed at the mid-point of the187

simulated module (0.47m), where the linear CF method predicts 0.99gram
m2 of Gypsum scale while the188

linear permeate flux method predicts 0.0196gram
m2 of Gypsum scale. The linear CF method subsequently189

predicts subtly less scale than the linear permeate method. These different distributions are explained190

by the dependency of scale upon the solution CF – where the exponential increase in CF through the191

linear permeate flux method causes initially less, and then eventually more, scaling than the linear CF192

method – however, the scale distribution ultimately equates between these two permeate flux methods193

to 3 significant digits: 38.7gram
m2 . These methods are therefore believed to only subtly affect the distri-194

bution, and not the total quantity, of scale within a module. Experimental literature is not known that195

can verify which method better reflects physical systems.196

Geochemistry197

The geochemistry of RO scaling in our model is predicated upon the kinetic rate laws and thermody-198

namic equilibria that define each mineral dissolution and precipitation. These chemical processes are199

encapsulated in the PHREEQC databases that offer different a) geochemical models, b) permissible200
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ranges of conditions, and c) sets of potential minerals to best represent a given system. These databases201

are complemented with the ChemW Python package that rigorously calculates the molecular mass of202

each mineral (see the ChemW PyPI documentation) to permit scaling predictions in the conventional203

units of g scale
m2 membrane

.204

Transport205

The physical transport of feed through the module is simulated in each timestep by 1) migrating the206

contents of each cell e to the next cell e+1; 2) repopulating cell 1 as new feed solution enters the simulated207

module; and 3) deleting cell n as brine exits the simulated module. The feed velocity vfeed =
Qmax feed

Afeed
208

is calculated from the maximum feed flowrate Qmax feed (m
3

s
) and the feed area from eq. (2.12) of the209

RO module. Default module parameters in Table S1 are sourced from the DOW FILMTEC BW30-210

400 RO module, similar to other RO models [108], and supplement user-defined module parameters.211

The maximum simulation timestep ∆t = lcell
vfeed

is calculated according to the Courant Condition [118]212

(Cmax = 1 ≥ vfeed∗tmax
lcell

) to maintain accurate resolution of the feed flow.213

2.3 Use cases214

The following sub-sections evince features of our model and its alignment with reported measurements.215

These studies were conducted through ROSSpy and are available as Python Notebooks in the ROSSpy216

GitHub repository.217

2.3.1 CF and Brine formation218

The predicted CF and ionic concentrations of the effluent were verified through comparison with the219

following three experimental studies, where the reported feed geochemistry and module specifications220

were parameterized into the model.221

Zaman et al.[119] This study examines RO brine, from a full-scale water treatment facility in Aus-222

tralia, to understand which minerals are likely to form as scale. The predicted concentrations in Figure223

2.2a were < 6%− error for all but one of the feed ions.224

Ahmed et al.[120] This study examines RO brine from 10 small desalination plants in Oman and 8225

plants in the United Arab Emirates (UAE) for the purpose of understanding ideal brine disposal methods.226

We selected the UAE Qidfa I desalination plant from these 18 plants to replicate, since it provided the227

most comprehensive details. The predicted concentrations in Figure 2.2b were < 10% − error for228

all but one of the feed ions. The CF, in the far-right column of Figure 2.2b, furthermore exhibits229

a < 1% − error, which supports that the reactive transport processes, notably the permeate flux230

calculations, are accurate.231
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Figure 2.1: Predicted scaling of the Red Sea at CFeffluent = 1.114 via the a) linear CF and b) linear
permeate flux methods. The linear increase in CF of a) slightly homogenizes the distribution of scaling,
while the exponential increase in CF of b) skews the distribution of scaling to lesser initially and
eventually greater, relative to the linear method of a). These subtle differences in scaling distribution
neutralize as the total scaling through both methods are equivalent.
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Hajbi et al.[121] This study evaluates the recovery of commodity salts from RO brine at a plant232

in Tunisia. The authors detail specifications of line D – a polyamide filtration membrane – in the233

plant system, in addition to the feed geochemistry, which were all parameterized into our model. The234

predicted concentrations in Figure 2.2c were less aligned than the aforementioned two studies, with two235

ions exceeding 25%−error. This is attributed to 40% fewer feed ions being defined by this study, where236

the incomplete geochemical representation of the feed skews the geochemical calculations of PHREEQC.237

This is corroborated by the accuracy of the CF prediction in Figure 2.2c, despite inaccurate concentration238

predictions, which suggests that the error resides with the geochemical processes and not the reactive239

transport system.240

2.3.2 Scaling241

The scaling predictions were verified qualitatively from experimental literature and quantitatively from242

theoretical calculations, since experimental literature that quantified scalants with feed geochemistry243

was not discovered.244

Quantitative245

The quantitative verification consisted of two simple cases of Gypsum precipitation. 1) The first case246

in Table 2.1 consists of a solution with only Ca2+ and SO2−
4 , where the ionic concentrations decreased247

by 0.01859 moles while 0.01961 moles of Gypsum precipitated. This 5% discrepancy in mass balance248

is attributed to the printed PHREEQC values in this calculation neglecting diffusion within the feed249

solution, yet diffusion is considered in the final output of PHREEQC. 2) The second case in Table S1250

evaluates Gypsum precipitation from desalinating the solution from the first case with that from the251

Red Sea, which only precipitates Gypsum in our model. The simple solution precipitated 0.181 moles of252

Gypsum, while the Red Sea precipitated 0.194 moles. This +7%-error is attributed to ionic interactions253

within the Red Sea feed that are not present by the simple solution of only Ca2+ and SO2−
4 . These254

subtle [5, 7]% deviations, even without considering the coarse assumptions in these simple examples,255

are relatively minor in the context of other sources of error, such as feed measurements, and still elicit256

quantitative consistency in scaling predictions.257

Qualitative258

The scaling predictions were qualitatively verified through three experimental studies.259

Karabelas et al., 2020 [100] This study inspired features of ROSSpy by reviewing the state-of-the-260

art, and future directions, for predictive scaling software. The study also, importantly, describes in its261

Supporting Information scalants that were observed after desalination with defined conditions. Scaling262

predictions from these conditions in Figure 2.3a, over a few PHREEQC databases, match the reported263

scalants (”Calcite but not Gypsum” and a ”few other salts, such as Barite and Dolomite, could also264
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Figure 2.2: The %-error between predicted and experimental brine concentrations from RO plants.
Panels a-c) correspond to comparisons with the Zaman et al. [119], Ahmed et al. [120], and Hajbi et
al. [121] studies, respectively, and each possess different y-axis scales to best resolve the bars in each
graph. The trend is that prediction accuracy is proportional to the quantity of parameterized ions.
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Ca2+ + SO2−
4 � CaSO4

I 0.3545 1.816 0
C −0.01859 −0.01859 +0.01961
F 0.3360 1.797 0.01961

Table 2.1: Gypsum precipitation according to the ICE (Initial, Change, Equilibrium) framework, except
that ”Equilibrium” (E) is replaced with ”Final” (F) since the system does not completely reach equilib-
rium within the RO module. The 5%−error in row C, between the changes in ionic and Gypsum moles,
suggests a subtle discrepancy in mass balance of PHREEQC; however, this is attributed to PHREEQC
printing values before diffusion is incorporated in the calculations, per David Parkhurst.
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deposit at downstream...”) in numerous aspects: 1) Calcite was the primary scalant; 2) Gypsum was265

not observed; 3) a few other salts precipitated, including Dolomite and Barite, depending upon the266

PHREEQC database; and 4) these other salts precipitated primarily in the downstream portion of the267

module.268

Karabelas et al., 2014 [65] This study elucidates the mechanisms of incipient scaling from RO269

desalination – with Gypsum as the archetypal scalant [122]. The ID 28SC trial, which was the most270

thoroughly described trial, was simulated and Gypsum was the only predicted scalant in Figure 2.3b,271

just as the reported scalant.272

Lee et al., 2009 [123] This study evaluates the use of a membrane bioreactor – a hollow-fiber273

membrane module design that is mechanistically similar to RO and thus can be represented by our274

model – to treat wastewater. The wastewater filtration system was simulated, and the only predicted275

scalant was Calcite in Figure 2.3c, just as the reported scalant.276

2.4 Sensitivity analyses277

A few sensitivity analyses were conducted with major variables in the following subsections. Additional278

sensitivity analyses of lesser parameters are presented in the Supporting Information.279

2.4.1 Database section280

The PHREEQC databases crucially 1) determines the set of minerals that can be simulated; 2) contains281

all of the kinetic, thermodynamic, and stoichiometric information of each mineral; and 3) employs a282

chemical activity model: e.g. Pitzer, Debye-Hückel, and Davies in Section 7 of the Supporting Informa-283

tion. The Pitzer model [124, 125], which is implemented in the pitzer PHREEQC database, is touted as284

being supremely accurate in the concentration range of desalination [126, 127, 128]; however, the narrow285

breadth of accepted ions and minerals may justify using other databases, such as wateq4, for complex286

or uncommon feed sources. Each of the 13 databases were simulated in desalinating the Red Sea, where287

the Amm, Core10, LLNL, and Minteq.v4 databases failed to numerically converge while the scaling288

predictions from the other 9
13

databases are summarized in Figure 2.4. The database selection evidently289

alters scaling predictions; thus, the database must be carefully selected for a given system after reviewing290

the PHREEQC User Manual or inquirying to the PHREEQC user forum PHREEQCusers.org.291

2.4.2 Feed geochemistry292

The default feed waters were constructed from experimental geochemical literature into parameter files293

that are provided with ROSSpy. Users of ROSSpy are encouraged to simulate their own feed water294

while emulating the syntax of the default parameter files. We propose experimental data of numerous295

PHREEQCusers.org
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Figure 2.3: The qualitative validation of scaling for a) multiple minerals from the Karabelas et al., 2020
study; b) Gypsum in the Karabelas et al., 2014 study; and c) Calcite in the Lee et al. study.
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Figure 2.4: Scaling predictions from the a) ColdChem, b) Iso, c) Pitzer, and d) Sit databases, with
otherwise identical simulation parameters. These subfigures represent the spectrum of similar yet dis-
tinct predictions of scaling during the database sensitivity analysis, and exemplify that the PHREEQC
database should be deliberately selected after reviewing the PHREEQC documentation to discern which
database is most appropriate for the feed geochemistry.
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Figure 2.5: Scaling predictions of a) the Mediterranean Sea, b) produced waters from the Palo Duro oil
basin, c) the Red Sea, d) produced waters from the North German oil basin, with otherwise identical
simulation parameters. These subfigures represent the spectrum of scaling predictions from the variety
of different feed sources, which exhibits a high sensitivity of scale predictions to the feed geochemistry.

other water sources in Section 5 of the Supporting Information that can predicate feed water files;296

although, direct measurement of the simulated feed water is preferable to avoid significant influences297

of anthropogenic pollution [129] and seasonality [130] in reported measurements. Thee default water298

sources, which include both natural seas and produced waters from oil wells, were contrasted in Figure299

2.5, where the scaling and brine predictions differed significantly amongst these feed water sources.300

2.5 Software301

ROSSpy, which is conceptualized by Figure 2.6, combines our one-dimensional RO model with post-302

processing operations that facilitate interpretation of the simulation results. The software a) translates303

parameters into a PHREEQ input file; b) executes that input file via PHREEQpy; c) processes the304

simulation results into figures and data tables via Matplotlib [131] and Pandas [132] Python packages,305

respectively; and d) exports all of the simulation content – e.g. the PHREEQ input file, SVG data figures,306

and CSV files of parameters, variables, data, and brine predictions – into a specified folder and directory.307
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Figure 2.6: The ROSSpy workflow. Step 1 describes the translation of parameters – i.e. module
specifications, feed geochemistry, and simulation analysis – into the corresponding code blocks of a
PHREEQ input file. Step 2 describes executing the PHREEQ input file via either PHREEQpy in
ROSSpy, or via the PHREEQC batch software in the interactive version of ROSSpy (iROSSpy) that
is under development. Step 3 describes processing the predictions of brine concentrations or scaling
quantities into representative figures and datatables, which are ultimately exported.

The simulation data may be sliced into one-dimensional sets of distance or time that can be plotted308

against either scaling density or brine concentrations (Figures S2-S3) (see ROSSpy documentation).309

2.6 Conclusion310

A one-dimensional approximation of RO reactive transport geochemistry, executed in PHREEQC, is a311

practical and accurate representation of mineral scaling during desalination. The simulation predictions312
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of this model were quantitatively and qualitatively verified for a few use cases, with both theoretical313

expectations and experimental data where it was available. The API implementation of this model314

(ROSSpy) furthermore meets identified needs of the community – e.g. rapidly designing, executing,315

processing, and exporting simulations of RO scaling – while maintaining accessibility through its light-316

weight design and its open-source code. We expect that this one-dimensional model and the unique317

attributes of ROSSpy will facilitate scaling research and ultimately improve the efficiency of RO desali-318

nation towards alleviating chronic water insecurities in the world.319
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2.9 Supporting Information328

2.9.1 ROSSpy329

The variables and terms that comprise our model are defined in Table S1.330

Table S1: Glossary of ROSSpy variables.

variable name description

l length
longitudinal dimension of the

module or module cell

n
number of quantity of discretizations of the module

module cells

Φe moles the molesH2O that exist in cell e

∆Φe permeate flux the molesH2O that are removed in cell e

HL head loss reduction of pressure over the module distance

PE
permeate

efficiecy

attenuation of permeate flux

from pre-existing inefficiencies

CF
concentration

factor

solution concentration of cell e normalized

to the influent concentration

X mass water mass in the maximally filled feed channel

V velocity feed velocity through the feed channel

A area cross-sectional area of the RO module

th thickness thickness of a module dimension

Q volumetric flow feed flow through a maximally filled feed channel

∆t time
timestep of the simulation that

adheres to the Courant condition

Cmax
Courant

constant

maximal value of the Courant constant

to meet the Courant condition

φ total concentration total ionic concentrations in the simulation

C specie concentration concentration of an individual specie

v
stoichiometry

coefficient

coefficient for the respective compound

in the balanced equilibrium reaction
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continuation of Table S1

variable name description

N
number of quantity of reactions that

reactions contain a respective compound

R reaction flux mmol
hour

flux of an equilibrium reaction

Ω
thermodynamic logarithm of the Qdissolution

Ksp

displacement

km rate constant dissolution and precipitation rate constant

a activity chemical activity of the respective compound

η & p parameter experimentally determined parameter

∆G
Gibbs free

energy

Gibbs free energy of the dissolution

and precipitation reactions

K equilibrium constant thermodynamic equilibrium of the respective reaction

M number of minerals quantity of minerals in the studied system

γ activity coefficient coefficient of metabolite activity in a respective system

z charge compound charge of the respective metabolite

µ ionic strength charge-weighted concentration of a solution

A & B parameter experimentally determined parameter

aj & bj fitted parameter geochemical parameter that is fit to the system

Waq water mass mass of water in the system

The distinctions between slicing the simulation data through time or module distance is exhibited331

with brine in Figure S1 and scaling in Figure S2, respectively.332

A cross-section of an RO module, which highlights boundaries of the single- and dual-domain solution333

models, is depicted in Figures S5.334

2.9.2 PHREEQC consistency335

ICE table calculations336

The expected precipitation in the presented ICE table of Table S2 was determined as x in the following337

derivation:338
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Figure S1: Brine formation while slicing through either a) time at the final cell or b) distance at the
final time. The end concentrations slightly differ between these two simulation perspectives, where the
all time perspective calculates the true end of the last cell while the all distance perspective calculates the
mid-point of the last cell and thus has a slightly lower concentration. The brine represents desalination
of the Red Sea through the BW30-400 module.
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Figure S2: Scaling while either slicing through a) time at the final cell or b) distance at the final time.
The underlying simulation was of the Red Sea through the BW30-400 module.
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Ksp = [aCa2+ − x]1 ∗ [aSO2−
4
− x]1

Ksp = (γ ∗ [Ca2+]− x) ∗ (γ ∗ [SO2−
4 ]− x)

10−4.58 = ((0.19 ∗ 0.020594)− x) ∗ ((0.06 ∗ 0.105462)− x)

10−4.58 = (0.003913− x) ∗ (0.00633− x)

10−4.58 = 2.477E − 5− 0.01024 +X2

0 = −1.54E − 6− 0.01022x+ x2

∴ x = 0.0104 molal =
0.181 moles

17.67 kg water
.

(S1)

The activity coefficients (γ) for Ca2+ and SO2−
4 were sourced from PHREEQC for this specific339

solution system. The 17.67 kg mass of water corresponds to the mass maximum capacity of the simulated340

BW30-400 module.341

The predicted precipitation in the presented ICE table of Table 1b (gypsum pore volume) are sim-342

ilarly derived:343

gypsum pore volume = gypsum all shifts ∗ cells per module

total simulation shifts

=
n∑
i=1

(Gypsumi) ∗
12

51

= 0.823 ∗ 12

51

= 0.194 moles .

(S2)

The 12
51

is the fraction of simulation shifts that correspond to a single module or pore volume, where the344

simulated module was discritized into 12 cells. This isolates scaling from a single module, instead of345

the accumulation of scaling from multiple pore volumes, which renders the quantity directly comparable346

with the expected quantity.347

Ca2+ + SO2−
4 � CaSO4

I 0.003913 0.00633 0
C −x −x +x
F 0.003913− x 0.00633− x x

Table S2: Gypsum precipitation according to the ICE (Initial, Change, Equilibrium) framework, except
that ”Equilibrium” (E) is replaced with ”Final” (F) since the system does not reach equilibrium while
within the module. The estimated Gypsum precipitation from a solution of Ca2+ & SO2−

4 – based upon
the Ksp of Gypsum and the activity coefficients of this solution from iPHREEQC – is derived in S1 for
the system in this table.
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Evaporation versus transport desalination348

The mechanism of concentrating a solution, either via evaporation or desalination, should not alter349

scaling predictions, ceterius paribus. Figure S3 contrasts scaling predictions from evaporation and350

desalination of the Red Sea, where the two mechanisms are approximately equivalent. Differences are351

postulated to originate from the consideration of advection in the latter but not the former.352

2.9.3 In-series RO arrangements353

In-series arrangements of multiple RO modules are represented by compounding individual modules. We354

determined that this approach is preferential to a few other methods: e.g. amplifying the characteristics355

of a single RO module, such as those in Table S3, by a scalar r = Φ∆multi−module
Φ∆module

, where the ∆Φmulti−module356

is the total permeate flux of the multi-module system that can be parameterized or approximated357

through eq. (8). The substitution of CFmulti for CFe and ∆Φmulti−module for Φe into eq. (9) permits358

calculating the ∆Φmulti−module.359

2.9.4 Water bodies360

Additional feed parameter files can be composed by emulating the structure of the default feed param-361

eter files. Literature sources that may foster the development of such feed parameter files for numerous362

potential feed sources are provided in Table S4 with the respective citations of the experimental geo-363

chemical data.364

2.9.5 Dual domain365

Our model represents the feed solution with the single-domain model, despite that the dual-domain366

model in the module cross-section of Figure S5 is more fundamentally accurate, since our attempts to367

encode the latter in PHREEQC have been unsuccessful. We represent the mobile phase (bulk solution)368

as one set of membrane cells – [1, n] n ∈ W – and the immobile phase (CP layer) as a separate set of cells369

– [n + 2,m] m ∈ W > n + 2. These cell sets exchange solvent at a parameterized rate – the Exchange370

Factor 1
s

(EF) – which in Figure S4 is very influential upon the simulation predictions; however, the371

brine concentrations dilute in both solution compartments during desalination simulation. The scaling372

predictions are equally non-sensible. Our model therefore uses the single-domain model, which appears373

to be an acceptable approximation per our validations. The developer of PHREEQC – David Parkhurst374

– is uncertain whether the dual-domain model is compatible with the PHREEQ code, which assures us375

that the single domain model may be the best approximation of desalination reactive transport that is376

accessible to our open-source framework.377
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Figure S3: Scaling while a) evaporating and b) desalinating the Red Sea. The two scaling predictions
are qualitatively similar, however, even after accounting for the accumulation amongst different pore
volumes, the evaporation predictions (3.36g) are less than those of the reaction transport simulation
(5.27g). The difference may be the absence of advection in the evaporation analysis.
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Figure S4: Counter-intuitive brine predictions from dual domain simulations with different exchange
factor (EF) values, which is the 1

s
rate constant of solvent exchange between the mobile and immobile

solution phases. Panels a) and b) depict the mobile (bulk) and immobile (CP) phases when EF = 1E10,
while panels c) and d) depict the mobile and immobile phases when EF = 1E− 10, respectively. These
non-sensible results motivated our use of the single-domain model to represent RO feed flow.



31

Figure S5: A conceptual cross-section of the RO module. The membrane layers on top and bottom of the
figure are discretized into an arbitrary n cells. The figure illustrates the reactive transport phenomena,
where the feed solution progressively becomes more concentrated as it transports through the module.
The CP layer becomes much more concentrated than the bulk solution as a consequence of the no-slip
boundary condition, where the velocity gradient reaches zero at the membrane surface and thus does
not diffuse. These bulk and CP solutions are resolved in the dual-domain model (green boxed regions)
and are granulated into a single solution by the single-domain model (red boxed regions). The latter
was implemented in our model by necessity of PHREEQC.
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Parameter Value Source

Module (m)

length 1.016 BW30-400 [133]
diameter 0.201 BW30-400 [133]

permeate tube diameter 0.029 BW30-400 [133]

Membrane (mm)

filtration layer 0.00025 [134, 135]
Feed spacer 0.8636 BW30-400 [133] & [136]

Permeate spacer 0.3
Polysulphonic layer 0.05

Support layer 0.15

Windings
(

thtotal
thmembrane

)
86 BW30-400 [133]

Membrane cross-section (m2)

Module 0.0317 BW30-400 [133]
Permeate tube 0.000661 BW30-400 [133]

Filtration section 0.0311 BW30-400 [133]
Feed channel 0.0157 BW30-400 [133]

Feed channel capacity

Volume (m3) 0.0159 BW30-400 [133]
Mass (kg) 15.86 BW30-400 [133]

Fluid flow ( m3

second
)

Permeate 0.000463 BW30-400 [133]
Max Feed 0.00442 BW30-400 [133]

Table S3: Default dimensions of an RO module, with corresponding citations, that are primarily based
upon the DOW FILMTEC BW30-400 RO module, following precedence from other software [108].

2.9.6 PHREEQ378

The most pertinent calculations of PHREEQC for our model are summarized in the following sub-379

section, while the version 3 PHREEQC User’s manual provides a rigorous description of all PHREEQC380

operations.381

PHREEQ calculations382

The total concentration Ψi of ionic species i is calculated in each timestep,383

Ψi = Ci +
J∑
j=1

(vij ∗ Cj), (S3)
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Water body Geochemical measurements

Indian Ocean [137, 138, 139, 140, 141, 142, 143, 144]
Sargasso Sea [145, 146]

South China Sea [147, 148, 149, 150, 151]
Greek Coast [152, 153, 154]
Toyko Bay [155]

California Coast [156, 157, 158]
North Atlantic [159, 160, 161, 162, 163, 164, 165, 166, 167]

Baltic Sea [168, 169]
North Pacific [170, 171]
South Pacific [172, 173]

General natural waters [174, 175, 176, 177, 178, 179, 180]
Mississippi Salt Dome Basin [181]

Table S4: Proposed literature of potential feed water that can be adapted into parameter files for
simulation in our model, or specifically ROSSpy.

where Ci is the molal concentration of dissolved i; J is the set of compounds that contain i; Cj is the384

molal concentration of compound j that contains i; and vij is the stoichiometric coefficient for the moles385

of i per mole of compound j. The mineral precipitation equilibria over the simulation time t is calculated386

through a similar equation,387

∂Ψi

∂t
=

Nm∑
m=1

(vmj ∗Rm), (S4)

where Nm is the set of reactions that include specie i; vmj is the stoichiometric coefficient for the moles388

of i per mole of mineral m; and Rm is the reaction flux of dissolution or precipitation for (+) and (−),389

respectively,390

Rm = sgn[Ω] ∗ Am ∗ km ∗ (Π(an))|e
η∗∆G
RT − 1|p, (S5)

where Ω = log
(
Qdissolution

Ksp

)
and, for the simulated mineral m, Am is the reacting surface area; km is the391

rate constant of dissolution or precipitation; Qm is the ion activity product constant; and η and p are392

experimentally determined parameters. The |e η∗∆G
RT −1|p term simplifies to 1 for irreversible precipitation393

or dissolution. The set of eqs. (S3) and (S4) necessitates that any perturbations to ionic concentrations394

∂Ψi
∂t

manifest from complexation equilibria. The molal concentration Cj of compound j is discerned,395

Cj =
ΠNc
j=1(γj ∗Kj)

vij

γj ∗Kj

, (S6)

where Nc is the set of linearly independent chemical reactions; γj is the activity coefficient of compound396

j; and Kj is the equilibrium constant397

Kj = ajΠ
Maq
m (am)−vm,j , (S7)
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where Maq is the number of minerals in the aqueous system; vm,i is the stoichiometric coefficient of398

compound j per mole of mineral m; and aj and am are the activity coefficients of compound j and399

mineral m, respectively. The activity coefficient γj is calculated through either the Debye-Hückel model400

[182],401

log(γj) = −A ∗ z2
j

√
µ, (S8)

the WATEQ Debye-Hückel model [182],402

log(γj) =
−A ∗ z2

j ∗
√
µ

1 +B ∗ a0
j ∗
√
µ

+ bjµ, (S9)

the Davies model [183],403

log(γj) = −A ∗ z2
j (

√
µ

1 +
√
µ
− 0.2µ), (S10)

or the empirical Pitzer model [124], where A and B are experimentally determined parameters; a0
j and404

bj are fitted parameters; zj is the charge of compound j; and µ is the ionic strength of the solution405

µ =
1

2

Naq∑
j=1

z2
j

nj
Waq

, (S11)

where Waq is the simulated water mass and nj406

nj = Cj ∗Waq =
Ki ∗Waq

γj ∗ (Π
Maq
m (am)vm,j

(S12)

is the moles of compound j. These calculations and geochemical models are more thoroughly described407

in the PHREEQC manual and in the cited literature.408
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Chapter 3409

A suite of packages for scalable Whole Cell410

Models: WCMpy411

3.1 Introduction412

The development of whole-cell models (WCMs) [184] is purported to be a defining challenge of the 21st413

century [185]. WCMs amalgamate specialized models of cellular systems – e.g. the metabolome and its414

kinetics rate laws; the genome and its translational units; and the proteome and its functional proteins –415

into a single model that represents the entirety of a cell. This endeavor offers the unique opportunity to416

assess the completeness of cellular theory [186, 187] and to answer research questions in medicine [188,417

189] and synthetic biology [190]. WCMs are rooted in the Newtonian perspective that a complete model418

of both cellular biochemistry and environmental conditions can reproducibly recreate the phenotypes and419

diversity that are observed experimentally. An atomic-resolution molecular dynamics (MD) simulation420

of an entire cell (all 1E9 molecules [191, approximated from cellular mass]) may be the ultimate tool421

to answer these audacious biological questions; however, since the state-of-the-art of MD is currently at422

the level of proteins [192], membranes [193, 194, 195], or small cells [196] for microseconds, WCMs are423

the state-of-the-art for simulating cellular chemistry [197] at biological timescales (hours to days).424

The first WCMs [198] were rudimentary systems of ordinary differential equations that often incor-425

porated simplified assumptions of growth [199], such as the Monod kinetics model [200] which assumes426

that growth is solely contingent upon the glucose concentration. The advent of genome sequencing at427

the turn of the 21st-century [201, 202] facilitated the development of genome-scale metabolic models428

(GEMs) [203, 204], which resolved genome-protein-reaction relationships [205] in metabolic systems and429

thereby improved the biochemical resolution of these WCMs from the original mathematical frameworks430

[206, 207].431

GEMs are executed with the flux balance analysis (FBA) algorithm [208, 209], which distills metabolic432

systems into a matrix of reaction stoichiometry (S) and a vector (v) of variable reaction fluxes
(

mmol
gDW ∗hour

)
.433

The S matrix consists of a row for each chemical, a column for each reaction, and the corresponding434
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stoichiometry of a chemical in a reaction (negative for reactants, and 0 for chemicals that are not in the435

reaction) as each matrix element. The S matrix for this example three reaction system436

aA+ bB
v1−→ cC + dD

aA+ dD
v2←→ yY + zZ

cC + zZ
v3−→ growth ,

(3.1)

would be



−a −a 0

−b 0 0

c 0 −c
d −d 0

0 y 0

0 z −z


. The v vector, e.g.

v1

v2

v3

 for the reactions of eq. (3.1), contains the com-437

bination of reaction fluxes that corresponds with an optimum value of a metabolic objective, which438

is conventionally cellular growth (growth in eq. (3.1)). Multiple different v vectors can correspond to439

the same optimized objective value, which defines a linear space of objectively equivalent flux vectors440

[210] that is explored through a variation of FBA called flux variability analysis (FVA) [211, 212].441

The FBA algorithm uses matrix algebra and a chemical steady-state for each metabolic concentration442

dC
dt

= S · v = 0, where the biological objective of FBA is presumed to be > 1015 times slower than443

metabolic reactions per se [213], to efficiently determine optimal v vectors. This feature allows FBA444

to execute without kinetic rate laws, which is essential since many metabolic reactions have not been445

kinetically described; however, FBA is consequently independent of time and is therefore not directly446

applicable in biological workflows such as WCMs that attempt to simulate biology over time.447

The dynamic FBA (dFBA) method introduces time dependency to the FBA algorithm through448

kinetic flux constraints. Mathematical constraints are boundaries – e.g. 1 and 5 in this expression449

1 < x < 5 – that in the context of FBA tighten the vector space, i.e. reduce the set of v vectors that yield450

the same optimization value [214], to improve the accuracy and precision of flux predictions. Standard451

flux constraints are [0, 1000] for irreversible reactions and [−1000, 1000] for reversible reactions. These452

constraints, which coarsely represent metabolic limitations of substrate diffusion and thermodynamic453

favorability [215], approximately capture experimental systems [205, 216]; nevertheless, constraints for454

other chemical influences [217], such as the following few examples, improve the precision of FBA455

predictions [218]:456

1. Physicochemical - constraints that directly reflect physical laws of mass and energy conservation,457

and the thermodynamic favorability or free energy of a reaction [219]458

2. Topological - constraints that reflect compartmentalization and chemical gradients within a cell459

[220]460

3. Environmental - constraints that reflect nutritional limitations in the extracellular space461
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4. Regulatory - constraints that reflect feedback mechanisms which govern enzymatic activity [221]462

The kinetic constraints of dFBA constrain a reaction flux to known rate law for a reaction in the model463

[222, 223, 224, 225] – e.g. 12.2 ≤ v1 ≤ 12.2 for a calculated reaction flux of 12.2. The dFBA method464

entails a few steps: 1) known rate laws, e.g.465

d[C]

c ∗ dt
=

d[D]

d ∗ dt
= v1 =

Vmax1 ∗ [A] ∗ [B]

KM1 ∗ [A] +KM2 ∗ [B]

d[growth]

dt
= v3 =

Vmax3 ∗ [C] ∗ [Z]

KM5 ∗ [C] +KM6 ∗ [Z]

(3.2)

for the system of eq. (3.1), calculate reaction fluxes based upon the chemical concentrations of the466

previous timestep ([A]t−1, [B]t−1, [C]t−1, [D]t−1, and [Z]t−1), or the initial concentrations for the first467

timestep; 2) the FBA algorithm determines fluxes for reactions without a kinetic constraint; and 3) the468

present chemical concentrations ([A]t, [B]t, [C]t, [D]t, and [Z]t) are updated with the sum of products469

of the chemical stoichiometry and the predicted fluxes of each reaction470

[A]t = [A]t−1 + (−v1 ∗ a− v2 ∗ a)

[B]t = [B]t−1 + (−v1 ∗ b)

[C]t = [C]t−1 + (v1 ∗ c− v3 ∗ c)

[D]t = [D]t−1 + (v1 ∗ d− v2 ∗ d)

[Z]t = [Z]t−1 + (v2 ∗ z − v3 ∗ z)

. (3.3)

These steps repeat with each timestep.471

The ability to tailor constraints for a variety of chemical phenomena allows the FBA algorithm to472

studying numerous perturbations of metabolism. A few noteworthy applications of FBA include: e.g.473

medicine, through a) understanding diseases [226], b) studying bacterial growth rate [216], c) predicting474

the lethality of gene knockouts [214], d) assessing the efficacy of antimicrobial agents [209], and e)475

investigating microbial communities [227, 228] such as the human microbiome [229, 230]; bioengineering,476

through rationally designing a) cultured-meats [231], b) nutritious crops [232, 233, 234, 235], and c)477

biofuel-producing microorganisms [236]; and bioremediation, through elucidating the involvement of478

microbes [237].479

Other sub-cellular systems, besides the metabolome, are included in WCMs: notably, the genome480

and the proteome. The genome, for example, begets the proteome, which in turn contributes 1
3

of cellular481

mass [238] and governs the metabolome through enzymatic catalysis. The transcription and translation482

processes between the genome and proteome are collectively termed the Central Dogma of biology483

DNA
transcription−−−−−−−→ RNA

translation−−−−−−→ proteins . (3.4)

The Central Dogma can be specified in simple models to occur at experimentally-determined rates,484
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while more intricate models of epigenetics, for example, may require more complex representations of485

the Central Dogma to ensure that homeostasis is maintained during a simulation [239].486

3.1.1 Biofilm models487

A novel and aspirational application of WCMs is to simulate entire colonies of bacteria. Bacterial488

colonies (biofilms) [240, 241] are an interesting subject of study since they cause persistent infections489

[242, 243, 244, 245, 246, 247, 248, 249, 250, 251], and degrade industrial surfaces [27, 252, 253], such as490

boat hulls [254, 255, 256, 257]. Biofilms are additionally resistant to antimicrobial agents [258] as the491

consequence of a) inter-species cohabitation [259], which diversifies cellular vulnerabilities; b) limited492

diffusion through the polymeric biofilm matrix [260, 261, 262, 263, 264], which hinders liquid-state493

antibiotic treatments; and c) lower metabolic activity [265, 266, 267], which limits antibiotic absorption.494

Models of biofilm systems are empirical approximations of the underlying biochemical processes pro-495

cesses[268, 269, 270, 271, 272]. The Rittmann model [273], for example, simplified biofilm growth to496

one-dimension, ignored extracellular polymeric substances, and, like many early biological models [274,497

275], employed Monod kinetics to represent cytosolic chemistry. Improvements upon these early mod-498

els [276, 277] has manifested in more sophisticated algorithms for representing biofilm systems. Two499

prominent examples are the cellular-automaton (CA) algorithm, which simulates a spatial lattice and500

uses deterministic rules of biochemistry, and the individual-based growth model (IbM), which repre-501

sents biofilms as ecosystems of individual cells in a contiguous space [278] and uses stochastic rules of502

biochemistry. Contemporary biofilm models [279, 280] – e.g. the digital biofilm model [281] and the503

Unified Multiple-Component Cellular Automaton model [282], amongst others [283, 284] – iteratively504

approach a mechanistic framework of biofilm biochemistry, which remains the frontier of biofilm models505

[285].506

The amalgamation of WCMs with models of extracellular processes [286, 287, 288, 289, 290] would507

provide a mechanistic biofilm model with unparalleled biochemical resolution. This synergy would elu-508

cidate details – e.g. effects of antibiotics [273] or reactive oxygen species [291] – that can accelerate509

experimental research to combat problematic biofilms. The remaining challenges to realize this concep-510

tual synergy are two-fold: 1) the computational expense of simultaneously simulating ≈ 1E3 complete511

WCMs, one for each simulated cell in the biofilm, is untenable for personal computers; and 2) the quan-512

tity of experimental data that is needed to thoroughly parameterize each variable of each process in each513

cellular and intercellular system is a formidable bioinformatics bottleneck, which requires assembling514

and organizing bulk amounts of experimental data and which is unfortunately exacerbated by limited515

programmatic access to biochemical databases.516

3.1.2 WCMpy suite517

We, therefore, developed a suite of Python modules – inspired by the modularity of the Edinburgh518

Genome Foundry suite of packages [292] for synthetic biology – that address each of the aforementioned519
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challenges that impede applying WCMs in a biofilm model. 1) The first challenge of computational520

expense is addressed by condensing the WCM into its essence – being the metabolome and the Central521

Dogma – with lightweight Python modules: dFBApy and Codons, respectively. The Codons module is522

distinguished from the only Python module of the Central Dogma (”Dogma”) by i) providing extended523

functionality – e.g. generating and searching FASTA files in BLAST (Basic Local Alignment Search524

Tool), similar to other packages [293] – and ii) providing more documentation and a more intuitive525

application programming interface (API) that facilitate its usage. The dFBApy module is distinguished526

from the only other dFBA module for Python (”dFBA”) by being i) amenable with Windows OS, which527

greatly expands its accessibility [294]; ii) lightweight for large-scale simulations; and iii) compatible528

with the other modules within our ecosystem. 2) The second challenge of bioinformatics processing is529

addressed through the BiGG SABIO module, which we developed to bootstrap programmatic access530

with the SABIO reaction kinetics (SABIO-RK) database [295] – the most curated source of biochemical531

kinetics data, versus alternatives like the BRENDA database [296] – and then to refine the assembled532

data into a form that is directly amenable with the dFBApy package.533

The aforementioned scripts – Codons, dFBApy, and BiGG SABIO – are designed to be amalgamated534

into a Python WCM package, e.g. WCMpy, which would be to our knowledge the first attempt i)535

to assemble a WCM in Python (the most popular programming language [297]) and ii) to simplify536

the WCM framework for community-level simulations, notwithstanding prior work in assessing biofilm537

antimicrobial efficacy via FBA [298]. We believe that these lightweight and open-source packages offer538

unique resources for developers to crowd-source simpler and more accessible WCMs that can scale to539

multicellular studies, which is complementary to increasingly fundamental WCMs [299] elsewhere in the540

WCM community [300, 301].541

3.2 Methods542

The logic and calculations for each of the aforementioned packages are separately detailed in the following543

sections.544

3.2.1 BiGG SABIO545

The BiGG SABIO Python module first loads a (JSON) GEM model with the syntax of the BiGG models546

repository (the standard repository for GEMs) [302]. The module is organized into two distinct processes547

and functions. The first function
�� ��scrape bigg xls a) parses the loaded model to determine all of its548

reactions and their database annotations; b) systematically searches each database annotation of each549

reaction, in addition to the reaction/enzyme name, in the SABIO-RK database via a Selenium Firefox550

webdriver [303, 304] that navigates the webpage and retrieves data from iframes; c) downloads all of the551

search results in a local folder in the directory of the parameterized BiGG model; d) concatenates the552

complete set of XLS files, after the downloading has concluded, into a single CSV file; and e) scrapes553
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and downloads the names and values for each rate law variable of the CSV file into a JSON file. These554

processes require an extensive amount of time; hence, this first function tracks its progress and can be555

stopped and resumed at any point. The second function of BiGG SABIO
�� ��to fba processes and refines556

the downloaded CSV and JSON content into a single JSON file that is amenable with dFBApy, which557

contains both the essential rate law information and the related provenance to ensure transparency and558

reproducibility of simulation parameters.559

3.2.2 dFBApy560

The dFBApy package simulates dFBA of a BiGG-formatted GEM, as an API wrapper for the COBRApy561

(Constraint-Based Reaction Algorithm in Python) FBA module [305, 306]. The dFBApy module op-562

erates through a series of steps. 1) Simulation details are parameterized – e.g. the total simulation563

time, the timestep value, a (XML) GEM, and a JSON file of kinetic data – which can be sourced from564

BiGG SABIO or customized elsewhere. 2) The parsed parameters are substituted into the available565

rate laws. 3) The
�� ��simulate function cycles through eqs. (3.2) and (3.3) of the chemical system and566

updates a Pandas DataFrame [132] of all chemical concentrations after each timestep. The conversion567

of fluxes into concentration changes necessitates the cellular dry mass and the cellular volume of the568

simulated organism, which we estimate to be 0.2pg [307] and 1fL [191] for bacteria, respectively, al-569

though these can be parameterized by the user. 4) Concentration changes are graphically visualized via570

MatPlotLib [131], and data of the fluxes and concentrations can be exported with the figure to a local571

folder.572

3.2.3 Codons573

The Codons Python module conducts simple manipulations and analyses of a genetic sequence and574

its corresponding proteins: notably transcription and translation of the Central Dogma. The modular575

functions of Codons first accept a genetic sequence as either a string or a FASTA-formatted file [308]576

(the standard format for genetic and protein sequences, where a sequence is preceded by a description577

line: e.g.578

>Prote in − 35 r e s i d u e s − 4796 .5 amu579

that is denoted by a leading ”>”). The
�� ��transcribe function conducts transcription with a reg-580

ular expression [309] that simply exchanges all thymines (T’s) with uracils (U’s), or visa versa. The581 �� ��translate function conducts translation according to the investigator’s specifications, which option-582

ally includes translating a) all possibly proteins, b) the complementary sense strand, and c) all three583

possible reading frames. The function operates by 1) determining the location of start codons, which584

can be tailored by the investigator; 2) grouping nucleotides into sets of three (codons); 3) translating585

the codons into corresponding amino acids per the Standard Codons Table, which can be tailored by586

the investigator to accommodate species variability; and 4) terminate the protein when a stop codon587
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is reached. The Codons module further supports searching genetic and protein sequences through the588

NCBI BLAST database [310, 311] via the ”BioPython” module [312], which acquires and downloads589

information about the parameterized sequence, or its proteins, and therefore assists in identifying homo-590

logues, functionality, and pertinent literature. The Codons module can finally create and export FASTA591

files from any parameterized genetic or protein sequence into a local folder.592

3.2.4 WCMpy593

The aforementioned Python modules, or their core logic, may be aggregated into a single module594

(WCMpy) that follows the workflow of Figure 3.1. The Central Dogma would be conducted via Codons595

and can be parameterized to occur at fixed rates of 70nucleotides
second

[313, 314] and

(
5amino acids

second

1.31doublings
hour

)
[315],596

respectively, where the latter rate is a function of the doubling time of the simulated bacteria. Protein597

degradation can be calculated with half-life probabilities (% remaining = 100∗
(

1

2

) time
halflife

) where protein598

half-lives are determined by the N-end rule [316] in which the N-terminus residue of a protein dictates599

its degradation rate as being either 2 minutes or > 10 hours. Translation and transcription in WCMpy600

would furthermore be limited by the cytoplasmic concentrations of amino acids and nucleotides, which601

connects to the metabolic activity that would be calculated via dFBApy (an alternative approach of sim-602

ulating metabolism, based in thermodynamics, is proposed in the Supporting Information). The input603

file of kinetics rate laws for dFBApy in this workflow would ideally be sourced from BiGG SABIO. The604

extracellular concentrations, e.g. Lysogeny broth (LB) [317] that is approximated as degraded casein605

protein [318] and yeast extract [319], may be user-specified in addition to the presence of antibiotics.606

The cellular mass, volumetric growth, and ultimately binary fission [320] (which we would presume to607

occur at a fixed rate like other WCMs [239]) would be dependent upon the cytoplasmic concentrations at608

the end of a timestep, after the biochemical processes have occurred. The high-dimensional simulation609

results may finally be best communicated through visualizations of the cell or biofilm that complement610

the molecular-level data from the underlying dFBApy and Codons packages.611

3.3 Case studies612

We separately exemplify core functionality of the WCMpy workflow – being the BiGG SABIO, dF-613

BApy, and Codons modules – in the following sections, which are available as Python Notebooks in the614

respective GitHub repositories.615

3.3.1 BiGG SABIO & dFBApy616

The BiGG E. coli core model consists only of the 95 essential metabolic reactions for E. coli. This617

model was first loaded into the BiGG SABIO module, where the
�� ��parse data function systematically618
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Figure 3.1: The stepwise workflow of WCMpy. Step 1 describes parameterizing the WCMpy simula-
tion with information about the organism (e.g. the representative GEM and corresponding kinetics rate
laws, the genome sequence, and the organismal state as either planktonic or sessile) and the simulation
conditions (e.g. initial concentrations of the cytoplasm, the simulated time and timestep, and environ-
mental conditions of the system). Step 2 describes the loop that occurs with each timestep: a) dFBA
and the Central Dogma are conducted based upon previous concentrations; b) the statuses of each cell
and biofilm component are calculated; and c) the concentrations are updated by the reaction flux for
the next timestep. Step 3 describes processing, visualizing, and exporting the simulation results.
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acquired all of the data (≈ 185MB) that describes the reactions of this model. The
�� ��to fba function619

then refined the raw data into a manageable file of kinetics data that was then directly parameterized into620

dFBApy and executed for an arbitrary amount of time. The results of this simulation are illustrated in621

Figure 3.2a, where the metabolic system re-establishes an equilibrium after the metabolism is perturbed622

by initial concentrations and rate law fluxes. The plotted concentrations for chemicals with defined initial623

concentrations are absolute concentrations, while those for chemicals without initial concentrations are624

only relative concentrations to the unknown initial concentration and are tagged with ”(rel)” in the625

legend. The ability to alternatively parameterize kinetics data as an argument to the
�� ��simulate626

dFBApy function was demonstrated in Figure 3.2b by specifying only Acetate Kinase kinetic information627

from the full kinetic file of Figure 3.2a.628

3.3.2 Codons629

The Central Dogma of the WC082 strain of Vancomycin-resistant S. aureus [321], sourced from the630

National Center of Biotechnology Information [322], was simulated through Codons. Between [25, 32]%631

of the reported proteins, and [65, 83]% of the reported peptide sequences, were perfectly translated from632

the 3 Mb genome – depending upon which start codons were selected, how many open reading frames633

(ORFs) were translated, and whether the sense strand was translated. The translation of every possible634

protein, which accounts for overprinted genes, improved the accuracy to matching 41% of proteins and635

99.5% of peptide sequences. Discrepancy between matches of entire proteins yet near 100% matches of636

all peptide sequences supports that many bacterial proteins may be assembled from numerous peptides.637

Improvements in accuracy consequently increase a) the run time, from 1min to 28min, and b) the638

proportion of false predictions, from 87% to 97%, for one ORF with no sense strand and for every639

possible protein on both strands, respectively.640

The aforementioned example with S. aureus were contrasted with an example of the MERS (Middle-641

Eastern Respiratory Syndrome, ≈ 29kb) virus [323]. Slightly more of the reported proteins
(

20
30

)
perfectly642

matched the translated proteins when considering all three ORFs, and 100% of the reported proteins643

were perfectly translated when accounting for overprinted genes that are more common in viruses [207],644

which suggests that viruses infrequently engage in peptide assembly into proteins. The sequences of645

the genome and the set of translated proteins were searched in the BLAST database through Codons,646

which were identified with 100% certainty except for the small, ambiguous, peptides that are difficult647

to identify.648

3.4 Discussion649

The developed suite of Python packages contributes modular tools that we postulate will foster the650

development of a mechanistic biofilm model, based upon a scalable WCM: WCMpy. The open-source651

Python community encourages collaboration, which may be particularly valuable for comprehensive652
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Figure 3.2: Notable concentration changes from simulating the E. coli core BiGG model via dFBApy
with a) full SABIO-RK kinetics data via the BiGG SABIO module and b) a single entry from the kinetics
data that was passed as a function argument. Chemicals with defined initial concentrations are depicted
at t = 0, while other chemicals are labeled as relative changes ”(rel)” since their initial concentrations
are unknown. The metabolic consequences of these concentrations and calculated fluxes are observed
over the first timestep, where equilibrium is re-established by generating D-Xylulose 5-phosphate and
Alpha-D-Ribose 5 phosphate. The discrete establishment of equilibrium is the consequence of a ”stiff”
FBA algorithm.
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projects such as WCMpy. The metabolome modules – BiGG SABIO and dFBApy – provide a con-653

duit between a kinetics database and dFBA metabolic simulations for any organism whose metabolism654

is encapsulated in a BiGG-formatted GEM. These metabolic packages may individually useful to the655

DataNator [324] and ModelSEED [325] WCM projects that are developing an improved bioinformat-656

ics resource and modelling tools, respectively. The dFBApy simulations are quantitatively consistent657

between the metabolic production in Figures 3.2a-b and the relative carbon input, which encourages658

their continued use by the community. The Codons module offers a rapid, intuitive, and practical tool659

for simulating the Central Dogma and investigating the genome and proteome of any organism with a660

known genetic sequence. These three packages advance available techniques to alleviate the noted bot-661

tlenecks – scalable code and bioinformatics logistics – that hinder developing mechanistic biofilm models662

with fundamental WCMs, which could expedite research in understanding and managing biofilms.663
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Figure S1: A sphere where the surface area represents the location of a chemical after a timestep,
which begins at the origin of the sphere, while possessing the average root-mean-squared velocity of
extracellular chemicals.

3.7 Supporting Information671

3.7.1 ”dFBA” module672

We attempted to repurpose the ”dFBA” module into a scalable and more accessible module for Win-673

dows OS. This was inhibited by the “dfba utils.so” file, and our attempt to replace this file with a674

dynamic linked library (DLL) analogue was thwarted by incompatibilities between C code in the library675

dependencies such as NVectors, SUNDIALS, and dlfcn and the C++ code of the DLL file. A further676

complication was that a few of these libraries, such as SUNDIALS, dynamically created the header files677

depending upon the user’s operating system; thus, a distinct DLL file would be required for each possible678

user architecture, which is not practical. The dFBApy module was therefore developed.679

3.7.2 Thermodynamic metabolism680

We considered conducting metabolism for WCMpy via thermodynamic gradients, rather than conven-681

tional dFBA kinetics. This proposed logic is incomplete, since we migrated to the kinetic models during682

its development; however, the preliminary logic and calculations of the following sub-sections may still683

inspire the development of a thermodynamic metabolic approach.684
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(a) The maximal distance (d) from the bacterial
membrane where a chemical can still contact the
membrane with a timestep. This distance defines
the thickness of the volume shell around the bacte-
rial membrane within which chemicals may poten-
tially be absorbed in a timestep.

(b) The average distance (d∗cos(45◦)) from the bac-
terial membrane where a chemical can still contact
the membrane with a timestep. The proportion of
the orange surface area and the total surface area in
eq. (S5) represents the probability of that a chemical
within the volume shell around bacterial membrane
strikes the membrane in a timestep.

Figure S2: Distances from the bacterial membrane where an extracellular chemical can still contact the
membrane within the timestep, given a known velocity.
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Membrane absorption685

Cellular absorption is determined by the cellular dimensions, which are calculated with each timestep.686

The bacterial shape is assumed to be spherical, which facilitates calculating cellular volume and surface687

area as a function of cellular mass m, via a constant density, with each timestep ∆t. The quantity of688

absorbed chemicals is calculated as a fraction of the chemicals that exist within a distance d from the689

bacterial membrane,690

d =
⇀

V rms ∗∆t . (S1)

This is the distance that a chemical, with the average root-mean-squared velocity of an extracellular691

chemical692

⇀

V rms =

√
3 ∗ kB ∗ T
mave

, (S2)

travels in ∆t, where kB is the Boltzmann constant; T is the extracellular temperature in kelvins; and693

mave is the average mass of the extracellular chemicals. The distribution of potential locations for a694

chemical after ∆t is conceptually represented as a sphere in Figure S1, where the origin is the initial695

location of the chemical and the sphere surface, a d distance from its origin, represents the set of possible696

final locations. The volumetric shell of d thickness around the bacterial membrane is the volume wherein697

chemicals could potentially collide with the membrane and be absorbed, which is calculated698

Vshell =
4π

3
∗ ((rcell + d)3 − r3

cell) (S3)

where rcell is the cellular radius at the start of ∆t. The product of Vshell and the extracellular chemical699

concentration Ci of chemical i700

nshell,i = Ci ∗ Vshell (S4)

yields the nshell,i quantity of chemical i that may be potentially absorbed. The proportion P of nshell,i701

that will contact the membrane is calculated as the proportion of spherical surface area in Figure S2b702

that overlaps with the membrane703

P =
SAmembrane collisions
SAsphere of possibilities

=
2 ∗ π ∗ rdistance traveled ∗ (rdistance traveled ∗ cos(contact angle))

4 ∗ π ∗ r2
distance traveled

=
(cos(45◦))

2
= 14.6% .

(S5)

The numerator is mathematically represented as the surface area of a conic sector of the chemical location704

sphere. The contact angle of 45◦, between the extracellular chemical and the bacterial membrane, is705

the average between the maximal angle of 90◦ for the infinitesimally close chemical to the membrane706

and the minimal angle of 0◦ for the farthest possible chemical, which is illustrated in Figure S2a. The707

P value of eq. (S5) is importantly independent and constant.708

The fraction of incident P chemicals that are absorbed is approximated by the thermodynamic709

gradient of each chemical i, which we propose represents the metabolic need Ei of that chemical. The710

thermodynamic gradient is determined as the current displacement Πx
R=1( QR

Keq,R
) – for the x number of711
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R reactions in which chemical i is a reactant – from the optimum displacement712

(
Q

Keq

)
optimum,i

= e

η ∗ ne−,i ∗ F ∗ Epotential
R ∗ Tincubation (S6)

where η is the total quantity of reactions in the bacterial membrane; ne−,i is the average quantity of713

exchanged electrons in reactions where chemical i is a reactant; F is Faraday’s constant of electrical714

charge; Epotential is the electrical potential of the bacterial membrane; R is the gas constant; and Tincubation715

is the incubation temperature of the simulated organism, which we presume to be indicative of the716

optimal thermodynamic displacement for the organism’s biochemistry. The metabolic need717

Ei =


0, if

(
Q
Keq

)
optimum,i

< Πx
R=1

(
QR
Keq,R

)
(

Q
Keq

)
optimum,i

− Πx
R=1

(
QR
Keq,R

)
, else

(S7)

is constrained to be positive, which assumes that excessive chemicals are not jettison. The absorbed718

quantity of chemical i719

nabsorbed,i = Ei ∗ ni ∗ P ∗Bi , (S8)

is finally the product of its metabolic need (Ei from eq. (S7)), its quantity within the volume shell (ni720

from eqs. (S3) and (S4)), the probability of it striking the membrane (P from eq. (S5)), and finally721

absorption hindrances that are encapsulated in Bi to abstractly represent transport phenomena at the722

membrane that may discriminately treat different chemicals. The contribution of absorption to mass723

growth of the cell is calculated724

∆m

∆t
=

b∑
i=1

(nabsorbed,i ∗MWi − nejected waste,i ∗MWi) (S9)

as the sum-product of the quantity of all absorbed or disposed b chemicals in the metabolism and their725

respective molecular weights. The aggregate change in the cellular mass ∆m
∆t

from eq. (S9) begets cellular726

dimensions727

rcell =

(
3 ∗ m

δcell

4 ∗ π

)1

3
, (S10)

assuming a constant density (δcell).728

Chemical reactions729

Metabolic reactions are partitioned between the cytoplasm (c), the membrane (m), and the extracellular730

environment (e). The maximal possible quantity of chemical reactions that can proceed in the forward731

or backward directions is calculated Rmax =
∣∣Ci
s

∣∣, where Ci is the concentration of chemical i and s732
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is the stoichiometry of chemical i in reaction R. The maximal Rmax reaction progressions in a ∆t is733

attenuated Ractual = Rmax ∗ ζ by a scalar ζ that represents unreactive collisions and diffusion limitations734

[326]. The Ractual is further limited Ractual =

Ractual, if Ractual < e

e, else
by the quantity of enzymes735

that can catalyze the reaction e. The direction of the Ractual reactions is determined NF = Keq −Q by736

the relative difference between the current Q and optimal Keq thermodynamic values, where NF > 0737

denotes forward reactions and NF < 0 denotes backward reactions. The concentration change Ci –738

in each separate compartment – over the timestep for chemical i is calculated dCi
dt

= Ractual ∗ s as the739

product of the quantity of reaction progressions and the respective stoichiometry of the chemical in the740

reaction. The new Ci is crucially used in eq. (S7) to determine the metabolic need of the chemical in741

the system.742
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Chapter 4743

A kinetic model of Photodynamic744

Inactivation: PDIpy745

4.1 Introduction746

Antibiotic resistant infections are projected to exceed cancer in annual deaths, and cost 1013 USD per747

year globally by mid-21st century [42]. Methicillin-resistant Staphylococcus aureus (MRSA) [327, 328,748

329] and fluoroquinolone-resistant Salmonella [330] are two worrisome examples of virulent pathogens749

that are developing resistance to the antibiotics that subdued them half of a century ago. Antimicrobial750

resistance (AMR) evolution can be slowed by reducing excessive and incomplete use of antibiotics for751

human illness and animal agriculture (which is globally the primary consumer of antibiotics [331, 332]);752

however, AMR is the inevitable consequence of specific mechanisms of action with conventional antibi-753

otics: e.g. β-lactam antibiotics selectively target the Penicillin binding protein [333]. Highly selective754

antibiotics are advantageous for mitigating off-target effects, yet, this strategy applies a strong evolu-755

tionary pressure on the pathogen to fortify the targeted vulnerability and thus circumvent the treatment756

mechanism. The perpetual arms race of medicinal chemists against microbial evolution, which ensues757

from this antibioic strategy of specific treatment mechanisms, must be replaced with a more sustainable758

strategy.759

4.1.1 Photodynamic inactivation760

Photodynamic inactivation (PDI) offers an effective medical technique for killing pathogens: e.g. bac-761

teria [334] and viruses [335, 336]. PDI is a photochemical process that generates singlet state oxygen762

(1∆g) [337, 338, 339, 340, 341] – a reactive oxygen species (ROS) [342, 343] – which non-selectively763

oxidizes biological substrates [344, 345] to the point of death. This mechanism enables PDI to a) avoid764

resistance evolution [346, 347, 348], because oxidation from 1∆g is too intense and rapid for adaptation765

of survivors; b) treat recalcitrant biofilms [349], where, unlike conventional antibiotics, the extracellular766

polymeric substances (EPS) of the protective biofilm matrix is oxidized concomitantly with the targeted767
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cells [350] and thus the mechanism of action is not diffusion-limited; and c) minimize off-target effects,768

since 1∆g has high spatiotemporal localization [351, 352, 353]. The last quality enables the use of PDI769

in cancer treatment [354], open systems such as wastewater [355, 356, 357], hospital surfaces [358], in-770

dustrial polymers [359], and directly on agricultural products [360, 361], where 1∆g won’t leach into the771

environment [39, 362, 41] or human consumables.772

The excited singlet state 1∆g oxygen is distinguished from the ground triplet state (3Σ−
g ) oxygen773

[363] by its quantum numbers. The molecular singlet state contains only paired electrons – i.e. one up774

spin electron for each down spin electron – and is named after its multiplicity (m) [364] of 1: from775

m = 2(S) + 1 (4.1)

when S = 0. S is the total angular momentum of the molecule – the sum of electron spins, where up776

is +1
2

and down is −1
2

– which, for a singlet molecule, is 0 since complete pairing necessitates equal777

quantities of up and down electrons (Figure S1). The molecular triplet state, in contrast, contains two778

unpaired electrons that result in a multiplicity of 3 from S = 1 in eq. (4.1). These unpaired electrons779

in 3Σ−
g increase shielding of the nuclear charges [365] and consequently stabilize 3Σ−

g by 0.98 eV [366]780

relative to 1∆g that lacks this shielding. The latin symbols for these molecular states derive from the781

mΛ
+/−
g/u template of molecular information, where g/u – gerade (non-invertable) & ungerade (invertable)782

– denotes the invertability of the molecule with respect to an inversion center and +/− denotes symmetry783

or anti-symmetry of the molecule, respectively. The base Λ term describes the orbital angular momentum784

of the molecule, which is distinct from the total angular momentum S by differentially weighting sub-785

orbitals, while following Hund’s 2nd rule of distributing electrons amongst degenerate sub-orbitals to786

maximize the orbital angular momentum.787

PDI consists of a few steps. First, the ground singlet state photosensitizer (PS) catalyst (1PS)788

photonically excites 1PS
hν−−→ 1PS∗ following the formal selection rules of electronic excitation [367],789

where it likely excitations preserve the electronic spin state: e.g. singlet to singlet. Second, the excited790

1PS∗ then relaxes through intersystem crossing, instead of fluorescing [368], to a more stable triplet state791

(3PS),792

1PS
excitation−−−−−−⇀↽−−−−−−−

fluorescence

1PS∗ intersystem-crossing−−−−−−−−−−−→ 3PS (4.2)

that transfers energy to 3Σ−
g , instead of phosphorescence [369], to generate 1∆g while regenerating the793

ground-state 1PS catalyst,794

1 PS
phosphorescence←−−−−−−−−− 3 PS

3Σg−−−−→ 1 PS + 1∆g . (4.3)

The 3PS and 1∆g excited states engage in energy transfers instead of 1PS∗ and 3Σu
+ since the former have795

longer lifetimes as a consequence of fluorescence being more favorable than phosphorescence. Finally,796

the 1∆g from eq. (4.3) oxidizes biological substrates through Type II oxidation mechanisms, which are797

concerted Schenck [370] or ene [371] reactions that produce organic peroxides [372], rather than Type I798
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mechanisms [373, 374, 375] that only affect radical substrates [376]. The Type II mechanism importantly799

oxidizes both saturated and unsaturated fatty acid chains, which comprise membrane phospholipids800

[377].801

Photosensitizer802

The PS is the essential component of PDI. The PS advantageously a) introduces control in the timing,803

magnitude, and location of 1∆g generation, as a counter-balance to the non-selective mechanism of804

action; and b) generates antimicrobial concentrations of 1∆g that would not occur by direct excitation805

of ambient oxygen from a photon (hv) 3Σg
− hv−−→ 1∆g [378], since this excitation is spin forbidden.806

Indirect photonic excitation can generate 1∆g

(
3Σg

− hv−−→ 3Σu
+ intersystem crossing−−−−−−−−−−−→ 1∆g + energy

)
[379],807

nevertheless, the PS catalyst accelerates and augments 3∆−
g generation [380, 381, 366]. The efficiency of808

a PS is defined by its quantum yield (0 ≤ Φ∆ ≤ 1 ;
1∆g molecules produced

photon absorbed
), which encapsulates the probably809

of eqs. (4.2) and (4.3) [382]. The Φ∆ is inversely proportional with the likelihood of fluorescence and810

phosphorescence relaxations, in Figure S3, and photobleaching, where photons and/or 1∆g irreversibly811

compromise molecular absorptivity [383, 384]812

The chemical structure of PS, in addition to the environmental conditions [385, 386], is a primary813

influence on Φ∆. The molecular functionality and charge, for example, can a) optimize its association814

with the targeted cells [387, 388], which optimizes efficacy while minimizing off-target oxidation [389]815

and host toxicities [390]; and b) possibly be amenable to permanent surface attachment [391] while re-816

taining material properties [358] in material applications of PDI [392, 393]. The PS molecular properties817

further determine which biological substrates are oxidized. PSs that are impermeable to the cytoplasmic818

membrane, or are bound to a material surface, generally oxidize the cytoplasmic membrane [394, 395]819

in Figure S4 instead of cytoplasmic contents [396], which causes lysis [397, 398] and generally affects820

gram-positive bacteria more than gram-negative bacteria [347, 399] since the latter possess a superficial821

lipopolysaccharide layer that protects the cytoplasmic membrane. Permeable PSs, by contrast, can822

generate 1∆g within the cytoplasm and thus cytoplasmic chemicals [400] such as guanine nucleotides823

[401, 402] are fatally oxidized, which is more effective with prokaryotes than eukaryotes [390] since the824

latter have a nuclear membrane that protects DNA, particularly guanine, from oxidation [403].825

The most efficacious PS in nature is chlorophyll [404], which is an organometallic porphyrinoid826

(Figure S2) that evolution has tuned for low rates of photobleaching and absorption of visible light –827

specifically blue-violet [405] via the Soret absorption band [406, 407, 408, 409, 410, 411, 412] and green-828

orange [413] via the Q absorption band [414, 415, 416, 417]. Chlorophyll, however, has not evolved829

molecular functionality that optimizes its efficacy in PDI systems; therefore, synthetic porphyrins [418,830

350, 419] that emulate the efficient conjugated structure [420] of chlorophyll, yet introduce other metal831

centers [421] and functional handles [422, 423, 424] (e.g. Figure S2) that improve its utility for PDI832

[425, 426, 427] – such as enabling surface attachment, possessing a desirable charge or permeability, or833

perhaps being tuned for a specific wavelength – are an appealing direction for PDI research.834
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4.1.2 PDI modeling835

Mechanistic models of PDI systems – that capture the chemistry and physiology of PDI – are unfortu-836

nately scarce and insufficiently comprehensive. The most prevalent form of PDI models is the logistic837

survival curve [428, 429, 430, 431, 432]838

log

(
N(t)

N0

)
= Nr

(
1− 1

1 +
(
t
τ

)P
)

(4.4)

where N0 and N are the number of organisms at times zero and t, respectively; Nr is the number of839

resistant organisms to the treatment method; P is the length of the shoulder curve in the sigmoidal plot;840

and τ is the suddenness at which inactivation occurs. Brasel et al. [433] applied eq. (4.4) – with third-841

order polynomials that describe Nr, τ , and P as a functions of irradiation intensity mW
cm2 and exposure842

time – however, the few variable conditions of this logistic model do not permit the investigator to843

explore the space of possible PDI systems: e.g. variability in the emission spectra of the light source844

[434], the biochemical profile of the targeted organism, or the efficacy of the simulated PS. Santos et al.845

[435] offered a response surface model of empirical second-order polynomials to determine inactivation846

as a function of PS concentration and irradiation time; however, the calibration of this model for a847

single PS (Eosin Y) and LED light source hinders its applicability to the numerous other combinations848

in effective PDI systems.849

We therefore developed a holistic PDI model that can guide biologists and chemists through the de-850

sign of optimal systems and PSs, respectively. This model captures the processes of Figure 4.1 through a851

series of reactions that represent a) the photoexcitation of the photosensitizer; b) the relay of excitation852

energy to ambient oxygen to form 1∆g ; c) the oxidation of biological material until lysis; and d) contin-853

uous growth of the simulated species. Notable variables in our model include: chemical constituency of854

the cytoplasmic membrane; concentration and absorptivity of the photosensitizer; emission spectra and855

intensity of the light source; and dimensions of the simulated space. This model constructs a kinetic rate856

law, from literature measurements, for each of these processes and parameterizes the aforementioned857

variables. The model yields predictions of membrane oxidation that are converted into predictions of858

inactivation through a calibrated parameter – which is the threshold of membrane oxidation that causes859

lysis – that derives from training our model with published PDI data. This model is moreover encap-860

sulated into a Python API (PDIpy) in Figure 4.2, which allows investigators to explore a continuum861

of values for numerous simulation parameters and to graphically interpret the simulation results (see862

the PDIpy documentation). We exemplify the model through replicating experimental studies and con-863

ducting sensitivity analyses with PDIpy. We expect that this original model, and its implementation as864

an open-source API, will foster experimental progress towards developing practical PDI systems that865

combat the medical crisis of antibiotic resistance.866
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Figure 4.1: The conceptual model of PDI that is captured by our kinetic system. Step a is the excitation
of a photosensitizer (PS) via incident light at the wavelength to which the PS is tuned. Step b is the
transfer of excitation energy from the excited PS to ambient oxygen, which reforms the PS catalyst
and generates singlet oxygen. Step c is the oxidation of membrane phospholipids via singlet oxygen,
which rapidly causes membrane lysis and subsequently cell death. Step d is the continuous growth of
surviving organisms. Each of these processes are represented by chemical reactions and rate laws in our
kinetic model.
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Figure 4.2: The programmatic workflow of PDIpy that implements our kinetic model. Step a describes
the processing and substitution of simulation parameters – categorically pertaining to the organism,
light, and photosensitizer – into the rate laws of our kinetic model. Step b executes the populated
kinetic model through Tellurium, where concentration changes are calculated via rate laws and concen-
trations are updated with each timestep. The simulation yields predicted fractions of oxidized membrane
fatty acids and excited PSs, which are converted into predictions of inactivation via a calibrated pa-
rameter. Step c graphically depicts the simulation results with the user-defined specifications. Step
d investigates the two-dimensional data of predicted inactivation over time by slicing through either
variable via a built-in function.
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Name Reaction Rate laws

Photoexcitation 1PS
kex−−⇀↽−−
kf

3PS d[3PS]
dt

= kex ∗ photonsPS
photonstotal

∗ Φex ∗ [1PS]− kf ∗ [3PS]

Energy transfer 3PS + 3Σg
– −−→ 1PS + 1∆g

d[1∆g ]

dt
= ktransfer ∗ Φtransfer ∗ [3PS] ∗ [3Σ−

g ]

Photobleaching 1PS + 1∆g −−→ 1PSbleached
d[1PSbleached]

dt
= kbleaching ∗ [1PS] ∗ [1∆g]

Phosphorescence 1∆g −−→ 3Σg
– d[3Σ−

g ]

dt
= kphosphorescence ∗ [1∆g]

Membrane oxidation 1∆g + FA −−→ FA–OOH d[FA−OOH]
dt

= kfa ∗ [1∆g] ∗ [FA]

EPS oxidation 1∆g + EPS −−→ EPS–OOH d[EPS−OOH]
dt

= kEPSoxidation ∗ [1∆g]

Reproduction −−→ FA d[FA]
dt

= kdoubling ∗ [FA]

Table 4.1: All chemical reactions of the PDI kinetic model. These reactions are individually detailed in
the Methods Section 4.2.

4.2 Methods867

Conceptual model868

Our model represents an experimental PDI system with i) a porphyrin PS, ii) a coccus (spheroid) bacteria869

such as S. aureus, iii) a constant light source, and iv) an aqueous solution that contains a steady-state of870

dissolved oxygen. The bacteria are represented by fatty acid chains, which our model assumes is the cite871

of membrane oxidation and hence is the only pertinent bacterial aspect for extracellular PDI. Biofilms,872

for simulations of sessile systems, are represented as a combination of fatty acid chains (bacteria) and873

extracellular polymeric substances (EPS) in a predefined ratio for the simulated species, which our874

model assumes is the cite of oxidation in the biofilm matrix. The model calculates the interaction of875

1∆g within the membrane volume or the volume of EPS, since this is the location of PDI inactivation.876

Each aspect of this model is represented with a variable: i.e. the PS absorptivity (which can be877

approximated from molecular dimensions), and the mol
vol

or mol
area

concentration; the cellular state (plank-878

tonic or sessile), and the CFU
mL

for planktonic experiments; and kinetic constants for some PDI reactions.879

These variables are populated in 8 chemical reactions that can be categorized into 4 general processes:880

a) photoexcitation and photobleaching, 1PS
hν−−→ 3PS in eq. (4.2); b) energy transfer, 3PS

energy−−−→ 3Σg
−

881

in eq. (4.3); c) the oxidation of biological substrates; and d) growth of the pathogen. A complete de-882

scription of these reactions and their respective rate laws is represented in Table 4.1. Each reaction is883

each detailed in the following sub-sections.884

Photoelectric reactions885

PS excitation PDI begins with the excitation of the PS via an incident photon. This occurs as the886

combined result of a photon i) entering the aqueous solution, ii) striking a PS, and then iii) exciting an887
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electron in that PS. This sequence is encapsulated by the kinetic expression888

d[3PS]

dt
= kex ∗

photonsPS
photonstotal

∗ Φex ∗ [1PS]− kf ∗ [3PS] . (4.5)

The kex & kf rate constants are estimated as the inverse of the rise and decay times for the selected PS,889

respectively. The rise time for a porphyrin PS is approximated as 50fs based upon estimates of < 100fs890

[436] and [60, 90] fs in ethanol solvent [437] that elongates the lifetime of excited molecules relative to891

water. The decay time, from the S2 fluorescence [438], and Φex ( PSexcited
photonabsorbed

) are approximated for a892

porphyrin PS to be 1.5ns and ≈ 0.7 [378], respectively. The photonsPS
photonstotal

[433], which is the proportion of893

photons in the solution that strike a photosensitizer [435], can derive from either emission and absorption894

spectra of the incident light and the PS [439], respectively, or the series of steps and approximations895

that are articulated in the Excitation Proportion section of the Supporting Information. The [1PS] is896

finally provided in either molar or mg
area

, where the latter unit for surface-bound PSs is converted into an897

effective molar of the PS in the volume within which the surface-bound PS resides immediately adjacent898

to the substratum surface.899

Photobleaching A PS may lose its absorptivity either by experiencing an irreversible rearrangement900

after collision with a photon – which is described by an oxygen independent, first-order, reaction [414,901

440] – or by being oxidized by 1∆g – which is described by an oxygen dependent, second-order, reaction902

3PS + 1∆g
hν−−→ PS−OOH . (4.6)

We developed a rate law903

d[1PSbleached]

dt
= kbleaching ∗ [1PS] ∗ [1∆g] , (4.7)

for our kinetic model that incorporates both the direct effects of 1∆g and the direct effects of light904

through kbleaching ≈ 600 cm2

J∗M [441] which is a function of light exposure W
cm2 .905

Energy Transfer reactions906

The energy transfer 3PS + 3Σg
− −−→ 1PS + 1∆g in eq. (4.3) is described by the rate law907

d[1∆g]

dt
= ktransfer ∗ Φtransfer ∗ [3PS] ∗ [3Σ−

g ]. (4.8)

The rate constant ktransfer is the inverse of the decay time of 3PS, which for a porphyrin PS appears908

to be 100ns in aqueous after accounting for the reported value [442] in acetone solvent which signifi-909

cantly increases the lifetime of excited states [443]. The 1∆g phosphorescence side reaction, which often910

emits a specific infrared wavelength that can be measured to approximate the [1∆g] [444], is kinetically911
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represented912

d[3Σ−
g ]

dt
= kphosphorescence ∗ [1∆g] (4.9)

where kphosphorescence is a function of CFU
mL

, since the 1∆g lifetime is greater in biological material [445]913

than water [446].914

Oxidation915

The following oxidation reactions consume oxygen, yet, our model assumes a steady-state of oxygen916

where the headspace of the simulated system perfectly replenishes consumed oxygen molecules.917

Cytoplasmic membrane The oxidation of cytoplasmic phospholipids, which we approximate as fatty918

acid (FA) chains, is represented as an irreversible reaction [447]919

1∆g + FA −−→ FA−OOH (4.10)

and a second-order rate law920

d[FA−OOH]

dt
= kfa ∗ [1∆g] ∗ [FA] . (4.11)

The rate constant kfa ≈ 240 L
g∗s [448] is reported with concentration in units of g

L
, which we calculated921

from i) the weighted average MW of the fatty acid chains in the cytoplasmic membrane, ii) the volume922

of the cytoplasmic membrane, and iii) an assumption that the cytoplasmic membrane volume consists923

entirely of fatty acid chains.924

Biofilm matrix The oxidation of EPS, which represents the biofilm matrix, is reported to be signifi-925

cant during PDI [350]. This process is represented through an irreversible reaction926

1∆g + EPS −−→ EPS−OOH, (4.12)

and a first-order reaction927

d[EPS −OOH]

dt
= kEPSoxidation ∗ [1∆g] (4.13)

with an empirical rate constant of 37.75 1
s

for S. aureus, and an initial concentration of EPS that is 9x928

greater than the cellular mass [449]. This reaction competes with eq. (4.10) for 1∆g and thereby lessens929

the efficacy of PDI upon sessile organisms relative to planktonic organisms.930
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Microbial growth931

Cellular reproduction is simulated continuously as simply the increase in [FA] – −−→ FA – since this is932

the only component of the cell that is pertinent to our model. The corresponding first-order rate law933

d[FA]

dt
= k2x ∗ [FA] , (4.14)

considers that growth is proportional with the current population of living microbes (represented by the934

fatty acids concentration). The rate constant k2x is the inverse of the doubling time of the simulated935

organism.936

4.2.1 Inactivation fitting937

Inactivation is deduced from oxidation in our kinetic model by presuming an oxidative threshold for938

lysis around 0.01% of the membrane fatty acids. This is implemented by geometrically translating the939

log10 predictions of oxidation, as a fraction of the total membrane fatty acids940

oxproportion =
[FA−OOH]

[FA−OOH] + [FA]
, (4.15)

by ≈ 4-log: e.g. oxidation predictions of [3,4,5] become inactivation predictions of [7,8,9].941

4.2.2 Implementation942

The model was implemented in SBML [450] through the Antimony syntax of the Tellurium Python943

module [451]. This standard model format was combined with a SED-ML description of the model944

figure [452] into a COMBINE OMEX file [453], which is transparent and reproducible representation of945

each simulation.946

Model calibration947

The SBML model format may further enable the programmatic calibration of the lysis threshold pa-948

rameter through training data and the COPASI software [454]. This lysis threshold is not reported in949

literature; hence, this threshold, which emerges from our model, is an original prediction and typifies950

the value of a mechanistic model that can elucidate opaque details.951

Beirao et al. The Beirao et al. study [350], which examined the efficacy of a dissolved PS over a952

range of concentrations against both planktonic and sessile states of S. aureus, was used as a training953

data set. The training procedure included: a) recreating each reported trial through our model, and954

b) empirically adjusting the threshold parameter such that the total variance across all of the trials is955
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Bacterial [PS] Inactivation Reported Predicted %-
errorstate (µM) (-log10) (min) (min)

planktonic
5 7.6 51 87 60
10 7.6 51 39 -23
20 7.6 30 18 -40

sessile
5 3.6 270 247 -9
10 5 270 337 25
20 6.3 270 256 -5

Table 4.2: A quantitative comparison of inactivation data from Beirao et al. versus PDIpy predictions
after its calibration.

minimized. The final %-errors between the calibrated predictions and the reported values from each956

trial are depicted in Table 4.2 and Figure 4.3.957

Sensitivity analyses958

Numerous sensitivity analyses were conducted to determine the significance of experimental variables for959

PDI efficacy, which can signal worthwhile variables for further experimentation. One of these analyses is960

highlighted in the following section, while the other analyses are detailed in the Supporting Information.961

Light intensity The sensitivity of PDI inactivation to light intensities was explored across a 4-log962

range of Lux values. The trend over this range, which is represented by Figure 4.4, reveals that the pro-963

portion of excited PS plateaus beyond ≈ 13, 000 lux. Direct inactivation from light, perhaps by exciting964

endogenous photosensitizers within cells [455, 456, 457], may still proportionally increase inactivation965

with light intensity beyond ≈ 13, 000 lux, however, these processes are currently not captured by our966

model.967

PDIpy968

The kinetic model is defined as a Python API and is offered through the Python Package Index. Param-969

eter files are also provided with default values for each category of the model variables, which provide970

an efficient and transparent means of parameterizing a simulation and which further supplement user-971

defined parameters. The complete list of accepted parameters and formats are detailed in the API972

documentation.973
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Figure 4.3: Model predictions of the Beirao et al. training data for a) planktonic and b) sessile states,
where the dot signifies the reported datum from the trial experiment.
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Figure 4.4: The proportion of excited PS, with the associated oxidation and inactivation predictions,
at two contrasting light intensities: a) 599 Lux, which approximates ambient indoor light, and b)
12915 Lux, which approximates ambient daylight. The subtle negative slope that is proportion to the
light intensity is the consequence of photobleaching, where incident photons can trigger irreversible
rearrangements of the PS and thereby decrease the quantity of photoactive PSs over time.
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Discussion974

The alignment of model predictions and reported inactivations from our training set supports that975

the API and underlying kinetic model may guide the design of experimental PDI systems. The %-976

error between the PDIpy predictions and the training data was interestingly greater in simulations of977

planktonic bacteria relative to sessile bacteria, which suggests that complexities of the planktonic phase978

– e.g. PS permeability, which causes cytosolic oxidation – are currently not captured by our kinetic979

model.980

The sensitivity analyses of the model variables illuminate its dynamic capacity to explore the space981

of PDI systems. This exhibits distinguishing features of this model, relative to other PDI models, to982

i) simulate diverse sets of experimental PDI conditions; ii) intuitively execute the kinetic model, and983

automatically visualize results, through the API interface; and iii) resolve the fundamental kinetics of984

PDI. We believe that this kinetic model and its open-source implementation as PDIpy will support985

developing PDI applications that can confront the looming crisis of AMR.986
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Figure 4.5: Qualitative orbital diagrams for a) 3Σ−
g and b) 1∆g configurations of diatomic oxygen. Each

barbed arrow represents a single electron, and each platform represents the electronic sub-orbital of
the respective label, where orbital energy increases vertically in the diagram. The distinction between
a) and b) is highlighted by the red circled electrons and labels, where 1∆g possesses an anti-bonding
π∗-bond in its HOMO that destabilizes it relative to 3Σ−

g .

4.5 Supporting Information: PDIpy996

4.5.1 Molecular properties and mechanisms997

The electronic difference between 1∆g and 3Σ−
g is best depicted through their respective molecular orbital998

diagrams in Figure 4.5. The photochemical processes of 1∆g generation are depicted in Figure 4.6, while999

the subsequent oxidation reactions are sampled in Figure 4.7.1000

4.5.2 Excitation proportion1001

The steps for estimating the absorbed proportion of incident photons by photosensitizers, where ab-1002

sorbance or transmittance measurements are not available, are detailed through the following steps.1003

a) The reported intensity of incident light from the respective light source – i.e. irradiance (mW
cm2 ), lux1004

( lumen
m2 ), or lumens (lumens) – is converted into a quantity of incident watts wattsin (J

s
). b) This incident1005

wattage is attenuated by the proportion of the emission spectra specem that resides within the specex of1006
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Figure 4.6: A qualitative Jablonski energy diagram of Steps b-c of PDI. The initial excitation in PDI

occurs via an energy transfer 3Σg
− energy transfer−−−−−−−−→ 1∆g. The ROS then, while abstaining from phosphoresce,

oxidizes a biological substrate to form a peroxide that gradually compounds to cause lysis.
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Figure 4.7: The reaction mechanisms of Type II oxidation and subsequent decompositions. Step (1)
depicts the concerted [458] Schenck reaction. Step (2) depicts the homolytic cleavage of the hydroper-
oxide bond to form OH• and an oxy radical that may enter autoxidation (Type I oxidation) mechanisms.
Step (3) depicts radical propagation via hydrogen abstraction to form another radical substrate and
an alcohol byproduct. Step (4) is a concerted Russell reaction [459, 460] between two peroxides that
forms a H2O2, an α, β-ketone, and an alcohol. The reactions of Steps (2-4) sample the wide range of
possible decompositions that follow oxidation mechanisms.
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the PS,1007

wattex =
specex
specem

∗ wattsin. (4.16)

c) The wattex is then used to calculate the moles of incident photons that strike photosensitizers per

timestep

photonsstrike PS
timestep

=
< hνex >

h ∗ c
∗ wattsex ∗

s

∆t
∗ reflection ∗ scattering ∗ 1 mole

NA

∗ volPS
voltotal

, (4.17)

where reflection ≈ 96% and represents the proportion of incident photons that penetrate an aqueous1008

solution [461]; and scattering
(
Iz
I0

= e−k∗z
)

represents the proportion of light Iz
I0

that reaches a specified1009

depth z [462], where k is the attenuation coefficient that is ≈ 0.04 ( 1
m

) [463] for clear water. The1010

quotient volPS
voltotal

describes the fraction of the solution volume where the PS resides (voltotal) that is1011

comprised of the PS per se (volPS), which is calculated as the product of the quantity of PS molecules1012

and the volume per molecule according to its molecular structure. The average excitation wavelength1013

of the PS (< hνexcitation >) is calculated as the weighted average of the Soret and Q excitation bands,1014

in proportion to their relative contribution in generating 1∆g [464, 465], which assumes that both1015

excitation wavelengths are excited during the simulation. The resultant photonsstrike PS

timestep
from eq. (4.17)1016

is then divided by the quantity of photons that enter the system per timestep photonstotal
timestep

to determine1017

which fraction of photons strike a photosensitizer.1018

4.5.3 Deduction of inactivation via the Hill equation1019

Inactivation may alternatively be deduced from oxidation through parameter manuipulation of a fitted1020

sigmoidal curve, similar to other models [466]. The Hill-equation [467] is a sigmoidal model that derives1021

from mass-action kinetics, similar to the Michaelis-Menten kinetic model, and thus it was selected the1022

signmoidal model for this alternative framework. A Python program for fitting the Hill-equation was1023

developed – the HillFit module – with a variation of the Hill-equation [468]1024

y = bottom+
(top− bottom) ∗ xn

EC50n + xn
, (4.18)

that introduces an additional bottom parameter for more advantageous fitting. The predicted oxidation1025

data was fitted to a hill-equation via HillFit and the parameters were subsequently adjusted in Table1026

4.3 to optimally meet the training data. The top parameter of eq. (4.18) is adjusted asymptotically1027

to a limit that follows an subtly different empirical expression for planktonic 1 − 10−Ω than biofilm1028

1− 10−0.7−Ω simulations, where Ω = wattage
1
5 − log10(1− finaloxidation proportion). This limit manifests1029

in the predicted inactivation being ≈ [1, 2]− log greater than the predicted oxidation, which implicitly1030

specifies an oxidation thereshold of ≈ [1, 10]%. The different parameter adjustments between sessile and1031

planktonic systems may be explained that numerous chemical influences, such as diffusion rates, are not1032

explicitly considered in our kinetic model. The regression plots for the fit of the Beirao et al. training1033
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Bacterial state Hill parameter Adjustment

Planktonic
EC50 -76%
nH +100%

Biofilm
EC50 -65%
nH +120%

Table 4.3: The Hill parameters adjustments that are enacted to create the inactivation plot for both
planktonic and biofilm systems.

data is depicted in Figure 4.8. The very precise fitting – R2 > 0.996 – supports that the Hill-equation is1034

an accurate description of our kinetic PDI model, and conversely that our model fundamentally describes1035

a biochemical relationship.1036

4.5.4 Oxidized membrane region1037

The region of the bacterial membrane that is oxidized by cross-linked PSs may be a small fraction of the1038

total membrane, provided that the bacterium does not have a tremendous angular momentum. This1039

is not presently captured by our model, but the following logic could incorporate this concept into the1040

model. The oxidized region of a coccus bacterial cell can be determined from the cellular radius and1041

volume1042

radiuscell =
3

√
3 ∗ volumecell

4π
. (4.19)

The membrane volume is calculated1043

volumemembrane =
4π

3
∗ (radius3

cell − (radiuscell − thmembrane)3) (4.20)

there the thickness of the cytoplasmic membrane ≈ 4nm. The volume of oxidized membrane is then1044

calculated1045

volumeoxidized = volumemembrane ∗
angleoxidized

360
, (4.21)

where the angleoxidized describes the angle in degrees from vertical at which the farthest 1∆g reaches the1046

mebrane. The fraction of the membrane volume that is oxidized is then calculated1047

oxidized =
volumeoxidized
volumemembrane

(4.22)

and applied to augment the effective oxidation proportion1048

oxidationproportion,new =
oxidationproportion,old

oxidized
. (4.23)
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Figure 4.8: The Hill-equation regressions for the oxidation plots of the Beirao et al. training data for
a) planktonic and b) sessile states. The high R2 correlation supports that our chemical model of PDI
recreates a sigmoidal biochemical relationship. The greater number of data points in panel b) is the
consequence of a far longer simulation time than the simulation of panel a).
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4.5.5 Sensitivity analyses1049

Light source & emission The sensitivity of simulation results to the light source – incandescent,1050

LED, or fluorescent – was explored. The comparison of incandescent and LED light sources, where LED1051

and fluorescent were nearly indistinguishable, is depicted in Figure 4.9. These simulated differences are1052

solely attributed to differences in the proportion of emitted photons that are within the visible spec-1053

trum, since PDIpy does not current resolve the intensity of specific emitted wavelengths or consider the1054

inactivation effects of heat from incandescent bulbs. The visible proportion of the emitted wavelengths1055

was determined in Figure 4.10 to have minimally consequence above 20%.1056

Bacterial CFU/mL The influence of bacterial CFU
mL

upon the rate of oxidation in PDIpy was tuned1057

to yield the trend that is depicted in Figure 4.11, where the rate of oxidation is inversely proportional1058

with the CFU
mL

. This is intuitive, where larger bacterial populations requires more time to eradicate.1059

Photobleaching constant The influence of photobleaching constant was explored over an 8-log range1060

of values, which is depicted in Figure 4.12. The values below 1E4 are indistinguishable over time.1061

4.5.6 Supplementary figures1062

This section includes supplementary figures for the main text. The natural and synthetic porphyrins1063

that inspire the design of photosensitizers are depicted in Figure 4.13.1064
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Figure 4.9: A comparison of the same experiment under a) incandescent and b) LED light sources. The
discrepancy between the inactivation of the two sources is attributed to the proportion of emission that
resides in the visible spectrum.
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Figure 4.10: A comparison of the same experiment with a light source that possesses a) 20% visible
light and b) 100% visible light, where the former value appears – for these simulation conditions – to be
the threshold beyond which the proportion of visible light does not substantial effect inactivation rates.
This threshold is likely dependent upon the quantity of incident watts; in which case, this threshold is
not broadly generaliazable for all simulation conditions.



74

Figure 4.11: A comparison of oxidation and inactivation between a) 1E6 and b) 1E10 CFU
mL

. The imposed
trend is that oxidation and thus inactivation are inversely proportional to the colony size, which is the
intuitive result.
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Figure 4.12: A comparison of the excitation proportion with two photobleaching constants. Constant
values below 1E4 are approximately indistinguishable.
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Figure 4.13: The chemical structure of porphyrinoid chlorophyll (top) juxtaposed with the core motif of
a synthetic porphyrin analogue (bottom). The ”R” groups of the synthetic porphyrin can be substituted
with a range of functionality to tailor the PS for the specific PDI system.
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Chapter 51065

Future work1066

The Thesis projects can be improved through the following lists, which are organized by their respective1067

chapter and their necessity towards our goal of publishing the work.1068

5.1 ROSSpy1069

5.1.1 Necessary1070

1. Publish - refine the manuscript & documentation and submit it for peer-review (Desalination).1071

5.1.2 Auxiliary1072

1. Dual domain - discern how to simulate the dual domain in PHREEQC.1073

2. iROSSpy - execute the PHREEQC batch software in the iROSSpy script to create an operational1074

command-line version of ROSSpy for non-technical users.1075

3. evaporation - investigate why scaling from desalination quantitatively exceeds that from evapo-1076

ration by 50%, despite controlling for the differences in pore volume of the solutions and the total1077

active area of the desalination module.1078

5.2 PDIpy1079

5.2.1 Necessary1080

1. Cross-linked PS - simulate a cross-linked PS, which specifically involves a) encapsulating the1081

diffusion-limited inactivation with planktonic bacteria, and b) the effectively condensed simulation1082

volume with sessile bacteria.1083
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2. COPASI calibration - calibrate the inactivation lysis threshold parameter through COPASI.1084

This will improve the transparency and precision of the calibrated value, which is an important1085

fortification before we publish our model.1086

3. Experimental guidance - collaborate with Grace Tieman to use PDIpy in guiding a PDI exper-1087

iment, and contrast the results of that experiment with the predictions in the paper. This will be1088

the pinnacle of the paper.1089

4. Publish - refine the manuscript & documentation and submit it for peer-review (BioPhysical1090

Journal).1091

5.2.2 Auxiliary1092

1. iPDIpy - connect PDIpy with the GUI framework that has been drafted for non-technical users.1093

2. Oxidation region - implement the augmentation of the oxidation proportion for the region of1094

the bacterial membrane that is exposed to a surface of cross-linked PSs.1095

3. Light effects - embody the contribution of endogenous photosensitizers – and the permeability1096

of PS and thus cytoplasmic oxidation – in inactivation effects, particularly at high light doses.1097

5.3 WCMpy1098

5.3.1 Necessary1099

1. Codons: tables - expand the accepted variations of codon translations for other organisms,1100

possibly by using the ”codons-usage-table” Python module.1101

2. dFBApy: conditions selection - add the ability to only use the kinetic data that most matches1102

the specified conditions of temperature, pH, or possibly taxonomic similarity for similar organisms1103

for which more data is available.1104

3. BiGG SABIO: multiple entries - allow the refined kinetics file to provide multiple entries of1105

data for each reaction/enzyme, which will permit the above aspiration for expanding the dFBA1106

function.1107

4. BiGG SABIO: chemical synonyms - improve the ability to match chemical and enzyme names1108

between the BiGG and SABIO conventions.1109

5. WCMpy: cytoplasm chemistry - amalgamate the suite of packages into an operational cyto-1110

plasmic model.1111

6. WCMpy: visualization - visualize geometric growth of a cell over the simulation.1112
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7. WCMpy: biofilms - apply a WCMpy model to a biofilm community, within a biofilm framework1113

(e.g. the CA algorithm) and considerations of extra-cellular chemistry.1114

8. WCMpy: Publish - update the manuscript & documentation and submit it for peer-review1115

(BioPhysical Journal).1116

5.3.2 Auxiliary1117

1. Codons: protein analysis - visualize and interpret translated proteins through the ”Minotaor”1118

Python module.1119

2. Codons: GC % - calculate the fraction of a genome that consists of Guanine and Cytosine,1120

which is an influential property for biophysical experiments.1121

3. Codons: back translation - determine the potential genetic sequences that beget a known1122

protein sequence, thereby expanding upon the ”backtranslate” Python module.1123

4. BiGG SABIO: real-time analysis - check scraped SABIO-RK reaction data for alignment1124

to the GEM model in real-time, where only matched data will be saved. This will importantly1125

prevent the scraped file from bloating to ≈ 4GB for full-scale GEMs, albeit at the expense of1126

slightly longer computational time. An alternative is to acquire a local version of the database1127

and then assemble kinetics files for each organism with orders-of-magnitude greater efficiency.1128
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[421] Jǐŕı Mosinger and Zdeněk Mička. “Quantum yields of singlet oxygen of metal complexes of meso-2336

tetrakis (sulphonatophenyl) porphine”. In: Journal of Photochemistry and Photobiology A: Chem-2337

istry 107.1-3 (1997), pp. 77–82. issn: 10106030. doi: 10.1016/S1010-6030(96)04613-8.2338

[422] Kimihiko Hirao. “Theoretical study of the Q and B bands of free-base, magnesium, and zinc2339

porphyrins, and their derivatives”. In: Journal of Physical Chemistry A 103.12 (1999), pp. 1894–2340

1904. issn: 10895639. doi: 10.1021/jp984807d.2341

[423] Wenting Wu et al. “BODIPY-based photosensitizers with intense visible light harvesting ability2342

and high 1O2 quantum yield in aqueous solution”. In: RSC Advances 4.93 (2014), pp. 51349–2343

51352. issn: 20462069. doi: 10.1039/c4ra08654f.2344

[424] Jorge N. Chacon, James McLearie, and Roy S. Sinclair. “Singlet Oxygen Yields and Radical2345

Contributions in the Dye-Sensitised Photo-oxidation in methanol of esters of polyunsaturated2346

fatty acids oleic, linoleic, linolenic, and arachidonic)”. In: Photochemistry and photobiology 47.52347

(1988), pp. 647–765.2348

https://doi.org/10.1016/S1011-1344(99)00139-6
https://doi.org/10.1002/lsm.20361
https://doi.org/10.1039/b311901g
https://doi.org/10.1039/c9nr02463h
https://doi.org/10.1039/c9nr02463h
https://doi.org/10.1039/c9nr02463h
https://doi.org/10.1016/S0928-8244(97)00097-7
https://doi.org/10.1016/S1011-1344(96)07321-6
https://doi.org/10.1021/ma801407u
https://doi.org/10.1016/S1010-6030(96)04613-8
https://doi.org/10.1021/jp984807d
https://doi.org/10.1039/c4ra08654f


116
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